3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifndef SV_COW_THRESHOLD
52 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
54 #ifndef SV_COWBUF_THRESHOLD
55 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
57 #ifndef SV_COW_MAX_WASTE_THRESHOLD
58 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
60 #ifndef SV_COWBUF_WASTE_THRESHOLD
61 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
63 #ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
64 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
66 #ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
67 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
69 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
72 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
74 # define GE_COW_THRESHOLD(cur) 1
76 #if SV_COWBUF_THRESHOLD
77 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
79 # define GE_COWBUF_THRESHOLD(cur) 1
81 #if SV_COW_MAX_WASTE_THRESHOLD
82 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
86 #if SV_COWBUF_WASTE_THRESHOLD
87 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
91 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
92 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
96 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
97 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
102 #define CHECK_COW_THRESHOLD(cur,len) (\
103 GE_COW_THRESHOLD((cur)) && \
104 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
105 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
107 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
108 GE_COWBUF_THRESHOLD((cur)) && \
109 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
110 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
113 #ifdef PERL_UTF8_CACHE_ASSERT
114 /* if adding more checks watch out for the following tests:
115 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
116 * lib/utf8.t lib/Unicode/Collate/t/index.t
119 # define ASSERT_UTF8_CACHE(cache) \
120 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
121 assert((cache)[2] <= (cache)[3]); \
122 assert((cache)[3] <= (cache)[1]);} \
125 # define ASSERT_UTF8_CACHE(cache) NOOP
128 /* ============================================================================
130 =head1 Allocation and deallocation of SVs.
131 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
132 sv, av, hv...) contains type and reference count information, and for
133 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
134 contains fields specific to each type. Some types store all they need
135 in the head, so don't have a body.
137 In all but the most memory-paranoid configurations (ex: PURIFY), heads
138 and bodies are allocated out of arenas, which by default are
139 approximately 4K chunks of memory parcelled up into N heads or bodies.
140 Sv-bodies are allocated by their sv-type, guaranteeing size
141 consistency needed to allocate safely from arrays.
143 For SV-heads, the first slot in each arena is reserved, and holds a
144 link to the next arena, some flags, and a note of the number of slots.
145 Snaked through each arena chain is a linked list of free items; when
146 this becomes empty, an extra arena is allocated and divided up into N
147 items which are threaded into the free list.
149 SV-bodies are similar, but they use arena-sets by default, which
150 separate the link and info from the arena itself, and reclaim the 1st
151 slot in the arena. SV-bodies are further described later.
153 The following global variables are associated with arenas:
155 PL_sv_arenaroot pointer to list of SV arenas
156 PL_sv_root pointer to list of free SV structures
158 PL_body_arenas head of linked-list of body arenas
159 PL_body_roots[] array of pointers to list of free bodies of svtype
160 arrays are indexed by the svtype needed
162 A few special SV heads are not allocated from an arena, but are
163 instead directly created in the interpreter structure, eg PL_sv_undef.
164 The size of arenas can be changed from the default by setting
165 PERL_ARENA_SIZE appropriately at compile time.
167 The SV arena serves the secondary purpose of allowing still-live SVs
168 to be located and destroyed during final cleanup.
170 At the lowest level, the macros new_SV() and del_SV() grab and free
171 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
172 to return the SV to the free list with error checking.) new_SV() calls
173 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
174 SVs in the free list have their SvTYPE field set to all ones.
176 At the time of very final cleanup, sv_free_arenas() is called from
177 perl_destruct() to physically free all the arenas allocated since the
178 start of the interpreter.
180 The function visit() scans the SV arenas list, and calls a specified
181 function for each SV it finds which is still live - ie which has an SvTYPE
182 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
183 following functions (specified as [function that calls visit()] / [function
184 called by visit() for each SV]):
186 sv_report_used() / do_report_used()
187 dump all remaining SVs (debugging aid)
189 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
190 do_clean_named_io_objs(),do_curse()
191 Attempt to free all objects pointed to by RVs,
192 try to do the same for all objects indir-
193 ectly referenced by typeglobs too, and
194 then do a final sweep, cursing any
195 objects that remain. Called once from
196 perl_destruct(), prior to calling sv_clean_all()
199 sv_clean_all() / do_clean_all()
200 SvREFCNT_dec(sv) each remaining SV, possibly
201 triggering an sv_free(). It also sets the
202 SVf_BREAK flag on the SV to indicate that the
203 refcnt has been artificially lowered, and thus
204 stopping sv_free() from giving spurious warnings
205 about SVs which unexpectedly have a refcnt
206 of zero. called repeatedly from perl_destruct()
207 until there are no SVs left.
209 =head2 Arena allocator API Summary
211 Private API to rest of sv.c
215 new_XPVNV(), del_XPVGV(),
220 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
224 * ========================================================================= */
227 * "A time to plant, and a time to uproot what was planted..."
231 # define MEM_LOG_NEW_SV(sv, file, line, func) \
232 Perl_mem_log_new_sv(sv, file, line, func)
233 # define MEM_LOG_DEL_SV(sv, file, line, func) \
234 Perl_mem_log_del_sv(sv, file, line, func)
236 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
237 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
240 #ifdef DEBUG_LEAKING_SCALARS
241 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
242 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
244 # define DEBUG_SV_SERIAL(sv) \
245 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
246 PTR2UV(sv), (long)(sv)->sv_debug_serial))
248 # define FREE_SV_DEBUG_FILE(sv)
249 # define DEBUG_SV_SERIAL(sv) NOOP
253 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
254 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
255 /* Whilst I'd love to do this, it seems that things like to check on
257 # define POISON_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
259 # define POISON_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
260 PoisonNew(&SvREFCNT(sv), 1, U32)
262 # define SvARENA_CHAIN(sv) SvANY(sv)
263 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
264 # define POISON_SV_HEAD(sv)
267 /* Mark an SV head as unused, and add to free list.
269 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
270 * its refcount artificially decremented during global destruction, so
271 * there may be dangling pointers to it. The last thing we want in that
272 * case is for it to be reused. */
274 #define plant_SV(p) \
276 const U32 old_flags = SvFLAGS(p); \
277 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
278 DEBUG_SV_SERIAL(p); \
279 FREE_SV_DEBUG_FILE(p); \
281 SvFLAGS(p) = SVTYPEMASK; \
282 if (!(old_flags & SVf_BREAK)) { \
283 SvARENA_CHAIN_SET(p, PL_sv_root); \
289 #define uproot_SV(p) \
292 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
297 /* make some more SVs by adding another arena */
303 char *chunk; /* must use New here to match call to */
304 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
305 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
310 /* new_SV(): return a new, empty SV head */
312 #ifdef DEBUG_LEAKING_SCALARS
313 /* provide a real function for a debugger to play with */
315 S_new_SV(pTHX_ const char *file, int line, const char *func)
322 sv = S_more_sv(aTHX);
326 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
327 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
333 sv->sv_debug_inpad = 0;
334 sv->sv_debug_parent = NULL;
335 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
337 sv->sv_debug_serial = PL_sv_serial++;
339 MEM_LOG_NEW_SV(sv, file, line, func);
340 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
341 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
345 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
353 (p) = S_more_sv(aTHX); \
357 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
362 /* del_SV(): return an empty SV head to the free list */
375 S_del_sv(pTHX_ SV *p)
377 PERL_ARGS_ASSERT_DEL_SV;
382 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
383 const SV * const sv = sva + 1;
384 const SV * const svend = &sva[SvREFCNT(sva)];
385 if (p >= sv && p < svend) {
391 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
392 "Attempt to free non-arena SV: 0x%"UVxf
393 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
400 #else /* ! DEBUGGING */
402 #define del_SV(p) plant_SV(p)
404 #endif /* DEBUGGING */
408 =head1 SV Manipulation Functions
410 =for apidoc sv_add_arena
412 Given a chunk of memory, link it to the head of the list of arenas,
413 and split it into a list of free SVs.
419 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
421 SV *const sva = MUTABLE_SV(ptr);
425 PERL_ARGS_ASSERT_SV_ADD_ARENA;
427 /* The first SV in an arena isn't an SV. */
428 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
429 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
430 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
432 PL_sv_arenaroot = sva;
433 PL_sv_root = sva + 1;
435 svend = &sva[SvREFCNT(sva) - 1];
438 SvARENA_CHAIN_SET(sv, (sv + 1));
442 /* Must always set typemask because it's always checked in on cleanup
443 when the arenas are walked looking for objects. */
444 SvFLAGS(sv) = SVTYPEMASK;
447 SvARENA_CHAIN_SET(sv, 0);
451 SvFLAGS(sv) = SVTYPEMASK;
454 /* visit(): call the named function for each non-free SV in the arenas
455 * whose flags field matches the flags/mask args. */
458 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
463 PERL_ARGS_ASSERT_VISIT;
465 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
466 const SV * const svend = &sva[SvREFCNT(sva)];
468 for (sv = sva + 1; sv < svend; ++sv) {
469 if (SvTYPE(sv) != (svtype)SVTYPEMASK
470 && (sv->sv_flags & mask) == flags
483 /* called by sv_report_used() for each live SV */
486 do_report_used(pTHX_ SV *const sv)
488 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
489 PerlIO_printf(Perl_debug_log, "****\n");
496 =for apidoc sv_report_used
498 Dump the contents of all SVs not yet freed (debugging aid).
504 Perl_sv_report_used(pTHX)
507 visit(do_report_used, 0, 0);
513 /* called by sv_clean_objs() for each live SV */
516 do_clean_objs(pTHX_ SV *const ref)
520 SV * const target = SvRV(ref);
521 if (SvOBJECT(target)) {
522 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
523 if (SvWEAKREF(ref)) {
524 sv_del_backref(target, ref);
530 SvREFCNT_dec_NN(target);
537 /* clear any slots in a GV which hold objects - except IO;
538 * called by sv_clean_objs() for each live GV */
541 do_clean_named_objs(pTHX_ SV *const sv)
544 assert(SvTYPE(sv) == SVt_PVGV);
545 assert(isGV_with_GP(sv));
549 /* freeing GP entries may indirectly free the current GV;
550 * hold onto it while we mess with the GP slots */
553 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
554 DEBUG_D((PerlIO_printf(Perl_debug_log,
555 "Cleaning named glob SV object:\n "), sv_dump(obj)));
557 SvREFCNT_dec_NN(obj);
559 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
560 DEBUG_D((PerlIO_printf(Perl_debug_log,
561 "Cleaning named glob AV object:\n "), sv_dump(obj)));
563 SvREFCNT_dec_NN(obj);
565 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
566 DEBUG_D((PerlIO_printf(Perl_debug_log,
567 "Cleaning named glob HV object:\n "), sv_dump(obj)));
569 SvREFCNT_dec_NN(obj);
571 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
572 DEBUG_D((PerlIO_printf(Perl_debug_log,
573 "Cleaning named glob CV object:\n "), sv_dump(obj)));
575 SvREFCNT_dec_NN(obj);
577 SvREFCNT_dec_NN(sv); /* undo the inc above */
580 /* clear any IO slots in a GV which hold objects (except stderr, defout);
581 * called by sv_clean_objs() for each live GV */
584 do_clean_named_io_objs(pTHX_ SV *const sv)
587 assert(SvTYPE(sv) == SVt_PVGV);
588 assert(isGV_with_GP(sv));
589 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
593 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
594 DEBUG_D((PerlIO_printf(Perl_debug_log,
595 "Cleaning named glob IO object:\n "), sv_dump(obj)));
597 SvREFCNT_dec_NN(obj);
599 SvREFCNT_dec_NN(sv); /* undo the inc above */
602 /* Void wrapper to pass to visit() */
604 do_curse(pTHX_ SV * const sv) {
605 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
606 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
612 =for apidoc sv_clean_objs
614 Attempt to destroy all objects not yet freed.
620 Perl_sv_clean_objs(pTHX)
623 PL_in_clean_objs = TRUE;
624 visit(do_clean_objs, SVf_ROK, SVf_ROK);
625 /* Some barnacles may yet remain, clinging to typeglobs.
626 * Run the non-IO destructors first: they may want to output
627 * error messages, close files etc */
628 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
629 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
630 /* And if there are some very tenacious barnacles clinging to arrays,
631 closures, or what have you.... */
632 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
633 olddef = PL_defoutgv;
634 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
635 if (olddef && isGV_with_GP(olddef))
636 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
637 olderr = PL_stderrgv;
638 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
639 if (olderr && isGV_with_GP(olderr))
640 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
641 SvREFCNT_dec(olddef);
642 PL_in_clean_objs = FALSE;
645 /* called by sv_clean_all() for each live SV */
648 do_clean_all(pTHX_ SV *const sv)
650 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
651 /* don't clean pid table and strtab */
654 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
655 SvFLAGS(sv) |= SVf_BREAK;
660 =for apidoc sv_clean_all
662 Decrement the refcnt of each remaining SV, possibly triggering a
663 cleanup. This function may have to be called multiple times to free
664 SVs which are in complex self-referential hierarchies.
670 Perl_sv_clean_all(pTHX)
673 PL_in_clean_all = TRUE;
674 cleaned = visit(do_clean_all, 0,0);
679 ARENASETS: a meta-arena implementation which separates arena-info
680 into struct arena_set, which contains an array of struct
681 arena_descs, each holding info for a single arena. By separating
682 the meta-info from the arena, we recover the 1st slot, formerly
683 borrowed for list management. The arena_set is about the size of an
684 arena, avoiding the needless malloc overhead of a naive linked-list.
686 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
687 memory in the last arena-set (1/2 on average). In trade, we get
688 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
689 smaller types). The recovery of the wasted space allows use of
690 small arenas for large, rare body types, by changing array* fields
691 in body_details_by_type[] below.
694 char *arena; /* the raw storage, allocated aligned */
695 size_t size; /* its size ~4k typ */
696 svtype utype; /* bodytype stored in arena */
701 /* Get the maximum number of elements in set[] such that struct arena_set
702 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
703 therefore likely to be 1 aligned memory page. */
705 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
706 - 2 * sizeof(int)) / sizeof (struct arena_desc))
709 struct arena_set* next;
710 unsigned int set_size; /* ie ARENAS_PER_SET */
711 unsigned int curr; /* index of next available arena-desc */
712 struct arena_desc set[ARENAS_PER_SET];
716 =for apidoc sv_free_arenas
718 Deallocate the memory used by all arenas. Note that all the individual SV
719 heads and bodies within the arenas must already have been freed.
725 Perl_sv_free_arenas(pTHX)
731 /* Free arenas here, but be careful about fake ones. (We assume
732 contiguity of the fake ones with the corresponding real ones.) */
734 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
735 svanext = MUTABLE_SV(SvANY(sva));
736 while (svanext && SvFAKE(svanext))
737 svanext = MUTABLE_SV(SvANY(svanext));
744 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
747 struct arena_set *current = aroot;
750 assert(aroot->set[i].arena);
751 Safefree(aroot->set[i].arena);
759 i = PERL_ARENA_ROOTS_SIZE;
761 PL_body_roots[i] = 0;
768 Here are mid-level routines that manage the allocation of bodies out
769 of the various arenas. There are 5 kinds of arenas:
771 1. SV-head arenas, which are discussed and handled above
772 2. regular body arenas
773 3. arenas for reduced-size bodies
776 Arena types 2 & 3 are chained by body-type off an array of
777 arena-root pointers, which is indexed by svtype. Some of the
778 larger/less used body types are malloced singly, since a large
779 unused block of them is wasteful. Also, several svtypes dont have
780 bodies; the data fits into the sv-head itself. The arena-root
781 pointer thus has a few unused root-pointers (which may be hijacked
782 later for arena types 4,5)
784 3 differs from 2 as an optimization; some body types have several
785 unused fields in the front of the structure (which are kept in-place
786 for consistency). These bodies can be allocated in smaller chunks,
787 because the leading fields arent accessed. Pointers to such bodies
788 are decremented to point at the unused 'ghost' memory, knowing that
789 the pointers are used with offsets to the real memory.
792 =head1 SV-Body Allocation
796 Allocation of SV-bodies is similar to SV-heads, differing as follows;
797 the allocation mechanism is used for many body types, so is somewhat
798 more complicated, it uses arena-sets, and has no need for still-live
801 At the outermost level, (new|del)_X*V macros return bodies of the
802 appropriate type. These macros call either (new|del)_body_type or
803 (new|del)_body_allocated macro pairs, depending on specifics of the
804 type. Most body types use the former pair, the latter pair is used to
805 allocate body types with "ghost fields".
807 "ghost fields" are fields that are unused in certain types, and
808 consequently don't need to actually exist. They are declared because
809 they're part of a "base type", which allows use of functions as
810 methods. The simplest examples are AVs and HVs, 2 aggregate types
811 which don't use the fields which support SCALAR semantics.
813 For these types, the arenas are carved up into appropriately sized
814 chunks, we thus avoid wasted memory for those unaccessed members.
815 When bodies are allocated, we adjust the pointer back in memory by the
816 size of the part not allocated, so it's as if we allocated the full
817 structure. (But things will all go boom if you write to the part that
818 is "not there", because you'll be overwriting the last members of the
819 preceding structure in memory.)
821 We calculate the correction using the STRUCT_OFFSET macro on the first
822 member present. If the allocated structure is smaller (no initial NV
823 actually allocated) then the net effect is to subtract the size of the NV
824 from the pointer, to return a new pointer as if an initial NV were actually
825 allocated. (We were using structures named *_allocated for this, but
826 this turned out to be a subtle bug, because a structure without an NV
827 could have a lower alignment constraint, but the compiler is allowed to
828 optimised accesses based on the alignment constraint of the actual pointer
829 to the full structure, for example, using a single 64 bit load instruction
830 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
832 This is the same trick as was used for NV and IV bodies. Ironically it
833 doesn't need to be used for NV bodies any more, because NV is now at
834 the start of the structure. IV bodies, and also in some builds NV bodies,
835 don't need it either, because they are no longer allocated.
837 In turn, the new_body_* allocators call S_new_body(), which invokes
838 new_body_inline macro, which takes a lock, and takes a body off the
839 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
840 necessary to refresh an empty list. Then the lock is released, and
841 the body is returned.
843 Perl_more_bodies allocates a new arena, and carves it up into an array of N
844 bodies, which it strings into a linked list. It looks up arena-size
845 and body-size from the body_details table described below, thus
846 supporting the multiple body-types.
848 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
849 the (new|del)_X*V macros are mapped directly to malloc/free.
851 For each sv-type, struct body_details bodies_by_type[] carries
852 parameters which control these aspects of SV handling:
854 Arena_size determines whether arenas are used for this body type, and if
855 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
856 zero, forcing individual mallocs and frees.
858 Body_size determines how big a body is, and therefore how many fit into
859 each arena. Offset carries the body-pointer adjustment needed for
860 "ghost fields", and is used in *_allocated macros.
862 But its main purpose is to parameterize info needed in
863 Perl_sv_upgrade(). The info here dramatically simplifies the function
864 vs the implementation in 5.8.8, making it table-driven. All fields
865 are used for this, except for arena_size.
867 For the sv-types that have no bodies, arenas are not used, so those
868 PL_body_roots[sv_type] are unused, and can be overloaded. In
869 something of a special case, SVt_NULL is borrowed for HE arenas;
870 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
871 bodies_by_type[SVt_NULL] slot is not used, as the table is not
876 struct body_details {
877 U8 body_size; /* Size to allocate */
878 U8 copy; /* Size of structure to copy (may be shorter) */
879 U8 offset; /* Size of unalloced ghost fields to first alloced field*/
880 PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */
881 PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */
882 PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */
883 PERL_BITFIELD8 arena : 1; /* Allocated from an arena */
884 U32 arena_size; /* Size of arena to allocate */
892 /* With -DPURFIY we allocate everything directly, and don't use arenas.
893 This seems a rather elegant way to simplify some of the code below. */
894 #define HASARENA FALSE
896 #define HASARENA TRUE
898 #define NOARENA FALSE
900 /* Size the arenas to exactly fit a given number of bodies. A count
901 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
902 simplifying the default. If count > 0, the arena is sized to fit
903 only that many bodies, allowing arenas to be used for large, rare
904 bodies (XPVFM, XPVIO) without undue waste. The arena size is
905 limited by PERL_ARENA_SIZE, so we can safely oversize the
908 #define FIT_ARENA0(body_size) \
909 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
910 #define FIT_ARENAn(count,body_size) \
911 ( count * body_size <= PERL_ARENA_SIZE) \
912 ? count * body_size \
913 : FIT_ARENA0 (body_size)
914 #define FIT_ARENA(count,body_size) \
916 ? FIT_ARENAn (count, body_size) \
917 : FIT_ARENA0 (body_size))
919 /* Calculate the length to copy. Specifically work out the length less any
920 final padding the compiler needed to add. See the comment in sv_upgrade
921 for why copying the padding proved to be a bug. */
923 #define copy_length(type, last_member) \
924 STRUCT_OFFSET(type, last_member) \
925 + sizeof (((type*)SvANY((const SV *)0))->last_member)
927 static const struct body_details bodies_by_type[] = {
928 /* HEs use this offset for their arena. */
929 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
931 /* IVs are in the head, so the allocation size is 0. */
933 sizeof(IV), /* This is used to copy out the IV body. */
934 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
935 NOARENA /* IVS don't need an arena */, 0
940 STRUCT_OFFSET(XPVNV, xnv_u),
941 SVt_NV, FALSE, HADNV, NOARENA, 0 },
943 { sizeof(NV), sizeof(NV),
944 STRUCT_OFFSET(XPVNV, xnv_u),
945 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
948 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
949 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
950 + STRUCT_OFFSET(XPV, xpv_cur),
951 SVt_PV, FALSE, NONV, HASARENA,
952 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
955 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
956 + STRUCT_OFFSET(XPV, xpv_cur),
957 SVt_INVLIST, TRUE, NONV, HASARENA,
958 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
960 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
961 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
962 + STRUCT_OFFSET(XPV, xpv_cur),
963 SVt_PVIV, FALSE, NONV, HASARENA,
964 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
966 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
967 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
968 + STRUCT_OFFSET(XPV, xpv_cur),
969 SVt_PVNV, FALSE, HADNV, HASARENA,
970 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
972 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
973 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
978 SVt_REGEXP, TRUE, NONV, HASARENA,
979 FIT_ARENA(0, sizeof(regexp))
982 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
983 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
985 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
986 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
989 copy_length(XPVAV, xav_alloc),
991 SVt_PVAV, TRUE, NONV, HASARENA,
992 FIT_ARENA(0, sizeof(XPVAV)) },
995 copy_length(XPVHV, xhv_max),
997 SVt_PVHV, TRUE, NONV, HASARENA,
998 FIT_ARENA(0, sizeof(XPVHV)) },
1003 SVt_PVCV, TRUE, NONV, HASARENA,
1004 FIT_ARENA(0, sizeof(XPVCV)) },
1009 SVt_PVFM, TRUE, NONV, NOARENA,
1010 FIT_ARENA(20, sizeof(XPVFM)) },
1015 SVt_PVIO, TRUE, NONV, HASARENA,
1016 FIT_ARENA(24, sizeof(XPVIO)) },
1019 #define new_body_allocated(sv_type) \
1020 (void *)((char *)S_new_body(aTHX_ sv_type) \
1021 - bodies_by_type[sv_type].offset)
1023 /* return a thing to the free list */
1025 #define del_body(thing, root) \
1027 void ** const thing_copy = (void **)thing; \
1028 *thing_copy = *root; \
1029 *root = (void*)thing_copy; \
1033 #if !(NVSIZE <= IVSIZE)
1034 # define new_XNV() safemalloc(sizeof(XPVNV))
1036 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1037 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1039 #define del_XPVGV(p) safefree(p)
1043 #if !(NVSIZE <= IVSIZE)
1044 # define new_XNV() new_body_allocated(SVt_NV)
1046 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1047 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1049 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1050 &PL_body_roots[SVt_PVGV])
1054 /* no arena for you! */
1056 #define new_NOARENA(details) \
1057 safemalloc((details)->body_size + (details)->offset)
1058 #define new_NOARENAZ(details) \
1059 safecalloc((details)->body_size + (details)->offset, 1)
1062 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1063 const size_t arena_size)
1065 void ** const root = &PL_body_roots[sv_type];
1066 struct arena_desc *adesc;
1067 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1071 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1072 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1075 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1076 static bool done_sanity_check;
1078 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1079 * variables like done_sanity_check. */
1080 if (!done_sanity_check) {
1081 unsigned int i = SVt_LAST;
1083 done_sanity_check = TRUE;
1086 assert (bodies_by_type[i].type == i);
1092 /* may need new arena-set to hold new arena */
1093 if (!aroot || aroot->curr >= aroot->set_size) {
1094 struct arena_set *newroot;
1095 Newxz(newroot, 1, struct arena_set);
1096 newroot->set_size = ARENAS_PER_SET;
1097 newroot->next = aroot;
1099 PL_body_arenas = (void *) newroot;
1100 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1103 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1104 curr = aroot->curr++;
1105 adesc = &(aroot->set[curr]);
1106 assert(!adesc->arena);
1108 Newx(adesc->arena, good_arena_size, char);
1109 adesc->size = good_arena_size;
1110 adesc->utype = sv_type;
1111 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1112 curr, (void*)adesc->arena, (UV)good_arena_size));
1114 start = (char *) adesc->arena;
1116 /* Get the address of the byte after the end of the last body we can fit.
1117 Remember, this is integer division: */
1118 end = start + good_arena_size / body_size * body_size;
1120 /* computed count doesn't reflect the 1st slot reservation */
1121 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1122 DEBUG_m(PerlIO_printf(Perl_debug_log,
1123 "arena %p end %p arena-size %d (from %d) type %d "
1125 (void*)start, (void*)end, (int)good_arena_size,
1126 (int)arena_size, sv_type, (int)body_size,
1127 (int)good_arena_size / (int)body_size));
1129 DEBUG_m(PerlIO_printf(Perl_debug_log,
1130 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1131 (void*)start, (void*)end,
1132 (int)arena_size, sv_type, (int)body_size,
1133 (int)good_arena_size / (int)body_size));
1135 *root = (void *)start;
1138 /* Where the next body would start: */
1139 char * const next = start + body_size;
1142 /* This is the last body: */
1143 assert(next == end);
1145 *(void **)start = 0;
1149 *(void**) start = (void *)next;
1154 /* grab a new thing from the free list, allocating more if necessary.
1155 The inline version is used for speed in hot routines, and the
1156 function using it serves the rest (unless PURIFY).
1158 #define new_body_inline(xpv, sv_type) \
1160 void ** const r3wt = &PL_body_roots[sv_type]; \
1161 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1162 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1163 bodies_by_type[sv_type].body_size,\
1164 bodies_by_type[sv_type].arena_size)); \
1165 *(r3wt) = *(void**)(xpv); \
1171 S_new_body(pTHX_ const svtype sv_type)
1174 new_body_inline(xpv, sv_type);
1180 static const struct body_details fake_rv =
1181 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1184 =for apidoc sv_upgrade
1186 Upgrade an SV to a more complex form. Generally adds a new body type to the
1187 SV, then copies across as much information as possible from the old body.
1188 It croaks if the SV is already in a more complex form than requested. You
1189 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1190 before calling C<sv_upgrade>, and hence does not croak. See also
1197 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1201 const svtype old_type = SvTYPE(sv);
1202 const struct body_details *new_type_details;
1203 const struct body_details *old_type_details
1204 = bodies_by_type + old_type;
1205 SV *referant = NULL;
1207 PERL_ARGS_ASSERT_SV_UPGRADE;
1209 if (old_type == new_type)
1212 /* This clause was purposefully added ahead of the early return above to
1213 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1214 inference by Nick I-S that it would fix other troublesome cases. See
1215 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1217 Given that shared hash key scalars are no longer PVIV, but PV, there is
1218 no longer need to unshare so as to free up the IVX slot for its proper
1219 purpose. So it's safe to move the early return earlier. */
1221 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1222 sv_force_normal_flags(sv, 0);
1225 old_body = SvANY(sv);
1227 /* Copying structures onto other structures that have been neatly zeroed
1228 has a subtle gotcha. Consider XPVMG
1230 +------+------+------+------+------+-------+-------+
1231 | NV | CUR | LEN | IV | MAGIC | STASH |
1232 +------+------+------+------+------+-------+-------+
1233 0 4 8 12 16 20 24 28
1235 where NVs are aligned to 8 bytes, so that sizeof that structure is
1236 actually 32 bytes long, with 4 bytes of padding at the end:
1238 +------+------+------+------+------+-------+-------+------+
1239 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1240 +------+------+------+------+------+-------+-------+------+
1241 0 4 8 12 16 20 24 28 32
1243 so what happens if you allocate memory for this structure:
1245 +------+------+------+------+------+-------+-------+------+------+...
1246 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1247 +------+------+------+------+------+-------+-------+------+------+...
1248 0 4 8 12 16 20 24 28 32 36
1250 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1251 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1252 started out as zero once, but it's quite possible that it isn't. So now,
1253 rather than a nicely zeroed GP, you have it pointing somewhere random.
1256 (In fact, GP ends up pointing at a previous GP structure, because the
1257 principle cause of the padding in XPVMG getting garbage is a copy of
1258 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1259 this happens to be moot because XPVGV has been re-ordered, with GP
1260 no longer after STASH)
1262 So we are careful and work out the size of used parts of all the
1270 referant = SvRV(sv);
1271 old_type_details = &fake_rv;
1272 if (new_type == SVt_NV)
1273 new_type = SVt_PVNV;
1275 if (new_type < SVt_PVIV) {
1276 new_type = (new_type == SVt_NV)
1277 ? SVt_PVNV : SVt_PVIV;
1282 if (new_type < SVt_PVNV) {
1283 new_type = SVt_PVNV;
1287 assert(new_type > SVt_PV);
1288 STATIC_ASSERT_STMT(SVt_IV < SVt_PV);
1289 STATIC_ASSERT_STMT(SVt_NV < SVt_PV);
1296 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1297 there's no way that it can be safely upgraded, because perl.c
1298 expects to Safefree(SvANY(PL_mess_sv)) */
1299 assert(sv != PL_mess_sv);
1302 if (UNLIKELY(old_type_details->cant_upgrade))
1303 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1304 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1307 if (UNLIKELY(old_type > new_type))
1308 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1309 (int)old_type, (int)new_type);
1311 new_type_details = bodies_by_type + new_type;
1313 SvFLAGS(sv) &= ~SVTYPEMASK;
1314 SvFLAGS(sv) |= new_type;
1316 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1317 the return statements above will have triggered. */
1318 assert (new_type != SVt_NULL);
1321 assert(old_type == SVt_NULL);
1322 SET_SVANY_FOR_BODYLESS_IV(sv);
1326 assert(old_type == SVt_NULL);
1327 #if NVSIZE <= IVSIZE
1328 SET_SVANY_FOR_BODYLESS_NV(sv);
1330 SvANY(sv) = new_XNV();
1336 assert(new_type_details->body_size);
1339 assert(new_type_details->arena);
1340 assert(new_type_details->arena_size);
1341 /* This points to the start of the allocated area. */
1342 new_body_inline(new_body, new_type);
1343 Zero(new_body, new_type_details->body_size, char);
1344 new_body = ((char *)new_body) - new_type_details->offset;
1346 /* We always allocated the full length item with PURIFY. To do this
1347 we fake things so that arena is false for all 16 types.. */
1348 new_body = new_NOARENAZ(new_type_details);
1350 SvANY(sv) = new_body;
1351 if (new_type == SVt_PVAV) {
1355 if (old_type_details->body_size) {
1358 /* It will have been zeroed when the new body was allocated.
1359 Lets not write to it, in case it confuses a write-back
1365 #ifndef NODEFAULT_SHAREKEYS
1366 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1368 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1369 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1372 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1373 The target created by newSVrv also is, and it can have magic.
1374 However, it never has SvPVX set.
1376 if (old_type == SVt_IV) {
1378 } else if (old_type >= SVt_PV) {
1379 assert(SvPVX_const(sv) == 0);
1382 if (old_type >= SVt_PVMG) {
1383 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1384 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1386 sv->sv_u.svu_array = NULL; /* or svu_hash */
1391 /* XXX Is this still needed? Was it ever needed? Surely as there is
1392 no route from NV to PVIV, NOK can never be true */
1393 assert(!SvNOKp(sv));
1407 assert(new_type_details->body_size);
1408 /* We always allocated the full length item with PURIFY. To do this
1409 we fake things so that arena is false for all 16 types.. */
1410 if(new_type_details->arena) {
1411 /* This points to the start of the allocated area. */
1412 new_body_inline(new_body, new_type);
1413 Zero(new_body, new_type_details->body_size, char);
1414 new_body = ((char *)new_body) - new_type_details->offset;
1416 new_body = new_NOARENAZ(new_type_details);
1418 SvANY(sv) = new_body;
1420 if (old_type_details->copy) {
1421 /* There is now the potential for an upgrade from something without
1422 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1423 int offset = old_type_details->offset;
1424 int length = old_type_details->copy;
1426 if (new_type_details->offset > old_type_details->offset) {
1427 const int difference
1428 = new_type_details->offset - old_type_details->offset;
1429 offset += difference;
1430 length -= difference;
1432 assert (length >= 0);
1434 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1438 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1439 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1440 * correct 0.0 for us. Otherwise, if the old body didn't have an
1441 * NV slot, but the new one does, then we need to initialise the
1442 * freshly created NV slot with whatever the correct bit pattern is
1444 if (old_type_details->zero_nv && !new_type_details->zero_nv
1445 && !isGV_with_GP(sv))
1449 if (UNLIKELY(new_type == SVt_PVIO)) {
1450 IO * const io = MUTABLE_IO(sv);
1451 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1454 /* Clear the stashcache because a new IO could overrule a package
1456 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1457 hv_clear(PL_stashcache);
1459 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1460 IoPAGE_LEN(sv) = 60;
1462 if (UNLIKELY(new_type == SVt_REGEXP))
1463 sv->sv_u.svu_rx = (regexp *)new_body;
1464 else if (old_type < SVt_PV) {
1465 /* referant will be NULL unless the old type was SVt_IV emulating
1467 sv->sv_u.svu_rv = referant;
1471 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1472 (unsigned long)new_type);
1475 /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV,
1476 and sometimes SVt_NV */
1477 if (old_type_details->body_size) {
1481 /* Note that there is an assumption that all bodies of types that
1482 can be upgraded came from arenas. Only the more complex non-
1483 upgradable types are allowed to be directly malloc()ed. */
1484 assert(old_type_details->arena);
1485 del_body((void*)((char*)old_body + old_type_details->offset),
1486 &PL_body_roots[old_type]);
1492 =for apidoc sv_backoff
1494 Remove any string offset. You should normally use the C<SvOOK_off> macro
1500 /* prior to 5.000 stable, this function returned the new OOK-less SvFLAGS
1501 prior to 5.23.4 this function always returned 0
1505 Perl_sv_backoff(SV *const sv)
1508 const char * const s = SvPVX_const(sv);
1510 PERL_ARGS_ASSERT_SV_BACKOFF;
1513 assert(SvTYPE(sv) != SVt_PVHV);
1514 assert(SvTYPE(sv) != SVt_PVAV);
1516 SvOOK_offset(sv, delta);
1518 SvLEN_set(sv, SvLEN(sv) + delta);
1519 SvPV_set(sv, SvPVX(sv) - delta);
1520 SvFLAGS(sv) &= ~SVf_OOK;
1521 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1528 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1529 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1530 Use the C<SvGROW> wrapper instead.
1535 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1538 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1542 PERL_ARGS_ASSERT_SV_GROW;
1546 if (SvTYPE(sv) < SVt_PV) {
1547 sv_upgrade(sv, SVt_PV);
1548 s = SvPVX_mutable(sv);
1550 else if (SvOOK(sv)) { /* pv is offset? */
1552 s = SvPVX_mutable(sv);
1553 if (newlen > SvLEN(sv))
1554 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1558 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1559 s = SvPVX_mutable(sv);
1562 #ifdef PERL_COPY_ON_WRITE
1563 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1564 * to store the COW count. So in general, allocate one more byte than
1565 * asked for, to make it likely this byte is always spare: and thus
1566 * make more strings COW-able.
1567 * If the new size is a big power of two, don't bother: we assume the
1568 * caller wanted a nice 2^N sized block and will be annoyed at getting
1570 * Only increment if the allocation isn't MEM_SIZE_MAX,
1571 * otherwise it will wrap to 0.
1573 if (newlen & 0xff && newlen != MEM_SIZE_MAX)
1577 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1578 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1581 if (newlen > SvLEN(sv)) { /* need more room? */
1582 STRLEN minlen = SvCUR(sv);
1583 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1584 if (newlen < minlen)
1586 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1588 /* Don't round up on the first allocation, as odds are pretty good that
1589 * the initial request is accurate as to what is really needed */
1591 STRLEN rounded = PERL_STRLEN_ROUNDUP(newlen);
1592 if (rounded > newlen)
1596 if (SvLEN(sv) && s) {
1597 s = (char*)saferealloc(s, newlen);
1600 s = (char*)safemalloc(newlen);
1601 if (SvPVX_const(sv) && SvCUR(sv)) {
1602 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1606 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1607 /* Do this here, do it once, do it right, and then we will never get
1608 called back into sv_grow() unless there really is some growing
1610 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1612 SvLEN_set(sv, newlen);
1619 =for apidoc sv_setiv
1621 Copies an integer into the given SV, upgrading first if necessary.
1622 Does not handle 'set' magic. See also C<L</sv_setiv_mg>>.
1628 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1630 PERL_ARGS_ASSERT_SV_SETIV;
1632 SV_CHECK_THINKFIRST_COW_DROP(sv);
1633 switch (SvTYPE(sv)) {
1636 sv_upgrade(sv, SVt_IV);
1639 sv_upgrade(sv, SVt_PVIV);
1643 if (!isGV_with_GP(sv))
1650 /* diag_listed_as: Can't coerce %s to %s in %s */
1651 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1656 (void)SvIOK_only(sv); /* validate number */
1662 =for apidoc sv_setiv_mg
1664 Like C<sv_setiv>, but also handles 'set' magic.
1670 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1672 PERL_ARGS_ASSERT_SV_SETIV_MG;
1679 =for apidoc sv_setuv
1681 Copies an unsigned integer into the given SV, upgrading first if necessary.
1682 Does not handle 'set' magic. See also C<L</sv_setuv_mg>>.
1688 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1690 PERL_ARGS_ASSERT_SV_SETUV;
1692 /* With the if statement to ensure that integers are stored as IVs whenever
1694 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1697 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1699 If you wish to remove the following if statement, so that this routine
1700 (and its callers) always return UVs, please benchmark to see what the
1701 effect is. Modern CPUs may be different. Or may not :-)
1703 if (u <= (UV)IV_MAX) {
1704 sv_setiv(sv, (IV)u);
1713 =for apidoc sv_setuv_mg
1715 Like C<sv_setuv>, but also handles 'set' magic.
1721 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1723 PERL_ARGS_ASSERT_SV_SETUV_MG;
1730 =for apidoc sv_setnv
1732 Copies a double into the given SV, upgrading first if necessary.
1733 Does not handle 'set' magic. See also C<L</sv_setnv_mg>>.
1739 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1741 PERL_ARGS_ASSERT_SV_SETNV;
1743 SV_CHECK_THINKFIRST_COW_DROP(sv);
1744 switch (SvTYPE(sv)) {
1747 sv_upgrade(sv, SVt_NV);
1751 sv_upgrade(sv, SVt_PVNV);
1755 if (!isGV_with_GP(sv))
1762 /* diag_listed_as: Can't coerce %s to %s in %s */
1763 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1769 (void)SvNOK_only(sv); /* validate number */
1774 =for apidoc sv_setnv_mg
1776 Like C<sv_setnv>, but also handles 'set' magic.
1782 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1784 PERL_ARGS_ASSERT_SV_SETNV_MG;
1790 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1791 * not incrementable warning display.
1792 * Originally part of S_not_a_number().
1793 * The return value may be != tmpbuf.
1797 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1800 PERL_ARGS_ASSERT_SV_DISPLAY;
1803 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1804 pv = sv_uni_display(dsv, sv, 32, UNI_DISPLAY_ISPRINT);
1807 const char * const limit = tmpbuf + tmpbuf_size - 8;
1808 /* each *s can expand to 4 chars + "...\0",
1809 i.e. need room for 8 chars */
1811 const char *s = SvPVX_const(sv);
1812 const char * const end = s + SvCUR(sv);
1813 for ( ; s < end && d < limit; s++ ) {
1815 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1819 /* Map to ASCII "equivalent" of Latin1 */
1820 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1826 else if (ch == '\r') {
1830 else if (ch == '\f') {
1834 else if (ch == '\\') {
1838 else if (ch == '\0') {
1842 else if (isPRINT_LC(ch))
1861 /* Print an "isn't numeric" warning, using a cleaned-up,
1862 * printable version of the offending string
1866 S_not_a_number(pTHX_ SV *const sv)
1871 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1873 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1876 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1877 /* diag_listed_as: Argument "%s" isn't numeric%s */
1878 "Argument \"%s\" isn't numeric in %s", pv,
1881 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1882 /* diag_listed_as: Argument "%s" isn't numeric%s */
1883 "Argument \"%s\" isn't numeric", pv);
1887 S_not_incrementable(pTHX_ SV *const sv) {
1891 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1893 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1895 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1896 "Argument \"%s\" treated as 0 in increment (++)", pv);
1900 =for apidoc looks_like_number
1902 Test if the content of an SV looks like a number (or is a number).
1903 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1904 non-numeric warning), even if your C<atof()> doesn't grok them. Get-magic is
1911 Perl_looks_like_number(pTHX_ SV *const sv)
1917 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1919 if (SvPOK(sv) || SvPOKp(sv)) {
1920 sbegin = SvPV_nomg_const(sv, len);
1923 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1924 numtype = grok_number(sbegin, len, NULL);
1925 return ((numtype & IS_NUMBER_TRAILING)) ? 0 : numtype;
1929 S_glob_2number(pTHX_ GV * const gv)
1931 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1933 /* We know that all GVs stringify to something that is not-a-number,
1934 so no need to test that. */
1935 if (ckWARN(WARN_NUMERIC))
1937 SV *const buffer = sv_newmortal();
1938 gv_efullname3(buffer, gv, "*");
1939 not_a_number(buffer);
1941 /* We just want something true to return, so that S_sv_2iuv_common
1942 can tail call us and return true. */
1946 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1947 until proven guilty, assume that things are not that bad... */
1952 As 64 bit platforms often have an NV that doesn't preserve all bits of
1953 an IV (an assumption perl has been based on to date) it becomes necessary
1954 to remove the assumption that the NV always carries enough precision to
1955 recreate the IV whenever needed, and that the NV is the canonical form.
1956 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1957 precision as a side effect of conversion (which would lead to insanity
1958 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1959 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1960 where precision was lost, and IV/UV/NV slots that have a valid conversion
1961 which has lost no precision
1962 2) to ensure that if a numeric conversion to one form is requested that
1963 would lose precision, the precise conversion (or differently
1964 imprecise conversion) is also performed and cached, to prevent
1965 requests for different numeric formats on the same SV causing
1966 lossy conversion chains. (lossless conversion chains are perfectly
1971 SvIOKp is true if the IV slot contains a valid value
1972 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1973 SvNOKp is true if the NV slot contains a valid value
1974 SvNOK is true only if the NV value is accurate
1977 while converting from PV to NV, check to see if converting that NV to an
1978 IV(or UV) would lose accuracy over a direct conversion from PV to
1979 IV(or UV). If it would, cache both conversions, return NV, but mark
1980 SV as IOK NOKp (ie not NOK).
1982 While converting from PV to IV, check to see if converting that IV to an
1983 NV would lose accuracy over a direct conversion from PV to NV. If it
1984 would, cache both conversions, flag similarly.
1986 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1987 correctly because if IV & NV were set NV *always* overruled.
1988 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1989 changes - now IV and NV together means that the two are interchangeable:
1990 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1992 The benefit of this is that operations such as pp_add know that if
1993 SvIOK is true for both left and right operands, then integer addition
1994 can be used instead of floating point (for cases where the result won't
1995 overflow). Before, floating point was always used, which could lead to
1996 loss of precision compared with integer addition.
1998 * making IV and NV equal status should make maths accurate on 64 bit
2000 * may speed up maths somewhat if pp_add and friends start to use
2001 integers when possible instead of fp. (Hopefully the overhead in
2002 looking for SvIOK and checking for overflow will not outweigh the
2003 fp to integer speedup)
2004 * will slow down integer operations (callers of SvIV) on "inaccurate"
2005 values, as the change from SvIOK to SvIOKp will cause a call into
2006 sv_2iv each time rather than a macro access direct to the IV slot
2007 * should speed up number->string conversion on integers as IV is
2008 favoured when IV and NV are equally accurate
2010 ####################################################################
2011 You had better be using SvIOK_notUV if you want an IV for arithmetic:
2012 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
2013 On the other hand, SvUOK is true iff UV.
2014 ####################################################################
2016 Your mileage will vary depending your CPU's relative fp to integer
2020 #ifndef NV_PRESERVES_UV
2021 # define IS_NUMBER_UNDERFLOW_IV 1
2022 # define IS_NUMBER_UNDERFLOW_UV 2
2023 # define IS_NUMBER_IV_AND_UV 2
2024 # define IS_NUMBER_OVERFLOW_IV 4
2025 # define IS_NUMBER_OVERFLOW_UV 5
2027 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2029 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2031 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2037 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2038 PERL_UNUSED_CONTEXT;
2040 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2041 if (SvNVX(sv) < (NV)IV_MIN) {
2042 (void)SvIOKp_on(sv);
2044 SvIV_set(sv, IV_MIN);
2045 return IS_NUMBER_UNDERFLOW_IV;
2047 if (SvNVX(sv) > (NV)UV_MAX) {
2048 (void)SvIOKp_on(sv);
2051 SvUV_set(sv, UV_MAX);
2052 return IS_NUMBER_OVERFLOW_UV;
2054 (void)SvIOKp_on(sv);
2056 /* Can't use strtol etc to convert this string. (See truth table in
2058 if (SvNVX(sv) <= (UV)IV_MAX) {
2059 SvIV_set(sv, I_V(SvNVX(sv)));
2060 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2061 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2063 /* Integer is imprecise. NOK, IOKp */
2065 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2068 SvUV_set(sv, U_V(SvNVX(sv)));
2069 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2070 if (SvUVX(sv) == UV_MAX) {
2071 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2072 possibly be preserved by NV. Hence, it must be overflow.
2074 return IS_NUMBER_OVERFLOW_UV;
2076 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2078 /* Integer is imprecise. NOK, IOKp */
2080 return IS_NUMBER_OVERFLOW_IV;
2082 #endif /* !NV_PRESERVES_UV*/
2084 /* If numtype is infnan, set the NV of the sv accordingly.
2085 * If numtype is anything else, try setting the NV using Atof(PV). */
2087 # pragma warning(push)
2088 # pragma warning(disable:4756;disable:4056)
2091 S_sv_setnv(pTHX_ SV* sv, int numtype)
2093 bool pok = cBOOL(SvPOK(sv));
2095 if ((numtype & IS_NUMBER_INFINITY)) {
2096 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2099 else if ((numtype & IS_NUMBER_NAN)) {
2100 SvNV_set(sv, NV_NAN);
2104 SvNV_set(sv, Atof(SvPVX_const(sv)));
2105 /* Purposefully no true nok here, since we don't want to blow
2106 * away the possible IOK/UV of an existing sv. */
2109 SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */
2111 SvPOK_on(sv); /* PV is okay, though. */
2115 # pragma warning(pop)
2119 S_sv_2iuv_common(pTHX_ SV *const sv)
2121 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2124 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2125 * without also getting a cached IV/UV from it at the same time
2126 * (ie PV->NV conversion should detect loss of accuracy and cache
2127 * IV or UV at same time to avoid this. */
2128 /* IV-over-UV optimisation - choose to cache IV if possible */
2130 if (SvTYPE(sv) == SVt_NV)
2131 sv_upgrade(sv, SVt_PVNV);
2133 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2134 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2135 certainly cast into the IV range at IV_MAX, whereas the correct
2136 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2138 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2139 if (Perl_isnan(SvNVX(sv))) {
2145 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2146 SvIV_set(sv, I_V(SvNVX(sv)));
2147 if (SvNVX(sv) == (NV) SvIVX(sv)
2148 #ifndef NV_PRESERVES_UV
2149 && SvIVX(sv) != IV_MIN /* avoid negating IV_MIN below */
2150 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2151 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2152 /* Don't flag it as "accurately an integer" if the number
2153 came from a (by definition imprecise) NV operation, and
2154 we're outside the range of NV integer precision */
2158 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2160 /* scalar has trailing garbage, eg "42a" */
2162 DEBUG_c(PerlIO_printf(Perl_debug_log,
2163 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2169 /* IV not precise. No need to convert from PV, as NV
2170 conversion would already have cached IV if it detected
2171 that PV->IV would be better than PV->NV->IV
2172 flags already correct - don't set public IOK. */
2173 DEBUG_c(PerlIO_printf(Perl_debug_log,
2174 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2179 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2180 but the cast (NV)IV_MIN rounds to a the value less (more
2181 negative) than IV_MIN which happens to be equal to SvNVX ??
2182 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2183 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2184 (NV)UVX == NVX are both true, but the values differ. :-(
2185 Hopefully for 2s complement IV_MIN is something like
2186 0x8000000000000000 which will be exact. NWC */
2189 SvUV_set(sv, U_V(SvNVX(sv)));
2191 (SvNVX(sv) == (NV) SvUVX(sv))
2192 #ifndef NV_PRESERVES_UV
2193 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2194 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2195 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2196 /* Don't flag it as "accurately an integer" if the number
2197 came from a (by definition imprecise) NV operation, and
2198 we're outside the range of NV integer precision */
2204 DEBUG_c(PerlIO_printf(Perl_debug_log,
2205 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2211 else if (SvPOKp(sv)) {
2213 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2214 /* We want to avoid a possible problem when we cache an IV/ a UV which
2215 may be later translated to an NV, and the resulting NV is not
2216 the same as the direct translation of the initial string
2217 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2218 be careful to ensure that the value with the .456 is around if the
2219 NV value is requested in the future).
2221 This means that if we cache such an IV/a UV, we need to cache the
2222 NV as well. Moreover, we trade speed for space, and do not
2223 cache the NV if we are sure it's not needed.
2226 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2227 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2228 == IS_NUMBER_IN_UV) {
2229 /* It's definitely an integer, only upgrade to PVIV */
2230 if (SvTYPE(sv) < SVt_PVIV)
2231 sv_upgrade(sv, SVt_PVIV);
2233 } else if (SvTYPE(sv) < SVt_PVNV)
2234 sv_upgrade(sv, SVt_PVNV);
2236 if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) {
2237 if (ckWARN(WARN_NUMERIC) && ((numtype & IS_NUMBER_TRAILING)))
2239 S_sv_setnv(aTHX_ sv, numtype);
2243 /* If NVs preserve UVs then we only use the UV value if we know that
2244 we aren't going to call atof() below. If NVs don't preserve UVs
2245 then the value returned may have more precision than atof() will
2246 return, even though value isn't perfectly accurate. */
2247 if ((numtype & (IS_NUMBER_IN_UV
2248 #ifdef NV_PRESERVES_UV
2251 )) == IS_NUMBER_IN_UV) {
2252 /* This won't turn off the public IOK flag if it was set above */
2253 (void)SvIOKp_on(sv);
2255 if (!(numtype & IS_NUMBER_NEG)) {
2257 if (value <= (UV)IV_MAX) {
2258 SvIV_set(sv, (IV)value);
2260 /* it didn't overflow, and it was positive. */
2261 SvUV_set(sv, value);
2265 /* 2s complement assumption */
2266 if (value <= (UV)IV_MIN) {
2267 SvIV_set(sv, value == (UV)IV_MIN
2268 ? IV_MIN : -(IV)value);
2270 /* Too negative for an IV. This is a double upgrade, but
2271 I'm assuming it will be rare. */
2272 if (SvTYPE(sv) < SVt_PVNV)
2273 sv_upgrade(sv, SVt_PVNV);
2277 SvNV_set(sv, -(NV)value);
2278 SvIV_set(sv, IV_MIN);
2282 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2283 will be in the previous block to set the IV slot, and the next
2284 block to set the NV slot. So no else here. */
2286 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2287 != IS_NUMBER_IN_UV) {
2288 /* It wasn't an (integer that doesn't overflow the UV). */
2289 S_sv_setnv(aTHX_ sv, numtype);
2291 if (! numtype && ckWARN(WARN_NUMERIC))
2294 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n",
2295 PTR2UV(sv), SvNVX(sv)));
2297 #ifdef NV_PRESERVES_UV
2298 (void)SvIOKp_on(sv);
2300 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2301 if (Perl_isnan(SvNVX(sv))) {
2307 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2308 SvIV_set(sv, I_V(SvNVX(sv)));
2309 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2312 NOOP; /* Integer is imprecise. NOK, IOKp */
2314 /* UV will not work better than IV */
2316 if (SvNVX(sv) > (NV)UV_MAX) {
2318 /* Integer is inaccurate. NOK, IOKp, is UV */
2319 SvUV_set(sv, UV_MAX);
2321 SvUV_set(sv, U_V(SvNVX(sv)));
2322 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2323 NV preservse UV so can do correct comparison. */
2324 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2327 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2332 #else /* NV_PRESERVES_UV */
2333 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2334 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2335 /* The IV/UV slot will have been set from value returned by
2336 grok_number above. The NV slot has just been set using
2339 assert (SvIOKp(sv));
2341 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2342 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2343 /* Small enough to preserve all bits. */
2344 (void)SvIOKp_on(sv);
2346 SvIV_set(sv, I_V(SvNVX(sv)));
2347 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2349 /* Assumption: first non-preserved integer is < IV_MAX,
2350 this NV is in the preserved range, therefore: */
2351 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2353 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2357 0 0 already failed to read UV.
2358 0 1 already failed to read UV.
2359 1 0 you won't get here in this case. IV/UV
2360 slot set, public IOK, Atof() unneeded.
2361 1 1 already read UV.
2362 so there's no point in sv_2iuv_non_preserve() attempting
2363 to use atol, strtol, strtoul etc. */
2365 sv_2iuv_non_preserve (sv, numtype);
2367 sv_2iuv_non_preserve (sv);
2371 #endif /* NV_PRESERVES_UV */
2372 /* It might be more code efficient to go through the entire logic above
2373 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2374 gets complex and potentially buggy, so more programmer efficient
2375 to do it this way, by turning off the public flags: */
2377 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2381 if (isGV_with_GP(sv))
2382 return glob_2number(MUTABLE_GV(sv));
2384 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2386 if (SvTYPE(sv) < SVt_IV)
2387 /* Typically the caller expects that sv_any is not NULL now. */
2388 sv_upgrade(sv, SVt_IV);
2389 /* Return 0 from the caller. */
2396 =for apidoc sv_2iv_flags
2398 Return the integer value of an SV, doing any necessary string
2399 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2400 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2406 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2408 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2410 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2411 && SvTYPE(sv) != SVt_PVFM);
2413 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2419 if (flags & SV_SKIP_OVERLOAD)
2421 tmpstr = AMG_CALLunary(sv, numer_amg);
2422 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2423 return SvIV(tmpstr);
2426 return PTR2IV(SvRV(sv));
2429 if (SvVALID(sv) || isREGEXP(sv)) {
2430 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2431 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2432 In practice they are extremely unlikely to actually get anywhere
2433 accessible by user Perl code - the only way that I'm aware of is when
2434 a constant subroutine which is used as the second argument to index.
2436 Regexps have no SvIVX and SvNVX fields.
2438 assert(isREGEXP(sv) || SvPOKp(sv));
2441 const char * const ptr =
2442 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2444 = grok_number(ptr, SvCUR(sv), &value);
2446 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2447 == IS_NUMBER_IN_UV) {
2448 /* It's definitely an integer */
2449 if (numtype & IS_NUMBER_NEG) {
2450 if (value < (UV)IV_MIN)
2453 if (value < (UV)IV_MAX)
2458 /* Quite wrong but no good choices. */
2459 if ((numtype & IS_NUMBER_INFINITY)) {
2460 return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX;
2461 } else if ((numtype & IS_NUMBER_NAN)) {
2462 return 0; /* So wrong. */
2466 if (ckWARN(WARN_NUMERIC))
2469 return I_V(Atof(ptr));
2473 if (SvTHINKFIRST(sv)) {
2474 if (SvREADONLY(sv) && !SvOK(sv)) {
2475 if (ckWARN(WARN_UNINITIALIZED))
2482 if (S_sv_2iuv_common(aTHX_ sv))
2486 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2487 PTR2UV(sv),SvIVX(sv)));
2488 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2492 =for apidoc sv_2uv_flags
2494 Return the unsigned integer value of an SV, doing any necessary string
2495 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2496 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2502 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2504 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2506 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2512 if (flags & SV_SKIP_OVERLOAD)
2514 tmpstr = AMG_CALLunary(sv, numer_amg);
2515 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2516 return SvUV(tmpstr);
2519 return PTR2UV(SvRV(sv));
2522 if (SvVALID(sv) || isREGEXP(sv)) {
2523 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2524 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2525 Regexps have no SvIVX and SvNVX fields. */
2526 assert(isREGEXP(sv) || SvPOKp(sv));
2529 const char * const ptr =
2530 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2532 = grok_number(ptr, SvCUR(sv), &value);
2534 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2535 == IS_NUMBER_IN_UV) {
2536 /* It's definitely an integer */
2537 if (!(numtype & IS_NUMBER_NEG))
2541 /* Quite wrong but no good choices. */
2542 if ((numtype & IS_NUMBER_INFINITY)) {
2543 return UV_MAX; /* So wrong. */
2544 } else if ((numtype & IS_NUMBER_NAN)) {
2545 return 0; /* So wrong. */
2549 if (ckWARN(WARN_NUMERIC))
2552 return U_V(Atof(ptr));
2556 if (SvTHINKFIRST(sv)) {
2557 if (SvREADONLY(sv) && !SvOK(sv)) {
2558 if (ckWARN(WARN_UNINITIALIZED))
2565 if (S_sv_2iuv_common(aTHX_ sv))
2569 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2570 PTR2UV(sv),SvUVX(sv)));
2571 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2575 =for apidoc sv_2nv_flags
2577 Return the num value of an SV, doing any necessary string or integer
2578 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2579 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2585 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2587 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2589 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2590 && SvTYPE(sv) != SVt_PVFM);
2591 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2592 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2593 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2594 Regexps have no SvIVX and SvNVX fields. */
2596 if (flags & SV_GMAGIC)
2600 if (SvPOKp(sv) && !SvIOKp(sv)) {
2601 ptr = SvPVX_const(sv);
2603 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2604 !grok_number(ptr, SvCUR(sv), NULL))
2610 return (NV)SvUVX(sv);
2612 return (NV)SvIVX(sv);
2618 ptr = RX_WRAPPED((REGEXP *)sv);
2621 assert(SvTYPE(sv) >= SVt_PVMG);
2622 /* This falls through to the report_uninit near the end of the
2624 } else if (SvTHINKFIRST(sv)) {
2629 if (flags & SV_SKIP_OVERLOAD)
2631 tmpstr = AMG_CALLunary(sv, numer_amg);
2632 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2633 return SvNV(tmpstr);
2636 return PTR2NV(SvRV(sv));
2638 if (SvREADONLY(sv) && !SvOK(sv)) {
2639 if (ckWARN(WARN_UNINITIALIZED))
2644 if (SvTYPE(sv) < SVt_NV) {
2645 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2646 sv_upgrade(sv, SVt_NV);
2648 STORE_NUMERIC_LOCAL_SET_STANDARD();
2649 PerlIO_printf(Perl_debug_log,
2650 "0x%"UVxf" num(%" NVgf ")\n",
2651 PTR2UV(sv), SvNVX(sv));
2652 RESTORE_NUMERIC_LOCAL();
2655 else if (SvTYPE(sv) < SVt_PVNV)
2656 sv_upgrade(sv, SVt_PVNV);
2661 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2662 #ifdef NV_PRESERVES_UV
2668 /* Only set the public NV OK flag if this NV preserves the IV */
2669 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2671 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2672 : (SvIVX(sv) == I_V(SvNVX(sv))))
2678 else if (SvPOKp(sv)) {
2680 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2681 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2683 #ifdef NV_PRESERVES_UV
2684 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2685 == IS_NUMBER_IN_UV) {
2686 /* It's definitely an integer */
2687 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2689 S_sv_setnv(aTHX_ sv, numtype);
2696 SvNV_set(sv, Atof(SvPVX_const(sv)));
2697 /* Only set the public NV OK flag if this NV preserves the value in
2698 the PV at least as well as an IV/UV would.
2699 Not sure how to do this 100% reliably. */
2700 /* if that shift count is out of range then Configure's test is
2701 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2703 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2704 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2705 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2706 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2707 /* Can't use strtol etc to convert this string, so don't try.
2708 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2711 /* value has been set. It may not be precise. */
2712 if ((numtype & IS_NUMBER_NEG) && (value >= (UV)IV_MIN)) {
2713 /* 2s complement assumption for (UV)IV_MIN */
2714 SvNOK_on(sv); /* Integer is too negative. */
2719 if (numtype & IS_NUMBER_NEG) {
2720 /* -IV_MIN is undefined, but we should never reach
2721 * this point with both IS_NUMBER_NEG and value ==
2723 assert(value != (UV)IV_MIN);
2724 SvIV_set(sv, -(IV)value);
2725 } else if (value <= (UV)IV_MAX) {
2726 SvIV_set(sv, (IV)value);
2728 SvUV_set(sv, value);
2732 if (numtype & IS_NUMBER_NOT_INT) {
2733 /* I believe that even if the original PV had decimals,
2734 they are lost beyond the limit of the FP precision.
2735 However, neither is canonical, so both only get p
2736 flags. NWC, 2000/11/25 */
2737 /* Both already have p flags, so do nothing */
2739 const NV nv = SvNVX(sv);
2740 /* XXX should this spot have NAN_COMPARE_BROKEN, too? */
2741 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2742 if (SvIVX(sv) == I_V(nv)) {
2745 /* It had no "." so it must be integer. */
2749 /* between IV_MAX and NV(UV_MAX).
2750 Could be slightly > UV_MAX */
2752 if (numtype & IS_NUMBER_NOT_INT) {
2753 /* UV and NV both imprecise. */
2755 const UV nv_as_uv = U_V(nv);
2757 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2766 /* It might be more code efficient to go through the entire logic above
2767 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2768 gets complex and potentially buggy, so more programmer efficient
2769 to do it this way, by turning off the public flags: */
2771 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2772 #endif /* NV_PRESERVES_UV */
2775 if (isGV_with_GP(sv)) {
2776 glob_2number(MUTABLE_GV(sv));
2780 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2782 assert (SvTYPE(sv) >= SVt_NV);
2783 /* Typically the caller expects that sv_any is not NULL now. */
2784 /* XXX Ilya implies that this is a bug in callers that assume this
2785 and ideally should be fixed. */
2789 STORE_NUMERIC_LOCAL_SET_STANDARD();
2790 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n",
2791 PTR2UV(sv), SvNVX(sv));
2792 RESTORE_NUMERIC_LOCAL();
2800 Return an SV with the numeric value of the source SV, doing any necessary
2801 reference or overload conversion. The caller is expected to have handled
2808 Perl_sv_2num(pTHX_ SV *const sv)
2810 PERL_ARGS_ASSERT_SV_2NUM;
2815 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2816 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2817 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2818 return sv_2num(tmpsv);
2820 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2823 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2824 * UV as a string towards the end of buf, and return pointers to start and
2827 * We assume that buf is at least TYPE_CHARS(UV) long.
2831 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2833 char *ptr = buf + TYPE_CHARS(UV);
2834 char * const ebuf = ptr;
2837 PERL_ARGS_ASSERT_UIV_2BUF;
2845 uv = (iv == IV_MIN) ? (UV)iv : (UV)(-iv);
2849 *--ptr = '0' + (char)(uv % 10);
2857 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2858 * infinity or a not-a-number, writes the appropriate strings to the
2859 * buffer, including a zero byte. On success returns the written length,
2860 * excluding the zero byte, on failure (not an infinity, not a nan)
2861 * returns zero, assert-fails on maxlen being too short.
2863 * XXX for "Inf", "-Inf", and "NaN", we could have three read-only
2864 * shared string constants we point to, instead of generating a new
2865 * string for each instance. */
2867 S_infnan_2pv(NV nv, char* buffer, size_t maxlen, char plus) {
2869 assert(maxlen >= 4);
2870 if (Perl_isinf(nv)) {
2872 if (maxlen < 5) /* "-Inf\0" */
2882 else if (Perl_isnan(nv)) {
2886 /* XXX optionally output the payload mantissa bits as
2887 * "(unsigned)" (to match the nan("...") C99 function,
2888 * or maybe as "(0xhhh...)" would make more sense...
2889 * provide a format string so that the user can decide?
2890 * NOTE: would affect the maxlen and assert() logic.*/
2895 assert((s == buffer + 3) || (s == buffer + 4));
2897 return s - buffer - 1; /* -1: excluding the zero byte */
2901 =for apidoc sv_2pv_flags
2903 Returns a pointer to the string value of an SV, and sets C<*lp> to its length.
2904 If flags has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. Coerces C<sv> to a
2905 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2906 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2912 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2916 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2918 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2919 && SvTYPE(sv) != SVt_PVFM);
2920 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2925 if (flags & SV_SKIP_OVERLOAD)
2927 tmpstr = AMG_CALLunary(sv, string_amg);
2928 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2929 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2931 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2935 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2936 if (flags & SV_CONST_RETURN) {
2937 pv = (char *) SvPVX_const(tmpstr);
2939 pv = (flags & SV_MUTABLE_RETURN)
2940 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2943 *lp = SvCUR(tmpstr);
2945 pv = sv_2pv_flags(tmpstr, lp, flags);
2958 SV *const referent = SvRV(sv);
2962 retval = buffer = savepvn("NULLREF", len);
2963 } else if (SvTYPE(referent) == SVt_REGEXP &&
2964 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2965 amagic_is_enabled(string_amg))) {
2966 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2970 /* If the regex is UTF-8 we want the containing scalar to
2971 have an UTF-8 flag too */
2978 *lp = RX_WRAPLEN(re);
2980 return RX_WRAPPED(re);
2982 const char *const typestr = sv_reftype(referent, 0);
2983 const STRLEN typelen = strlen(typestr);
2984 UV addr = PTR2UV(referent);
2985 const char *stashname = NULL;
2986 STRLEN stashnamelen = 0; /* hush, gcc */
2987 const char *buffer_end;
2989 if (SvOBJECT(referent)) {
2990 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2993 stashname = HEK_KEY(name);
2994 stashnamelen = HEK_LEN(name);
2996 if (HEK_UTF8(name)) {
3002 stashname = "__ANON__";
3005 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
3006 + 2 * sizeof(UV) + 2 /* )\0 */;
3008 len = typelen + 3 /* (0x */
3009 + 2 * sizeof(UV) + 2 /* )\0 */;
3012 Newx(buffer, len, char);
3013 buffer_end = retval = buffer + len;
3015 /* Working backwards */
3019 *--retval = PL_hexdigit[addr & 15];
3020 } while (addr >>= 4);
3026 memcpy(retval, typestr, typelen);
3030 retval -= stashnamelen;
3031 memcpy(retval, stashname, stashnamelen);
3033 /* retval may not necessarily have reached the start of the
3035 assert (retval >= buffer);
3037 len = buffer_end - retval - 1; /* -1 for that \0 */
3049 if (flags & SV_MUTABLE_RETURN)
3050 return SvPVX_mutable(sv);
3051 if (flags & SV_CONST_RETURN)
3052 return (char *)SvPVX_const(sv);
3057 /* I'm assuming that if both IV and NV are equally valid then
3058 converting the IV is going to be more efficient */
3059 const U32 isUIOK = SvIsUV(sv);
3060 char buf[TYPE_CHARS(UV)];
3064 if (SvTYPE(sv) < SVt_PVIV)
3065 sv_upgrade(sv, SVt_PVIV);
3066 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3068 /* inlined from sv_setpvn */
3069 s = SvGROW_mutable(sv, len + 1);
3070 Move(ptr, s, len, char);
3075 else if (SvNOK(sv)) {
3076 if (SvTYPE(sv) < SVt_PVNV)
3077 sv_upgrade(sv, SVt_PVNV);
3078 if (SvNVX(sv) == 0.0
3079 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3080 && !Perl_isnan(SvNVX(sv))
3083 s = SvGROW_mutable(sv, 2);
3088 STRLEN size = 5; /* "-Inf\0" */
3090 s = SvGROW_mutable(sv, size);
3091 len = S_infnan_2pv(SvNVX(sv), s, size, 0);
3097 /* some Xenix systems wipe out errno here */
3106 5 + /* exponent digits */
3110 s = SvGROW_mutable(sv, size);
3111 #ifndef USE_LOCALE_NUMERIC
3112 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3118 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
3119 STORE_LC_NUMERIC_SET_TO_NEEDED();
3123 PL_numeric_radix_sv &&
3124 SvUTF8(PL_numeric_radix_sv);
3125 if (local_radix && SvLEN(PL_numeric_radix_sv) > 1) {
3126 size += SvLEN(PL_numeric_radix_sv) - 1;
3127 s = SvGROW_mutable(sv, size);
3130 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3132 /* If the radix character is UTF-8, and actually is in the
3133 * output, turn on the UTF-8 flag for the scalar */
3135 instr(s, SvPVX_const(PL_numeric_radix_sv))) {
3139 RESTORE_LC_NUMERIC();
3142 /* We don't call SvPOK_on(), because it may come to
3143 * pass that the locale changes so that the
3144 * stringification we just did is no longer correct. We
3145 * will have to re-stringify every time it is needed */
3152 else if (isGV_with_GP(sv)) {
3153 GV *const gv = MUTABLE_GV(sv);
3154 SV *const buffer = sv_newmortal();
3156 gv_efullname3(buffer, gv, "*");
3158 assert(SvPOK(buffer));
3162 *lp = SvCUR(buffer);
3163 return SvPVX(buffer);
3165 else if (isREGEXP(sv)) {
3166 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
3167 return RX_WRAPPED((REGEXP *)sv);
3172 if (flags & SV_UNDEF_RETURNS_NULL)
3174 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3176 /* Typically the caller expects that sv_any is not NULL now. */
3177 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3178 sv_upgrade(sv, SVt_PV);
3183 const STRLEN len = s - SvPVX_const(sv);
3188 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3189 PTR2UV(sv),SvPVX_const(sv)));
3190 if (flags & SV_CONST_RETURN)
3191 return (char *)SvPVX_const(sv);
3192 if (flags & SV_MUTABLE_RETURN)
3193 return SvPVX_mutable(sv);
3198 =for apidoc sv_copypv
3200 Copies a stringified representation of the source SV into the
3201 destination SV. Automatically performs any necessary C<mg_get> and
3202 coercion of numeric values into strings. Guaranteed to preserve
3203 C<UTF8> flag even from overloaded objects. Similar in nature to
3204 C<sv_2pv[_flags]> but operates directly on an SV instead of just the
3205 string. Mostly uses C<sv_2pv_flags> to do its work, except when that
3206 would lose the UTF-8'ness of the PV.
3208 =for apidoc sv_copypv_nomg
3210 Like C<sv_copypv>, but doesn't invoke get magic first.
3212 =for apidoc sv_copypv_flags
3214 Implementation of C<sv_copypv> and C<sv_copypv_nomg>. Calls get magic iff flags
3215 has the C<SV_GMAGIC> bit set.
3221 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3226 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3228 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3229 sv_setpvn(dsv,s,len);
3237 =for apidoc sv_2pvbyte
3239 Return a pointer to the byte-encoded representation of the SV, and set C<*lp>
3240 to its length. May cause the SV to be downgraded from UTF-8 as a
3243 Usually accessed via the C<SvPVbyte> macro.
3249 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3251 PERL_ARGS_ASSERT_SV_2PVBYTE;
3254 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3255 || isGV_with_GP(sv) || SvROK(sv)) {
3256 SV *sv2 = sv_newmortal();
3257 sv_copypv_nomg(sv2,sv);
3260 sv_utf8_downgrade(sv,0);
3261 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3265 =for apidoc sv_2pvutf8
3267 Return a pointer to the UTF-8-encoded representation of the SV, and set C<*lp>
3268 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3270 Usually accessed via the C<SvPVutf8> macro.
3276 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3278 PERL_ARGS_ASSERT_SV_2PVUTF8;
3280 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3281 || isGV_with_GP(sv) || SvROK(sv))
3282 sv = sv_mortalcopy(sv);
3285 sv_utf8_upgrade_nomg(sv);
3286 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3291 =for apidoc sv_2bool
3293 This macro is only used by C<sv_true()> or its macro equivalent, and only if
3294 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>.
3295 It calls C<sv_2bool_flags> with the C<SV_GMAGIC> flag.
3297 =for apidoc sv_2bool_flags
3299 This function is only used by C<sv_true()> and friends, and only if
3300 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>. If the flags
3301 contain C<SV_GMAGIC>, then it does an C<mg_get()> first.
3308 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3310 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3313 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3319 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3320 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3323 if(SvGMAGICAL(sv)) {
3325 goto restart; /* call sv_2bool */
3327 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3328 else if(!SvOK(sv)) {
3331 else if(SvPOK(sv)) {
3332 svb = SvPVXtrue(sv);
3334 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3335 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3336 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3340 goto restart; /* call sv_2bool_nomg */
3345 return SvRV(sv) != 0;
3349 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3350 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3354 =for apidoc sv_utf8_upgrade
3356 Converts the PV of an SV to its UTF-8-encoded form.
3357 Forces the SV to string form if it is not already.
3358 Will C<mg_get> on C<sv> if appropriate.
3359 Always sets the C<SvUTF8> flag to avoid future validity checks even
3360 if the whole string is the same in UTF-8 as not.
3361 Returns the number of bytes in the converted string
3363 This is not a general purpose byte encoding to Unicode interface:
3364 use the Encode extension for that.
3366 =for apidoc sv_utf8_upgrade_nomg
3368 Like C<sv_utf8_upgrade>, but doesn't do magic on C<sv>.
3370 =for apidoc sv_utf8_upgrade_flags
3372 Converts the PV of an SV to its UTF-8-encoded form.
3373 Forces the SV to string form if it is not already.
3374 Always sets the SvUTF8 flag to avoid future validity checks even
3375 if all the bytes are invariant in UTF-8.
3376 If C<flags> has C<SV_GMAGIC> bit set,
3377 will C<mg_get> on C<sv> if appropriate, else not.
3379 If C<flags> has C<SV_FORCE_UTF8_UPGRADE> set, this function assumes that the PV
3380 will expand when converted to UTF-8, and skips the extra work of checking for
3381 that. Typically this flag is used by a routine that has already parsed the
3382 string and found such characters, and passes this information on so that the
3383 work doesn't have to be repeated.
3385 Returns the number of bytes in the converted string.
3387 This is not a general purpose byte encoding to Unicode interface:
3388 use the Encode extension for that.
3390 =for apidoc sv_utf8_upgrade_flags_grow
3392 Like C<sv_utf8_upgrade_flags>, but has an additional parameter C<extra>, which is
3393 the number of unused bytes the string of C<sv> is guaranteed to have free after
3394 it upon return. This allows the caller to reserve extra space that it intends
3395 to fill, to avoid extra grows.
3397 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3398 are implemented in terms of this function.
3400 Returns the number of bytes in the converted string (not including the spares).
3404 (One might think that the calling routine could pass in the position of the
3405 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3406 have to be found again. But that is not the case, because typically when the
3407 caller is likely to use this flag, it won't be calling this routine unless it
3408 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3409 and just use bytes. But some things that do fit into a byte are variants in
3410 utf8, and the caller may not have been keeping track of these.)
3412 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3413 C<NUL> isn't guaranteed due to having other routines do the work in some input
3414 cases, or if the input is already flagged as being in utf8.
3416 The speed of this could perhaps be improved for many cases if someone wanted to
3417 write a fast function that counts the number of variant characters in a string,
3418 especially if it could return the position of the first one.
3423 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3425 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3427 if (sv == &PL_sv_undef)
3429 if (!SvPOK_nog(sv)) {
3431 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3432 (void) sv_2pv_flags(sv,&len, flags);
3434 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3438 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3443 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3448 S_sv_uncow(aTHX_ sv, 0);
3451 if (IN_ENCODING && !(flags & SV_UTF8_NO_ENCODING)) {
3452 sv_recode_to_utf8(sv, _get_encoding());
3453 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3457 if (SvCUR(sv) == 0) {
3458 if (extra) SvGROW(sv, extra);
3459 } else { /* Assume Latin-1/EBCDIC */
3460 /* This function could be much more efficient if we
3461 * had a FLAG in SVs to signal if there are any variant
3462 * chars in the PV. Given that there isn't such a flag
3463 * make the loop as fast as possible (although there are certainly ways
3464 * to speed this up, eg. through vectorization) */
3465 U8 * s = (U8 *) SvPVX_const(sv);
3466 U8 * e = (U8 *) SvEND(sv);
3468 STRLEN two_byte_count = 0;
3470 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3472 /* See if really will need to convert to utf8. We mustn't rely on our
3473 * incoming SV being well formed and having a trailing '\0', as certain
3474 * code in pp_formline can send us partially built SVs. */
3478 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3480 t--; /* t already incremented; re-point to first variant */
3485 /* utf8 conversion not needed because all are invariants. Mark as
3486 * UTF-8 even if no variant - saves scanning loop */
3488 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3493 /* Here, the string should be converted to utf8, either because of an
3494 * input flag (two_byte_count = 0), or because a character that
3495 * requires 2 bytes was found (two_byte_count = 1). t points either to
3496 * the beginning of the string (if we didn't examine anything), or to
3497 * the first variant. In either case, everything from s to t - 1 will
3498 * occupy only 1 byte each on output.
3500 * There are two main ways to convert. One is to create a new string
3501 * and go through the input starting from the beginning, appending each
3502 * converted value onto the new string as we go along. It's probably
3503 * best to allocate enough space in the string for the worst possible
3504 * case rather than possibly running out of space and having to
3505 * reallocate and then copy what we've done so far. Since everything
3506 * from s to t - 1 is invariant, the destination can be initialized
3507 * with these using a fast memory copy
3509 * The other way is to figure out exactly how big the string should be
3510 * by parsing the entire input. Then you don't have to make it big
3511 * enough to handle the worst possible case, and more importantly, if
3512 * the string you already have is large enough, you don't have to
3513 * allocate a new string, you can copy the last character in the input
3514 * string to the final position(s) that will be occupied by the
3515 * converted string and go backwards, stopping at t, since everything
3516 * before that is invariant.
3518 * There are advantages and disadvantages to each method.
3520 * In the first method, we can allocate a new string, do the memory
3521 * copy from the s to t - 1, and then proceed through the rest of the
3522 * string byte-by-byte.
3524 * In the second method, we proceed through the rest of the input
3525 * string just calculating how big the converted string will be. Then
3526 * there are two cases:
3527 * 1) if the string has enough extra space to handle the converted
3528 * value. We go backwards through the string, converting until we
3529 * get to the position we are at now, and then stop. If this
3530 * position is far enough along in the string, this method is
3531 * faster than the other method. If the memory copy were the same
3532 * speed as the byte-by-byte loop, that position would be about
3533 * half-way, as at the half-way mark, parsing to the end and back
3534 * is one complete string's parse, the same amount as starting
3535 * over and going all the way through. Actually, it would be
3536 * somewhat less than half-way, as it's faster to just count bytes
3537 * than to also copy, and we don't have the overhead of allocating
3538 * a new string, changing the scalar to use it, and freeing the
3539 * existing one. But if the memory copy is fast, the break-even
3540 * point is somewhere after half way. The counting loop could be
3541 * sped up by vectorization, etc, to move the break-even point
3542 * further towards the beginning.
3543 * 2) if the string doesn't have enough space to handle the converted
3544 * value. A new string will have to be allocated, and one might
3545 * as well, given that, start from the beginning doing the first
3546 * method. We've spent extra time parsing the string and in
3547 * exchange all we've gotten is that we know precisely how big to
3548 * make the new one. Perl is more optimized for time than space,
3549 * so this case is a loser.
3550 * So what I've decided to do is not use the 2nd method unless it is
3551 * guaranteed that a new string won't have to be allocated, assuming
3552 * the worst case. I also decided not to put any more conditions on it
3553 * than this, for now. It seems likely that, since the worst case is
3554 * twice as big as the unknown portion of the string (plus 1), we won't
3555 * be guaranteed enough space, causing us to go to the first method,
3556 * unless the string is short, or the first variant character is near
3557 * the end of it. In either of these cases, it seems best to use the
3558 * 2nd method. The only circumstance I can think of where this would
3559 * be really slower is if the string had once had much more data in it
3560 * than it does now, but there is still a substantial amount in it */
3563 STRLEN invariant_head = t - s;
3564 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3565 if (SvLEN(sv) < size) {
3567 /* Here, have decided to allocate a new string */
3572 Newx(dst, size, U8);
3574 /* If no known invariants at the beginning of the input string,
3575 * set so starts from there. Otherwise, can use memory copy to
3576 * get up to where we are now, and then start from here */
3578 if (invariant_head == 0) {
3581 Copy(s, dst, invariant_head, char);
3582 d = dst + invariant_head;
3586 append_utf8_from_native_byte(*t, &d);
3590 SvPV_free(sv); /* No longer using pre-existing string */
3591 SvPV_set(sv, (char*)dst);
3592 SvCUR_set(sv, d - dst);
3593 SvLEN_set(sv, size);
3596 /* Here, have decided to get the exact size of the string.
3597 * Currently this happens only when we know that there is
3598 * guaranteed enough space to fit the converted string, so
3599 * don't have to worry about growing. If two_byte_count is 0,
3600 * then t points to the first byte of the string which hasn't
3601 * been examined yet. Otherwise two_byte_count is 1, and t
3602 * points to the first byte in the string that will expand to
3603 * two. Depending on this, start examining at t or 1 after t.
3606 U8 *d = t + two_byte_count;
3609 /* Count up the remaining bytes that expand to two */
3612 const U8 chr = *d++;
3613 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3616 /* The string will expand by just the number of bytes that
3617 * occupy two positions. But we are one afterwards because of
3618 * the increment just above. This is the place to put the
3619 * trailing NUL, and to set the length before we decrement */
3621 d += two_byte_count;
3622 SvCUR_set(sv, d - s);
3626 /* Having decremented d, it points to the position to put the
3627 * very last byte of the expanded string. Go backwards through
3628 * the string, copying and expanding as we go, stopping when we
3629 * get to the part that is invariant the rest of the way down */
3633 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3636 *d-- = UTF8_EIGHT_BIT_LO(*e);
3637 *d-- = UTF8_EIGHT_BIT_HI(*e);
3643 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3644 /* Update pos. We do it at the end rather than during
3645 * the upgrade, to avoid slowing down the common case
3646 * (upgrade without pos).
3647 * pos can be stored as either bytes or characters. Since
3648 * this was previously a byte string we can just turn off
3649 * the bytes flag. */
3650 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3652 mg->mg_flags &= ~MGf_BYTES;
3654 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3655 magic_setutf8(sv,mg); /* clear UTF8 cache */
3660 /* Mark as UTF-8 even if no variant - saves scanning loop */
3666 =for apidoc sv_utf8_downgrade
3668 Attempts to convert the PV of an SV from characters to bytes.
3669 If the PV contains a character that cannot fit
3670 in a byte, this conversion will fail;
3671 in this case, either returns false or, if C<fail_ok> is not
3674 This is not a general purpose Unicode to byte encoding interface:
3675 use the C<Encode> extension for that.
3681 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3683 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3685 if (SvPOKp(sv) && SvUTF8(sv)) {
3689 int mg_flags = SV_GMAGIC;
3692 S_sv_uncow(aTHX_ sv, 0);
3694 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3696 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3697 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3698 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3699 SV_GMAGIC|SV_CONST_RETURN);
3700 mg_flags = 0; /* sv_pos_b2u does get magic */
3702 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3703 magic_setutf8(sv,mg); /* clear UTF8 cache */
3706 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3708 if (!utf8_to_bytes(s, &len)) {
3713 Perl_croak(aTHX_ "Wide character in %s",
3716 Perl_croak(aTHX_ "Wide character");
3727 =for apidoc sv_utf8_encode
3729 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3730 flag off so that it looks like octets again.
3736 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3738 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3740 if (SvREADONLY(sv)) {
3741 sv_force_normal_flags(sv, 0);
3743 (void) sv_utf8_upgrade(sv);
3748 =for apidoc sv_utf8_decode
3750 If the PV of the SV is an octet sequence in UTF-8
3751 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3752 so that it looks like a character. If the PV contains only single-byte
3753 characters, the C<SvUTF8> flag stays off.
3754 Scans PV for validity and returns false if the PV is invalid UTF-8.
3760 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3762 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3765 const U8 *start, *c;
3768 /* The octets may have got themselves encoded - get them back as
3771 if (!sv_utf8_downgrade(sv, TRUE))
3774 /* it is actually just a matter of turning the utf8 flag on, but
3775 * we want to make sure everything inside is valid utf8 first.
3777 c = start = (const U8 *) SvPVX_const(sv);
3778 if (!is_utf8_string(c, SvCUR(sv)))
3780 e = (const U8 *) SvEND(sv);
3783 if (!UTF8_IS_INVARIANT(ch)) {
3788 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3789 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3790 after this, clearing pos. Does anything on CPAN
3792 /* adjust pos to the start of a UTF8 char sequence */
3793 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3795 I32 pos = mg->mg_len;
3797 for (c = start + pos; c > start; c--) {
3798 if (UTF8_IS_START(*c))
3801 mg->mg_len = c - start;
3804 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3805 magic_setutf8(sv,mg); /* clear UTF8 cache */
3812 =for apidoc sv_setsv
3814 Copies the contents of the source SV C<ssv> into the destination SV
3815 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3816 function if the source SV needs to be reused. Does not handle 'set' magic on
3817 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3818 performs a copy-by-value, obliterating any previous content of the
3821 You probably want to use one of the assortment of wrappers, such as
3822 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3823 C<SvSetMagicSV_nosteal>.
3825 =for apidoc sv_setsv_flags
3827 Copies the contents of the source SV C<ssv> into the destination SV
3828 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3829 function if the source SV needs to be reused. Does not handle 'set' magic.
3830 Loosely speaking, it performs a copy-by-value, obliterating any previous
3831 content of the destination.
3832 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3833 C<ssv> if appropriate, else not. If the C<flags>
3834 parameter has the C<SV_NOSTEAL> bit set then the
3835 buffers of temps will not be stolen. C<sv_setsv>
3836 and C<sv_setsv_nomg> are implemented in terms of this function.
3838 You probably want to use one of the assortment of wrappers, such as
3839 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3840 C<SvSetMagicSV_nosteal>.
3842 This is the primary function for copying scalars, and most other
3843 copy-ish functions and macros use this underneath.
3849 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3851 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3852 HV *old_stash = NULL;
3854 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3856 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3857 const char * const name = GvNAME(sstr);
3858 const STRLEN len = GvNAMELEN(sstr);
3860 if (dtype >= SVt_PV) {
3866 SvUPGRADE(dstr, SVt_PVGV);
3867 (void)SvOK_off(dstr);
3868 isGV_with_GP_on(dstr);
3870 GvSTASH(dstr) = GvSTASH(sstr);
3872 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3873 gv_name_set(MUTABLE_GV(dstr), name, len,
3874 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3875 SvFAKE_on(dstr); /* can coerce to non-glob */
3878 if(GvGP(MUTABLE_GV(sstr))) {
3879 /* If source has method cache entry, clear it */
3881 SvREFCNT_dec(GvCV(sstr));
3882 GvCV_set(sstr, NULL);
3885 /* If source has a real method, then a method is
3888 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3894 /* If dest already had a real method, that's a change as well */
3896 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3897 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3902 /* We don't need to check the name of the destination if it was not a
3903 glob to begin with. */
3904 if(dtype == SVt_PVGV) {
3905 const char * const name = GvNAME((const GV *)dstr);
3908 /* The stash may have been detached from the symbol table, so
3910 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3914 const STRLEN len = GvNAMELEN(dstr);
3915 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3916 || (len == 1 && name[0] == ':')) {
3919 /* Set aside the old stash, so we can reset isa caches on
3921 if((old_stash = GvHV(dstr)))
3922 /* Make sure we do not lose it early. */
3923 SvREFCNT_inc_simple_void_NN(
3924 sv_2mortal((SV *)old_stash)
3929 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3932 /* freeing dstr's GP might free sstr (e.g. *x = $x),
3933 * so temporarily protect it */
3935 SAVEFREESV(SvREFCNT_inc_simple_NN(sstr));
3936 gp_free(MUTABLE_GV(dstr));
3937 GvINTRO_off(dstr); /* one-shot flag */
3938 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3941 if (SvTAINTED(sstr))
3943 if (GvIMPORTED(dstr) != GVf_IMPORTED
3944 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3946 GvIMPORTED_on(dstr);
3949 if(mro_changes == 2) {
3950 if (GvAV((const GV *)sstr)) {
3952 SV * const sref = (SV *)GvAV((const GV *)dstr);
3953 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3954 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3955 AV * const ary = newAV();
3956 av_push(ary, mg->mg_obj); /* takes the refcount */
3957 mg->mg_obj = (SV *)ary;
3959 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3961 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3963 mro_isa_changed_in(GvSTASH(dstr));
3965 else if(mro_changes == 3) {
3966 HV * const stash = GvHV(dstr);
3967 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3973 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3974 if (GvIO(dstr) && dtype == SVt_PVGV) {
3975 DEBUG_o(Perl_deb(aTHX_
3976 "glob_assign_glob clearing PL_stashcache\n"));
3977 /* It's a cache. It will rebuild itself quite happily.
3978 It's a lot of effort to work out exactly which key (or keys)
3979 might be invalidated by the creation of the this file handle.
3981 hv_clear(PL_stashcache);
3987 Perl_gv_setref(pTHX_ SV *const dstr, SV *const sstr)
3989 SV * const sref = SvRV(sstr);
3991 const int intro = GvINTRO(dstr);
3994 const U32 stype = SvTYPE(sref);
3996 PERL_ARGS_ASSERT_GV_SETREF;
3999 GvINTRO_off(dstr); /* one-shot flag */
4000 GvLINE(dstr) = CopLINE(PL_curcop);
4001 GvEGV(dstr) = MUTABLE_GV(dstr);
4006 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
4007 import_flag = GVf_IMPORTED_CV;
4010 location = (SV **) &GvHV(dstr);
4011 import_flag = GVf_IMPORTED_HV;
4014 location = (SV **) &GvAV(dstr);
4015 import_flag = GVf_IMPORTED_AV;
4018 location = (SV **) &GvIOp(dstr);
4021 location = (SV **) &GvFORM(dstr);
4024 location = &GvSV(dstr);
4025 import_flag = GVf_IMPORTED_SV;
4028 if (stype == SVt_PVCV) {
4029 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
4030 if (GvCVGEN(dstr)) {
4031 SvREFCNT_dec(GvCV(dstr));
4032 GvCV_set(dstr, NULL);
4033 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4036 /* SAVEt_GVSLOT takes more room on the savestack and has more
4037 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
4038 leave_scope needs access to the GV so it can reset method
4039 caches. We must use SAVEt_GVSLOT whenever the type is
4040 SVt_PVCV, even if the stash is anonymous, as the stash may
4041 gain a name somehow before leave_scope. */
4042 if (stype == SVt_PVCV) {
4043 /* There is no save_pushptrptrptr. Creating it for this
4044 one call site would be overkill. So inline the ss add
4048 SS_ADD_PTR(location);
4049 SS_ADD_PTR(SvREFCNT_inc(*location));
4050 SS_ADD_UV(SAVEt_GVSLOT);
4053 else SAVEGENERICSV(*location);
4056 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
4057 CV* const cv = MUTABLE_CV(*location);
4059 if (!GvCVGEN((const GV *)dstr) &&
4060 (CvROOT(cv) || CvXSUB(cv)) &&
4061 /* redundant check that avoids creating the extra SV
4062 most of the time: */
4063 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
4065 SV * const new_const_sv =
4066 CvCONST((const CV *)sref)
4067 ? cv_const_sv((const CV *)sref)
4069 report_redefined_cv(
4070 sv_2mortal(Perl_newSVpvf(aTHX_
4073 HvNAME_HEK(GvSTASH((const GV *)dstr))
4075 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
4078 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4082 cv_ckproto_len_flags(cv, (const GV *)dstr,
4083 SvPOK(sref) ? CvPROTO(sref) : NULL,
4084 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4085 SvPOK(sref) ? SvUTF8(sref) : 0);
4087 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4088 GvASSUMECV_on(dstr);
4089 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4090 if (intro && GvREFCNT(dstr) > 1) {
4091 /* temporary remove extra savestack's ref */
4093 gv_method_changed(dstr);
4096 else gv_method_changed(dstr);
4099 *location = SvREFCNT_inc_simple_NN(sref);
4100 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4101 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4102 GvFLAGS(dstr) |= import_flag;
4105 if (stype == SVt_PVHV) {
4106 const char * const name = GvNAME((GV*)dstr);
4107 const STRLEN len = GvNAMELEN(dstr);
4110 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4111 || (len == 1 && name[0] == ':')
4113 && (!dref || HvENAME_get(dref))
4116 (HV *)sref, (HV *)dref,
4122 stype == SVt_PVAV && sref != dref
4123 && strEQ(GvNAME((GV*)dstr), "ISA")
4124 /* The stash may have been detached from the symbol table, so
4125 check its name before doing anything. */
4126 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4129 MAGIC * const omg = dref && SvSMAGICAL(dref)
4130 ? mg_find(dref, PERL_MAGIC_isa)
4132 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4133 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4134 AV * const ary = newAV();
4135 av_push(ary, mg->mg_obj); /* takes the refcount */
4136 mg->mg_obj = (SV *)ary;
4139 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4140 SV **svp = AvARRAY((AV *)omg->mg_obj);
4141 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4145 SvREFCNT_inc_simple_NN(*svp++)
4151 SvREFCNT_inc_simple_NN(omg->mg_obj)
4155 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4161 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4163 for (i = 0; i <= AvFILL(sref); ++i) {
4164 SV **elem = av_fetch ((AV*)sref, i, 0);
4167 *elem, sref, PERL_MAGIC_isaelem, NULL, i
4171 mg = mg_find(sref, PERL_MAGIC_isa);
4173 /* Since the *ISA assignment could have affected more than
4174 one stash, don't call mro_isa_changed_in directly, but let
4175 magic_clearisa do it for us, as it already has the logic for
4176 dealing with globs vs arrays of globs. */
4178 Perl_magic_clearisa(aTHX_ NULL, mg);
4180 else if (stype == SVt_PVIO) {
4181 DEBUG_o(Perl_deb(aTHX_ "gv_setref clearing PL_stashcache\n"));
4182 /* It's a cache. It will rebuild itself quite happily.
4183 It's a lot of effort to work out exactly which key (or keys)
4184 might be invalidated by the creation of the this file handle.
4186 hv_clear(PL_stashcache);
4190 if (!intro) SvREFCNT_dec(dref);
4191 if (SvTAINTED(sstr))
4199 #ifdef PERL_DEBUG_READONLY_COW
4200 # include <sys/mman.h>
4202 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4203 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4207 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4209 struct perl_memory_debug_header * const header =
4210 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4211 const MEM_SIZE len = header->size;
4212 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4213 # ifdef PERL_TRACK_MEMPOOL
4214 if (!header->readonly) header->readonly = 1;
4216 if (mprotect(header, len, PROT_READ))
4217 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4218 header, len, errno);
4222 S_sv_buf_to_rw(pTHX_ SV *sv)
4224 struct perl_memory_debug_header * const header =
4225 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4226 const MEM_SIZE len = header->size;
4227 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4228 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4229 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4230 header, len, errno);
4231 # ifdef PERL_TRACK_MEMPOOL
4232 header->readonly = 0;
4237 # define sv_buf_to_ro(sv) NOOP
4238 # define sv_buf_to_rw(sv) NOOP
4242 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4247 unsigned int both_type;
4249 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4251 if (UNLIKELY( sstr == dstr ))
4254 if (UNLIKELY( !sstr ))
4255 sstr = &PL_sv_undef;
4257 stype = SvTYPE(sstr);
4258 dtype = SvTYPE(dstr);
4259 both_type = (stype | dtype);
4261 /* with these values, we can check that both SVs are NULL/IV (and not
4262 * freed) just by testing the or'ed types */
4263 STATIC_ASSERT_STMT(SVt_NULL == 0);
4264 STATIC_ASSERT_STMT(SVt_IV == 1);
4265 if (both_type <= 1) {
4266 /* both src and dst are UNDEF/IV/RV, so we can do a lot of
4271 /* minimal subset of SV_CHECK_THINKFIRST_COW_DROP(dstr) */
4272 if (SvREADONLY(dstr))
4273 Perl_croak_no_modify();
4275 sv_unref_flags(dstr, 0);
4277 assert(!SvGMAGICAL(sstr));
4278 assert(!SvGMAGICAL(dstr));
4280 sflags = SvFLAGS(sstr);
4281 if (sflags & (SVf_IOK|SVf_ROK)) {
4282 SET_SVANY_FOR_BODYLESS_IV(dstr);
4283 new_dflags = SVt_IV;
4285 if (sflags & SVf_ROK) {
4286 dstr->sv_u.svu_rv = SvREFCNT_inc(SvRV(sstr));
4287 new_dflags |= SVf_ROK;
4290 /* both src and dst are <= SVt_IV, so sv_any points to the
4291 * head; so access the head directly
4293 assert( &(sstr->sv_u.svu_iv)
4294 == &(((XPVIV*) SvANY(sstr))->xiv_iv));
4295 assert( &(dstr->sv_u.svu_iv)
4296 == &(((XPVIV*) SvANY(dstr))->xiv_iv));
4297 dstr->sv_u.svu_iv = sstr->sv_u.svu_iv;
4298 new_dflags |= (SVf_IOK|SVp_IOK|(sflags & SVf_IVisUV));
4302 new_dflags = dtype; /* turn off everything except the type */
4304 SvFLAGS(dstr) = new_dflags;
4309 if (UNLIKELY(both_type == SVTYPEMASK)) {
4310 if (SvIS_FREED(dstr)) {
4311 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4312 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4314 if (SvIS_FREED(sstr)) {
4315 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4316 (void*)sstr, (void*)dstr);
4322 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4323 dtype = SvTYPE(dstr); /* THINKFIRST may have changed type */
4325 /* There's a lot of redundancy below but we're going for speed here */
4330 if (LIKELY( dtype != SVt_PVGV && dtype != SVt_PVLV )) {
4331 (void)SvOK_off(dstr);
4339 /* For performance, we inline promoting to type SVt_IV. */
4340 /* We're starting from SVt_NULL, so provided that define is
4341 * actual 0, we don't have to unset any SV type flags
4342 * to promote to SVt_IV. */
4343 STATIC_ASSERT_STMT(SVt_NULL == 0);
4344 SET_SVANY_FOR_BODYLESS_IV(dstr);
4345 SvFLAGS(dstr) |= SVt_IV;
4349 sv_upgrade(dstr, SVt_PVIV);
4353 goto end_of_first_switch;
4355 (void)SvIOK_only(dstr);
4356 SvIV_set(dstr, SvIVX(sstr));
4359 /* SvTAINTED can only be true if the SV has taint magic, which in
4360 turn means that the SV type is PVMG (or greater). This is the
4361 case statement for SVt_IV, so this cannot be true (whatever gcov
4363 assert(!SvTAINTED(sstr));
4368 if (dtype < SVt_PV && dtype != SVt_IV)
4369 sv_upgrade(dstr, SVt_IV);
4373 if (LIKELY( SvNOK(sstr) )) {
4377 sv_upgrade(dstr, SVt_NV);
4381 sv_upgrade(dstr, SVt_PVNV);
4385 goto end_of_first_switch;
4387 SvNV_set(dstr, SvNVX(sstr));
4388 (void)SvNOK_only(dstr);
4389 /* SvTAINTED can only be true if the SV has taint magic, which in
4390 turn means that the SV type is PVMG (or greater). This is the
4391 case statement for SVt_NV, so this cannot be true (whatever gcov
4393 assert(!SvTAINTED(sstr));
4400 sv_upgrade(dstr, SVt_PV);
4403 if (dtype < SVt_PVIV)
4404 sv_upgrade(dstr, SVt_PVIV);
4407 if (dtype < SVt_PVNV)
4408 sv_upgrade(dstr, SVt_PVNV);
4412 const char * const type = sv_reftype(sstr,0);
4414 /* diag_listed_as: Bizarre copy of %s */
4415 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4417 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4419 NOT_REACHED; /* NOTREACHED */
4423 if (dtype < SVt_REGEXP)
4425 if (dtype >= SVt_PV) {
4431 sv_upgrade(dstr, SVt_REGEXP);
4439 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4441 if (SvTYPE(sstr) != stype)
4442 stype = SvTYPE(sstr);
4444 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4445 glob_assign_glob(dstr, sstr, dtype);
4448 if (stype == SVt_PVLV)
4450 if (isREGEXP(sstr)) goto upgregexp;
4451 SvUPGRADE(dstr, SVt_PVNV);
4454 SvUPGRADE(dstr, (svtype)stype);
4456 end_of_first_switch:
4458 /* dstr may have been upgraded. */
4459 dtype = SvTYPE(dstr);
4460 sflags = SvFLAGS(sstr);
4462 if (UNLIKELY( dtype == SVt_PVCV )) {
4463 /* Assigning to a subroutine sets the prototype. */
4466 const char *const ptr = SvPV_const(sstr, len);
4468 SvGROW(dstr, len + 1);
4469 Copy(ptr, SvPVX(dstr), len + 1, char);
4470 SvCUR_set(dstr, len);
4472 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4473 CvAUTOLOAD_off(dstr);
4478 else if (UNLIKELY(dtype == SVt_PVAV || dtype == SVt_PVHV
4479 || dtype == SVt_PVFM))
4481 const char * const type = sv_reftype(dstr,0);
4483 /* diag_listed_as: Cannot copy to %s */
4484 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4486 Perl_croak(aTHX_ "Cannot copy to %s", type);
4487 } else if (sflags & SVf_ROK) {
4488 if (isGV_with_GP(dstr)
4489 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4492 if (GvIMPORTED(dstr) != GVf_IMPORTED
4493 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4495 GvIMPORTED_on(dstr);
4500 glob_assign_glob(dstr, sstr, dtype);
4504 if (dtype >= SVt_PV) {
4505 if (isGV_with_GP(dstr)) {
4506 gv_setref(dstr, sstr);
4509 if (SvPVX_const(dstr)) {
4515 (void)SvOK_off(dstr);
4516 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4517 SvFLAGS(dstr) |= sflags & SVf_ROK;
4518 assert(!(sflags & SVp_NOK));
4519 assert(!(sflags & SVp_IOK));
4520 assert(!(sflags & SVf_NOK));
4521 assert(!(sflags & SVf_IOK));
4523 else if (isGV_with_GP(dstr)) {
4524 if (!(sflags & SVf_OK)) {
4525 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4526 "Undefined value assigned to typeglob");
4529 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4530 if (dstr != (const SV *)gv) {
4531 const char * const name = GvNAME((const GV *)dstr);
4532 const STRLEN len = GvNAMELEN(dstr);
4533 HV *old_stash = NULL;
4534 bool reset_isa = FALSE;
4535 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4536 || (len == 1 && name[0] == ':')) {
4537 /* Set aside the old stash, so we can reset isa caches
4538 on its subclasses. */
4539 if((old_stash = GvHV(dstr))) {
4540 /* Make sure we do not lose it early. */
4541 SvREFCNT_inc_simple_void_NN(
4542 sv_2mortal((SV *)old_stash)
4549 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4550 gp_free(MUTABLE_GV(dstr));
4552 GvGP_set(dstr, gp_ref(GvGP(gv)));
4555 HV * const stash = GvHV(dstr);
4557 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4567 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4568 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4569 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4571 else if (sflags & SVp_POK) {
4572 const STRLEN cur = SvCUR(sstr);
4573 const STRLEN len = SvLEN(sstr);
4576 * We have three basic ways to copy the string:
4582 * Which we choose is based on various factors. The following
4583 * things are listed in order of speed, fastest to slowest:
4585 * - Copying a short string
4586 * - Copy-on-write bookkeeping
4588 * - Copying a long string
4590 * We swipe the string (steal the string buffer) if the SV on the
4591 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4592 * big win on long strings. It should be a win on short strings if
4593 * SvPVX_const(dstr) has to be allocated. If not, it should not
4594 * slow things down, as SvPVX_const(sstr) would have been freed
4597 * We also steal the buffer from a PADTMP (operator target) if it
4598 * is ‘long enough’. For short strings, a swipe does not help
4599 * here, as it causes more malloc calls the next time the target
4600 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4601 * be allocated it is still not worth swiping PADTMPs for short
4602 * strings, as the savings here are small.
4604 * If swiping is not an option, then we see whether it is
4605 * worth using copy-on-write. If the lhs already has a buf-
4606 * fer big enough and the string is short, we skip it and fall back
4607 * to method 3, since memcpy is faster for short strings than the
4608 * later bookkeeping overhead that copy-on-write entails.
4610 * If the rhs is not a copy-on-write string yet, then we also
4611 * consider whether the buffer is too large relative to the string
4612 * it holds. Some operations such as readline allocate a large
4613 * buffer in the expectation of reusing it. But turning such into
4614 * a COW buffer is counter-productive because it increases memory
4615 * usage by making readline allocate a new large buffer the sec-
4616 * ond time round. So, if the buffer is too large, again, we use
4619 * Finally, if there is no buffer on the left, or the buffer is too
4620 * small, then we use copy-on-write and make both SVs share the
4625 /* Whichever path we take through the next code, we want this true,
4626 and doing it now facilitates the COW check. */
4627 (void)SvPOK_only(dstr);