3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
163 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
165 new_chunk = (void *)(chunk);
166 new_chunk_size = (chunk_size);
167 if (new_chunk_size > PL_nice_chunk_size) {
168 Safefree(PL_nice_chunk);
169 PL_nice_chunk = (char *) new_chunk;
170 PL_nice_chunk_size = new_chunk_size;
176 #ifdef DEBUG_LEAKING_SCALARS
177 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
179 # define FREE_SV_DEBUG_FILE(sv)
183 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
184 /* Whilst I'd love to do this, it seems that things like to check on
186 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
188 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
189 PoisonNew(&SvREFCNT(sv), 1, U32)
191 # define SvARENA_CHAIN(sv) SvANY(sv)
192 # define POSION_SV_HEAD(sv)
195 #define plant_SV(p) \
197 FREE_SV_DEBUG_FILE(p); \
199 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
200 SvFLAGS(p) = SVTYPEMASK; \
205 #define uproot_SV(p) \
208 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
213 /* make some more SVs by adding another arena */
222 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
223 PL_nice_chunk = NULL;
224 PL_nice_chunk_size = 0;
227 char *chunk; /* must use New here to match call to */
228 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
229 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
235 /* new_SV(): return a new, empty SV head */
237 #ifdef DEBUG_LEAKING_SCALARS
238 /* provide a real function for a debugger to play with */
247 sv = S_more_sv(aTHX);
251 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
252 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
258 sv->sv_debug_inpad = 0;
259 sv->sv_debug_cloned = 0;
260 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
264 # define new_SV(p) (p)=S_new_SV(aTHX)
272 (p) = S_more_sv(aTHX); \
280 /* del_SV(): return an empty SV head to the free list */
293 S_del_sv(pTHX_ SV *p)
297 PERL_ARGS_ASSERT_DEL_SV;
302 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
303 const SV * const sv = sva + 1;
304 const SV * const svend = &sva[SvREFCNT(sva)];
305 if (p >= sv && p < svend) {
311 if (ckWARN_d(WARN_INTERNAL))
312 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
313 "Attempt to free non-arena SV: 0x%"UVxf
314 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
321 #else /* ! DEBUGGING */
323 #define del_SV(p) plant_SV(p)
325 #endif /* DEBUGGING */
329 =head1 SV Manipulation Functions
331 =for apidoc sv_add_arena
333 Given a chunk of memory, link it to the head of the list of arenas,
334 and split it into a list of free SVs.
340 Perl_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
343 SV* const sva = (SV*)ptr;
347 PERL_ARGS_ASSERT_SV_ADD_ARENA;
349 /* The first SV in an arena isn't an SV. */
350 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
351 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
352 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
354 PL_sv_arenaroot = sva;
355 PL_sv_root = sva + 1;
357 svend = &sva[SvREFCNT(sva) - 1];
360 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
364 /* Must always set typemask because it's always checked in on cleanup
365 when the arenas are walked looking for objects. */
366 SvFLAGS(sv) = SVTYPEMASK;
369 SvARENA_CHAIN(sv) = 0;
373 SvFLAGS(sv) = SVTYPEMASK;
376 /* visit(): call the named function for each non-free SV in the arenas
377 * whose flags field matches the flags/mask args. */
380 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
386 PERL_ARGS_ASSERT_VISIT;
388 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
389 register const SV * const svend = &sva[SvREFCNT(sva)];
391 for (sv = sva + 1; sv < svend; ++sv) {
392 if (SvTYPE(sv) != SVTYPEMASK
393 && (sv->sv_flags & mask) == flags
406 /* called by sv_report_used() for each live SV */
409 do_report_used(pTHX_ SV *const sv)
411 if (SvTYPE(sv) != SVTYPEMASK) {
412 PerlIO_printf(Perl_debug_log, "****\n");
419 =for apidoc sv_report_used
421 Dump the contents of all SVs not yet freed. (Debugging aid).
427 Perl_sv_report_used(pTHX)
430 visit(do_report_used, 0, 0);
436 /* called by sv_clean_objs() for each live SV */
439 do_clean_objs(pTHX_ SV *const ref)
444 SV * const target = SvRV(ref);
445 if (SvOBJECT(target)) {
446 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
447 if (SvWEAKREF(ref)) {
448 sv_del_backref(target, ref);
454 SvREFCNT_dec(target);
459 /* XXX Might want to check arrays, etc. */
462 /* called by sv_clean_objs() for each live SV */
464 #ifndef DISABLE_DESTRUCTOR_KLUDGE
466 do_clean_named_objs(pTHX_ SV *const sv)
469 assert(SvTYPE(sv) == SVt_PVGV);
470 assert(isGV_with_GP(sv));
473 #ifdef PERL_DONT_CREATE_GVSV
476 SvOBJECT(GvSV(sv))) ||
477 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
478 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
479 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
480 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *const sv)
518 if (sv == (SV*) PL_fdpid || sv == (SV *)PL_strtab) {
519 /* don't clean pid table and strtab */
522 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
523 SvFLAGS(sv) |= SVf_BREAK;
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list.
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types, by changing array* fields
561 in body_details_by_type[] below.
564 char *arena; /* the raw storage, allocated aligned */
565 size_t size; /* its size ~4k typ */
566 U32 misc; /* type, and in future other things. */
571 /* Get the maximum number of elements in set[] such that struct arena_set
572 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
573 therefore likely to be 1 aligned memory page. */
575 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
576 - 2 * sizeof(int)) / sizeof (struct arena_desc))
579 struct arena_set* next;
580 unsigned int set_size; /* ie ARENAS_PER_SET */
581 unsigned int curr; /* index of next available arena-desc */
582 struct arena_desc set[ARENAS_PER_SET];
586 =for apidoc sv_free_arenas
588 Deallocate the memory used by all arenas. Note that all the individual SV
589 heads and bodies within the arenas must already have been freed.
594 Perl_sv_free_arenas(pTHX)
601 /* Free arenas here, but be careful about fake ones. (We assume
602 contiguity of the fake ones with the corresponding real ones.) */
604 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
605 svanext = (SV*) SvANY(sva);
606 while (svanext && SvFAKE(svanext))
607 svanext = (SV*) SvANY(svanext);
614 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
617 struct arena_set *current = aroot;
620 assert(aroot->set[i].arena);
621 Safefree(aroot->set[i].arena);
629 i = PERL_ARENA_ROOTS_SIZE;
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ const size_t arena_size, const U32 misc)
682 struct arena_desc* adesc;
683 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
686 /* shouldnt need this
687 if (!arena_size) arena_size = PERL_ARENA_SIZE;
690 /* may need new arena-set to hold new arena */
691 if (!aroot || aroot->curr >= aroot->set_size) {
692 struct arena_set *newroot;
693 Newxz(newroot, 1, struct arena_set);
694 newroot->set_size = ARENAS_PER_SET;
695 newroot->next = aroot;
697 PL_body_arenas = (void *) newroot;
698 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
701 /* ok, now have arena-set with at least 1 empty/available arena-desc */
702 curr = aroot->curr++;
703 adesc = &(aroot->set[curr]);
704 assert(!adesc->arena);
706 Newx(adesc->arena, arena_size, char);
707 adesc->size = arena_size;
709 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
710 curr, (void*)adesc->arena, (UV)arena_size));
716 /* return a thing to the free list */
718 #define del_body(thing, root) \
720 void ** const thing_copy = (void **)thing;\
721 *thing_copy = *root; \
722 *root = (void*)thing_copy; \
727 =head1 SV-Body Allocation
729 Allocation of SV-bodies is similar to SV-heads, differing as follows;
730 the allocation mechanism is used for many body types, so is somewhat
731 more complicated, it uses arena-sets, and has no need for still-live
734 At the outermost level, (new|del)_X*V macros return bodies of the
735 appropriate type. These macros call either (new|del)_body_type or
736 (new|del)_body_allocated macro pairs, depending on specifics of the
737 type. Most body types use the former pair, the latter pair is used to
738 allocate body types with "ghost fields".
740 "ghost fields" are fields that are unused in certain types, and
741 consequently dont need to actually exist. They are declared because
742 they're part of a "base type", which allows use of functions as
743 methods. The simplest examples are AVs and HVs, 2 aggregate types
744 which don't use the fields which support SCALAR semantics.
746 For these types, the arenas are carved up into *_allocated size
747 chunks, we thus avoid wasted memory for those unaccessed members.
748 When bodies are allocated, we adjust the pointer back in memory by the
749 size of the bit not allocated, so it's as if we allocated the full
750 structure. (But things will all go boom if you write to the part that
751 is "not there", because you'll be overwriting the last members of the
752 preceding structure in memory.)
754 We calculate the correction using the STRUCT_OFFSET macro. For
755 example, if xpv_allocated is the same structure as XPV then the two
756 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
757 structure is smaller (no initial NV actually allocated) then the net
758 effect is to subtract the size of the NV from the pointer, to return a
759 new pointer as if an initial NV were actually allocated.
761 This is the same trick as was used for NV and IV bodies. Ironically it
762 doesn't need to be used for NV bodies any more, because NV is now at
763 the start of the structure. IV bodies don't need it either, because
764 they are no longer allocated.
766 In turn, the new_body_* allocators call S_new_body(), which invokes
767 new_body_inline macro, which takes a lock, and takes a body off the
768 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
769 necessary to refresh an empty list. Then the lock is released, and
770 the body is returned.
772 S_more_bodies calls get_arena(), and carves it up into an array of N
773 bodies, which it strings into a linked list. It looks up arena-size
774 and body-size from the body_details table described below, thus
775 supporting the multiple body-types.
777 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
778 the (new|del)_X*V macros are mapped directly to malloc/free.
784 For each sv-type, struct body_details bodies_by_type[] carries
785 parameters which control these aspects of SV handling:
787 Arena_size determines whether arenas are used for this body type, and if
788 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
789 zero, forcing individual mallocs and frees.
791 Body_size determines how big a body is, and therefore how many fit into
792 each arena. Offset carries the body-pointer adjustment needed for
793 *_allocated body types, and is used in *_allocated macros.
795 But its main purpose is to parameterize info needed in
796 Perl_sv_upgrade(). The info here dramatically simplifies the function
797 vs the implementation in 5.8.7, making it table-driven. All fields
798 are used for this, except for arena_size.
800 For the sv-types that have no bodies, arenas are not used, so those
801 PL_body_roots[sv_type] are unused, and can be overloaded. In
802 something of a special case, SVt_NULL is borrowed for HE arenas;
803 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
804 bodies_by_type[SVt_NULL] slot is not used, as the table is not
807 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
808 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
809 just use the same allocation semantics. At first, PTEs were also
810 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
811 bugs, so was simplified by claiming a new slot. This choice has no
812 consequence at this time.
816 struct body_details {
817 U8 body_size; /* Size to allocate */
818 U8 copy; /* Size of structure to copy (may be shorter) */
820 unsigned int type : 4; /* We have space for a sanity check. */
821 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
822 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
823 unsigned int arena : 1; /* Allocated from an arena */
824 size_t arena_size; /* Size of arena to allocate */
832 /* With -DPURFIY we allocate everything directly, and don't use arenas.
833 This seems a rather elegant way to simplify some of the code below. */
834 #define HASARENA FALSE
836 #define HASARENA TRUE
838 #define NOARENA FALSE
840 /* Size the arenas to exactly fit a given number of bodies. A count
841 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
842 simplifying the default. If count > 0, the arena is sized to fit
843 only that many bodies, allowing arenas to be used for large, rare
844 bodies (XPVFM, XPVIO) without undue waste. The arena size is
845 limited by PERL_ARENA_SIZE, so we can safely oversize the
848 #define FIT_ARENA0(body_size) \
849 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
850 #define FIT_ARENAn(count,body_size) \
851 ( count * body_size <= PERL_ARENA_SIZE) \
852 ? count * body_size \
853 : FIT_ARENA0 (body_size)
854 #define FIT_ARENA(count,body_size) \
856 ? FIT_ARENAn (count, body_size) \
857 : FIT_ARENA0 (body_size)
859 /* A macro to work out the offset needed to subtract from a pointer to (say)
866 to make its members accessible via a pointer to (say)
876 #define relative_STRUCT_OFFSET(longer, shorter, member) \
877 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
879 /* Calculate the length to copy. Specifically work out the length less any
880 final padding the compiler needed to add. See the comment in sv_upgrade
881 for why copying the padding proved to be a bug. */
883 #define copy_length(type, last_member) \
884 STRUCT_OFFSET(type, last_member) \
885 + sizeof (((type*)SvANY((SV*)0))->last_member)
887 static const struct body_details bodies_by_type[] = {
888 { sizeof(HE), 0, 0, SVt_NULL,
889 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
891 /* The bind placeholder pretends to be an RV for now.
892 Also it's marked as "can't upgrade" to stop anyone using it before it's
894 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
896 /* IVs are in the head, so the allocation size is 0.
897 However, the slot is overloaded for PTEs. */
898 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
899 sizeof(IV), /* This is used to copy out the IV body. */
900 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
901 NOARENA /* IVS don't need an arena */,
902 /* But PTEs need to know the size of their arena */
903 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
906 /* 8 bytes on most ILP32 with IEEE doubles */
907 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
908 FIT_ARENA(0, sizeof(NV)) },
910 /* 8 bytes on most ILP32 with IEEE doubles */
911 { sizeof(xpv_allocated),
912 copy_length(XPV, xpv_len)
913 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
914 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
915 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
918 { sizeof(xpviv_allocated),
919 copy_length(XPVIV, xiv_u)
920 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
921 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
922 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
925 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
926 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
929 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
930 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
933 { sizeof(struct regexp_allocated), sizeof(struct regexp_allocated),
934 + relative_STRUCT_OFFSET(struct regexp_allocated, regexp, xpv_cur),
935 SVt_REGEXP, FALSE, NONV, HASARENA,
936 FIT_ARENA(0, sizeof(struct regexp_allocated))
940 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
941 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
944 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
945 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
947 { sizeof(xpvav_allocated),
948 copy_length(XPVAV, xmg_stash)
949 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
950 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
951 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
953 { sizeof(xpvhv_allocated),
954 copy_length(XPVHV, xmg_stash)
955 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
956 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
957 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
960 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
961 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
962 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
964 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
965 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
966 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
968 /* XPVIO is 84 bytes, fits 48x */
969 { sizeof(xpvio_allocated), sizeof(xpvio_allocated),
970 + relative_STRUCT_OFFSET(xpvio_allocated, XPVIO, xpv_cur),
971 SVt_PVIO, TRUE, NONV, HASARENA, FIT_ARENA(24, sizeof(xpvio_allocated)) },
974 #define new_body_type(sv_type) \
975 (void *)((char *)S_new_body(aTHX_ sv_type))
977 #define del_body_type(p, sv_type) \
978 del_body(p, &PL_body_roots[sv_type])
981 #define new_body_allocated(sv_type) \
982 (void *)((char *)S_new_body(aTHX_ sv_type) \
983 - bodies_by_type[sv_type].offset)
985 #define del_body_allocated(p, sv_type) \
986 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
989 #define my_safemalloc(s) (void*)safemalloc(s)
990 #define my_safecalloc(s) (void*)safecalloc(s, 1)
991 #define my_safefree(p) safefree((char*)p)
995 #define new_XNV() my_safemalloc(sizeof(XPVNV))
996 #define del_XNV(p) my_safefree(p)
998 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
999 #define del_XPVNV(p) my_safefree(p)
1001 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1002 #define del_XPVAV(p) my_safefree(p)
1004 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1005 #define del_XPVHV(p) my_safefree(p)
1007 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1008 #define del_XPVMG(p) my_safefree(p)
1010 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1011 #define del_XPVGV(p) my_safefree(p)
1015 #define new_XNV() new_body_type(SVt_NV)
1016 #define del_XNV(p) del_body_type(p, SVt_NV)
1018 #define new_XPVNV() new_body_type(SVt_PVNV)
1019 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1021 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1022 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1024 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1025 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1027 #define new_XPVMG() new_body_type(SVt_PVMG)
1028 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1030 #define new_XPVGV() new_body_type(SVt_PVGV)
1031 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1035 /* no arena for you! */
1037 #define new_NOARENA(details) \
1038 my_safemalloc((details)->body_size + (details)->offset)
1039 #define new_NOARENAZ(details) \
1040 my_safecalloc((details)->body_size + (details)->offset)
1043 S_more_bodies (pTHX_ const svtype sv_type)
1046 void ** const root = &PL_body_roots[sv_type];
1047 const struct body_details * const bdp = &bodies_by_type[sv_type];
1048 const size_t body_size = bdp->body_size;
1051 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1052 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1053 static bool done_sanity_check;
1055 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1056 * variables like done_sanity_check. */
1057 if (!done_sanity_check) {
1058 unsigned int i = SVt_LAST;
1060 done_sanity_check = TRUE;
1063 assert (bodies_by_type[i].type == i);
1067 assert(bdp->arena_size);
1069 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1071 end = start + arena_size - 2 * body_size;
1073 /* computed count doesnt reflect the 1st slot reservation */
1074 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1075 DEBUG_m(PerlIO_printf(Perl_debug_log,
1076 "arena %p end %p arena-size %d (from %d) type %d "
1078 (void*)start, (void*)end, (int)arena_size,
1079 (int)bdp->arena_size, sv_type, (int)body_size,
1080 (int)arena_size / (int)body_size));
1082 DEBUG_m(PerlIO_printf(Perl_debug_log,
1083 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1084 (void*)start, (void*)end,
1085 (int)bdp->arena_size, sv_type, (int)body_size,
1086 (int)bdp->arena_size / (int)body_size));
1088 *root = (void *)start;
1090 while (start <= end) {
1091 char * const next = start + body_size;
1092 *(void**) start = (void *)next;
1095 *(void **)start = 0;
1100 /* grab a new thing from the free list, allocating more if necessary.
1101 The inline version is used for speed in hot routines, and the
1102 function using it serves the rest (unless PURIFY).
1104 #define new_body_inline(xpv, sv_type) \
1106 void ** const r3wt = &PL_body_roots[sv_type]; \
1107 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1108 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1109 *(r3wt) = *(void**)(xpv); \
1115 S_new_body(pTHX_ const svtype sv_type)
1119 new_body_inline(xpv, sv_type);
1125 static const struct body_details fake_rv =
1126 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1129 =for apidoc sv_upgrade
1131 Upgrade an SV to a more complex form. Generally adds a new body type to the
1132 SV, then copies across as much information as possible from the old body.
1133 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1139 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1144 const svtype old_type = SvTYPE(sv);
1145 const struct body_details *new_type_details;
1146 const struct body_details *old_type_details
1147 = bodies_by_type + old_type;
1148 SV *referant = NULL;
1150 PERL_ARGS_ASSERT_SV_UPGRADE;
1152 if (new_type != SVt_PV && SvIsCOW(sv)) {
1153 sv_force_normal_flags(sv, 0);
1156 if (old_type == new_type)
1159 old_body = SvANY(sv);
1161 /* Copying structures onto other structures that have been neatly zeroed
1162 has a subtle gotcha. Consider XPVMG
1164 +------+------+------+------+------+-------+-------+
1165 | NV | CUR | LEN | IV | MAGIC | STASH |
1166 +------+------+------+------+------+-------+-------+
1167 0 4 8 12 16 20 24 28
1169 where NVs are aligned to 8 bytes, so that sizeof that structure is
1170 actually 32 bytes long, with 4 bytes of padding at the end:
1172 +------+------+------+------+------+-------+-------+------+
1173 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1174 +------+------+------+------+------+-------+-------+------+
1175 0 4 8 12 16 20 24 28 32
1177 so what happens if you allocate memory for this structure:
1179 +------+------+------+------+------+-------+-------+------+------+...
1180 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1181 +------+------+------+------+------+-------+-------+------+------+...
1182 0 4 8 12 16 20 24 28 32 36
1184 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1185 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1186 started out as zero once, but it's quite possible that it isn't. So now,
1187 rather than a nicely zeroed GP, you have it pointing somewhere random.
1190 (In fact, GP ends up pointing at a previous GP structure, because the
1191 principle cause of the padding in XPVMG getting garbage is a copy of
1192 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1193 this happens to be moot because XPVGV has been re-ordered, with GP
1194 no longer after STASH)
1196 So we are careful and work out the size of used parts of all the
1204 referant = SvRV(sv);
1205 old_type_details = &fake_rv;
1206 if (new_type == SVt_NV)
1207 new_type = SVt_PVNV;
1209 if (new_type < SVt_PVIV) {
1210 new_type = (new_type == SVt_NV)
1211 ? SVt_PVNV : SVt_PVIV;
1216 if (new_type < SVt_PVNV) {
1217 new_type = SVt_PVNV;
1221 assert(new_type > SVt_PV);
1222 assert(SVt_IV < SVt_PV);
1223 assert(SVt_NV < SVt_PV);
1230 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1231 there's no way that it can be safely upgraded, because perl.c
1232 expects to Safefree(SvANY(PL_mess_sv)) */
1233 assert(sv != PL_mess_sv);
1234 /* This flag bit is used to mean other things in other scalar types.
1235 Given that it only has meaning inside the pad, it shouldn't be set
1236 on anything that can get upgraded. */
1237 assert(!SvPAD_TYPED(sv));
1240 if (old_type_details->cant_upgrade)
1241 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1242 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1245 if (old_type > new_type)
1246 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1247 (int)old_type, (int)new_type);
1249 new_type_details = bodies_by_type + new_type;
1251 SvFLAGS(sv) &= ~SVTYPEMASK;
1252 SvFLAGS(sv) |= new_type;
1254 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1255 the return statements above will have triggered. */
1256 assert (new_type != SVt_NULL);
1259 assert(old_type == SVt_NULL);
1260 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1264 assert(old_type == SVt_NULL);
1265 SvANY(sv) = new_XNV();
1270 assert(new_type_details->body_size);
1273 assert(new_type_details->arena);
1274 assert(new_type_details->arena_size);
1275 /* This points to the start of the allocated area. */
1276 new_body_inline(new_body, new_type);
1277 Zero(new_body, new_type_details->body_size, char);
1278 new_body = ((char *)new_body) - new_type_details->offset;
1280 /* We always allocated the full length item with PURIFY. To do this
1281 we fake things so that arena is false for all 16 types.. */
1282 new_body = new_NOARENAZ(new_type_details);
1284 SvANY(sv) = new_body;
1285 if (new_type == SVt_PVAV) {
1289 if (old_type_details->body_size) {
1292 /* It will have been zeroed when the new body was allocated.
1293 Lets not write to it, in case it confuses a write-back
1299 #ifndef NODEFAULT_SHAREKEYS
1300 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1302 HvMAX(sv) = 7; /* (start with 8 buckets) */
1303 if (old_type_details->body_size) {
1306 /* It will have been zeroed when the new body was allocated.
1307 Lets not write to it, in case it confuses a write-back
1312 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1313 The target created by newSVrv also is, and it can have magic.
1314 However, it never has SvPVX set.
1316 if (old_type == SVt_IV) {
1318 } else if (old_type >= SVt_PV) {
1319 assert(SvPVX_const(sv) == 0);
1322 if (old_type >= SVt_PVMG) {
1323 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1324 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1326 sv->sv_u.svu_array = NULL; /* or svu_hash */
1332 /* XXX Is this still needed? Was it ever needed? Surely as there is
1333 no route from NV to PVIV, NOK can never be true */
1334 assert(!SvNOKp(sv));
1346 assert(new_type_details->body_size);
1347 /* We always allocated the full length item with PURIFY. To do this
1348 we fake things so that arena is false for all 16 types.. */
1349 if(new_type_details->arena) {
1350 /* This points to the start of the allocated area. */
1351 new_body_inline(new_body, new_type);
1352 Zero(new_body, new_type_details->body_size, char);
1353 new_body = ((char *)new_body) - new_type_details->offset;
1355 new_body = new_NOARENAZ(new_type_details);
1357 SvANY(sv) = new_body;
1359 if (old_type_details->copy) {
1360 /* There is now the potential for an upgrade from something without
1361 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1362 int offset = old_type_details->offset;
1363 int length = old_type_details->copy;
1365 if (new_type_details->offset > old_type_details->offset) {
1366 const int difference
1367 = new_type_details->offset - old_type_details->offset;
1368 offset += difference;
1369 length -= difference;
1371 assert (length >= 0);
1373 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1377 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1378 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1379 * correct 0.0 for us. Otherwise, if the old body didn't have an
1380 * NV slot, but the new one does, then we need to initialise the
1381 * freshly created NV slot with whatever the correct bit pattern is
1383 if (old_type_details->zero_nv && !new_type_details->zero_nv
1384 && !isGV_with_GP(sv))
1388 if (new_type == SVt_PVIO)
1389 IoPAGE_LEN(sv) = 60;
1390 if (old_type < SVt_PV) {
1391 /* referant will be NULL unless the old type was SVt_IV emulating
1393 sv->sv_u.svu_rv = referant;
1397 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1398 (unsigned long)new_type);
1401 if (old_type_details->arena) {
1402 /* If there was an old body, then we need to free it.
1403 Note that there is an assumption that all bodies of types that
1404 can be upgraded came from arenas. Only the more complex non-
1405 upgradable types are allowed to be directly malloc()ed. */
1407 my_safefree(old_body);
1409 del_body((void*)((char*)old_body + old_type_details->offset),
1410 &PL_body_roots[old_type]);
1416 =for apidoc sv_backoff
1418 Remove any string offset. You should normally use the C<SvOOK_off> macro
1425 Perl_sv_backoff(pTHX_ register SV *const sv)
1428 const char * const s = SvPVX_const(sv);
1430 PERL_ARGS_ASSERT_SV_BACKOFF;
1431 PERL_UNUSED_CONTEXT;
1434 assert(SvTYPE(sv) != SVt_PVHV);
1435 assert(SvTYPE(sv) != SVt_PVAV);
1437 SvOOK_offset(sv, delta);
1439 SvLEN_set(sv, SvLEN(sv) + delta);
1440 SvPV_set(sv, SvPVX(sv) - delta);
1441 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1442 SvFLAGS(sv) &= ~SVf_OOK;
1449 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1450 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1451 Use the C<SvGROW> wrapper instead.
1457 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1461 PERL_ARGS_ASSERT_SV_GROW;
1463 if (PL_madskills && newlen >= 0x100000) {
1464 PerlIO_printf(Perl_debug_log,
1465 "Allocation too large: %"UVxf"\n", (UV)newlen);
1467 #ifdef HAS_64K_LIMIT
1468 if (newlen >= 0x10000) {
1469 PerlIO_printf(Perl_debug_log,
1470 "Allocation too large: %"UVxf"\n", (UV)newlen);
1473 #endif /* HAS_64K_LIMIT */
1476 if (SvTYPE(sv) < SVt_PV) {
1477 sv_upgrade(sv, SVt_PV);
1478 s = SvPVX_mutable(sv);
1480 else if (SvOOK(sv)) { /* pv is offset? */
1482 s = SvPVX_mutable(sv);
1483 if (newlen > SvLEN(sv))
1484 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1485 #ifdef HAS_64K_LIMIT
1486 if (newlen >= 0x10000)
1491 s = SvPVX_mutable(sv);
1493 if (newlen > SvLEN(sv)) { /* need more room? */
1494 #ifndef Perl_safesysmalloc_size
1495 newlen = PERL_STRLEN_ROUNDUP(newlen);
1497 if (SvLEN(sv) && s) {
1498 s = (char*)saferealloc(s, newlen);
1501 s = (char*)safemalloc(newlen);
1502 if (SvPVX_const(sv) && SvCUR(sv)) {
1503 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1507 #ifdef Perl_safesysmalloc_size
1508 /* Do this here, do it once, do it right, and then we will never get
1509 called back into sv_grow() unless there really is some growing
1511 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1513 SvLEN_set(sv, newlen);
1520 =for apidoc sv_setiv
1522 Copies an integer into the given SV, upgrading first if necessary.
1523 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1529 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1533 PERL_ARGS_ASSERT_SV_SETIV;
1535 SV_CHECK_THINKFIRST_COW_DROP(sv);
1536 switch (SvTYPE(sv)) {
1539 sv_upgrade(sv, SVt_IV);
1542 sv_upgrade(sv, SVt_PVIV);
1546 if (!isGV_with_GP(sv))
1553 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1557 (void)SvIOK_only(sv); /* validate number */
1563 =for apidoc sv_setiv_mg
1565 Like C<sv_setiv>, but also handles 'set' magic.
1571 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1573 PERL_ARGS_ASSERT_SV_SETIV_MG;
1580 =for apidoc sv_setuv
1582 Copies an unsigned integer into the given SV, upgrading first if necessary.
1583 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1589 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1591 PERL_ARGS_ASSERT_SV_SETUV;
1593 /* With these two if statements:
1594 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1597 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1599 If you wish to remove them, please benchmark to see what the effect is
1601 if (u <= (UV)IV_MAX) {
1602 sv_setiv(sv, (IV)u);
1611 =for apidoc sv_setuv_mg
1613 Like C<sv_setuv>, but also handles 'set' magic.
1619 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1621 PERL_ARGS_ASSERT_SV_SETUV_MG;
1628 =for apidoc sv_setnv
1630 Copies a double into the given SV, upgrading first if necessary.
1631 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1637 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1641 PERL_ARGS_ASSERT_SV_SETNV;
1643 SV_CHECK_THINKFIRST_COW_DROP(sv);
1644 switch (SvTYPE(sv)) {
1647 sv_upgrade(sv, SVt_NV);
1651 sv_upgrade(sv, SVt_PVNV);
1655 if (!isGV_with_GP(sv))
1662 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1667 (void)SvNOK_only(sv); /* validate number */
1672 =for apidoc sv_setnv_mg
1674 Like C<sv_setnv>, but also handles 'set' magic.
1680 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1682 PERL_ARGS_ASSERT_SV_SETNV_MG;
1688 /* Print an "isn't numeric" warning, using a cleaned-up,
1689 * printable version of the offending string
1693 S_not_a_number(pTHX_ SV *const sv)
1700 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1703 dsv = newSVpvs_flags("", SVs_TEMP);
1704 pv = sv_uni_display(dsv, sv, 10, 0);
1707 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1708 /* each *s can expand to 4 chars + "...\0",
1709 i.e. need room for 8 chars */
1711 const char *s = SvPVX_const(sv);
1712 const char * const end = s + SvCUR(sv);
1713 for ( ; s < end && d < limit; s++ ) {
1715 if (ch & 128 && !isPRINT_LC(ch)) {
1724 else if (ch == '\r') {
1728 else if (ch == '\f') {
1732 else if (ch == '\\') {
1736 else if (ch == '\0') {
1740 else if (isPRINT_LC(ch))
1757 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1758 "Argument \"%s\" isn't numeric in %s", pv,
1761 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1762 "Argument \"%s\" isn't numeric", pv);
1766 =for apidoc looks_like_number
1768 Test if the content of an SV looks like a number (or is a number).
1769 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1770 non-numeric warning), even if your atof() doesn't grok them.
1776 Perl_looks_like_number(pTHX_ SV *const sv)
1778 register const char *sbegin;
1781 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1784 sbegin = SvPVX_const(sv);
1787 else if (SvPOKp(sv))
1788 sbegin = SvPV_const(sv, len);
1790 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1791 return grok_number(sbegin, len, NULL);
1795 S_glob_2number(pTHX_ GV * const gv)
1797 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1798 SV *const buffer = sv_newmortal();
1800 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1802 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1805 gv_efullname3(buffer, gv, "*");
1806 SvFLAGS(gv) |= wasfake;
1808 /* We know that all GVs stringify to something that is not-a-number,
1809 so no need to test that. */
1810 if (ckWARN(WARN_NUMERIC))
1811 not_a_number(buffer);
1812 /* We just want something true to return, so that S_sv_2iuv_common
1813 can tail call us and return true. */
1818 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1820 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1821 SV *const buffer = sv_newmortal();
1823 PERL_ARGS_ASSERT_GLOB_2PV;
1825 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1828 gv_efullname3(buffer, gv, "*");
1829 SvFLAGS(gv) |= wasfake;
1831 assert(SvPOK(buffer));
1833 *len = SvCUR(buffer);
1835 return SvPVX(buffer);
1838 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1839 until proven guilty, assume that things are not that bad... */
1844 As 64 bit platforms often have an NV that doesn't preserve all bits of
1845 an IV (an assumption perl has been based on to date) it becomes necessary
1846 to remove the assumption that the NV always carries enough precision to
1847 recreate the IV whenever needed, and that the NV is the canonical form.
1848 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1849 precision as a side effect of conversion (which would lead to insanity
1850 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1851 1) to distinguish between IV/UV/NV slots that have cached a valid
1852 conversion where precision was lost and IV/UV/NV slots that have a
1853 valid conversion which has lost no precision
1854 2) to ensure that if a numeric conversion to one form is requested that
1855 would lose precision, the precise conversion (or differently
1856 imprecise conversion) is also performed and cached, to prevent
1857 requests for different numeric formats on the same SV causing
1858 lossy conversion chains. (lossless conversion chains are perfectly
1863 SvIOKp is true if the IV slot contains a valid value
1864 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1865 SvNOKp is true if the NV slot contains a valid value
1866 SvNOK is true only if the NV value is accurate
1869 while converting from PV to NV, check to see if converting that NV to an
1870 IV(or UV) would lose accuracy over a direct conversion from PV to
1871 IV(or UV). If it would, cache both conversions, return NV, but mark
1872 SV as IOK NOKp (ie not NOK).
1874 While converting from PV to IV, check to see if converting that IV to an
1875 NV would lose accuracy over a direct conversion from PV to NV. If it
1876 would, cache both conversions, flag similarly.
1878 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1879 correctly because if IV & NV were set NV *always* overruled.
1880 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1881 changes - now IV and NV together means that the two are interchangeable:
1882 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1884 The benefit of this is that operations such as pp_add know that if
1885 SvIOK is true for both left and right operands, then integer addition
1886 can be used instead of floating point (for cases where the result won't
1887 overflow). Before, floating point was always used, which could lead to
1888 loss of precision compared with integer addition.
1890 * making IV and NV equal status should make maths accurate on 64 bit
1892 * may speed up maths somewhat if pp_add and friends start to use
1893 integers when possible instead of fp. (Hopefully the overhead in
1894 looking for SvIOK and checking for overflow will not outweigh the
1895 fp to integer speedup)
1896 * will slow down integer operations (callers of SvIV) on "inaccurate"
1897 values, as the change from SvIOK to SvIOKp will cause a call into
1898 sv_2iv each time rather than a macro access direct to the IV slot
1899 * should speed up number->string conversion on integers as IV is
1900 favoured when IV and NV are equally accurate
1902 ####################################################################
1903 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1904 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1905 On the other hand, SvUOK is true iff UV.
1906 ####################################################################
1908 Your mileage will vary depending your CPU's relative fp to integer
1912 #ifndef NV_PRESERVES_UV
1913 # define IS_NUMBER_UNDERFLOW_IV 1
1914 # define IS_NUMBER_UNDERFLOW_UV 2
1915 # define IS_NUMBER_IV_AND_UV 2
1916 # define IS_NUMBER_OVERFLOW_IV 4
1917 # define IS_NUMBER_OVERFLOW_UV 5
1919 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1921 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1923 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1931 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1933 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1934 if (SvNVX(sv) < (NV)IV_MIN) {
1935 (void)SvIOKp_on(sv);
1937 SvIV_set(sv, IV_MIN);
1938 return IS_NUMBER_UNDERFLOW_IV;
1940 if (SvNVX(sv) > (NV)UV_MAX) {
1941 (void)SvIOKp_on(sv);
1944 SvUV_set(sv, UV_MAX);
1945 return IS_NUMBER_OVERFLOW_UV;
1947 (void)SvIOKp_on(sv);
1949 /* Can't use strtol etc to convert this string. (See truth table in
1951 if (SvNVX(sv) <= (UV)IV_MAX) {
1952 SvIV_set(sv, I_V(SvNVX(sv)));
1953 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1954 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1956 /* Integer is imprecise. NOK, IOKp */
1958 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1961 SvUV_set(sv, U_V(SvNVX(sv)));
1962 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1963 if (SvUVX(sv) == UV_MAX) {
1964 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1965 possibly be preserved by NV. Hence, it must be overflow.
1967 return IS_NUMBER_OVERFLOW_UV;
1969 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1971 /* Integer is imprecise. NOK, IOKp */
1973 return IS_NUMBER_OVERFLOW_IV;
1975 #endif /* !NV_PRESERVES_UV*/
1978 S_sv_2iuv_common(pTHX_ SV *const sv)
1982 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1985 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1986 * without also getting a cached IV/UV from it at the same time
1987 * (ie PV->NV conversion should detect loss of accuracy and cache
1988 * IV or UV at same time to avoid this. */
1989 /* IV-over-UV optimisation - choose to cache IV if possible */
1991 if (SvTYPE(sv) == SVt_NV)
1992 sv_upgrade(sv, SVt_PVNV);
1994 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1995 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1996 certainly cast into the IV range at IV_MAX, whereas the correct
1997 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1999 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2000 if (Perl_isnan(SvNVX(sv))) {
2006 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2007 SvIV_set(sv, I_V(SvNVX(sv)));
2008 if (SvNVX(sv) == (NV) SvIVX(sv)
2009 #ifndef NV_PRESERVES_UV
2010 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2011 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2012 /* Don't flag it as "accurately an integer" if the number
2013 came from a (by definition imprecise) NV operation, and
2014 we're outside the range of NV integer precision */
2018 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2020 /* scalar has trailing garbage, eg "42a" */
2022 DEBUG_c(PerlIO_printf(Perl_debug_log,
2023 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2029 /* IV not precise. No need to convert from PV, as NV
2030 conversion would already have cached IV if it detected
2031 that PV->IV would be better than PV->NV->IV
2032 flags already correct - don't set public IOK. */
2033 DEBUG_c(PerlIO_printf(Perl_debug_log,
2034 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2039 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2040 but the cast (NV)IV_MIN rounds to a the value less (more
2041 negative) than IV_MIN which happens to be equal to SvNVX ??
2042 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2043 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2044 (NV)UVX == NVX are both true, but the values differ. :-(
2045 Hopefully for 2s complement IV_MIN is something like
2046 0x8000000000000000 which will be exact. NWC */
2049 SvUV_set(sv, U_V(SvNVX(sv)));
2051 (SvNVX(sv) == (NV) SvUVX(sv))
2052 #ifndef NV_PRESERVES_UV
2053 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2054 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2055 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2056 /* Don't flag it as "accurately an integer" if the number
2057 came from a (by definition imprecise) NV operation, and
2058 we're outside the range of NV integer precision */
2064 DEBUG_c(PerlIO_printf(Perl_debug_log,
2065 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2071 else if (SvPOKp(sv) && SvLEN(sv)) {
2073 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2074 /* We want to avoid a possible problem when we cache an IV/ a UV which
2075 may be later translated to an NV, and the resulting NV is not
2076 the same as the direct translation of the initial string
2077 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2078 be careful to ensure that the value with the .456 is around if the
2079 NV value is requested in the future).
2081 This means that if we cache such an IV/a UV, we need to cache the
2082 NV as well. Moreover, we trade speed for space, and do not
2083 cache the NV if we are sure it's not needed.
2086 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2087 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2088 == IS_NUMBER_IN_UV) {
2089 /* It's definitely an integer, only upgrade to PVIV */
2090 if (SvTYPE(sv) < SVt_PVIV)
2091 sv_upgrade(sv, SVt_PVIV);
2093 } else if (SvTYPE(sv) < SVt_PVNV)
2094 sv_upgrade(sv, SVt_PVNV);
2096 /* If NVs preserve UVs then we only use the UV value if we know that
2097 we aren't going to call atof() below. If NVs don't preserve UVs
2098 then the value returned may have more precision than atof() will
2099 return, even though value isn't perfectly accurate. */
2100 if ((numtype & (IS_NUMBER_IN_UV
2101 #ifdef NV_PRESERVES_UV
2104 )) == IS_NUMBER_IN_UV) {
2105 /* This won't turn off the public IOK flag if it was set above */
2106 (void)SvIOKp_on(sv);
2108 if (!(numtype & IS_NUMBER_NEG)) {
2110 if (value <= (UV)IV_MAX) {
2111 SvIV_set(sv, (IV)value);
2113 /* it didn't overflow, and it was positive. */
2114 SvUV_set(sv, value);
2118 /* 2s complement assumption */
2119 if (value <= (UV)IV_MIN) {
2120 SvIV_set(sv, -(IV)value);
2122 /* Too negative for an IV. This is a double upgrade, but
2123 I'm assuming it will be rare. */
2124 if (SvTYPE(sv) < SVt_PVNV)
2125 sv_upgrade(sv, SVt_PVNV);
2129 SvNV_set(sv, -(NV)value);
2130 SvIV_set(sv, IV_MIN);
2134 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2135 will be in the previous block to set the IV slot, and the next
2136 block to set the NV slot. So no else here. */
2138 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2139 != IS_NUMBER_IN_UV) {
2140 /* It wasn't an (integer that doesn't overflow the UV). */
2141 SvNV_set(sv, Atof(SvPVX_const(sv)));
2143 if (! numtype && ckWARN(WARN_NUMERIC))
2146 #if defined(USE_LONG_DOUBLE)
2147 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2148 PTR2UV(sv), SvNVX(sv)));
2150 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2151 PTR2UV(sv), SvNVX(sv)));
2154 #ifdef NV_PRESERVES_UV
2155 (void)SvIOKp_on(sv);
2157 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2158 SvIV_set(sv, I_V(SvNVX(sv)));
2159 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2162 NOOP; /* Integer is imprecise. NOK, IOKp */
2164 /* UV will not work better than IV */
2166 if (SvNVX(sv) > (NV)UV_MAX) {
2168 /* Integer is inaccurate. NOK, IOKp, is UV */
2169 SvUV_set(sv, UV_MAX);
2171 SvUV_set(sv, U_V(SvNVX(sv)));
2172 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2173 NV preservse UV so can do correct comparison. */
2174 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2177 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2182 #else /* NV_PRESERVES_UV */
2183 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2184 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2185 /* The IV/UV slot will have been set from value returned by
2186 grok_number above. The NV slot has just been set using
2189 assert (SvIOKp(sv));
2191 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2192 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2193 /* Small enough to preserve all bits. */
2194 (void)SvIOKp_on(sv);
2196 SvIV_set(sv, I_V(SvNVX(sv)));
2197 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2199 /* Assumption: first non-preserved integer is < IV_MAX,
2200 this NV is in the preserved range, therefore: */
2201 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2203 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2207 0 0 already failed to read UV.
2208 0 1 already failed to read UV.
2209 1 0 you won't get here in this case. IV/UV
2210 slot set, public IOK, Atof() unneeded.
2211 1 1 already read UV.
2212 so there's no point in sv_2iuv_non_preserve() attempting
2213 to use atol, strtol, strtoul etc. */
2215 sv_2iuv_non_preserve (sv, numtype);
2217 sv_2iuv_non_preserve (sv);
2221 #endif /* NV_PRESERVES_UV */
2222 /* It might be more code efficient to go through the entire logic above
2223 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2224 gets complex and potentially buggy, so more programmer efficient
2225 to do it this way, by turning off the public flags: */
2227 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2231 if (isGV_with_GP(sv))
2232 return glob_2number((GV *)sv);
2234 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2235 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2238 if (SvTYPE(sv) < SVt_IV)
2239 /* Typically the caller expects that sv_any is not NULL now. */
2240 sv_upgrade(sv, SVt_IV);
2241 /* Return 0 from the caller. */
2248 =for apidoc sv_2iv_flags
2250 Return the integer value of an SV, doing any necessary string
2251 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2252 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2258 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2263 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2264 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2265 cache IVs just in case. In practice it seems that they never
2266 actually anywhere accessible by user Perl code, let alone get used
2267 in anything other than a string context. */
2268 if (flags & SV_GMAGIC)
2273 return I_V(SvNVX(sv));
2275 if (SvPOKp(sv) && SvLEN(sv)) {
2278 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2280 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2281 == IS_NUMBER_IN_UV) {
2282 /* It's definitely an integer */
2283 if (numtype & IS_NUMBER_NEG) {
2284 if (value < (UV)IV_MIN)
2287 if (value < (UV)IV_MAX)
2292 if (ckWARN(WARN_NUMERIC))
2295 return I_V(Atof(SvPVX_const(sv)));
2300 assert(SvTYPE(sv) >= SVt_PVMG);
2301 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2302 } else if (SvTHINKFIRST(sv)) {
2306 SV * const tmpstr=AMG_CALLun(sv,numer);
2307 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2308 return SvIV(tmpstr);
2311 return PTR2IV(SvRV(sv));
2314 sv_force_normal_flags(sv, 0);
2316 if (SvREADONLY(sv) && !SvOK(sv)) {
2317 if (ckWARN(WARN_UNINITIALIZED))
2323 if (S_sv_2iuv_common(aTHX_ sv))
2326 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2327 PTR2UV(sv),SvIVX(sv)));
2328 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2332 =for apidoc sv_2uv_flags
2334 Return the unsigned integer value of an SV, doing any necessary string
2335 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2336 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2342 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2347 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2348 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2349 cache IVs just in case. */
2350 if (flags & SV_GMAGIC)
2355 return U_V(SvNVX(sv));
2356 if (SvPOKp(sv) && SvLEN(sv)) {
2359 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2361 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2362 == IS_NUMBER_IN_UV) {
2363 /* It's definitely an integer */
2364 if (!(numtype & IS_NUMBER_NEG))
2368 if (ckWARN(WARN_NUMERIC))
2371 return U_V(Atof(SvPVX_const(sv)));
2376 assert(SvTYPE(sv) >= SVt_PVMG);
2377 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2378 } else if (SvTHINKFIRST(sv)) {
2382 SV *const tmpstr = AMG_CALLun(sv,numer);
2383 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2384 return SvUV(tmpstr);
2387 return PTR2UV(SvRV(sv));
2390 sv_force_normal_flags(sv, 0);
2392 if (SvREADONLY(sv) && !SvOK(sv)) {
2393 if (ckWARN(WARN_UNINITIALIZED))
2399 if (S_sv_2iuv_common(aTHX_ sv))
2403 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2404 PTR2UV(sv),SvUVX(sv)));
2405 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2411 Return the num value of an SV, doing any necessary string or integer
2412 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2419 Perl_sv_2nv(pTHX_ register SV *const sv)
2424 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2425 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2426 cache IVs just in case. */
2430 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2431 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2432 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2434 return Atof(SvPVX_const(sv));
2438 return (NV)SvUVX(sv);
2440 return (NV)SvIVX(sv);
2445 assert(SvTYPE(sv) >= SVt_PVMG);
2446 /* This falls through to the report_uninit near the end of the
2448 } else if (SvTHINKFIRST(sv)) {
2452 SV *const tmpstr = AMG_CALLun(sv,numer);
2453 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2454 return SvNV(tmpstr);
2457 return PTR2NV(SvRV(sv));
2460 sv_force_normal_flags(sv, 0);
2462 if (SvREADONLY(sv) && !SvOK(sv)) {
2463 if (ckWARN(WARN_UNINITIALIZED))
2468 if (SvTYPE(sv) < SVt_NV) {
2469 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2470 sv_upgrade(sv, SVt_NV);
2471 #ifdef USE_LONG_DOUBLE
2473 STORE_NUMERIC_LOCAL_SET_STANDARD();
2474 PerlIO_printf(Perl_debug_log,
2475 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2476 PTR2UV(sv), SvNVX(sv));
2477 RESTORE_NUMERIC_LOCAL();
2481 STORE_NUMERIC_LOCAL_SET_STANDARD();
2482 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2483 PTR2UV(sv), SvNVX(sv));
2484 RESTORE_NUMERIC_LOCAL();
2488 else if (SvTYPE(sv) < SVt_PVNV)
2489 sv_upgrade(sv, SVt_PVNV);
2494 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2495 #ifdef NV_PRESERVES_UV
2501 /* Only set the public NV OK flag if this NV preserves the IV */
2502 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2504 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2505 : (SvIVX(sv) == I_V(SvNVX(sv))))
2511 else if (SvPOKp(sv) && SvLEN(sv)) {
2513 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2514 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2516 #ifdef NV_PRESERVES_UV
2517 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2518 == IS_NUMBER_IN_UV) {
2519 /* It's definitely an integer */
2520 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2522 SvNV_set(sv, Atof(SvPVX_const(sv)));
2528 SvNV_set(sv, Atof(SvPVX_const(sv)));
2529 /* Only set the public NV OK flag if this NV preserves the value in
2530 the PV at least as well as an IV/UV would.
2531 Not sure how to do this 100% reliably. */
2532 /* if that shift count is out of range then Configure's test is
2533 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2535 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2536 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2537 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2538 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2539 /* Can't use strtol etc to convert this string, so don't try.
2540 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2543 /* value has been set. It may not be precise. */
2544 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2545 /* 2s complement assumption for (UV)IV_MIN */
2546 SvNOK_on(sv); /* Integer is too negative. */
2551 if (numtype & IS_NUMBER_NEG) {
2552 SvIV_set(sv, -(IV)value);
2553 } else if (value <= (UV)IV_MAX) {
2554 SvIV_set(sv, (IV)value);
2556 SvUV_set(sv, value);
2560 if (numtype & IS_NUMBER_NOT_INT) {
2561 /* I believe that even if the original PV had decimals,
2562 they are lost beyond the limit of the FP precision.
2563 However, neither is canonical, so both only get p
2564 flags. NWC, 2000/11/25 */
2565 /* Both already have p flags, so do nothing */
2567 const NV nv = SvNVX(sv);
2568 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2569 if (SvIVX(sv) == I_V(nv)) {
2572 /* It had no "." so it must be integer. */
2576 /* between IV_MAX and NV(UV_MAX).
2577 Could be slightly > UV_MAX */
2579 if (numtype & IS_NUMBER_NOT_INT) {
2580 /* UV and NV both imprecise. */
2582 const UV nv_as_uv = U_V(nv);
2584 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2593 /* It might be more code efficient to go through the entire logic above
2594 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2595 gets complex and potentially buggy, so more programmer efficient
2596 to do it this way, by turning off the public flags: */
2598 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2599 #endif /* NV_PRESERVES_UV */
2602 if (isGV_with_GP(sv)) {
2603 glob_2number((GV *)sv);
2607 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2609 assert (SvTYPE(sv) >= SVt_NV);
2610 /* Typically the caller expects that sv_any is not NULL now. */
2611 /* XXX Ilya implies that this is a bug in callers that assume this
2612 and ideally should be fixed. */
2615 #if defined(USE_LONG_DOUBLE)
2617 STORE_NUMERIC_LOCAL_SET_STANDARD();
2618 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2619 PTR2UV(sv), SvNVX(sv));
2620 RESTORE_NUMERIC_LOCAL();
2624 STORE_NUMERIC_LOCAL_SET_STANDARD();
2625 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2626 PTR2UV(sv), SvNVX(sv));
2627 RESTORE_NUMERIC_LOCAL();
2636 Return an SV with the numeric value of the source SV, doing any necessary
2637 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2638 access this function.
2644 Perl_sv_2num(pTHX_ register SV *const sv)
2646 PERL_ARGS_ASSERT_SV_2NUM;
2651 SV * const tmpsv = AMG_CALLun(sv,numer);
2652 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2653 return sv_2num(tmpsv);
2655 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2658 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2659 * UV as a string towards the end of buf, and return pointers to start and
2662 * We assume that buf is at least TYPE_CHARS(UV) long.
2666 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2668 char *ptr = buf + TYPE_CHARS(UV);
2669 char * const ebuf = ptr;
2672 PERL_ARGS_ASSERT_UIV_2BUF;
2684 *--ptr = '0' + (char)(uv % 10);
2693 =for apidoc sv_2pv_flags
2695 Returns a pointer to the string value of an SV, and sets *lp to its length.
2696 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2698 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2699 usually end up here too.
2705 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2715 if (SvGMAGICAL(sv)) {
2716 if (flags & SV_GMAGIC)
2721 if (flags & SV_MUTABLE_RETURN)
2722 return SvPVX_mutable(sv);
2723 if (flags & SV_CONST_RETURN)
2724 return (char *)SvPVX_const(sv);
2727 if (SvIOKp(sv) || SvNOKp(sv)) {
2728 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2733 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2734 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2736 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2743 #ifdef FIXNEGATIVEZERO
2744 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2750 SvUPGRADE(sv, SVt_PV);
2753 s = SvGROW_mutable(sv, len + 1);
2756 return (char*)memcpy(s, tbuf, len + 1);
2762 assert(SvTYPE(sv) >= SVt_PVMG);
2763 /* This falls through to the report_uninit near the end of the
2765 } else if (SvTHINKFIRST(sv)) {
2769 SV *const tmpstr = AMG_CALLun(sv,string);
2770 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2772 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2776 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2777 if (flags & SV_CONST_RETURN) {
2778 pv = (char *) SvPVX_const(tmpstr);
2780 pv = (flags & SV_MUTABLE_RETURN)
2781 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2784 *lp = SvCUR(tmpstr);
2786 pv = sv_2pv_flags(tmpstr, lp, flags);
2799 const SV *const referent = (SV*)SvRV(sv);
2803 retval = buffer = savepvn("NULLREF", len);
2804 } else if (SvTYPE(referent) == SVt_REGEXP) {
2805 const REGEXP * const re = (REGEXP *)referent;
2810 /* If the regex is UTF-8 we want the containing scalar to
2811 have an UTF-8 flag too */
2817 if ((seen_evals = RX_SEEN_EVALS(re)))
2818 PL_reginterp_cnt += seen_evals;
2821 *lp = RX_WRAPLEN(re);
2823 return RX_WRAPPED(re);
2825 const char *const typestr = sv_reftype(referent, 0);
2826 const STRLEN typelen = strlen(typestr);
2827 UV addr = PTR2UV(referent);
2828 const char *stashname = NULL;
2829 STRLEN stashnamelen = 0; /* hush, gcc */
2830 const char *buffer_end;
2832 if (SvOBJECT(referent)) {
2833 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2836 stashname = HEK_KEY(name);
2837 stashnamelen = HEK_LEN(name);
2839 if (HEK_UTF8(name)) {
2845 stashname = "__ANON__";
2848 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2849 + 2 * sizeof(UV) + 2 /* )\0 */;
2851 len = typelen + 3 /* (0x */
2852 + 2 * sizeof(UV) + 2 /* )\0 */;
2855 Newx(buffer, len, char);
2856 buffer_end = retval = buffer + len;
2858 /* Working backwards */
2862 *--retval = PL_hexdigit[addr & 15];
2863 } while (addr >>= 4);
2869 memcpy(retval, typestr, typelen);
2873 retval -= stashnamelen;
2874 memcpy(retval, stashname, stashnamelen);
2876 /* retval may not neccesarily have reached the start of the
2878 assert (retval >= buffer);
2880 len = buffer_end - retval - 1; /* -1 for that \0 */
2888 if (SvREADONLY(sv) && !SvOK(sv)) {
2891 if (flags & SV_UNDEF_RETURNS_NULL)
2893 if (ckWARN(WARN_UNINITIALIZED))
2898 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2899 /* I'm assuming that if both IV and NV are equally valid then
2900 converting the IV is going to be more efficient */
2901 const U32 isUIOK = SvIsUV(sv);
2902 char buf[TYPE_CHARS(UV)];
2906 if (SvTYPE(sv) < SVt_PVIV)
2907 sv_upgrade(sv, SVt_PVIV);
2908 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2910 /* inlined from sv_setpvn */
2911 s = SvGROW_mutable(sv, len + 1);
2912 Move(ptr, s, len, char);
2916 else if (SvNOKp(sv)) {
2917 const int olderrno = errno;
2918 if (SvTYPE(sv) < SVt_PVNV)
2919 sv_upgrade(sv, SVt_PVNV);
2920 /* The +20 is pure guesswork. Configure test needed. --jhi */
2921 s = SvGROW_mutable(sv, NV_DIG + 20);
2922 /* some Xenix systems wipe out errno here */
2924 if (SvNVX(sv) == 0.0)
2925 my_strlcpy(s, "0", SvLEN(sv));
2929 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2932 #ifdef FIXNEGATIVEZERO
2933 if (*s == '-' && s[1] == '0' && !s[2]) {
2945 if (isGV_with_GP(sv))
2946 return glob_2pv((GV *)sv, lp);
2950 if (flags & SV_UNDEF_RETURNS_NULL)
2952 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2954 if (SvTYPE(sv) < SVt_PV)
2955 /* Typically the caller expects that sv_any is not NULL now. */
2956 sv_upgrade(sv, SVt_PV);
2960 const STRLEN len = s - SvPVX_const(sv);
2966 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2967 PTR2UV(sv),SvPVX_const(sv)));
2968 if (flags & SV_CONST_RETURN)
2969 return (char *)SvPVX_const(sv);
2970 if (flags & SV_MUTABLE_RETURN)
2971 return SvPVX_mutable(sv);
2976 =for apidoc sv_copypv
2978 Copies a stringified representation of the source SV into the
2979 destination SV. Automatically performs any necessary mg_get and
2980 coercion of numeric values into strings. Guaranteed to preserve
2981 UTF8 flag even from overloaded objects. Similar in nature to
2982 sv_2pv[_flags] but operates directly on an SV instead of just the
2983 string. Mostly uses sv_2pv_flags to do its work, except when that
2984 would lose the UTF-8'ness of the PV.
2990 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2993 const char * const s = SvPV_const(ssv,len);
2995 PERL_ARGS_ASSERT_SV_COPYPV;
2997 sv_setpvn(dsv,s,len);
3005 =for apidoc sv_2pvbyte
3007 Return a pointer to the byte-encoded representation of the SV, and set *lp
3008 to its length. May cause the SV to be downgraded from UTF-8 as a
3011 Usually accessed via the C<SvPVbyte> macro.
3017 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3019 PERL_ARGS_ASSERT_SV_2PVBYTE;
3021 sv_utf8_downgrade(sv,0);
3022 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3026 =for apidoc sv_2pvutf8
3028 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3029 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3031 Usually accessed via the C<SvPVutf8> macro.
3037 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3039 PERL_ARGS_ASSERT_SV_2PVUTF8;
3041 sv_utf8_upgrade(sv);
3042 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3047 =for apidoc sv_2bool
3049 This function is only called on magical items, and is only used by
3050 sv_true() or its macro equivalent.
3056 Perl_sv_2bool(pTHX_ register SV *const sv)
3060 PERL_ARGS_ASSERT_SV_2BOOL;
3068 SV * const tmpsv = AMG_CALLun(sv,bool_);
3069 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3070 return (bool)SvTRUE(tmpsv);
3072 return SvRV(sv) != 0;
3075 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3077 (*sv->sv_u.svu_pv > '0' ||
3078 Xpvtmp->xpv_cur > 1 ||
3079 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3086 return SvIVX(sv) != 0;
3089 return SvNVX(sv) != 0.0;
3091 if (isGV_with_GP(sv))
3101 =for apidoc sv_utf8_upgrade
3103 Converts the PV of an SV to its UTF-8-encoded form.
3104 Forces the SV to string form if it is not already.
3105 Always sets the SvUTF8 flag to avoid future validity checks even
3106 if all the bytes have hibit clear.
3108 This is not as a general purpose byte encoding to Unicode interface:
3109 use the Encode extension for that.
3111 =for apidoc sv_utf8_upgrade_flags
3113 Converts the PV of an SV to its UTF-8-encoded form.
3114 Forces the SV to string form if it is not already.
3115 Always sets the SvUTF8 flag to avoid future validity checks even
3116 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
3117 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
3118 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3120 This is not as a general purpose byte encoding to Unicode interface:
3121 use the Encode extension for that.
3127 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *const sv, const I32 flags)
3131 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS;
3133 if (sv == &PL_sv_undef)
3137 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3138 (void) sv_2pv_flags(sv,&len, flags);
3142 (void) SvPV_force(sv,len);
3151 sv_force_normal_flags(sv, 0);
3154 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
3155 sv_recode_to_utf8(sv, PL_encoding);
3156 else { /* Assume Latin-1/EBCDIC */
3157 /* This function could be much more efficient if we
3158 * had a FLAG in SVs to signal if there are any hibit
3159 * chars in the PV. Given that there isn't such a flag
3160 * make the loop as fast as possible. */
3161 const U8 * const s = (U8 *) SvPVX_const(sv);
3162 const U8 * const e = (U8 *) SvEND(sv);
3167 /* Check for hi bit */
3168 if (!NATIVE_IS_INVARIANT(ch)) {
3169 STRLEN len = SvCUR(sv);
3170 /* *Currently* bytes_to_utf8() adds a '\0' after every string
3171 it converts. This isn't documented. It's not clear if it's
3172 a bad thing to be doing, and should be changed to do exactly
3173 what the documentation says. If so, this code will have to
3175 As is, we mustn't rely on our incoming SV being well formed
3176 and having a trailing '\0', as certain code in pp_formline
3177 can send us partially built SVs. */
3178 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3180 SvPV_free(sv); /* No longer using what was there before. */
3181 SvPV_set(sv, (char*)recoded);
3183 SvLEN_set(sv, len + 1); /* No longer know the real size. */
3187 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3194 =for apidoc sv_utf8_downgrade
3196 Attempts to convert the PV of an SV from characters to bytes.
3197 If the PV contains a character beyond byte, this conversion will fail;
3198 in this case, either returns false or, if C<fail_ok> is not
3201 This is not as a general purpose Unicode to byte encoding interface:
3202 use the Encode extension for that.
3208 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3212 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3214 if (SvPOKp(sv) && SvUTF8(sv)) {
3220 sv_force_normal_flags(sv, 0);
3222 s = (U8 *) SvPV(sv, len);
3223 if (!utf8_to_bytes(s, &len)) {
3228 Perl_croak(aTHX_ "Wide character in %s",
3231 Perl_croak(aTHX_ "Wide character");
3242 =for apidoc sv_utf8_encode
3244 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3245 flag off so that it looks like octets again.
3251 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3253 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3256 sv_force_normal_flags(sv, 0);
3258 if (SvREADONLY(sv)) {
3259 Perl_croak(aTHX_ PL_no_modify);
3261 (void) sv_utf8_upgrade(sv);
3266 =for apidoc sv_utf8_decode
3268 If the PV of the SV is an octet sequence in UTF-8
3269 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3270 so that it looks like a character. If the PV contains only single-byte
3271 characters, the C<SvUTF8> flag stays being off.
3272 Scans PV for validity and returns false if the PV is invalid UTF-8.
3278 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3280 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3286 /* The octets may have got themselves encoded - get them back as
3289 if (!sv_utf8_downgrade(sv, TRUE))
3292 /* it is actually just a matter of turning the utf8 flag on, but
3293 * we want to make sure everything inside is valid utf8 first.
3295 c = (const U8 *) SvPVX_const(sv);
3296 if (!is_utf8_string(c, SvCUR(sv)+1))
3298 e = (const U8 *) SvEND(sv);
3301 if (!UTF8_IS_INVARIANT(ch)) {
3311 =for apidoc sv_setsv
3313 Copies the contents of the source SV C<ssv> into the destination SV
3314 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3315 function if the source SV needs to be reused. Does not handle 'set' magic.
3316 Loosely speaking, it performs a copy-by-value, obliterating any previous
3317 content of the destination.
3319 You probably want to use one of the assortment of wrappers, such as
3320 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3321 C<SvSetMagicSV_nosteal>.
3323 =for apidoc sv_setsv_flags
3325 Copies the contents of the source SV C<ssv> into the destination SV
3326 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3327 function if the source SV needs to be reused. Does not handle 'set' magic.
3328 Loosely speaking, it performs a copy-by-value, obliterating any previous
3329 content of the destination.
3330 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3331 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3332 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3333 and C<sv_setsv_nomg> are implemented in terms of this function.
3335 You probably want to use one of the assortment of wrappers, such as
3336 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3337 C<SvSetMagicSV_nosteal>.
3339 This is the primary function for copying scalars, and most other
3340 copy-ish functions and macros use this underneath.
3346 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3348 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3350 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3352 if (dtype != SVt_PVGV) {
3353 const char * const name = GvNAME(sstr);
3354 const STRLEN len = GvNAMELEN(sstr);
3356 if (dtype >= SVt_PV) {
3362 SvUPGRADE(dstr, SVt_PVGV);
3363 (void)SvOK_off(dstr);
3364 /* FIXME - why are we doing this, then turning it off and on again
3366 isGV_with_GP_on(dstr);
3368 GvSTASH(dstr) = GvSTASH(sstr);
3370 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3371 gv_name_set((GV *)dstr, name, len, GV_ADD);
3372 SvFAKE_on(dstr); /* can coerce to non-glob */
3375 #ifdef GV_UNIQUE_CHECK
3376 if (GvUNIQUE((GV*)dstr)) {
3377 Perl_croak(aTHX_ PL_no_modify);
3381 if(GvGP((GV*)sstr)) {
3382 /* If source has method cache entry, clear it */
3384 SvREFCNT_dec(GvCV(sstr));
3388 /* If source has a real method, then a method is
3390 else if(GvCV((GV*)sstr)) {
3395 /* If dest already had a real method, that's a change as well */
3396 if(!mro_changes && GvGP((GV*)dstr) && GvCVu((GV*)dstr)) {
3400 if(strEQ(GvNAME((GV*)dstr),"ISA"))
3404 isGV_with_GP_off(dstr);
3405 (void)SvOK_off(dstr);
3406 isGV_with_GP_on(dstr);
3407 GvINTRO_off(dstr); /* one-shot flag */
3408 GvGP(dstr) = gp_ref(GvGP(sstr));
3409 if (SvTAINTED(sstr))
3411 if (GvIMPORTED(dstr) != GVf_IMPORTED
3412 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3414 GvIMPORTED_on(dstr);
3417 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3418 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3423 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3425 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3427 const int intro = GvINTRO(dstr);
3430 const U32 stype = SvTYPE(sref);
3432 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3434 #ifdef GV_UNIQUE_CHECK
3435 if (GvUNIQUE((GV*)dstr)) {
3436 Perl_croak(aTHX_ PL_no_modify);
3441 GvINTRO_off(dstr); /* one-shot flag */
3442 GvLINE(dstr) = CopLINE(PL_curcop);
3443 GvEGV(dstr) = (GV*)dstr;
3448 location = (SV **) &GvCV(dstr);
3449 import_flag = GVf_IMPORTED_CV;
3452 location = (SV **) &GvHV(dstr);
3453 import_flag = GVf_IMPORTED_HV;
3456 location = (SV **) &GvAV(dstr);
3457 import_flag = GVf_IMPORTED_AV;
3460 location = (SV **) &GvIOp(dstr);
3463 location = (SV **) &GvFORM(dstr);
3465 location = &GvSV(dstr);
3466 import_flag = GVf_IMPORTED_SV;
3469 if (stype == SVt_PVCV) {
3470 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (CV*)sref || GvCVGEN(dstr))) {*/
3471 if (GvCVGEN(dstr)) {
3472 SvREFCNT_dec(GvCV(dstr));
3474 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3477 SAVEGENERICSV(*location);
3481 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3482 CV* const cv = (CV*)*location;
3484 if (!GvCVGEN((GV*)dstr) &&
3485 (CvROOT(cv) || CvXSUB(cv)))
3487 /* Redefining a sub - warning is mandatory if
3488 it was a const and its value changed. */
3489 if (CvCONST(cv) && CvCONST((CV*)sref)
3490 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3492 /* They are 2 constant subroutines generated from
3493 the same constant. This probably means that
3494 they are really the "same" proxy subroutine
3495 instantiated in 2 places. Most likely this is
3496 when a constant is exported twice. Don't warn.
3499 else if (ckWARN(WARN_REDEFINE)
3501 && (!CvCONST((CV*)sref)
3502 || sv_cmp(cv_const_sv(cv),
3503 cv_const_sv((CV*)sref))))) {
3504 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3507 ? "Constant subroutine %s::%s redefined"
3508 : "Subroutine %s::%s redefined"),
3509 HvNAME_get(GvSTASH((GV*)dstr)),
3510 GvENAME((GV*)dstr));
3514 cv_ckproto_len(cv, (GV*)dstr,
3515 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3516 SvPOK(sref) ? SvCUR(sref) : 0);
3518 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3519 GvASSUMECV_on(dstr);
3520 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3523 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3524 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3525 GvFLAGS(dstr) |= import_flag;
3530 if (SvTAINTED(sstr))
3536 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3539 register U32 sflags;
3541 register svtype stype;
3543 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3548 if (SvIS_FREED(dstr)) {
3549 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3550 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3552 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3554 sstr = &PL_sv_undef;
3555 if (SvIS_FREED(sstr)) {
3556 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3557 (void*)sstr, (void*)dstr);
3559 stype = SvTYPE(sstr);
3560 dtype = SvTYPE(dstr);
3562 (void)SvAMAGIC_off(dstr);
3565 /* need to nuke the magic */
3569 /* There's a lot of redundancy below but we're going for speed here */
3574 if (dtype != SVt_PVGV) {
3575 (void)SvOK_off(dstr);
3583 sv_upgrade(dstr, SVt_IV);
3587 sv_upgrade(dstr, SVt_PVIV);
3590 goto end_of_first_switch;
3592 (void)SvIOK_only(dstr);
3593 SvIV_set(dstr, SvIVX(sstr));
3596 /* SvTAINTED can only be true if the SV has taint magic, which in
3597 turn means that the SV type is PVMG (or greater). This is the
3598 case statement for SVt_IV, so this cannot be true (whatever gcov
3600 assert(!SvTAINTED(sstr));
3605 if (dtype < SVt_PV && dtype != SVt_IV)
3606 sv_upgrade(dstr, SVt_IV);
3614 sv_upgrade(dstr, SVt_NV);
3618 sv_upgrade(dstr, SVt_PVNV);
3621 goto end_of_first_switch;
3623 SvNV_set(dstr, SvNVX(sstr));
3624 (void)SvNOK_only(dstr);
3625 /* SvTAINTED can only be true if the SV has taint magic, which in
3626 turn means that the SV type is PVMG (or greater). This is the
3627 case statement for SVt_NV, so this cannot be true (whatever gcov
3629 assert(!SvTAINTED(sstr));
3635 #ifdef PERL_OLD_COPY_ON_WRITE
3636 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3637 if (dtype < SVt_PVIV)
3638 sv_upgrade(dstr, SVt_PVIV);
3646 sv_upgrade(dstr, SVt_PV);
3649 if (dtype < SVt_PVIV)
3650 sv_upgrade(dstr, SVt_PVIV);
3653 if (dtype < SVt_PVNV)
3654 sv_upgrade(dstr, SVt_PVNV);
3658 const char * const type = sv_reftype(sstr,0);
3660 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3662 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3666 /* case SVt_BIND: */
3669 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3670 glob_assign_glob(dstr, sstr, dtype);
3673 /* SvVALID means that this PVGV is playing at being an FBM. */
3677 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3679 if (SvTYPE(sstr) != stype) {
3680 stype = SvTYPE(sstr);
3681 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3682 glob_assign_glob(dstr, sstr, dtype);
3687 if (stype == SVt_PVLV)
3688 SvUPGRADE(dstr, SVt_PVNV);
3690 SvUPGRADE(dstr, (svtype)stype);
3692 end_of_first_switch:
3694 /* dstr may have been upgraded. */
3695 dtype = SvTYPE(dstr);
3696 sflags = SvFLAGS(sstr);
3698 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3699 /* Assigning to a subroutine sets the prototype. */
3702 const char *const ptr = SvPV_const(sstr, len);
3704 SvGROW(dstr, len + 1);
3705 Copy(ptr, SvPVX(dstr), len + 1, char);
3706 SvCUR_set(dstr, len);
3708 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3712 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3713 const char * const type = sv_reftype(dstr,0);
3715 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3717 Perl_croak(aTHX_ "Cannot copy to %s", type);
3718 } else if (sflags & SVf_ROK) {
3719 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3720 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3723 if (GvIMPORTED(dstr) != GVf_IMPORTED
3724 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3726 GvIMPORTED_on(dstr);
3731 if (isGV_with_GP(sstr)) {
3732 glob_assign_glob(dstr, sstr, dtype);
3737 if (dtype >= SVt_PV) {
3738 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3739 glob_assign_ref(dstr, sstr);
3742 if (SvPVX_const(dstr)) {
3748 (void)SvOK_off(dstr);
3749 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3750 SvFLAGS(dstr) |= sflags & SVf_ROK;
3751 assert(!(sflags & SVp_NOK));
3752 assert(!(sflags & SVp_IOK));
3753 assert(!(sflags & SVf_NOK));
3754 assert(!(sflags & SVf_IOK));
3756 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3757 if (!(sflags & SVf_OK)) {
3758 if (ckWARN(WARN_MISC))
3759 Perl_warner(aTHX_ packWARN(WARN_MISC),
3760 "Undefined value assigned to typeglob");
3763 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3764 if (dstr != (SV*)gv) {
3767 GvGP(dstr) = gp_ref(GvGP(gv));
3771 else if (sflags & SVp_POK) {
3775 * Check to see if we can just swipe the string. If so, it's a
3776 * possible small lose on short strings, but a big win on long ones.
3777 * It might even be a win on short strings if SvPVX_const(dstr)
3778 * has to be allocated and SvPVX_const(sstr) has to be freed.
3779 * Likewise if we can set up COW rather than doing an actual copy, we
3780 * drop to the else clause, as the swipe code and the COW setup code
3781 * have much in common.
3784 /* Whichever path we take through the next code, we want this true,
3785 and doing it now facilitates the COW check. */
3786 (void)SvPOK_only(dstr);
3789 /* If we're already COW then this clause is not true, and if COW
3790 is allowed then we drop down to the else and make dest COW
3791 with us. If caller hasn't said that we're allowed to COW
3792 shared hash keys then we don't do the COW setup, even if the
3793 source scalar is a shared hash key scalar. */
3794 (((flags & SV_COW_SHARED_HASH_KEYS)
3795 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3796 : 1 /* If making a COW copy is forbidden then the behaviour we
3797 desire is as if the source SV isn't actually already
3798 COW, even if it is. So we act as if the source flags
3799 are not COW, rather than actually testing them. */
3801 #ifndef PERL_OLD_COPY_ON_WRITE
3802 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3803 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3804 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3805 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3806 but in turn, it's somewhat dead code, never expected to go
3807 live, but more kept as a placeholder on how to do it better
3808 in a newer implementation. */
3809 /* If we are COW and dstr is a suitable target then we drop down
3810 into the else and make dest a COW of us. */
3811 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3816 (sflags & SVs_TEMP) && /* slated for free anyway? */
3817 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3818 (!(flags & SV_NOSTEAL)) &&
3819 /* and we're allowed to steal temps */
3820 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3821 SvLEN(sstr) && /* and really is a string */
3822 /* and won't be needed again, potentially */
3823 !(PL_op && PL_op->op_type == OP_AASSIGN))
3824 #ifdef PERL_OLD_COPY_ON_WRITE
3825 && ((flags & SV_COW_SHARED_HASH_KEYS)
3826 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3827 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3828 && SvTYPE(sstr) >= SVt_PVIV))
3832 /* Failed the swipe test, and it's not a shared hash key either.
3833 Have to copy the string. */
3834 STRLEN len = SvCUR(sstr);
3835 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3836 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3837 SvCUR_set(dstr, len);
3838 *SvEND(dstr) = '\0';
3840 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3842 /* Either it's a shared hash key, or it's suitable for
3843 copy-on-write or we can swipe the string. */
3845 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3849 #ifdef PERL_OLD_COPY_ON_WRITE
3851 /* I believe I should acquire a global SV mutex if
3852 it's a COW sv (not a shared hash key) to stop
3853 it going un copy-on-write.
3854 If the source SV has gone un copy on write between up there
3855 and down here, then (assert() that) it is of the correct
3856 form to make it copy on write again */
3857 if ((sflags & (SVf_FAKE | SVf_READONLY))
3858 != (SVf_FAKE | SVf_READONLY)) {
3859 SvREADONLY_on(sstr);
3861 /* Make the source SV into a loop of 1.
3862 (about to become 2) */
3863 SV_COW_NEXT_SV_SET(sstr, sstr);
3867 /* Initial code is common. */
3868 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3873 /* making another shared SV. */
3874 STRLEN cur = SvCUR(sstr);
3875 STRLEN len = SvLEN(sstr);
3876 #ifdef PERL_OLD_COPY_ON_WRITE
3878 assert (SvTYPE(dstr) >= SVt_PVIV);
3879 /* SvIsCOW_normal */
3880 /* splice us in between source and next-after-source. */
3881 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3882 SV_COW_NEXT_SV_SET(sstr, dstr);
3883 SvPV_set(dstr, SvPVX_mutable(sstr));
3887 /* SvIsCOW_shared_hash */
3888 DEBUG_C(PerlIO_printf(Perl_debug_log,
3889 "Copy on write: Sharing hash\n"));
3891 assert (SvTYPE(dstr) >= SVt_PV);
3893 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3895 SvLEN_set(dstr, len);
3896 SvCUR_set(dstr, cur);
3897 SvREADONLY_on(dstr);
3899 /* Relesase a global SV mutex. */
3902 { /* Passes the swipe test. */
3903 SvPV_set(dstr, SvPVX_mutable(sstr));
3904 SvLEN_set(dstr, SvLEN(sstr));
3905 SvCUR_set(dstr, SvCUR(sstr));
3908 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3909 SvPV_set(sstr, NULL);
3915 if (sflags & SVp_NOK) {
3916 SvNV_set(dstr, SvNVX(sstr));
3918 if (sflags & SVp_IOK) {
3919 SvIV_set(dstr, SvIVX(sstr));
3920 /* Must do this otherwise some other overloaded use of 0x80000000
3921 gets confused. I guess SVpbm_VALID */
3922 if (sflags & SVf_IVisUV)
3925 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3927 const MAGIC * const smg = SvVSTRING_mg(sstr);
3929 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3930 smg->mg_ptr, smg->mg_len);
3931 SvRMAGICAL_on(dstr);
3935 else if (sflags & (SVp_IOK|SVp_NOK)) {
3936 (void)SvOK_off(dstr);
3937 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3938 if (sflags & SVp_IOK) {
3939 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3940 SvIV_set(dstr, SvIVX(sstr));
3942 if (sflags & SVp_NOK) {
3943 SvNV_set(dstr, SvNVX(sstr));
3947 if (isGV_with_GP(sstr)) {
3948 /* This stringification rule for globs is spread in 3 places.
3949 This feels bad. FIXME. */
3950 const U32 wasfake = sflags & SVf_FAKE;
3952 /* FAKE globs can get coerced, so need to turn this off
3953 temporarily if it is on. */
3955 gv_efullname3(dstr, (GV *)sstr, "*");
3956 SvFLAGS(sstr) |= wasfake;
3959 (void)SvOK_off(dstr);
3961 if (SvTAINTED(sstr))
3966 =for apidoc sv_setsv_mg
3968 Like C<sv_setsv>, but also handles 'set' magic.
3974 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
3976 PERL_ARGS_ASSERT_SV_SETSV_MG;
3978 sv_setsv(dstr,sstr);
3982 #ifdef PERL_OLD_COPY_ON_WRITE
3984 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3986 STRLEN cur = SvCUR(sstr);
3987 STRLEN len = SvLEN(sstr);
3988 register char *new_pv;
3990 PERL_ARGS_ASSERT_SV_SETSV_COW;
3993 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3994 (void*)sstr, (void*)dstr);
4001 if (SvTHINKFIRST(dstr))
4002 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4003 else if (SvPVX_const(dstr))
4004 Safefree(SvPVX_const(dstr));
4008 SvUPGRADE(dstr, SVt_PVIV);
4010 assert (SvPOK(sstr));
4011 assert (SvPOKp(sstr));
4012 assert (!SvIOK(sstr));
4013 assert (!SvIOKp(sstr));
4014 assert (!SvNOK(sstr));
4015 assert (!SvNOKp(sstr));
4017 if (SvIsCOW(sstr)) {
4019 if (SvLEN(sstr) == 0) {
4020 /* source is a COW shared hash key. */
4021 DEBUG_C(PerlIO_printf(Perl_debug_log,
4022 "Fast copy on write: Sharing hash\n"));
4023 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4026 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4028 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4029 SvUPGRADE(sstr, SVt_PVIV);
4030 SvREADONLY_on(sstr);
4032 DEBUG_C(PerlIO_printf(Perl_debug_log,
4033 "Fast copy on write: Converting sstr to COW\n"));
4034 SV_COW_NEXT_SV_SET(dstr, sstr);
4036 SV_COW_NEXT_SV_SET(sstr, dstr);
4037 new_pv = SvPVX_mutable(sstr);
4040 SvPV_set(dstr, new_pv);
4041 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4044 SvLEN_set(dstr, len);
4045 SvCUR_set(dstr, cur);
4054 =for apidoc sv_setpvn
4056 Copies a string into an SV. The C<len> parameter indicates the number of
4057 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4058 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4064 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4067 register char *dptr;
4069 PERL_ARGS_ASSERT_SV_SETPVN;
4071 SV_CHECK_THINKFIRST_COW_DROP(sv);
4077 /* len is STRLEN which is unsigned, need to copy to signed */
4080 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4082 SvUPGRADE(sv, SVt_PV);
4084 dptr = SvGROW(sv, len + 1);
4085 Move(ptr,dptr,len,char);
4088 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4093 =for apidoc sv_setpvn_mg
4095 Like C<sv_setpvn>, but also handles 'set' magic.
4101 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4103 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4105 sv_setpvn(sv,ptr,len);
4110 =for apidoc sv_setpv
4112 Copies a string into an SV. The string must be null-terminated. Does not
4113 handle 'set' magic. See C<sv_setpv_mg>.
4119 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4122 register STRLEN len;
4124 PERL_ARGS_ASSERT_SV_SETPV;
4126 SV_CHECK_THINKFIRST_COW_DROP(sv);
4132 SvUPGRADE(sv, SVt_PV);
4134 SvGROW(sv, len + 1);
4135 Move(ptr,SvPVX(sv),len+1,char);
4137 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4142 =for apidoc sv_setpv_mg
4144 Like C<sv_setpv>, but also handles 'set' magic.
4150 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4152 PERL_ARGS_ASSERT_SV_SETPV_MG;
4159 =for apidoc sv_usepvn_flags
4161 Tells an SV to use C<ptr> to find its string value. Normally the
4162 string is stored inside the SV but sv_usepvn allows the SV to use an
4163 outside string. The C<ptr> should point to memory that was allocated
4164 by C<malloc>. The string length, C<len>, must be supplied. By default
4165 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4166 so that pointer should not be freed or used by the programmer after
4167 giving it to sv_usepvn, and neither should any pointers from "behind"
4168 that pointer (e.g. ptr + 1) be used.
4170 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4171 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4172 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4173 C<len>, and already meets the requirements for storing in C<SvPVX>)
4179 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4184 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4186 SV_CHECK_THINKFIRST_COW_DROP(sv);
4187 SvUPGRADE(sv, SVt_PV);
4190 if (flags & SV_SMAGIC)
4194 if (SvPVX_const(sv))
4198 if (flags & SV_HAS_TRAILING_NUL)
4199 assert(ptr[len] == '\0');
4202 allocate = (flags & SV_HAS_TRAILING_NUL)
4204 #ifdef Perl_safesysmalloc_size
4207 PERL_STRLEN_ROUNDUP(len + 1);
4209 if (flags & SV_HAS_TRAILING_NUL) {
4210 /* It's long enough - do nothing.
4211 Specfically Perl_newCONSTSUB is relying on this. */
4214 /* Force a move to shake out bugs in callers. */
4215 char *new_ptr = (char*)safemalloc(allocate);
4216 Copy(ptr, new_ptr, len, char);
4217 PoisonFree(ptr,len,char);
4221 ptr = (char*) saferealloc (ptr, allocate);
4224 #ifdef Perl_safesysmalloc_size
4225 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4227 SvLEN_set(sv, allocate);
4231 if (!(flags & SV_HAS_TRAILING_NUL)) {
4234 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4236 if (flags & SV_SMAGIC)
4240 #ifdef PERL_OLD_COPY_ON_WRITE
4241 /* Need to do this *after* making the SV normal, as we need the buffer
4242 pointer to remain valid until after we've copied it. If we let go too early,
4243 another thread could invalidate it by unsharing last of the same hash key
4244 (which it can do by means other than releasing copy-on-write Svs)
4245 or by changing the other copy-on-write SVs in the loop. */
4247 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4249 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4251 { /* this SV was SvIsCOW_normal(sv) */
4252 /* we need to find the SV pointing to us. */
4253 SV *current = SV_COW_NEXT_SV(after);
4255 if (current == sv) {
4256 /* The SV we point to points back to us (there were only two of us
4258 Hence other SV is no longer copy on write either. */
4260 SvREADONLY_off(after);
4262 /* We need to follow the pointers around the loop. */
4264 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4267 /* don't loop forever if the structure is bust, and we have
4268 a pointer into a closed loop. */
4269 assert (current != after);
4270 assert (SvPVX_const(current) == pvx);
4272 /* Make the SV before us point to the SV after us. */
4273 SV_COW_NEXT_SV_SET(current, after);
4279 =for apidoc sv_force_normal_flags
4281 Undo various types of fakery on an SV: if the PV is a shared string, make
4282 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4283 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4284 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4285 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4286 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4287 set to some other value.) In addition, the C<flags> parameter gets passed to
4288 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4289 with flags set to 0.
4295 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4299 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4301 #ifdef PERL_OLD_COPY_ON_WRITE
4302 if (SvREADONLY(sv)) {
4303 /* At this point I believe I should acquire a global SV mutex. */
4305 const char * const pvx = SvPVX_const(sv);
4306 const STRLEN len = SvLEN(sv);
4307 const STRLEN cur = SvCUR(sv);
4308 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4309 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4310 we'll fail an assertion. */
4311 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4314 PerlIO_printf(Perl_debug_log,
4315 "Copy on write: Force normal %ld\n",
4321 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4324 if (flags & SV_COW_DROP_PV) {
4325 /* OK, so we don't need to copy our buffer. */
4328 SvGROW(sv, cur + 1);
4329 Move(pvx,SvPVX(sv),cur,char);
4334 sv_release_COW(sv, pvx, next);
4336 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4342 else if (IN_PERL_RUNTIME)
4343 Perl_croak(aTHX_ PL_no_modify);
4344 /* At this point I believe that I can drop the global SV mutex. */
4347 if (SvREADONLY(sv)) {
4349 const char * const pvx = SvPVX_const(sv);
4350 const STRLEN len = SvCUR(sv);
4355 SvGROW(sv, len + 1);
4356 Move(pvx,SvPVX(sv),len,char);
4358 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4360 else if (IN_PERL_RUNTIME)
4361 Perl_croak(aTHX_ PL_no_modify);
4365 sv_unref_flags(sv, flags);
4366 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4373 Efficient removal of characters from the beginning of the string buffer.
4374 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4375 the string buffer. The C<ptr> becomes the first character of the adjusted
4376 string. Uses the "OOK hack".
4377 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4378 refer to the same chunk of data.
4384 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4390 const U8 *real_start;
4393 PERL_ARGS_ASSERT_SV_CHOP;
4395 if (!ptr || !SvPOKp(sv))
4397 delta = ptr - SvPVX_const(sv);
4399 /* Nothing to do. */
4402 assert(ptr > SvPVX_const(sv));
4403 SV_CHECK_THINKFIRST(sv);
4405 assert(delta <= SvLEN(sv));
4407 assert(delta <= SvCUR(sv));
4410 if (!SvLEN(sv)) { /* make copy of shared string */
4411 const char *pvx = SvPVX_const(sv);
4412 const STRLEN len = SvCUR(sv);
4413 SvGROW(sv, len + 1);
4414 Move(pvx,SvPVX(sv),len,char);
4417 SvFLAGS(sv) |= SVf_OOK;
4420 SvOOK_offset(sv, old_delta);
4422 SvLEN_set(sv, SvLEN(sv) - delta);
4423 SvCUR_set(sv, SvCUR(sv) - delta);
4424 SvPV_set(sv, SvPVX(sv) + delta);
4426 p = (U8 *)SvPVX_const(sv);
4431 real_start = p - delta;
4435 if (delta < 0x100) {
4439 p -= sizeof(STRLEN);
4440 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4444 /* Fill the preceding buffer with sentinals to verify that no-one is
4446 while (p > real_start) {
4454 =for apidoc sv_catpvn
4456 Concatenates the string onto the end of the string which is in the SV. The
4457 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4458 status set, then the bytes appended should be valid UTF-8.
4459 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4461 =for apidoc sv_catpvn_flags
4463 Concatenates the string onto the end of the string which is in the SV. The
4464 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4465 status set, then the bytes appended should be valid UTF-8.
4466 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4467 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4468 in terms of this function.
4474 Perl_sv_catpvn_flags(pTHX_ register SV *const dsv, register const char *sstr, register const STRLEN slen, const I32 flags)
4478 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4480 PERL_ARGS_ASSERT_SV_CATPVN_FLAGS;
4482 SvGROW(dsv, dlen + slen + 1);
4484 sstr = SvPVX_const(dsv);
4485 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4486 SvCUR_set(dsv, SvCUR(dsv) + slen);
4488 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4490 if (flags & SV_SMAGIC)
4495 =for apidoc sv_catsv
4497 Concatenates the string from SV C<ssv> onto the end of the string in
4498 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4499 not 'set' magic. See C<sv_catsv_mg>.
4501 =for apidoc sv_catsv_flags
4503 Concatenates the string from SV C<ssv> onto the end of the string in
4504 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4505 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4506 and C<sv_catsv_nomg> are implemented in terms of this function.
4511 Perl_sv_catsv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
4515 PERL_ARGS_ASSERT_SV_CATSV_FLAGS;
4519 const char *spv = SvPV_const(ssv, slen);
4521 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4522 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4523 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4524 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4525 dsv->sv_flags doesn't have that bit set.
4526 Andy Dougherty 12 Oct 2001
4528 const I32 sutf8 = DO_UTF8(ssv);
4531 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4533 dutf8 = DO_UTF8(dsv);
4535 if (dutf8 != sutf8) {
4537 /* Not modifying source SV, so taking a temporary copy. */
4538 SV* const csv = newSVpvn_flags(spv, slen, SVs_TEMP);
4540 sv_utf8_upgrade(csv);
4541 spv = SvPV_const(csv, slen);
4544 sv_utf8_upgrade_nomg(dsv);
4546 sv_catpvn_nomg(dsv, spv, slen);
4549 if (flags & SV_SMAGIC)
4554 =for apidoc sv_catpv
4556 Concatenates the string onto the end of the string which is in the SV.
4557 If the SV has the UTF-8 status set, then the bytes appended should be
4558 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4563 Perl_sv_catpv(pTHX_ register SV *const sv, register const char *ptr)
4566 register STRLEN len;
4570 PERL_ARGS_ASSERT_SV_CATPV;
4574 junk = SvPV_force(sv, tlen);
4576 SvGROW(sv, tlen + len + 1);
4578 ptr = SvPVX_const(sv);
4579 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4580 SvCUR_set(sv, SvCUR(sv) + len);
4581 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4586 =for apidoc sv_catpv_mg
4588 Like C<sv_catpv>, but also handles 'set' magic.
4594 Perl_sv_catpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4596 PERL_ARGS_ASSERT_SV_CATPV_MG;
4605 Creates a new SV. A non-zero C<len> parameter indicates the number of
4606 bytes of preallocated string space the SV should have. An extra byte for a
4607 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4608 space is allocated.) The reference count for the new SV is set to 1.
4610 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4611 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4612 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4613 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4614 modules supporting older perls.
4620 Perl_newSV(pTHX_ const STRLEN len)
4627 sv_upgrade(sv, SVt_PV);
4628 SvGROW(sv, len + 1);
4633 =for apidoc sv_magicext
4635 Adds magic to an SV, upgrading it if necessary. Applies the
4636 supplied vtable and returns a pointer to the magic added.
4638 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4639 In particular, you can add magic to SvREADONLY SVs, and add more than
4640 one instance of the same 'how'.
4642 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4643 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4644 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4645 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4647 (This is now used as a subroutine by C<sv_magic>.)
4652 Perl_sv_magicext(pTHX_ SV *const sv, SV *const obj, const int how,
4653 const MGVTBL *const vtable, const char *const name, const I32 namlen)
4658 PERL_ARGS_ASSERT_SV_MAGICEXT;
4660 SvUPGRADE(sv, SVt_PVMG);
4661 Newxz(mg, 1, MAGIC);
4662 mg->mg_moremagic = SvMAGIC(sv);
4663 SvMAGIC_set(sv, mg);
4665 /* Sometimes a magic contains a reference loop, where the sv and
4666 object refer to each other. To prevent a reference loop that
4667 would prevent such objects being freed, we look for such loops
4668 and if we find one we avoid incrementing the object refcount.
4670 Note we cannot do this to avoid self-tie loops as intervening RV must
4671 have its REFCNT incremented to keep it in existence.
4674 if (!obj || obj == sv ||
4675 how == PERL_MAGIC_arylen ||
4676 how == PERL_MAGIC_symtab ||
4677 (SvTYPE(obj) == SVt_PVGV &&
4678 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4679 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4680 GvFORM(obj) == (CV*)sv)))
4685 mg->mg_obj = SvREFCNT_inc_simple(obj);
4686 mg->mg_flags |= MGf_REFCOUNTED;
4689 /* Normal self-ties simply pass a null object, and instead of
4690 using mg_obj directly, use the SvTIED_obj macro to produce a
4691 new RV as needed. For glob "self-ties", we are tieing the PVIO
4692 with an RV obj pointing to the glob containing the PVIO. In
4693 this case, to avoid a reference loop, we need to weaken the
4697 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4698 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4704 mg->mg_len = namlen;
4707 mg->mg_ptr = savepvn(name, namlen);
4708 else if (namlen == HEf_SVKEY)
4709 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4711 mg->mg_ptr = (char *) name;
4713 mg->mg_virtual = (MGVTBL *) vtable;
4717 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4722 =for apidoc sv_magic
4724 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4725 then adds a new magic item of type C<how> to the head of the magic list.
4727 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4728 handling of the C<name> and C<namlen> arguments.
4730 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4731 to add more than one instance of the same 'how'.
4737 Perl_sv_magic(pTHX_ register SV *const sv, SV *const obj, const int how,
4738 const char *const name, const I32 namlen)
4741 const MGVTBL *vtable;
4744 PERL_ARGS_ASSERT_SV_MAGIC;
4746 #ifdef PERL_OLD_COPY_ON_WRITE
4748 sv_force_normal_flags(sv, 0);
4750 if (SvREADONLY(sv)) {
4752 /* its okay to attach magic to shared strings; the subsequent
4753 * upgrade to PVMG will unshare the string */
4754 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4757 && how != PERL_MAGIC_regex_global
4758 && how != PERL_MAGIC_bm
4759 && how != PERL_MAGIC_fm
4760 && how != PERL_MAGIC_sv
4761 && how != PERL_MAGIC_backref
4764 Perl_croak(aTHX_ PL_no_modify);
4767 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4768 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4769 /* sv_magic() refuses to add a magic of the same 'how' as an
4772 if (how == PERL_MAGIC_taint) {