5 * "A fair jaw-cracker dwarf-language must be." --Samwise Gamgee
8 /* This file contains functions for compiling a regular expression. See
9 * also regexec.c which funnily enough, contains functions for executing
10 * a regular expression.
12 * This file is also copied at build time to ext/re/re_comp.c, where
13 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
14 * This causes the main functions to be compiled under new names and with
15 * debugging support added, which makes "use re 'debug'" work.
18 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
19 * confused with the original package (see point 3 below). Thanks, Henry!
22 /* Additional note: this code is very heavily munged from Henry's version
23 * in places. In some spots I've traded clarity for efficiency, so don't
24 * blame Henry for some of the lack of readability.
27 /* The names of the functions have been changed from regcomp and
28 * regexec to pregcomp and pregexec in order to avoid conflicts
29 * with the POSIX routines of the same names.
32 #ifdef PERL_EXT_RE_BUILD
37 * pregcomp and pregexec -- regsub and regerror are not used in perl
39 * Copyright (c) 1986 by University of Toronto.
40 * Written by Henry Spencer. Not derived from licensed software.
42 * Permission is granted to anyone to use this software for any
43 * purpose on any computer system, and to redistribute it freely,
44 * subject to the following restrictions:
46 * 1. The author is not responsible for the consequences of use of
47 * this software, no matter how awful, even if they arise
50 * 2. The origin of this software must not be misrepresented, either
51 * by explicit claim or by omission.
53 * 3. Altered versions must be plainly marked as such, and must not
54 * be misrepresented as being the original software.
57 **** Alterations to Henry's code are...
59 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
60 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
62 **** You may distribute under the terms of either the GNU General Public
63 **** License or the Artistic License, as specified in the README file.
66 * Beware that some of this code is subtly aware of the way operator
67 * precedence is structured in regular expressions. Serious changes in
68 * regular-expression syntax might require a total rethink.
71 #define PERL_IN_REGCOMP_C
74 #ifndef PERL_IN_XSUB_RE
79 #ifdef PERL_IN_XSUB_RE
90 # if defined(BUGGY_MSC6)
91 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
92 # pragma optimize("a",off)
93 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
94 # pragma optimize("w",on )
95 # endif /* BUGGY_MSC6 */
102 typedef struct RExC_state_t {
103 U32 flags; /* are we folding, multilining? */
104 char *precomp; /* uncompiled string. */
106 char *start; /* Start of input for compile */
107 char *end; /* End of input for compile */
108 char *parse; /* Input-scan pointer. */
109 I32 whilem_seen; /* number of WHILEM in this expr */
110 regnode *emit_start; /* Start of emitted-code area */
111 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
112 I32 naughty; /* How bad is this pattern? */
113 I32 sawback; /* Did we see \1, ...? */
115 I32 size; /* Code size. */
116 I32 npar; /* () count. */
121 HV *charnames; /* cache of named sequences */
123 char *starttry; /* -Dr: where regtry was called. */
124 #define RExC_starttry (pRExC_state->starttry)
127 const char *lastparse;
129 #define RExC_lastparse (pRExC_state->lastparse)
130 #define RExC_lastnum (pRExC_state->lastnum)
134 #define RExC_flags (pRExC_state->flags)
135 #define RExC_precomp (pRExC_state->precomp)
136 #define RExC_rx (pRExC_state->rx)
137 #define RExC_start (pRExC_state->start)
138 #define RExC_end (pRExC_state->end)
139 #define RExC_parse (pRExC_state->parse)
140 #define RExC_whilem_seen (pRExC_state->whilem_seen)
141 #define RExC_offsets (pRExC_state->rx->offsets) /* I am not like the others */
142 #define RExC_emit (pRExC_state->emit)
143 #define RExC_emit_start (pRExC_state->emit_start)
144 #define RExC_naughty (pRExC_state->naughty)
145 #define RExC_sawback (pRExC_state->sawback)
146 #define RExC_seen (pRExC_state->seen)
147 #define RExC_size (pRExC_state->size)
148 #define RExC_npar (pRExC_state->npar)
149 #define RExC_extralen (pRExC_state->extralen)
150 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
151 #define RExC_seen_evals (pRExC_state->seen_evals)
152 #define RExC_utf8 (pRExC_state->utf8)
153 #define RExC_charnames (pRExC_state->charnames)
155 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
156 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
157 ((*s) == '{' && regcurly(s)))
160 #undef SPSTART /* dratted cpp namespace... */
163 * Flags to be passed up and down.
165 #define WORST 0 /* Worst case. */
166 #define HASWIDTH 0x1 /* Known to match non-null strings. */
167 #define SIMPLE 0x2 /* Simple enough to be STAR/PLUS operand. */
168 #define SPSTART 0x4 /* Starts with * or +. */
169 #define TRYAGAIN 0x8 /* Weeded out a declaration. */
171 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
173 /* whether trie related optimizations are enabled */
174 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
175 #define TRIE_STUDY_OPT
176 #define FULL_TRIE_STUDY
181 /* About scan_data_t.
183 During optimisation we recurse through the regexp program performing
184 various inplace (keyhole style) optimisations. In addition study_chunk
185 and scan_commit populate this data structure with information about
186 what strings MUST appear in the pattern. We look for the longest
187 string that must appear for at a fixed location, and we look for the
188 longest string that may appear at a floating location. So for instance
193 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
194 strings (because they follow a .* construct). study_chunk will identify
195 both FOO and BAR as being the longest fixed and floating strings respectively.
197 The strings can be composites, for instance
201 will result in a composite fixed substring 'foo'.
203 For each string some basic information is maintained:
205 - offset or min_offset
206 This is the position the string must appear at, or not before.
207 It also implicitly (when combined with minlenp) tells us how many
208 character must match before the string we are searching.
209 Likewise when combined with minlenp and the length of the string
210 tells us how many characters must appear after the string we have
214 Only used for floating strings. This is the rightmost point that
215 the string can appear at. Ifset to I32 max it indicates that the
216 string can occur infinitely far to the right.
219 A pointer to the minimum length of the pattern that the string
220 was found inside. This is important as in the case of positive
221 lookahead or positive lookbehind we can have multiple patterns
226 The minimum length of the pattern overall is 3, the minimum length
227 of the lookahead part is 3, but the minimum length of the part that
228 will actually match is 1. So 'FOO's minimum length is 3, but the
229 minimum length for the F is 1. This is important as the minimum length
230 is used to determine offsets in front of and behind the string being
231 looked for. Since strings can be composites this is the length of the
232 pattern at the time it was commited with a scan_commit. Note that
233 the length is calculated by study_chunk, so that the minimum lengths
234 are not known until the full pattern has been compiled, thus the
235 pointer to the value.
239 In the case of lookbehind the string being searched for can be
240 offset past the start point of the final matching string.
241 If this value was just blithely removed from the min_offset it would
242 invalidate some of the calculations for how many chars must match
243 before or after (as they are derived from min_offset and minlen and
244 the length of the string being searched for).
245 When the final pattern is compiled and the data is moved from the
246 scan_data_t structure into the regexp structure the information
247 about lookbehind is factored in, with the information that would
248 have been lost precalculated in the end_shift field for the
251 The fields pos_min and pos_delta are used to store the minimum offset
252 and the delta to the maximum offset at the current point in the pattern.
256 typedef struct scan_data_t {
257 /*I32 len_min; unused */
258 /*I32 len_delta; unused */
262 I32 last_end; /* min value, <0 unless valid. */
265 SV **longest; /* Either &l_fixed, or &l_float. */
266 SV *longest_fixed; /* longest fixed string found in pattern */
267 I32 offset_fixed; /* offset where it starts */
268 I32 *minlen_fixed; /* pointer to the minlen relevent to the string */
269 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
270 SV *longest_float; /* longest floating string found in pattern */
271 I32 offset_float_min; /* earliest point in string it can appear */
272 I32 offset_float_max; /* latest point in string it can appear */
273 I32 *minlen_float; /* pointer to the minlen relevent to the string */
274 I32 lookbehind_float; /* is the position of the string modified by LB */
278 struct regnode_charclass_class *start_class;
282 * Forward declarations for pregcomp()'s friends.
285 static const scan_data_t zero_scan_data =
286 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
288 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
289 #define SF_BEFORE_SEOL 0x0001
290 #define SF_BEFORE_MEOL 0x0002
291 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
292 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
295 # define SF_FIX_SHIFT_EOL (0+2)
296 # define SF_FL_SHIFT_EOL (0+4)
298 # define SF_FIX_SHIFT_EOL (+2)
299 # define SF_FL_SHIFT_EOL (+4)
302 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
303 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
305 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
306 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
307 #define SF_IS_INF 0x0040
308 #define SF_HAS_PAR 0x0080
309 #define SF_IN_PAR 0x0100
310 #define SF_HAS_EVAL 0x0200
311 #define SCF_DO_SUBSTR 0x0400
312 #define SCF_DO_STCLASS_AND 0x0800
313 #define SCF_DO_STCLASS_OR 0x1000
314 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
315 #define SCF_WHILEM_VISITED_POS 0x2000
317 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
320 #define UTF (RExC_utf8 != 0)
321 #define LOC ((RExC_flags & PMf_LOCALE) != 0)
322 #define FOLD ((RExC_flags & PMf_FOLD) != 0)
324 #define OOB_UNICODE 12345678
325 #define OOB_NAMEDCLASS -1
327 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
328 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
331 /* length of regex to show in messages that don't mark a position within */
332 #define RegexLengthToShowInErrorMessages 127
335 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
336 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
337 * op/pragma/warn/regcomp.
339 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
340 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
342 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
345 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
346 * arg. Show regex, up to a maximum length. If it's too long, chop and add
349 #define FAIL(msg) STMT_START { \
350 const char *ellipses = ""; \
351 IV len = RExC_end - RExC_precomp; \
354 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
355 if (len > RegexLengthToShowInErrorMessages) { \
356 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
357 len = RegexLengthToShowInErrorMessages - 10; \
360 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
361 msg, (int)len, RExC_precomp, ellipses); \
365 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
367 #define Simple_vFAIL(m) STMT_START { \
368 const IV offset = RExC_parse - RExC_precomp; \
369 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
370 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
374 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
376 #define vFAIL(m) STMT_START { \
378 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
383 * Like Simple_vFAIL(), but accepts two arguments.
385 #define Simple_vFAIL2(m,a1) STMT_START { \
386 const IV offset = RExC_parse - RExC_precomp; \
387 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
388 (int)offset, RExC_precomp, RExC_precomp + offset); \
392 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
394 #define vFAIL2(m,a1) STMT_START { \
396 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
397 Simple_vFAIL2(m, a1); \
402 * Like Simple_vFAIL(), but accepts three arguments.
404 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
405 const IV offset = RExC_parse - RExC_precomp; \
406 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
407 (int)offset, RExC_precomp, RExC_precomp + offset); \
411 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
413 #define vFAIL3(m,a1,a2) STMT_START { \
415 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
416 Simple_vFAIL3(m, a1, a2); \
420 * Like Simple_vFAIL(), but accepts four arguments.
422 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
423 const IV offset = RExC_parse - RExC_precomp; \
424 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
425 (int)offset, RExC_precomp, RExC_precomp + offset); \
428 #define vWARN(loc,m) STMT_START { \
429 const IV offset = loc - RExC_precomp; \
430 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
431 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
434 #define vWARNdep(loc,m) STMT_START { \
435 const IV offset = loc - RExC_precomp; \
436 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
437 "%s" REPORT_LOCATION, \
438 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
442 #define vWARN2(loc, m, a1) STMT_START { \
443 const IV offset = loc - RExC_precomp; \
444 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
445 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
448 #define vWARN3(loc, m, a1, a2) STMT_START { \
449 const IV offset = loc - RExC_precomp; \
450 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
451 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
454 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
455 const IV offset = loc - RExC_precomp; \
456 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
457 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
460 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
461 const IV offset = loc - RExC_precomp; \
462 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
463 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
467 /* Allow for side effects in s */
468 #define REGC(c,s) STMT_START { \
469 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
472 /* Macros for recording node offsets. 20001227 mjd@plover.com
473 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
474 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
475 * Element 0 holds the number n.
476 * Position is 1 indexed.
479 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
481 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
482 __LINE__, (node), (int)(byte))); \
484 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
486 RExC_offsets[2*(node)-1] = (byte); \
491 #define Set_Node_Offset(node,byte) \
492 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
493 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
495 #define Set_Node_Length_To_R(node,len) STMT_START { \
497 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
498 __LINE__, (int)(node), (int)(len))); \
500 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
502 RExC_offsets[2*(node)] = (len); \
507 #define Set_Node_Length(node,len) \
508 Set_Node_Length_To_R((node)-RExC_emit_start, len)
509 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
510 #define Set_Node_Cur_Length(node) \
511 Set_Node_Length(node, RExC_parse - parse_start)
513 /* Get offsets and lengths */
514 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
515 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
517 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
518 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
519 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
523 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
524 #define EXPERIMENTAL_INPLACESCAN
527 #define DEBUG_STUDYDATA(data,depth) \
528 DEBUG_OPTIMISE_r(if(data){ \
529 PerlIO_printf(Perl_debug_log, \
530 "%*s"/* Len:%"IVdf"/%"IVdf" */" Pos:%"IVdf"/%"IVdf \
531 " Flags: %"IVdf" Whilem_c: %"IVdf" Lcp: %"IVdf" ", \
532 (int)(depth)*2, "", \
533 (IV)((data)->pos_min), \
534 (IV)((data)->pos_delta), \
535 (IV)((data)->flags), \
536 (IV)((data)->whilem_c), \
537 (IV)((data)->last_closep ? *((data)->last_closep) : -1) \
539 if ((data)->last_found) \
540 PerlIO_printf(Perl_debug_log, \
541 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
542 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
543 SvPVX_const((data)->last_found), \
544 (IV)((data)->last_end), \
545 (IV)((data)->last_start_min), \
546 (IV)((data)->last_start_max), \
547 ((data)->longest && \
548 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
549 SvPVX_const((data)->longest_fixed), \
550 (IV)((data)->offset_fixed), \
551 ((data)->longest && \
552 (data)->longest==&((data)->longest_float)) ? "*" : "", \
553 SvPVX_const((data)->longest_float), \
554 (IV)((data)->offset_float_min), \
555 (IV)((data)->offset_float_max) \
557 PerlIO_printf(Perl_debug_log,"\n"); \
560 static void clear_re(pTHX_ void *r);
562 /* Mark that we cannot extend a found fixed substring at this point.
563 Update the longest found anchored substring and the longest found
564 floating substrings if needed. */
567 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp)
569 const STRLEN l = CHR_SVLEN(data->last_found);
570 const STRLEN old_l = CHR_SVLEN(*data->longest);
571 GET_RE_DEBUG_FLAGS_DECL;
573 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
574 SvSetMagicSV(*data->longest, data->last_found);
575 if (*data->longest == data->longest_fixed) {
576 data->offset_fixed = l ? data->last_start_min : data->pos_min;
577 if (data->flags & SF_BEFORE_EOL)
579 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
581 data->flags &= ~SF_FIX_BEFORE_EOL;
582 data->minlen_fixed=minlenp;
583 data->lookbehind_fixed=0;
586 data->offset_float_min = l ? data->last_start_min : data->pos_min;
587 data->offset_float_max = (l
588 ? data->last_start_max
589 : data->pos_min + data->pos_delta);
590 if ((U32)data->offset_float_max > (U32)I32_MAX)
591 data->offset_float_max = I32_MAX;
592 if (data->flags & SF_BEFORE_EOL)
594 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
596 data->flags &= ~SF_FL_BEFORE_EOL;
597 data->minlen_float=minlenp;
598 data->lookbehind_float=0;
601 SvCUR_set(data->last_found, 0);
603 SV * const sv = data->last_found;
604 if (SvUTF8(sv) && SvMAGICAL(sv)) {
605 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
611 data->flags &= ~SF_BEFORE_EOL;
612 DEBUG_STUDYDATA(data,0);
615 /* Can match anything (initialization) */
617 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
619 ANYOF_CLASS_ZERO(cl);
620 ANYOF_BITMAP_SETALL(cl);
621 cl->flags = ANYOF_EOS|ANYOF_UNICODE_ALL;
623 cl->flags |= ANYOF_LOCALE;
626 /* Can match anything (initialization) */
628 S_cl_is_anything(const struct regnode_charclass_class *cl)
632 for (value = 0; value <= ANYOF_MAX; value += 2)
633 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
635 if (!(cl->flags & ANYOF_UNICODE_ALL))
637 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
642 /* Can match anything (initialization) */
644 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
646 Zero(cl, 1, struct regnode_charclass_class);
648 cl_anything(pRExC_state, cl);
652 S_cl_init_zero(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
654 Zero(cl, 1, struct regnode_charclass_class);
656 cl_anything(pRExC_state, cl);
658 cl->flags |= ANYOF_LOCALE;
661 /* 'And' a given class with another one. Can create false positives */
662 /* We assume that cl is not inverted */
664 S_cl_and(struct regnode_charclass_class *cl,
665 const struct regnode_charclass_class *and_with)
667 if (!(and_with->flags & ANYOF_CLASS)
668 && !(cl->flags & ANYOF_CLASS)
669 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
670 && !(and_with->flags & ANYOF_FOLD)
671 && !(cl->flags & ANYOF_FOLD)) {
674 if (and_with->flags & ANYOF_INVERT)
675 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
676 cl->bitmap[i] &= ~and_with->bitmap[i];
678 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
679 cl->bitmap[i] &= and_with->bitmap[i];
680 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
681 if (!(and_with->flags & ANYOF_EOS))
682 cl->flags &= ~ANYOF_EOS;
684 if (cl->flags & ANYOF_UNICODE_ALL && and_with->flags & ANYOF_UNICODE &&
685 !(and_with->flags & ANYOF_INVERT)) {
686 cl->flags &= ~ANYOF_UNICODE_ALL;
687 cl->flags |= ANYOF_UNICODE;
688 ARG_SET(cl, ARG(and_with));
690 if (!(and_with->flags & ANYOF_UNICODE_ALL) &&
691 !(and_with->flags & ANYOF_INVERT))
692 cl->flags &= ~ANYOF_UNICODE_ALL;
693 if (!(and_with->flags & (ANYOF_UNICODE|ANYOF_UNICODE_ALL)) &&
694 !(and_with->flags & ANYOF_INVERT))
695 cl->flags &= ~ANYOF_UNICODE;
698 /* 'OR' a given class with another one. Can create false positives */
699 /* We assume that cl is not inverted */
701 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
703 if (or_with->flags & ANYOF_INVERT) {
705 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
706 * <= (B1 | !B2) | (CL1 | !CL2)
707 * which is wasteful if CL2 is small, but we ignore CL2:
708 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
709 * XXXX Can we handle case-fold? Unclear:
710 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
711 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
713 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
714 && !(or_with->flags & ANYOF_FOLD)
715 && !(cl->flags & ANYOF_FOLD) ) {
718 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
719 cl->bitmap[i] |= ~or_with->bitmap[i];
720 } /* XXXX: logic is complicated otherwise */
722 cl_anything(pRExC_state, cl);
725 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
726 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
727 && (!(or_with->flags & ANYOF_FOLD)
728 || (cl->flags & ANYOF_FOLD)) ) {
731 /* OR char bitmap and class bitmap separately */
732 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
733 cl->bitmap[i] |= or_with->bitmap[i];
734 if (or_with->flags & ANYOF_CLASS) {
735 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
736 cl->classflags[i] |= or_with->classflags[i];
737 cl->flags |= ANYOF_CLASS;
740 else { /* XXXX: logic is complicated, leave it along for a moment. */
741 cl_anything(pRExC_state, cl);
744 if (or_with->flags & ANYOF_EOS)
745 cl->flags |= ANYOF_EOS;
747 if (cl->flags & ANYOF_UNICODE && or_with->flags & ANYOF_UNICODE &&
748 ARG(cl) != ARG(or_with)) {
749 cl->flags |= ANYOF_UNICODE_ALL;
750 cl->flags &= ~ANYOF_UNICODE;
752 if (or_with->flags & ANYOF_UNICODE_ALL) {
753 cl->flags |= ANYOF_UNICODE_ALL;
754 cl->flags &= ~ANYOF_UNICODE;
758 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
759 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
760 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
761 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
767 dump_trie_interim_list(trie,next_alloc)
768 dump_trie_interim_table(trie,next_alloc)
770 These routines dump out a trie in a somewhat readable format.
771 The _interim_ variants are used for debugging the interim
772 tables that are used to generate the final compressed
773 representation which is what dump_trie expects.
775 Part of the reason for their existance is to provide a form
776 of documentation as to how the different representations function.
782 Dumps the final compressed table form of the trie to Perl_debug_log.
783 Used for debugging make_trie().
787 S_dump_trie(pTHX_ const struct _reg_trie_data *trie,U32 depth)
790 SV *sv=sv_newmortal();
791 int colwidth= trie->widecharmap ? 6 : 4;
792 GET_RE_DEBUG_FLAGS_DECL;
795 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
796 (int)depth * 2 + 2,"",
797 "Match","Base","Ofs" );
799 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
800 SV ** const tmp = av_fetch( trie->revcharmap, state, 0);
802 PerlIO_printf( Perl_debug_log, "%*s",
804 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
805 PL_colors[0], PL_colors[1],
806 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
807 PERL_PV_ESCAPE_FIRSTCHAR
812 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
813 (int)depth * 2 + 2,"");
815 for( state = 0 ; state < trie->uniquecharcount ; state++ )
816 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
817 PerlIO_printf( Perl_debug_log, "\n");
819 for( state = 1 ; state < trie->laststate ; state++ ) {
820 const U32 base = trie->states[ state ].trans.base;
822 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
824 if ( trie->states[ state ].wordnum ) {
825 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
827 PerlIO_printf( Perl_debug_log, "%6s", "" );
830 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
835 while( ( base + ofs < trie->uniquecharcount ) ||
836 ( base + ofs - trie->uniquecharcount < trie->lasttrans
837 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
840 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
842 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
843 if ( ( base + ofs >= trie->uniquecharcount ) &&
844 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
845 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
847 PerlIO_printf( Perl_debug_log, "%*"UVXf,
849 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
851 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
855 PerlIO_printf( Perl_debug_log, "]");
858 PerlIO_printf( Perl_debug_log, "\n" );
862 dump_trie_interim_list(trie,next_alloc)
863 Dumps a fully constructed but uncompressed trie in list form.
864 List tries normally only are used for construction when the number of
865 possible chars (trie->uniquecharcount) is very high.
866 Used for debugging make_trie().
869 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie, U32 next_alloc,U32 depth)
872 SV *sv=sv_newmortal();
873 int colwidth= trie->widecharmap ? 6 : 4;
874 GET_RE_DEBUG_FLAGS_DECL;
875 /* print out the table precompression. */
876 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
877 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
878 "------:-----+-----------------\n" );
880 for( state=1 ; state < next_alloc ; state ++ ) {
883 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
884 (int)depth * 2 + 2,"", (UV)state );
885 if ( ! trie->states[ state ].wordnum ) {
886 PerlIO_printf( Perl_debug_log, "%5s| ","");
888 PerlIO_printf( Perl_debug_log, "W%4x| ",
889 trie->states[ state ].wordnum
892 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
893 SV ** const tmp = av_fetch( trie->revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
895 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
897 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
898 PL_colors[0], PL_colors[1],
899 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
900 PERL_PV_ESCAPE_FIRSTCHAR
902 TRIE_LIST_ITEM(state,charid).forid,
903 (UV)TRIE_LIST_ITEM(state,charid).newstate
907 PerlIO_printf( Perl_debug_log, "\n");
912 dump_trie_interim_table(trie,next_alloc)
913 Dumps a fully constructed but uncompressed trie in table form.
914 This is the normal DFA style state transition table, with a few
915 twists to facilitate compression later.
916 Used for debugging make_trie().
919 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie, U32 next_alloc, U32 depth)
923 SV *sv=sv_newmortal();
924 int colwidth= trie->widecharmap ? 6 : 4;
925 GET_RE_DEBUG_FLAGS_DECL;
928 print out the table precompression so that we can do a visual check
929 that they are identical.
932 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
934 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
935 SV ** const tmp = av_fetch( trie->revcharmap, charid, 0);
937 PerlIO_printf( Perl_debug_log, "%*s",
939 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
940 PL_colors[0], PL_colors[1],
941 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
942 PERL_PV_ESCAPE_FIRSTCHAR
948 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
950 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
951 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
954 PerlIO_printf( Perl_debug_log, "\n" );
956 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
958 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
959 (int)depth * 2 + 2,"",
960 (UV)TRIE_NODENUM( state ) );
962 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
963 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
965 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
967 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
969 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
970 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
972 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
973 trie->states[ TRIE_NODENUM( state ) ].wordnum );
980 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
981 startbranch: the first branch in the whole branch sequence
982 first : start branch of sequence of branch-exact nodes.
983 May be the same as startbranch
984 last : Thing following the last branch.
985 May be the same as tail.
986 tail : item following the branch sequence
987 count : words in the sequence
988 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
991 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
993 A trie is an N'ary tree where the branches are determined by digital
994 decomposition of the key. IE, at the root node you look up the 1st character and
995 follow that branch repeat until you find the end of the branches. Nodes can be
996 marked as "accepting" meaning they represent a complete word. Eg:
1000 would convert into the following structure. Numbers represent states, letters
1001 following numbers represent valid transitions on the letter from that state, if
1002 the number is in square brackets it represents an accepting state, otherwise it
1003 will be in parenthesis.
1005 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1009 (1) +-i->(6)-+-s->[7]
1011 +-s->(3)-+-h->(4)-+-e->[5]
1013 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1015 This shows that when matching against the string 'hers' we will begin at state 1
1016 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1017 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1018 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1019 single traverse. We store a mapping from accepting to state to which word was
1020 matched, and then when we have multiple possibilities we try to complete the
1021 rest of the regex in the order in which they occured in the alternation.
1023 The only prior NFA like behaviour that would be changed by the TRIE support is
1024 the silent ignoring of duplicate alternations which are of the form:
1026 / (DUPE|DUPE) X? (?{ ... }) Y /x
1028 Thus EVAL blocks follwing a trie may be called a different number of times with
1029 and without the optimisation. With the optimisations dupes will be silently
1030 ignored. This inconsistant behaviour of EVAL type nodes is well established as
1031 the following demonstrates:
1033 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1035 which prints out 'word' three times, but
1037 'words'=~/(word|word|word)(?{ print $1 })S/
1039 which doesnt print it out at all. This is due to other optimisations kicking in.
1041 Example of what happens on a structural level:
1043 The regexp /(ac|ad|ab)+/ will produce the folowing debug output:
1045 1: CURLYM[1] {1,32767}(18)
1056 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1057 and should turn into:
1059 1: CURLYM[1] {1,32767}(18)
1061 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1069 Cases where tail != last would be like /(?foo|bar)baz/:
1079 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1080 and would end up looking like:
1083 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1090 d = uvuni_to_utf8_flags(d, uv, 0);
1092 is the recommended Unicode-aware way of saying
1097 #define TRIE_STORE_REVCHAR \
1099 SV *tmp = Perl_newSVpvf_nocontext( "%c", (int)uvc ); \
1100 if (UTF) SvUTF8_on(tmp); \
1101 av_push( TRIE_REVCHARMAP(trie), tmp ); \
1104 #define TRIE_READ_CHAR STMT_START { \
1108 if ( foldlen > 0 ) { \
1109 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1114 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1115 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1116 foldlen -= UNISKIP( uvc ); \
1117 scan = foldbuf + UNISKIP( uvc ); \
1120 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1130 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1131 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1132 TRIE_LIST_LEN( state ) *= 2; \
1133 Renew( trie->states[ state ].trans.list, \
1134 TRIE_LIST_LEN( state ), reg_trie_trans_le ); \
1136 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1137 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1138 TRIE_LIST_CUR( state )++; \
1141 #define TRIE_LIST_NEW(state) STMT_START { \
1142 Newxz( trie->states[ state ].trans.list, \
1143 4, reg_trie_trans_le ); \
1144 TRIE_LIST_CUR( state ) = 1; \
1145 TRIE_LIST_LEN( state ) = 4; \
1148 #define TRIE_HANDLE_WORD(state) STMT_START { \
1149 U16 dupe= trie->states[ state ].wordnum; \
1150 regnode * const noper_next = regnext( noper ); \
1152 if (trie->wordlen) \
1153 trie->wordlen[ curword ] = wordlen; \
1155 /* store the word for dumping */ \
1157 if (OP(noper) != NOTHING) \
1158 tmp = newSVpvn(STRING(noper), STR_LEN(noper)); \
1160 tmp = newSVpvn( "", 0 ); \
1161 if ( UTF ) SvUTF8_on( tmp ); \
1162 av_push( trie->words, tmp ); \
1167 if ( noper_next < tail ) { \
1169 Newxz( trie->jump, word_count + 1, U16); \
1170 trie->jump[curword] = (U16)(tail - noper_next); \
1172 jumper = noper_next; \
1174 nextbranch= regnext(cur); \
1178 /* So it's a dupe. This means we need to maintain a */\
1179 /* linked-list from the first to the next. */\
1180 /* we only allocate the nextword buffer when there */\
1181 /* a dupe, so first time we have to do the allocation */\
1182 if (!trie->nextword) \
1183 Newxz( trie->nextword, word_count + 1, U16); \
1184 while ( trie->nextword[dupe] ) \
1185 dupe= trie->nextword[dupe]; \
1186 trie->nextword[dupe]= curword; \
1188 /* we haven't inserted this word yet. */ \
1189 trie->states[ state ].wordnum = curword; \
1194 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1195 ( ( base + charid >= ucharcount \
1196 && base + charid < ubound \
1197 && state == trie->trans[ base - ucharcount + charid ].check \
1198 && trie->trans[ base - ucharcount + charid ].next ) \
1199 ? trie->trans[ base - ucharcount + charid ].next \
1200 : ( state==1 ? special : 0 ) \
1204 #define MADE_JUMP_TRIE 2
1205 #define MADE_EXACT_TRIE 4
1208 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1211 /* first pass, loop through and scan words */
1212 reg_trie_data *trie;
1214 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1219 regnode *jumper = NULL;
1220 regnode *nextbranch = NULL;
1221 /* we just use folder as a flag in utf8 */
1222 const U8 * const folder = ( flags == EXACTF
1224 : ( flags == EXACTFL
1230 const U32 data_slot = add_data( pRExC_state, 1, "t" );
1231 SV *re_trie_maxbuff;
1233 /* these are only used during construction but are useful during
1234 * debugging so we store them in the struct when debugging.
1236 STRLEN trie_charcount=0;
1237 AV *trie_revcharmap;
1239 GET_RE_DEBUG_FLAGS_DECL;
1241 PERL_UNUSED_ARG(depth);
1244 Newxz( trie, 1, reg_trie_data );
1246 trie->startstate = 1;
1247 trie->wordcount = word_count;
1248 RExC_rx->data->data[ data_slot ] = (void*)trie;
1249 Newxz( trie->charmap, 256, U16 );
1250 if (!(UTF && folder))
1251 Newxz( trie->bitmap, ANYOF_BITMAP_SIZE, char );
1253 trie->words = newAV();
1255 TRIE_REVCHARMAP(trie) = newAV();
1257 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1258 if (!SvIOK(re_trie_maxbuff)) {
1259 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1262 PerlIO_printf( Perl_debug_log,
1263 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1264 (int)depth * 2 + 2, "",
1265 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1266 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1269 /* -- First loop and Setup --
1271 We first traverse the branches and scan each word to determine if it
1272 contains widechars, and how many unique chars there are, this is
1273 important as we have to build a table with at least as many columns as we
1276 We use an array of integers to represent the character codes 0..255
1277 (trie->charmap) and we use a an HV* to store unicode characters. We use the
1278 native representation of the character value as the key and IV's for the
1281 *TODO* If we keep track of how many times each character is used we can
1282 remap the columns so that the table compression later on is more
1283 efficient in terms of memory by ensuring most common value is in the
1284 middle and the least common are on the outside. IMO this would be better
1285 than a most to least common mapping as theres a decent chance the most
1286 common letter will share a node with the least common, meaning the node
1287 will not be compressable. With a middle is most common approach the worst
1288 case is when we have the least common nodes twice.
1292 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1293 regnode * const noper = NEXTOPER( cur );
1294 const U8 *uc = (U8*)STRING( noper );
1295 const U8 * const e = uc + STR_LEN( noper );
1297 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1298 const U8 *scan = (U8*)NULL;
1299 U32 wordlen = 0; /* required init */
1302 if (OP(noper) == NOTHING) {
1307 TRIE_BITMAP_SET(trie,*uc);
1308 if ( folder ) TRIE_BITMAP_SET(trie,folder[ *uc ]);
1310 for ( ; uc < e ; uc += len ) {
1311 TRIE_CHARCOUNT(trie)++;
1315 if ( !trie->charmap[ uvc ] ) {
1316 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1318 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1323 if ( !trie->widecharmap )
1324 trie->widecharmap = newHV();
1326 svpp = hv_fetch( trie->widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1329 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1331 if ( !SvTRUE( *svpp ) ) {
1332 sv_setiv( *svpp, ++trie->uniquecharcount );
1337 if( cur == first ) {
1340 } else if (chars < trie->minlen) {
1342 } else if (chars > trie->maxlen) {
1346 } /* end first pass */
1347 DEBUG_TRIE_COMPILE_r(
1348 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1349 (int)depth * 2 + 2,"",
1350 ( trie->widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1351 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1352 (int)trie->minlen, (int)trie->maxlen )
1354 Newxz( trie->wordlen, word_count, U32 );
1357 We now know what we are dealing with in terms of unique chars and
1358 string sizes so we can calculate how much memory a naive
1359 representation using a flat table will take. If it's over a reasonable
1360 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1361 conservative but potentially much slower representation using an array
1364 At the end we convert both representations into the same compressed
1365 form that will be used in regexec.c for matching with. The latter
1366 is a form that cannot be used to construct with but has memory
1367 properties similar to the list form and access properties similar
1368 to the table form making it both suitable for fast searches and
1369 small enough that its feasable to store for the duration of a program.
1371 See the comment in the code where the compressed table is produced
1372 inplace from the flat tabe representation for an explanation of how
1373 the compression works.
1378 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1380 Second Pass -- Array Of Lists Representation
1382 Each state will be represented by a list of charid:state records
1383 (reg_trie_trans_le) the first such element holds the CUR and LEN
1384 points of the allocated array. (See defines above).
1386 We build the initial structure using the lists, and then convert
1387 it into the compressed table form which allows faster lookups
1388 (but cant be modified once converted).
1391 STRLEN transcount = 1;
1393 Newxz( trie->states, TRIE_CHARCOUNT(trie) + 2, reg_trie_state );
1397 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1399 regnode * const noper = NEXTOPER( cur );
1400 U8 *uc = (U8*)STRING( noper );
1401 const U8 * const e = uc + STR_LEN( noper );
1402 U32 state = 1; /* required init */
1403 U16 charid = 0; /* sanity init */
1404 U8 *scan = (U8*)NULL; /* sanity init */
1405 STRLEN foldlen = 0; /* required init */
1406 U32 wordlen = 0; /* required init */
1407 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1409 if (OP(noper) != NOTHING) {
1410 for ( ; uc < e ; uc += len ) {
1415 charid = trie->charmap[ uvc ];
1417 SV** const svpp = hv_fetch( trie->widecharmap, (char*)&uvc, sizeof( UV ), 0);
1421 charid=(U16)SvIV( *svpp );
1424 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1431 if ( !trie->states[ state ].trans.list ) {
1432 TRIE_LIST_NEW( state );
1434 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1435 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1436 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1441 newstate = next_alloc++;
1442 TRIE_LIST_PUSH( state, charid, newstate );
1447 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1451 TRIE_HANDLE_WORD(state);
1453 } /* end second pass */
1455 trie->laststate = next_alloc;
1456 Renew( trie->states, next_alloc, reg_trie_state );
1458 /* and now dump it out before we compress it */
1459 DEBUG_TRIE_COMPILE_MORE_r(
1460 dump_trie_interim_list(trie,next_alloc,depth+1)
1463 Newxz( trie->trans, transcount ,reg_trie_trans );
1470 for( state=1 ; state < next_alloc ; state ++ ) {
1474 DEBUG_TRIE_COMPILE_MORE_r(
1475 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1479 if (trie->states[state].trans.list) {
1480 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1484 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1485 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1486 if ( forid < minid ) {
1488 } else if ( forid > maxid ) {
1492 if ( transcount < tp + maxid - minid + 1) {
1494 Renew( trie->trans, transcount, reg_trie_trans );
1495 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1497 base = trie->uniquecharcount + tp - minid;
1498 if ( maxid == minid ) {
1500 for ( ; zp < tp ; zp++ ) {
1501 if ( ! trie->trans[ zp ].next ) {
1502 base = trie->uniquecharcount + zp - minid;
1503 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1504 trie->trans[ zp ].check = state;
1510 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1511 trie->trans[ tp ].check = state;
1516 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1517 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1518 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1519 trie->trans[ tid ].check = state;
1521 tp += ( maxid - minid + 1 );
1523 Safefree(trie->states[ state ].trans.list);
1526 DEBUG_TRIE_COMPILE_MORE_r(
1527 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1530 trie->states[ state ].trans.base=base;
1532 trie->lasttrans = tp + 1;
1536 Second Pass -- Flat Table Representation.
1538 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1539 We know that we will need Charcount+1 trans at most to store the data
1540 (one row per char at worst case) So we preallocate both structures
1541 assuming worst case.
1543 We then construct the trie using only the .next slots of the entry
1546 We use the .check field of the first entry of the node temporarily to
1547 make compression both faster and easier by keeping track of how many non
1548 zero fields are in the node.
1550 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1553 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1554 number representing the first entry of the node, and state as a
1555 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1556 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1557 are 2 entrys per node. eg:
1565 The table is internally in the right hand, idx form. However as we also
1566 have to deal with the states array which is indexed by nodenum we have to
1567 use TRIE_NODENUM() to convert.
1572 Newxz( trie->trans, ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1,
1574 Newxz( trie->states, TRIE_CHARCOUNT(trie) + 2, reg_trie_state );
1575 next_alloc = trie->uniquecharcount + 1;
1578 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1580 regnode * const noper = NEXTOPER( cur );
1581 const U8 *uc = (U8*)STRING( noper );
1582 const U8 * const e = uc + STR_LEN( noper );
1584 U32 state = 1; /* required init */
1586 U16 charid = 0; /* sanity init */
1587 U32 accept_state = 0; /* sanity init */
1588 U8 *scan = (U8*)NULL; /* sanity init */
1590 STRLEN foldlen = 0; /* required init */
1591 U32 wordlen = 0; /* required init */
1592 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1594 if ( OP(noper) != NOTHING ) {
1595 for ( ; uc < e ; uc += len ) {
1600 charid = trie->charmap[ uvc ];
1602 SV* const * const svpp = hv_fetch( trie->widecharmap, (char*)&uvc, sizeof( UV ), 0);
1603 charid = svpp ? (U16)SvIV(*svpp) : 0;
1607 if ( !trie->trans[ state + charid ].next ) {
1608 trie->trans[ state + charid ].next = next_alloc;
1609 trie->trans[ state ].check++;
1610 next_alloc += trie->uniquecharcount;
1612 state = trie->trans[ state + charid ].next;
1614 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1616 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1619 accept_state = TRIE_NODENUM( state );
1620 TRIE_HANDLE_WORD(accept_state);
1622 } /* end second pass */
1624 /* and now dump it out before we compress it */
1625 DEBUG_TRIE_COMPILE_MORE_r(
1626 dump_trie_interim_table(trie,next_alloc,depth+1)
1631 * Inplace compress the table.*
1633 For sparse data sets the table constructed by the trie algorithm will
1634 be mostly 0/FAIL transitions or to put it another way mostly empty.
1635 (Note that leaf nodes will not contain any transitions.)
1637 This algorithm compresses the tables by eliminating most such
1638 transitions, at the cost of a modest bit of extra work during lookup:
1640 - Each states[] entry contains a .base field which indicates the
1641 index in the state[] array wheres its transition data is stored.
1643 - If .base is 0 there are no valid transitions from that node.
1645 - If .base is nonzero then charid is added to it to find an entry in
1648 -If trans[states[state].base+charid].check!=state then the
1649 transition is taken to be a 0/Fail transition. Thus if there are fail
1650 transitions at the front of the node then the .base offset will point
1651 somewhere inside the previous nodes data (or maybe even into a node
1652 even earlier), but the .check field determines if the transition is
1656 The following process inplace converts the table to the compressed
1657 table: We first do not compress the root node 1,and mark its all its
1658 .check pointers as 1 and set its .base pointer as 1 as well. This
1659 allows to do a DFA construction from the compressed table later, and
1660 ensures that any .base pointers we calculate later are greater than
1663 - We set 'pos' to indicate the first entry of the second node.
1665 - We then iterate over the columns of the node, finding the first and
1666 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
1667 and set the .check pointers accordingly, and advance pos
1668 appropriately and repreat for the next node. Note that when we copy
1669 the next pointers we have to convert them from the original
1670 NODEIDX form to NODENUM form as the former is not valid post
1673 - If a node has no transitions used we mark its base as 0 and do not
1674 advance the pos pointer.
1676 - If a node only has one transition we use a second pointer into the
1677 structure to fill in allocated fail transitions from other states.
1678 This pointer is independent of the main pointer and scans forward
1679 looking for null transitions that are allocated to a state. When it
1680 finds one it writes the single transition into the "hole". If the
1681 pointer doesnt find one the single transition is appended as normal.
1683 - Once compressed we can Renew/realloc the structures to release the
1686 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
1687 specifically Fig 3.47 and the associated pseudocode.
1691 const U32 laststate = TRIE_NODENUM( next_alloc );
1694 trie->laststate = laststate;
1696 for ( state = 1 ; state < laststate ; state++ ) {
1698 const U32 stateidx = TRIE_NODEIDX( state );
1699 const U32 o_used = trie->trans[ stateidx ].check;
1700 U32 used = trie->trans[ stateidx ].check;
1701 trie->trans[ stateidx ].check = 0;
1703 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
1704 if ( flag || trie->trans[ stateidx + charid ].next ) {
1705 if ( trie->trans[ stateidx + charid ].next ) {
1707 for ( ; zp < pos ; zp++ ) {
1708 if ( ! trie->trans[ zp ].next ) {
1712 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
1713 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1714 trie->trans[ zp ].check = state;
1715 if ( ++zp > pos ) pos = zp;
1722 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
1724 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1725 trie->trans[ pos ].check = state;
1730 trie->lasttrans = pos + 1;
1731 Renew( trie->states, laststate + 1, reg_trie_state);
1732 DEBUG_TRIE_COMPILE_MORE_r(
1733 PerlIO_printf( Perl_debug_log,
1734 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
1735 (int)depth * 2 + 2,"",
1736 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
1739 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
1742 } /* end table compress */
1744 /* resize the trans array to remove unused space */
1745 Renew( trie->trans, trie->lasttrans, reg_trie_trans);
1747 /* and now dump out the compressed format */
1748 DEBUG_TRIE_COMPILE_r(
1749 dump_trie(trie,depth+1)
1752 { /* Modify the program and insert the new TRIE node*/
1754 U8 nodetype =(U8)(flags & 0xFF);
1763 This means we convert either the first branch or the first Exact,
1764 depending on whether the thing following (in 'last') is a branch
1765 or not and whther first is the startbranch (ie is it a sub part of
1766 the alternation or is it the whole thing.)
1767 Assuming its a sub part we conver the EXACT otherwise we convert
1768 the whole branch sequence, including the first.
1770 /* Find the node we are going to overwrite */
1771 if ( first == startbranch && OP( last ) != BRANCH ) {
1772 /* whole branch chain */
1775 const regnode *nop = NEXTOPER( convert );
1776 mjd_offset= Node_Offset((nop));
1777 mjd_nodelen= Node_Length((nop));
1780 /* branch sub-chain */
1781 convert = NEXTOPER( first );
1782 NEXT_OFF( first ) = (U16)(last - first);
1784 mjd_offset= Node_Offset((convert));
1785 mjd_nodelen= Node_Length((convert));
1789 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
1790 (int)depth * 2 + 2, "",
1791 (UV)mjd_offset, (UV)mjd_nodelen)
1794 /* But first we check to see if there is a common prefix we can
1795 split out as an EXACT and put in front of the TRIE node. */
1796 trie->startstate= 1;
1797 if ( trie->bitmap && !trie->widecharmap && !trie->jump ) {
1800 PerlIO_printf(Perl_debug_log, "%*sLaststate:%"UVuf"\n",
1801 (int)depth * 2 + 2, "",
1802 (UV)trie->laststate)
1804 for ( state = 1 ; state < trie->laststate-1 ; state++ ) {
1808 const U32 base = trie->states[ state ].trans.base;
1810 if ( trie->states[state].wordnum )
1813 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1814 if ( ( base + ofs >= trie->uniquecharcount ) &&
1815 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1816 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1818 if ( ++count > 1 ) {
1819 SV **tmp = av_fetch( TRIE_REVCHARMAP(trie), ofs, 0);
1820 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
1821 if ( state == 1 ) break;
1823 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
1825 PerlIO_printf(Perl_debug_log,
1826 "%*sNew Start State=%"UVuf" Class: [",
1827 (int)depth * 2 + 2, "",
1830 SV ** const tmp = av_fetch( TRIE_REVCHARMAP(trie), idx, 0);
1831 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
1833 TRIE_BITMAP_SET(trie,*ch);
1835 TRIE_BITMAP_SET(trie, folder[ *ch ]);
1837 PerlIO_printf(Perl_debug_log, (char*)ch)
1841 TRIE_BITMAP_SET(trie,*ch);
1843 TRIE_BITMAP_SET(trie,folder[ *ch ]);
1844 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
1850 SV **tmp = av_fetch( TRIE_REVCHARMAP(trie), idx, 0);
1851 const char *ch = SvPV_nolen_const( *tmp );
1853 PerlIO_printf( Perl_debug_log,
1854 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
1855 (int)depth * 2 + 2, "",
1856 (UV)state, (UV)idx, ch)
1859 OP( convert ) = nodetype;
1860 str=STRING(convert);
1869 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
1875 regnode *n = convert+NODE_SZ_STR(convert);
1876 NEXT_OFF(convert) = NODE_SZ_STR(convert);
1877 trie->startstate = state;
1878 trie->minlen -= (state - 1);
1879 trie->maxlen -= (state - 1);
1881 regnode *fix = convert;
1883 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
1884 while( ++fix < n ) {
1885 Set_Node_Offset_Length(fix, 0, 0);
1891 NEXT_OFF(convert) = (U16)(tail - convert);
1895 if ( trie->maxlen ) {
1896 NEXT_OFF( convert ) = (U16)(tail - convert);
1897 ARG_SET( convert, data_slot );
1898 /* Store the offset to the first unabsorbed branch in
1899 jump[0], which is otherwise unused by the jump logic.
1900 We use this when dumping a trie and during optimisation. */
1902 trie->jump[0] = (U16)(tail - nextbranch);
1906 if ( !trie->states[trie->startstate].wordnum && trie->bitmap &&
1907 ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
1909 OP( convert ) = TRIEC;
1910 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
1911 Safefree(trie->bitmap);
1914 OP( convert ) = TRIE;
1916 /* store the type in the flags */
1917 convert->flags = nodetype;
1918 /* XXX We really should free up the resource in trie now, as we wont use them */
1920 /* needed for dumping*/
1922 regnode *optimize = convert
1924 + regarglen[ OP( convert ) ];
1925 regnode *opt = convert;
1926 while (++opt<optimize) {
1927 Set_Node_Offset_Length(opt,0,0);
1930 Try to clean up some of the debris left after the
1933 while( optimize < jumper ) {
1934 mjd_nodelen += Node_Length((optimize));
1935 OP( optimize ) = OPTIMIZED;
1936 Set_Node_Offset_Length(optimize,0,0);
1939 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
1941 } /* end node insert */
1943 SvREFCNT_dec(TRIE_REVCHARMAP(trie));
1947 : trie->startstate>1
1953 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
1955 /* The Trie is constructed and compressed now so we can build a fail array now if its needed
1957 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
1958 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
1961 We find the fail state for each state in the trie, this state is the longest proper
1962 suffix of the current states 'word' that is also a proper prefix of another word in our
1963 trie. State 1 represents the word '' and is the thus the default fail state. This allows
1964 the DFA not to have to restart after its tried and failed a word at a given point, it
1965 simply continues as though it had been matching the other word in the first place.
1967 'abcdgu'=~/abcdefg|cdgu/
1968 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
1969 fail, which would bring use to the state representing 'd' in the second word where we would
1970 try 'g' and succeed, prodceding to match 'cdgu'.
1972 /* add a fail transition */
1973 reg_trie_data *trie=(reg_trie_data *)RExC_rx->data->data[ARG(source)];
1975 const U32 ucharcount = trie->uniquecharcount;
1976 const U32 numstates = trie->laststate;
1977 const U32 ubound = trie->lasttrans + ucharcount;
1981 U32 base = trie->states[ 1 ].trans.base;
1984 const U32 data_slot = add_data( pRExC_state, 1, "T" );
1985 GET_RE_DEBUG_FLAGS_DECL;
1987 PERL_UNUSED_ARG(depth);
1991 ARG_SET( stclass, data_slot );
1992 Newxz( aho, 1, reg_ac_data );
1993 RExC_rx->data->data[ data_slot ] = (void*)aho;
1995 aho->states=(reg_trie_state *)savepvn((const char*)trie->states,
1996 (trie->laststate+1)*sizeof(reg_trie_state));
1997 Newxz( q, numstates, U32);
1998 Newxz( aho->fail, numstates, U32 );
2001 /* initialize fail[0..1] to be 1 so that we always have
2002 a valid final fail state */
2003 fail[ 0 ] = fail[ 1 ] = 1;
2005 for ( charid = 0; charid < ucharcount ; charid++ ) {
2006 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2008 q[ q_write ] = newstate;
2009 /* set to point at the root */
2010 fail[ q[ q_write++ ] ]=1;
2013 while ( q_read < q_write) {
2014 const U32 cur = q[ q_read++ % numstates ];
2015 base = trie->states[ cur ].trans.base;
2017 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2018 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2020 U32 fail_state = cur;
2023 fail_state = fail[ fail_state ];
2024 fail_base = aho->states[ fail_state ].trans.base;
2025 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2027 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2028 fail[ ch_state ] = fail_state;
2029 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2031 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2033 q[ q_write++ % numstates] = ch_state;
2037 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2038 when we fail in state 1, this allows us to use the
2039 charclass scan to find a valid start char. This is based on the principle
2040 that theres a good chance the string being searched contains lots of stuff
2041 that cant be a start char.
2043 fail[ 0 ] = fail[ 1 ] = 0;
2044 DEBUG_TRIE_COMPILE_r({
2045 PerlIO_printf(Perl_debug_log, "%*sStclass Failtable: 0", (int)(depth * 2), "");
2046 for( q_read=1; q_read<numstates; q_read++ ) {
2047 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2049 PerlIO_printf(Perl_debug_log, "\n");
2052 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2057 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2058 * These need to be revisited when a newer toolchain becomes available.
2060 #if defined(__sparc64__) && defined(__GNUC__)
2061 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2062 # undef SPARC64_GCC_WORKAROUND
2063 # define SPARC64_GCC_WORKAROUND 1
2067 #define DEBUG_PEEP(str,scan,depth) \
2068 DEBUG_OPTIMISE_r({ \
2069 SV * const mysv=sv_newmortal(); \
2070 regnode *Next = regnext(scan); \
2071 regprop(RExC_rx, mysv, scan); \
2072 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s [%d]\n", \
2073 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2074 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2081 #define JOIN_EXACT(scan,min,flags) \
2082 if (PL_regkind[OP(scan)] == EXACT) \
2083 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2086 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2087 /* Merge several consecutive EXACTish nodes into one. */
2088 regnode *n = regnext(scan);
2090 regnode *next = scan + NODE_SZ_STR(scan);
2094 regnode *stop = scan;
2095 GET_RE_DEBUG_FLAGS_DECL;
2097 PERL_UNUSED_ARG(depth);
2099 #ifndef EXPERIMENTAL_INPLACESCAN
2100 PERL_UNUSED_ARG(flags);
2101 PERL_UNUSED_ARG(val);
2103 DEBUG_PEEP("join",scan,depth);
2105 /* Skip NOTHING, merge EXACT*. */
2107 ( PL_regkind[OP(n)] == NOTHING ||
2108 (stringok && (OP(n) == OP(scan))))
2110 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2112 if (OP(n) == TAIL || n > next)
2114 if (PL_regkind[OP(n)] == NOTHING) {
2115 DEBUG_PEEP("skip:",n,depth);
2116 NEXT_OFF(scan) += NEXT_OFF(n);
2117 next = n + NODE_STEP_REGNODE;
2124 else if (stringok) {
2125 const unsigned int oldl = STR_LEN(scan);
2126 regnode * const nnext = regnext(n);
2128 DEBUG_PEEP("merg",n,depth);
2131 if (oldl + STR_LEN(n) > U8_MAX)
2133 NEXT_OFF(scan) += NEXT_OFF(n);
2134 STR_LEN(scan) += STR_LEN(n);
2135 next = n + NODE_SZ_STR(n);
2136 /* Now we can overwrite *n : */
2137 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2145 #ifdef EXPERIMENTAL_INPLACESCAN
2146 if (flags && !NEXT_OFF(n)) {
2147 DEBUG_PEEP("atch", val, depth);
2148 if (reg_off_by_arg[OP(n)]) {
2149 ARG_SET(n, val - n);
2152 NEXT_OFF(n) = val - n;
2159 if (UTF && ( OP(scan) == EXACTF ) && ( STR_LEN(scan) >= 6 ) ) {
2161 Two problematic code points in Unicode casefolding of EXACT nodes:
2163 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2164 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2170 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2171 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2173 This means that in case-insensitive matching (or "loose matching",
2174 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2175 length of the above casefolded versions) can match a target string
2176 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2177 This would rather mess up the minimum length computation.
2179 What we'll do is to look for the tail four bytes, and then peek
2180 at the preceding two bytes to see whether we need to decrease
2181 the minimum length by four (six minus two).
2183 Thanks to the design of UTF-8, there cannot be false matches:
2184 A sequence of valid UTF-8 bytes cannot be a subsequence of
2185 another valid sequence of UTF-8 bytes.
2188 char * const s0 = STRING(scan), *s, *t;
2189 char * const s1 = s0 + STR_LEN(scan) - 1;
2190 char * const s2 = s1 - 4;
2191 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2192 const char t0[] = "\xaf\x49\xaf\x42";
2194 const char t0[] = "\xcc\x88\xcc\x81";
2196 const char * const t1 = t0 + 3;
2199 s < s2 && (t = ninstr(s, s1, t0, t1));
2202 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2203 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2205 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2206 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2214 n = scan + NODE_SZ_STR(scan);
2216 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2223 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2227 /* REx optimizer. Converts nodes into quickier variants "in place".
2228 Finds fixed substrings. */
2230 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2231 to the position after last scanned or to NULL. */
2236 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2237 I32 *minlenp, I32 *deltap,
2238 regnode *last, scan_data_t *data, U32 flags, U32 depth)
2239 /* scanp: Start here (read-write). */
2240 /* deltap: Write maxlen-minlen here. */
2241 /* last: Stop before this one. */
2244 I32 min = 0, pars = 0, code;
2245 regnode *scan = *scanp, *next;
2247 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2248 int is_inf_internal = 0; /* The studied chunk is infinite */
2249 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2250 scan_data_t data_fake;
2251 struct regnode_charclass_class and_with; /* Valid if flags & SCF_DO_STCLASS_OR */
2252 SV *re_trie_maxbuff = NULL;
2253 regnode *first_non_open = scan;
2256 GET_RE_DEBUG_FLAGS_DECL;
2258 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2261 while (first_non_open && OP(first_non_open) == OPEN)
2262 first_non_open=regnext(first_non_open);
2266 while (scan && OP(scan) != END && scan < last) {
2267 /* Peephole optimizer: */
2268 DEBUG_STUDYDATA(data,depth);
2269 DEBUG_PEEP("Peep",scan,depth);
2270 JOIN_EXACT(scan,&min,0);
2272 /* Follow the next-chain of the current node and optimize
2273 away all the NOTHINGs from it. */
2274 if (OP(scan) != CURLYX) {
2275 const int max = (reg_off_by_arg[OP(scan)]
2277 /* I32 may be smaller than U16 on CRAYs! */
2278 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2279 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2283 /* Skip NOTHING and LONGJMP. */
2284 while ((n = regnext(n))
2285 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2286 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2287 && off + noff < max)
2289 if (reg_off_by_arg[OP(scan)])
2292 NEXT_OFF(scan) = off;
2297 /* The principal pseudo-switch. Cannot be a switch, since we
2298 look into several different things. */
2299 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2300 || OP(scan) == IFTHEN || OP(scan) == SUSPEND) {
2301 next = regnext(scan);
2303 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2305 if (OP(next) == code || code == IFTHEN || code == SUSPEND) {
2306 /* NOTE - There is similar code to this block below for handling
2307 TRIE nodes on a re-study. If you change stuff here check there
2309 I32 max1 = 0, min1 = I32_MAX, num = 0;
2310 struct regnode_charclass_class accum;
2311 regnode * const startbranch=scan;
2313 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
2314 scan_commit(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2315 if (flags & SCF_DO_STCLASS)
2316 cl_init_zero(pRExC_state, &accum);
2318 while (OP(scan) == code) {
2319 I32 deltanext, minnext, f = 0, fake;
2320 struct regnode_charclass_class this_class;
2323 data_fake.flags = 0;
2325 data_fake.whilem_c = data->whilem_c;
2326 data_fake.last_closep = data->last_closep;
2329 data_fake.last_closep = &fake;
2330 next = regnext(scan);
2331 scan = NEXTOPER(scan);
2333 scan = NEXTOPER(scan);
2334 if (flags & SCF_DO_STCLASS) {
2335 cl_init(pRExC_state, &this_class);
2336 data_fake.start_class = &this_class;
2337 f = SCF_DO_STCLASS_AND;
2339 if (flags & SCF_WHILEM_VISITED_POS)
2340 f |= SCF_WHILEM_VISITED_POS;
2342 /* we suppose the run is continuous, last=next...*/
2343 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2344 next, &data_fake, f,depth+1);
2347 if (max1 < minnext + deltanext)
2348 max1 = minnext + deltanext;
2349 if (deltanext == I32_MAX)
2350 is_inf = is_inf_internal = 1;
2352 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2355 if (data_fake.flags & SF_HAS_EVAL)
2356 data->flags |= SF_HAS_EVAL;
2357 data->whilem_c = data_fake.whilem_c;
2359 if (flags & SCF_DO_STCLASS)
2360 cl_or(pRExC_state, &accum, &this_class);
2361 if (code == SUSPEND)
2364 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2366 if (flags & SCF_DO_SUBSTR) {
2367 data->pos_min += min1;
2368 data->pos_delta += max1 - min1;
2369 if (max1 != min1 || is_inf)
2370 data->longest = &(data->longest_float);
2373 delta += max1 - min1;
2374 if (flags & SCF_DO_STCLASS_OR) {
2375 cl_or(pRExC_state, data->start_class, &accum);
2377 cl_and(data->start_class, &and_with);
2378 flags &= ~SCF_DO_STCLASS;
2381 else if (flags & SCF_DO_STCLASS_AND) {
2383 cl_and(data->start_class, &accum);
2384 flags &= ~SCF_DO_STCLASS;
2387 /* Switch to OR mode: cache the old value of
2388 * data->start_class */
2389 StructCopy(data->start_class, &and_with,
2390 struct regnode_charclass_class);
2391 flags &= ~SCF_DO_STCLASS_AND;
2392 StructCopy(&accum, data->start_class,
2393 struct regnode_charclass_class);
2394 flags |= SCF_DO_STCLASS_OR;
2395 data->start_class->flags |= ANYOF_EOS;
2399 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2402 Assuming this was/is a branch we are dealing with: 'scan' now
2403 points at the item that follows the branch sequence, whatever
2404 it is. We now start at the beginning of the sequence and look
2411 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2413 If we can find such a subseqence we need to turn the first
2414 element into a trie and then add the subsequent branch exact
2415 strings to the trie.
2419 1. patterns where the whole set of branch can be converted.
2421 2. patterns where only a subset can be converted.
2423 In case 1 we can replace the whole set with a single regop
2424 for the trie. In case 2 we need to keep the start and end
2427 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2428 becomes BRANCH TRIE; BRANCH X;
2430 There is an additional case, that being where there is a
2431 common prefix, which gets split out into an EXACT like node
2432 preceding the TRIE node.
2434 If x(1..n)==tail then we can do a simple trie, if not we make
2435 a "jump" trie, such that when we match the appropriate word
2436 we "jump" to the appopriate tail node. Essentailly we turn
2437 a nested if into a case structure of sorts.
2442 if (!re_trie_maxbuff) {
2443 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2444 if (!SvIOK(re_trie_maxbuff))
2445 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2447 if ( SvIV(re_trie_maxbuff)>=0 ) {
2449 regnode *first = (regnode *)NULL;
2450 regnode *last = (regnode *)NULL;
2451 regnode *tail = scan;
2456 SV * const mysv = sv_newmortal(); /* for dumping */
2458 /* var tail is used because there may be a TAIL
2459 regop in the way. Ie, the exacts will point to the
2460 thing following the TAIL, but the last branch will
2461 point at the TAIL. So we advance tail. If we
2462 have nested (?:) we may have to move through several
2466 while ( OP( tail ) == TAIL ) {
2467 /* this is the TAIL generated by (?:) */
2468 tail = regnext( tail );
2473 regprop(RExC_rx, mysv, tail );
2474 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2475 (int)depth * 2 + 2, "",
2476 "Looking for TRIE'able sequences. Tail node is: ",
2477 SvPV_nolen_const( mysv )
2483 step through the branches, cur represents each
2484 branch, noper is the first thing to be matched
2485 as part of that branch and noper_next is the
2486 regnext() of that node. if noper is an EXACT
2487 and noper_next is the same as scan (our current
2488 position in the regex) then the EXACT branch is
2489 a possible optimization target. Once we have
2490 two or more consequetive such branches we can
2491 create a trie of the EXACT's contents and stich
2492 it in place. If the sequence represents all of
2493 the branches we eliminate the whole thing and
2494 replace it with a single TRIE. If it is a
2495 subsequence then we need to stitch it in. This
2496 means the first branch has to remain, and needs
2497 to be repointed at the item on the branch chain
2498 following the last branch optimized. This could
2499 be either a BRANCH, in which case the
2500 subsequence is internal, or it could be the
2501 item following the branch sequence in which
2502 case the subsequence is at the end.
2506 /* dont use tail as the end marker for this traverse */
2507 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
2508 regnode * const noper = NEXTOPER( cur );
2509 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
2510 regnode * const noper_next = regnext( noper );
2514 regprop(RExC_rx, mysv, cur);
2515 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
2516 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
2518 regprop(RExC_rx, mysv, noper);
2519 PerlIO_printf( Perl_debug_log, " -> %s",
2520 SvPV_nolen_const(mysv));
2523 regprop(RExC_rx, mysv, noper_next );
2524 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
2525 SvPV_nolen_const(mysv));
2527 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
2528 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
2530 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
2531 : PL_regkind[ OP( noper ) ] == EXACT )
2532 || OP(noper) == NOTHING )
2534 && noper_next == tail
2539 if ( !first || optype == NOTHING ) {
2540 if (!first) first = cur;
2541 optype = OP( noper );
2547 make_trie( pRExC_state,
2548 startbranch, first, cur, tail, count,
2551 if ( PL_regkind[ OP( noper ) ] == EXACT
2553 && noper_next == tail
2558 optype = OP( noper );
2568 regprop(RExC_rx, mysv, cur);
2569 PerlIO_printf( Perl_debug_log,
2570 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
2571 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
2575 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
2576 #ifdef TRIE_STUDY_OPT
2577 if ( ((made == MADE_EXACT_TRIE &&
2578 startbranch == first)
2579 || ( first_non_open == first )) &&
2581 flags |= SCF_TRIE_RESTUDY;
2589 else if ( code == BRANCHJ ) { /* single branch is optimized. */
2590 scan = NEXTOPER(NEXTOPER(scan));
2591 } else /* single branch is optimized. */
2592 scan = NEXTOPER(scan);
2595 else if (OP(scan) == EXACT) {
2596 I32 l = STR_LEN(scan);
2599 const U8 * const s = (U8*)STRING(scan);
2600 l = utf8_length(s, s + l);
2601 uc = utf8_to_uvchr(s, NULL);
2603 uc = *((U8*)STRING(scan));
2606 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
2607 /* The code below prefers earlier match for fixed
2608 offset, later match for variable offset. */
2609 if (data->last_end == -1) { /* Update the start info. */
2610 data->last_start_min = data->pos_min;
2611 data->last_start_max = is_inf
2612 ? I32_MAX : data->pos_min + data->pos_delta;
2614 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
2616 SvUTF8_on(data->last_found);
2618 SV * const sv = data->last_found;
2619 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
2620 mg_find(sv, PERL_MAGIC_utf8) : NULL;
2621 if (mg && mg->mg_len >= 0)
2622 mg->mg_len += utf8_length((U8*)STRING(scan),
2623 (U8*)STRING(scan)+STR_LEN(scan));
2625 data->last_end = data->pos_min + l;
2626 data->pos_min += l; /* As in the first entry. */
2627 data->flags &= ~SF_BEFORE_EOL;
2629 if (flags & SCF_DO_STCLASS_AND) {
2630 /* Check whether it is compatible with what we know already! */
2634 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2635 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2636 && (!(data->start_class->flags & ANYOF_FOLD)
2637 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2640 ANYOF_CLASS_ZERO(data->start_class);
2641 ANYOF_BITMAP_ZERO(data->start_class);
2643 ANYOF_BITMAP_SET(data->start_class, uc);
2644 data->start_class->flags &= ~ANYOF_EOS;
2646 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
2648 else if (flags & SCF_DO_STCLASS_OR) {
2649 /* false positive possible if the class is case-folded */
2651 ANYOF_BITMAP_SET(data->start_class, uc);
2653 data->start_class->flags |= ANYOF_UNICODE_ALL;
2654 data->start_class->flags &= ~ANYOF_EOS;
2655 cl_and(data->start_class, &and_with);
2657 flags &= ~SCF_DO_STCLASS;
2659 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
2660 I32 l = STR_LEN(scan);
2661 UV uc = *((U8*)STRING(scan));
2663 /* Search for fixed substrings supports EXACT only. */
2664 if (flags & SCF_DO_SUBSTR) {
2666 scan_commit(pRExC_state, data, minlenp);
2669 const U8 * const s = (U8 *)STRING(scan);
2670 l = utf8_length(s, s + l);
2671 uc = utf8_to_uvchr(s, NULL);
2674 if (flags & SCF_DO_SUBSTR)
2676 if (flags & SCF_DO_STCLASS_AND) {
2677 /* Check whether it is compatible with what we know already! */
2681 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2682 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2683 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2685 ANYOF_CLASS_ZERO(data->start_class);
2686 ANYOF_BITMAP_ZERO(data->start_class);
2688 ANYOF_BITMAP_SET(data->start_class, uc);
2689 data->start_class->flags &= ~ANYOF_EOS;
2690 data->start_class->flags |= ANYOF_FOLD;
2691 if (OP(scan) == EXACTFL)
2692 data->start_class->flags |= ANYOF_LOCALE;
2695 else if (flags & SCF_DO_STCLASS_OR) {
2696 if (data->start_class->flags & ANYOF_FOLD) {
2697 /* false positive possible if the class is case-folded.
2698 Assume that the locale settings are the same... */
2700 ANYOF_BITMAP_SET(data->start_class, uc);
2701 data->start_class->flags &= ~ANYOF_EOS;
2703 cl_and(data->start_class, &and_with);
2705 flags &= ~SCF_DO_STCLASS;
2707 else if (strchr((const char*)PL_varies,OP(scan))) {
2708 I32 mincount, maxcount, minnext, deltanext, fl = 0;
2709 I32 f = flags, pos_before = 0;
2710 regnode * const oscan = scan;
2711 struct regnode_charclass_class this_class;
2712 struct regnode_charclass_class *oclass = NULL;
2713 I32 next_is_eval = 0;
2715 switch (PL_regkind[OP(scan)]) {
2716 case WHILEM: /* End of (?:...)* . */
2717 scan = NEXTOPER(scan);
2720 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
2721 next = NEXTOPER(scan);
2722 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
2724 maxcount = REG_INFTY;
2725 next = regnext(scan);
2726 scan = NEXTOPER(scan);
2730 if (flags & SCF_DO_SUBSTR)
2735 if (flags & SCF_DO_STCLASS) {
2737 maxcount = REG_INFTY;
2738 next = regnext(scan);
2739 scan = NEXTOPER(scan);
2742 is_inf = is_inf_internal = 1;
2743 scan = regnext(scan);
2744 if (flags & SCF_DO_SUBSTR) {
2745 scan_commit(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
2746 data->longest = &(data->longest_float);
2748 goto optimize_curly_tail;
2750 mincount = ARG1(scan);
2751 maxcount = ARG2(scan);
2752 next = regnext(scan);
2753 if (OP(scan) == CURLYX) {
2754 I32 lp = (data ? *(data->last_closep) : 0);
2755 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
2757 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
2758 next_is_eval = (OP(scan) == EVAL);
2760 if (flags & SCF_DO_SUBSTR) {
2761 if (mincount == 0) scan_commit(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
2762 pos_before = data->pos_min;
2766 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
2768 data->flags |= SF_IS_INF;
2770 if (flags & SCF_DO_STCLASS) {
2771 cl_init(pRExC_state, &this_class);
2772 oclass = data->start_class;
2773 data->start_class = &this_class;
2774 f |= SCF_DO_STCLASS_AND;
2775 f &= ~SCF_DO_STCLASS_OR;
2777 /* These are the cases when once a subexpression
2778 fails at a particular position, it cannot succeed
2779 even after backtracking at the enclosing scope.
2781 XXXX what if minimal match and we are at the
2782 initial run of {n,m}? */
2783 if ((mincount != maxcount - 1) && (maxcount != REG_INFTY))
2784 f &= ~SCF_WHILEM_VISITED_POS;
2786 /* This will finish on WHILEM, setting scan, or on NULL: */
2787 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext, last, data,
2789 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
2791 if (flags & SCF_DO_STCLASS)
2792 data->start_class = oclass;
2793 if (mincount == 0 || minnext == 0) {
2794 if (flags & SCF_DO_STCLASS_OR) {
2795 cl_or(pRExC_state, data->start_class, &this_class);
2797 else if (flags & SCF_DO_STCLASS_AND) {
2798 /* Switch to OR mode: cache the old value of
2799 * data->start_class */
2800 StructCopy(data->start_class, &and_with,
2801 struct regnode_charclass_class);
2802 flags &= ~SCF_DO_STCLASS_AND;
2803 StructCopy(&this_class, data->start_class,
2804 struct regnode_charclass_class);
2805 flags |= SCF_DO_STCLASS_OR;
2806 data->start_class->flags |= ANYOF_EOS;
2808 } else { /* Non-zero len */
2809 if (flags & SCF_DO_STCLASS_OR) {
2810 cl_or(pRExC_state, data->start_class, &this_class);
2811 cl_and(data->start_class, &and_with);
2813 else if (flags & SCF_DO_STCLASS_AND)
2814 cl_and(data->start_class, &this_class);
2815 flags &= ~SCF_DO_STCLASS;
2817 if (!scan) /* It was not CURLYX, but CURLY. */
2819 if ( /* ? quantifier ok, except for (?{ ... }) */
2820 (next_is_eval || !(mincount == 0 && maxcount == 1))
2821 && (minnext == 0) && (deltanext == 0)
2822 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
2823 && maxcount <= REG_INFTY/3 /* Complement check for big count */
2824 && ckWARN(WARN_REGEXP))
2827 "Quantifier unexpected on zero-length expression");
2830 min += minnext * mincount;
2831 is_inf_internal |= ((maxcount == REG_INFTY
2832 && (minnext + deltanext) > 0)
2833 || deltanext == I32_MAX);
2834 is_inf |= is_inf_internal;
2835 delta += (minnext + deltanext) * maxcount - minnext * mincount;
2837 /* Try powerful optimization CURLYX => CURLYN. */
2838 if ( OP(oscan) == CURLYX && data
2839 && data->flags & SF_IN_PAR
2840 && !(data->flags & SF_HAS_EVAL)
2841 && !deltanext && minnext == 1 ) {
2842 /* Try to optimize to CURLYN. */
2843 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
2844 regnode * const nxt1 = nxt;
2851 if (!strchr((const char*)PL_simple,OP(nxt))
2852 && !(PL_regkind[OP(nxt)] == EXACT
2853 && STR_LEN(nxt) == 1))
2859 if (OP(nxt) != CLOSE)
2861 /* Now we know that nxt2 is the only contents: */
2862 oscan->flags = (U8)ARG(nxt);
2864 OP(nxt1) = NOTHING; /* was OPEN. */
2866 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
2867 NEXT_OFF(nxt1+ 1) = 0; /* just for consistancy. */
2868 NEXT_OFF(nxt2) = 0; /* just for consistancy with CURLY. */
2869 OP(nxt) = OPTIMIZED; /* was CLOSE. */
2870 OP(nxt + 1) = OPTIMIZED; /* was count. */
2871 NEXT_OFF(nxt+ 1) = 0; /* just for consistancy. */
2876 /* Try optimization CURLYX => CURLYM. */
2877 if ( OP(oscan) == CURLYX && data
2878 && !(data->flags & SF_HAS_PAR)
2879 && !(data->flags & SF_HAS_EVAL)
2880 && !deltanext /* atom is fixed width */
2881 && minnext != 0 /* CURLYM can't handle zero width */
2883 /* XXXX How to optimize if data == 0? */
2884 /* Optimize to a simpler form. */
2885 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
2889 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
2890 && (OP(nxt2) != WHILEM))
2892 OP(nxt2) = SUCCEED; /* Whas WHILEM */
2893 /* Need to optimize away parenths. */
2894 if (data->flags & SF_IN_PAR) {
2895 /* Set the parenth number. */
2896 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
2898 if (OP(nxt) != CLOSE)
2899 FAIL("Panic opt close");
2900 oscan->flags = (U8)ARG(nxt);
2901 OP(nxt1) = OPTIMIZED; /* was OPEN. */
2902 OP(nxt) = OPTIMIZED; /* was CLOSE. */
2904 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
2905 OP(nxt + 1) = OPTIMIZED; /* was count. */
2906 NEXT_OFF(nxt1 + 1) = 0; /* just for consistancy. */
2907 NEXT_OFF(nxt + 1) = 0; /* just for consistancy. */
2910 while ( nxt1 && (OP(nxt1) != WHILEM)) {
2911 regnode *nnxt = regnext(nxt1);
2914 if (reg_off_by_arg[OP(nxt1)])
2915 ARG_SET(nxt1, nxt2 - nxt1);
2916 else if (nxt2 - nxt1 < U16_MAX)
2917 NEXT_OFF(nxt1) = nxt2 - nxt1;
2919 OP(nxt) = NOTHING; /* Cannot beautify */
2924 /* Optimize again: */
2925 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
2931 else if ((OP(oscan) == CURLYX)
2932 && (flags & SCF_WHILEM_VISITED_POS)
2933 /* See the comment on a similar expression above.
2934 However, this time it not a subexpression
2935 we care about, but the expression itself. */
2936 && (maxcount == REG_INFTY)
2937 && data && ++data->whilem_c < 16) {
2938 /* This stays as CURLYX, we can put the count/of pair. */
2939 /* Find WHILEM (as in regexec.c) */
2940 regnode *nxt = oscan + NEXT_OFF(oscan);
2942 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
2944 PREVOPER(nxt)->flags = (U8)(data->whilem_c
2945 | (RExC_whilem_seen << 4)); /* On WHILEM */
2947 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
2949 if (flags & SCF_DO_SUBSTR) {
2950 SV *last_str = NULL;
2951 int counted = mincount != 0;
2953 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
2954 #if defined(SPARC64_GCC_WORKAROUND)
2957 const char *s = NULL;
2960 if (pos_before >= data->last_start_min)
2963 b = data->last_start_min;
2966 s = SvPV_const(data->last_found, l);
2967 old = b - data->last_start_min;
2970 I32 b = pos_before >= data->last_start_min
2971 ? pos_before : data->last_start_min;
2973 const char * const s = SvPV_const(data->last_found, l);
2974 I32 old = b - data->last_start_min;
2978 old = utf8_hop((U8*)s, old) - (U8*)s;
2981 /* Get the added string: */
2982 last_str = newSVpvn(s + old, l);
2984 SvUTF8_on(last_str);
2985 if (deltanext == 0 && pos_before == b) {
2986 /* What was added is a constant string */
2988 SvGROW(last_str, (mincount * l) + 1);
2989 repeatcpy(SvPVX(last_str) + l,
2990 SvPVX_const(last_str), l, mincount - 1);
2991 SvCUR_set(last_str, SvCUR(last_str) * mincount);
2992 /* Add additional parts. */
2993 SvCUR_set(data->last_found,
2994 SvCUR(data->last_found) - l);
2995 sv_catsv(data->last_found, last_str);
2997 SV * sv = data->last_found;
2999 SvUTF8(sv) && SvMAGICAL(sv) ?
3000 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3001 if (mg && mg->mg_len >= 0)
3002 mg->mg_len += CHR_SVLEN(last_str);
3004 data->last_end += l * (mincount - 1);
3007 /* start offset must point into the last copy */
3008 data->last_start_min += minnext * (mincount - 1);
3009 data->last_start_max += is_inf ? I32_MAX
3010 : (maxcount - 1) * (minnext + data->pos_delta);
3013 /* It is counted once already... */
3014 data->pos_min += minnext * (mincount - counted);
3015 data->pos_delta += - counted * deltanext +
3016 (minnext + deltanext) * maxcount - minnext * mincount;
3017 if (mincount != maxcount) {
3018 /* Cannot extend fixed substrings found inside
3020 scan_commit(pRExC_state,data,minlenp);
3021 if (mincount && last_str) {
3022 SV * const sv = data->last_found;
3023 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3024 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3028 sv_setsv(sv, last_str);
3029 data->last_end = data->pos_min;
3030 data->last_start_min =
3031 data->pos_min - CHR_SVLEN(last_str);
3032 data->last_start_max = is_inf
3034 : data->pos_min + data->pos_delta
3035 - CHR_SVLEN(last_str);
3037 data->longest = &(data->longest_float);
3039 SvREFCNT_dec(last_str);
3041 if (data && (fl & SF_HAS_EVAL))
3042 data->flags |= SF_HAS_EVAL;
3043 optimize_curly_tail:
3044 if (OP(oscan) != CURLYX) {
3045 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3047 NEXT_OFF(oscan) += NEXT_OFF(next);
3050 default: /* REF and CLUMP only? */
3051 if (flags & SCF_DO_SUBSTR) {
3052 scan_commit(pRExC_state,data,minlenp); /* Cannot expect anything... */
3053 data->longest = &(data->longest_float);
3055 is_inf = is_inf_internal = 1;
3056 if (flags & SCF_DO_STCLASS_OR)
3057 cl_anything(pRExC_state, data->start_class);
3058 flags &= ~SCF_DO_STCLASS;
3062 else if (strchr((const char*)PL_simple,OP(scan))) {
3065 if (flags & SCF_DO_SUBSTR) {
3066 scan_commit(pRExC_state,data,minlenp);
3070 if (flags & SCF_DO_STCLASS) {
3071 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3073 /* Some of the logic below assumes that switching
3074 locale on will only add false positives. */
3075 switch (PL_regkind[OP(scan)]) {
3079 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3080 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3081 cl_anything(pRExC_state, data->start_class);
3084 if (OP(scan) == SANY)
3086 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3087 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3088 || (data->start_class->flags & ANYOF_CLASS));
3089 cl_anything(pRExC_state, data->start_class);
3091 if (flags & SCF_DO_STCLASS_AND || !value)
3092 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3095 if (flags & SCF_DO_STCLASS_AND)
3096 cl_and(data->start_class,
3097 (struct regnode_charclass_class*)scan);
3099 cl_or(pRExC_state, data->start_class,
3100 (struct regnode_charclass_class*)scan);
3103 if (flags & SCF_DO_STCLASS_AND) {
3104 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3105 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3106 for (value = 0; value < 256; value++)
3107 if (!isALNUM(value))
3108 ANYOF_BITMAP_CLEAR(data->start_class, value);
3112 if (data->start_class->flags & ANYOF_LOCALE)
3113 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3115 for (value = 0; value < 256; value++)
3117 ANYOF_BITMAP_SET(data->start_class, value);
3122 if (flags & SCF_DO_STCLASS_AND) {
3123 if (data->start_class->flags & ANYOF_LOCALE)
3124 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3127 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3128 data->start_class->flags |= ANYOF_LOCALE;
3132 if (flags & SCF_DO_STCLASS_AND) {
3133 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3134 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3135 for (value = 0; value < 256; value++)
3137 ANYOF_BITMAP_CLEAR(data->start_class, value);
3141 if (data->start_class->flags & ANYOF_LOCALE)
3142 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3144 for (value = 0; value < 256; value++)
3145 if (!isALNUM(value))
3146 ANYOF_BITMAP_SET(data->start_class, value);
3151 if (flags & SCF_DO_STCLASS_AND) {
3152 if (data->start_class->flags & ANYOF_LOCALE)
3153 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3156 data->start_class->flags |= ANYOF_LOCALE;
3157 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3161 if (flags & SCF_DO_STCLASS_AND) {
3162 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3163 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3164 for (value = 0; value < 256; value++)
3165 if (!isSPACE(value))
3166 ANYOF_BITMAP_CLEAR(data->start_class, value);
3170 if (data->start_class->flags & ANYOF_LOCALE)
3171 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3173 for (value = 0; value < 256; value++)
3175 ANYOF_BITMAP_SET(data->start_class, value);
3180 if (flags & SCF_DO_STCLASS_AND) {
3181 if (data->start_class->flags & ANYOF_LOCALE)
3182 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3185 data->start_class->flags |= ANYOF_LOCALE;
3186 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3190 if (flags & SCF_DO_STCLASS_AND) {
3191 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3192 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3193 for (value = 0; value < 256; value++)
3195 ANYOF_BITMAP_CLEAR(data->start_class, value);
3199 if (data->start_class->flags & ANYOF_LOCALE)
3200 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3202 for (value = 0; value < 256; value++)
3203 if (!isSPACE(value))
3204 ANYOF_BITMAP_SET(data->start_class, value);
3209 if (flags & SCF_DO_STCLASS_AND) {
3210 if (data->start_class->flags & ANYOF_LOCALE) {
3211 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3212 for (value = 0; value < 256; value++)
3213 if (!isSPACE(value))
3214 ANYOF_BITMAP_CLEAR(data->start_class, value);
3218 data->start_class->flags |= ANYOF_LOCALE;
3219 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3223 if (flags & SCF_DO_STCLASS_AND) {
3224 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3225 for (value = 0; value < 256; value++)
3226 if (!isDIGIT(value))
3227 ANYOF_BITMAP_CLEAR(data->start_class, value);
3230 if (data->start_class->flags & ANYOF_LOCALE)
3231 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3233 for (value = 0; value < 256; value++)
3235 ANYOF_BITMAP_SET(data->start_class, value);
3240 if (flags & SCF_DO_STCLASS_AND) {
3241 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3242 for (value = 0; value < 256; value++)
3244 ANYOF_BITMAP_CLEAR(data->start_class, value);
3247 if (data->start_class->flags & ANYOF_LOCALE)
3248 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3250 for (value = 0; value < 256; value++)
3251 if (!isDIGIT(value))
3252 ANYOF_BITMAP_SET(data->start_class, value);
3257 if (flags & SCF_DO_STCLASS_OR)
3258 cl_and(data->start_class, &and_with);
3259 flags &= ~SCF_DO_STCLASS;
3262 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3263 data->flags |= (OP(scan) == MEOL
3267 else if ( PL_regkind[OP(scan)] == BRANCHJ
3268 /* Lookbehind, or need to calculate parens/evals/stclass: */
3269 && (scan->flags || data || (flags & SCF_DO_STCLASS))
3270 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
3271 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3272 || OP(scan) == UNLESSM )
3274 /* Negative Lookahead/lookbehind
3275 In this case we can't do fixed string optimisation.
3278 I32 deltanext, minnext, fake = 0;
3280 struct regnode_charclass_class intrnl;
3283 data_fake.flags = 0;
3285 data_fake.whilem_c = data->whilem_c;
3286 data_fake.last_closep = data->last_closep;
3289 data_fake.last_closep = &fake;
3290 if ( flags & SCF_DO_STCLASS && !scan->flags
3291 && OP(scan) == IFMATCH ) { /* Lookahead */
3292 cl_init(pRExC_state, &intrnl);
3293 data_fake.start_class = &intrnl;
3294 f |= SCF_DO_STCLASS_AND;
3296 if (flags & SCF_WHILEM_VISITED_POS)
3297 f |= SCF_WHILEM_VISITED_POS;
3298 next = regnext(scan);
3299 nscan = NEXTOPER(NEXTOPER(scan));
3300 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext, last, &data_fake, f,depth+1);
3303 vFAIL("Variable length lookbehind not implemented");
3305 else if (minnext > (I32)U8_MAX) {
3306 vFAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3308 scan->flags = (U8)minnext;
3311 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3313 if (data_fake.flags & SF_HAS_EVAL)
3314 data->flags |= SF_HAS_EVAL;
3315 data->whilem_c = data_fake.whilem_c;
3317 if (f & SCF_DO_STCLASS_AND) {
3318 const int was = (data->start_class->flags & ANYOF_EOS);
3320 cl_and(data->start_class, &intrnl);
3322 data->start_class->flags |= ANYOF_EOS;
3325 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3327 /* Positive Lookahead/lookbehind
3328 In this case we can do fixed string optimisation,
3329 but we must be careful about it. Note in the case of
3330 lookbehind the positions will be offset by the minimum
3331 length of the pattern, something we won't know about
3332 until after the recurse.
3334 I32 deltanext, fake = 0;
3336 struct regnode_charclass_class intrnl;
3338 /* We use SAVEFREEPV so that when the full compile
3339 is finished perl will clean up the allocated
3340 minlens when its all done. This was we don't
3341 have to worry about freeing them when we know
3342 they wont be used, which would be a pain.
3345 Newx( minnextp, 1, I32 );
3346 SAVEFREEPV(minnextp);
3349 StructCopy(data, &data_fake, scan_data_t);
3350 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
3353 scan_commit(pRExC_state, &data_fake,minlenp);
3354 data_fake.last_found=newSVsv(data->last_found);
3358 data_fake.last_closep = &fake;
3359 data_fake.flags = 0;
3361 data_fake.flags |= SF_IS_INF;
3362 if ( flags & SCF_DO_STCLASS && !scan->flags
3363 && OP(scan) == IFMATCH ) { /* Lookahead */
3364 cl_init(pRExC_state, &intrnl);
3365 data_fake.start_class = &intrnl;
3366 f |= SCF_DO_STCLASS_AND;
3368 if (flags & SCF_WHILEM_VISITED_POS)
3369 f |= SCF_WHILEM_VISITED_POS;
3370 next = regnext(scan);
3371 nscan = NEXTOPER(NEXTOPER(scan));
3373 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext, last, &data_fake, f,depth+1);
3376 vFAIL("Variable length lookbehind not implemented");
3378 else if (*minnextp > (I32)U8_MAX) {
3379 vFAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3381 scan->flags = (U8)*minnextp;
3387 if (f & SCF_DO_STCLASS_AND) {
3388 const int was = (data->start_class->flags & ANYOF_EOS);
3390 cl_and(data->start_class, &intrnl);
3392 data->start_class->flags |= ANYOF_EOS;
3395 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3397 if (data_fake.flags & SF_HAS_EVAL)
3398 data->flags |= SF_HAS_EVAL;
3399 data->whilem_c = data_fake.whilem_c;
3400 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
3401 if (RExC_rx->minlen<*minnextp)
3402 RExC_rx->minlen=*minnextp;
3403 scan_commit(pRExC_state, &data_fake, minnextp);
3404 SvREFCNT_dec(data_fake.last_found);
3406 if ( data_fake.minlen_fixed != minlenp )
3408 data->offset_fixed= data_fake.offset_fixed;
3409 data->minlen_fixed= data_fake.minlen_fixed;
3410 data->lookbehind_fixed+= scan->flags;
3412 if ( data_fake.minlen_float != minlenp )
3414 data->minlen_float= data_fake.minlen_float;
3415 data->offset_float_min=data_fake.offset_float_min;
3416 data->offset_float_max=data_fake.offset_float_max;
3417 data->lookbehind_float+= scan->flags;
3426 else if (OP(scan) == OPEN) {
3429 else if (OP(scan) == CLOSE) {
3430 if ((I32)ARG(scan) == is_par) {
3431 next = regnext(scan);
3433 if ( next && (OP(next) != WHILEM) && next < last)
3434 is_par = 0; /* Disable optimization */
3437 *(data->last_closep) = ARG(scan);
3439 else if (OP(scan) == EVAL) {
3441 data->flags |= SF_HAS_EVAL;
3443 else if (OP(scan) == LOGICAL && scan->flags == 2) { /* Embedded follows */
3444 if (flags & SCF_DO_SUBSTR) {
3445 scan_commit(pRExC_state,data,minlenp);
3446 data->longest = &(data->longest_float);
3448 is_inf = is_inf_internal = 1;
3449 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3450 cl_anything(pRExC_state, data->start_class);
3451 flags &= ~SCF_DO_STCLASS;
3453 #ifdef TRIE_STUDY_OPT
3454 #ifdef FULL_TRIE_STUDY
3455 else if (PL_regkind[OP(scan)] == TRIE) {
3456 /* NOTE - There is similar code to this block above for handling
3457 BRANCH nodes on the initial study. If you change stuff here
3459 regnode *tail= regnext(scan);
3460 reg_trie_data *trie = (reg_trie_data*)RExC_rx->data->data[ ARG(scan) ];
3461 I32 max1 = 0, min1 = I32_MAX;
3462 struct regnode_charclass_class accum;
3464 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
3465 scan_commit(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
3466 if (flags & SCF_DO_STCLASS)
3467 cl_init_zero(pRExC_state, &accum);
3473 const regnode *nextbranch= NULL;
3476 for ( word=1 ; word <= trie->wordcount ; word++)
3478 I32 deltanext=0, minnext=0, f = 0, fake;
3479 struct regnode_charclass_class this_class;
3481 data_fake.flags = 0;
3483 data_fake.whilem_c = data->whilem_c;
3484 data_fake.last_closep = data->last_closep;
3487 data_fake.last_closep = &fake;
3489 if (flags & SCF_DO_STCLASS) {
3490 cl_init(pRExC_state, &this_class);
3491 data_fake.start_class = &this_class;
3492 f = SCF_DO_STCLASS_AND;
3494 if (flags & SCF_WHILEM_VISITED_POS)
3495 f |= SCF_WHILEM_VISITED_POS;
3497 if (trie->jump[word]) {
3499 nextbranch = tail - trie->jump[0];
3500 scan= tail - trie->jump[word];
3501 /* We go from the jump point to the branch that follows
3502 it. Note this means we need the vestigal unused branches
3503 even though they arent otherwise used.
3505 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3506 (regnode *)nextbranch, &data_fake, f,depth+1);
3508 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
3509 nextbranch= regnext((regnode*)nextbranch);
3511 if (min1 > (I32)(minnext + trie->minlen))
3512 min1 = minnext + trie->minlen;
3513 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
3514 max1 = minnext + deltanext + trie->maxlen;
3515 if (deltanext == I32_MAX)
3516 is_inf = is_inf_internal = 1;
3518 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3522 if (data_fake.flags & SF_HAS_EVAL)
3523 data->flags |= SF_HAS_EVAL;
3524 data->whilem_c = data_fake.whilem_c;
3526 if (flags & SCF_DO_STCLASS)
3527 cl_or(pRExC_state, &accum, &this_class);
3530 if (flags & SCF_DO_SUBSTR) {
3531 data->pos_min += min1;
3532 data->pos_delta += max1 - min1;
3533 if (max1 != min1 || is_inf)
3534 data->longest = &(data->longest_float);
3537 delta += max1 - min1;
3538 if (flags & SCF_DO_STCLASS_OR) {
3539 cl_or(pRExC_state, data->start_class, &accum);
3541 cl_and(data->start_class, &and_with);
3542 flags &= ~SCF_DO_STCLASS;
3545 else if (flags & SCF_DO_STCLASS_AND) {
3547 cl_and(data->start_class, &accum);
3548 flags &= ~SCF_DO_STCLASS;
3551 /* Switch to OR mode: cache the old value of
3552 * data->start_class */
3553 StructCopy(data->start_class, &and_with,
3554 struct regnode_charclass_class);
3555 flags &= ~SCF_DO_STCLASS_AND;
3556 StructCopy(&accum, data->start_class,
3557 struct regnode_charclass_class);
3558 flags |= SCF_DO_STCLASS_OR;
3559 data->start_class->flags |= ANYOF_EOS;
3566 else if (PL_regkind[OP(scan)] == TRIE) {
3567 reg_trie_data *trie = (reg_trie_data*)RExC_rx->data->data[ ARG(scan) ];
3570 min += trie->minlen;
3571 delta += (trie->maxlen - trie->minlen);
3572 flags &= ~SCF_DO_STCLASS; /* xxx */
3573 if (flags & SCF_DO_SUBSTR) {
3574 scan_commit(pRExC_state,data,minlenp); /* Cannot expect anything... */
3575 data->pos_min += trie->minlen;
3576 data->pos_delta += (trie->maxlen - trie->minlen);
3577 if (trie->maxlen != trie->minlen)
3578 data->longest = &(data->longest_float);
3580 if (trie->jump) /* no more substrings -- for now /grr*/
3581 flags &= ~SCF_DO_SUBSTR;
3583 #endif /* old or new */
3584 #endif /* TRIE_STUDY_OPT */
3585 /* Else: zero-length, ignore. */
3586 scan = regnext(scan);
3591 *deltap = is_inf_internal ? I32_MAX : delta;
3592 if (flags & SCF_DO_SUBSTR && is_inf)
3593 data->pos_delta = I32_MAX - data->pos_min;
3594 if (is_par > (I32)U8_MAX)
3596 if (is_par && pars==1 && data) {
3597 data->flags |= SF_IN_PAR;
3598 data->flags &= ~SF_HAS_PAR;
3600 else if (pars && data) {
3601 data->flags |= SF_HAS_PAR;
3602 data->flags &= ~SF_IN_PAR;
3604 if (flags & SCF_DO_STCLASS_OR)
3605 cl_and(data->start_class, &and_with);
3606 if (flags & SCF_TRIE_RESTUDY)
3607 data->flags |= SCF_TRIE_RESTUDY;
3609 DEBUG_STUDYDATA(data,depth);
3615 S_add_data(RExC_state_t *pRExC_state, I32 n, const char *s)
3617 if (RExC_rx->data) {
3618 Renewc(RExC_rx->data,
3619 sizeof(*RExC_rx->data) + sizeof(void*) * (RExC_rx->data->count + n - 1),
3620 char, struct reg_data);
3621 Renew(RExC_rx->data->what, RExC_rx->data->count + n, U8);
3622 RExC_rx->data->count += n;
3625 Newxc(RExC_rx->data, sizeof(*RExC_rx->data) + sizeof(void*) * (n - 1),
3626 char, struct reg_data);
3627 Newx(RExC_rx->data->what, n, U8);
3628 RExC_rx->data->count = n;
3630 Copy(s, RExC_rx->data->what + RExC_rx->data->count - n, n, U8);
3631 return RExC_rx->data->count - n;
3634 #ifndef PERL_IN_XSUB_RE
3636 Perl_reginitcolors(pTHX)
3639 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
3641 char *t = savepv(s);
3645 t = strchr(t, '\t');
3651 PL_colors[i] = t = (char *)"";
3656 PL_colors[i++] = (char *)"";
3663 #ifdef TRIE_STUDY_OPT
3664 #define CHECK_RESTUDY_GOTO \
3666 (data.flags & SCF_TRIE_RESTUDY) \
3670 #define CHECK_RESTUDY_GOTO
3673 - pregcomp - compile a regular expression into internal code
3675 * We can't allocate space until we know how big the compiled form will be,
3676 * but we can't compile it (and thus know how big it is) until we've got a
3677 * place to put the code. So we cheat: we compile it twice, once with code
3678 * generation turned off and size counting turned on, and once "for real".
3679 * This also means that we don't allocate space until we are sure that the
3680 * thing really will compile successfully, and we never have to move the
3681 * code and thus invalidate pointers into it. (Note that it has to be in
3682 * one piece because free() must be able to free it all.) [NB: not true in perl]
3684 * Beware that the optimization-preparation code in here knows about some
3685 * of the structure of the compiled regexp. [I'll say.]
3688 Perl_pregcomp(pTHX_ char *exp, char *xend, PMOP *pm)
3699 RExC_state_t RExC_state;
3700 RExC_state_t * const pRExC_state = &RExC_state;
3701 #ifdef TRIE_STUDY_OPT
3703 RExC_state_t copyRExC_state;
3706 GET_RE_DEBUG_FLAGS_DECL;
3709 FAIL("NULL regexp argument");
3711 RExC_utf8 = pm->op_pmdynflags & PMdf_CMP_UTF8;
3714 DEBUG_r(if (!PL_colorset) reginitcolors());
3716 SV *dsv= sv_newmortal();
3717 RE_PV_QUOTED_DECL(s, RExC_utf8,
3718 dsv, RExC_precomp, (xend - exp), 60);
3719 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
3720 PL_colors[4],PL_colors[5],s);
3722 RExC_flags = pm->op_pmflags;
3726 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
3727 RExC_seen_evals = 0;
3730 /* First pass: determine size, legality. */
3737 RExC_emit = &PL_regdummy;
3738 RExC_whilem_seen = 0;
3739 RExC_charnames = NULL;
3741 #if 0 /* REGC() is (currently) a NOP at the first pass.
3742 * Clever compilers notice this and complain. --jhi */
3743 REGC((U8)REG_MAGIC, (char*)RExC_emit);
3745 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
3746 if (reg(pRExC_state, 0, &flags,1) == NULL) {
3747 RExC_precomp = NULL;
3750 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Required "));
3751 DEBUG_COMPILE_r(PerlIO_printf(Perl_debug_log, "size %"IVdf" nodes ", (IV)RExC_size));
3752 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nStarting second pass (creation)\n"));
3755 RExC_lastparse=NULL;
3759 /* Small enough for pointer-storage convention?
3760 If extralen==0, this means that we will not need long jumps. */
3761 if (RExC_size >= 0x10000L && RExC_extralen)
3762 RExC_size += RExC_extralen;
3765 if (RExC_whilem_seen > 15)
3766 RExC_whilem_seen = 15;
3768 /* Allocate space and initialize. */
3769 Newxc(r, sizeof(regexp) + (unsigned)RExC_size * sizeof(regnode),
3772 FAIL("Regexp out of space");
3775 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
3776 Zero(r, sizeof(regexp) + (unsigned)RExC_size * sizeof(regnode), char);
3779 r->prelen = xend - exp;
3780 r->precomp = savepvn(RExC_precomp, r->prelen);
3782 #ifdef PERL_OLD_COPY_ON_WRITE
3783 r->saved_copy = NULL;
3785 r->reganch = pm->op_pmflags & PMf_COMPILETIME;
3786 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
3787 r->lastparen = 0; /* mg.c reads this. */
3789 r->substrs = 0; /* Useful during FAIL. */
3790 r->startp = 0; /* Useful during FAIL. */
3791 r->endp = 0; /* Useful during FAIL. */
3793 Newxz(r->offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
3795 r->offsets[0] = RExC_size;
3797 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
3798 "%s %"UVuf" bytes for offset annotations.\n",
3799 r->offsets ? "Got" : "Couldn't get",
3800 (UV)((2*RExC_size+1) * sizeof(U32))));
3804 /* Second pass: emit code. */
3805 RExC_flags = pm->op_pmflags; /* don't let top level (?i) bleed */
3810 RExC_emit_start = r->program;
3811 RExC_emit = r->program;
3812 /* Store the count of eval-groups for security checks: */
3813 RExC_emit->next_off = (RExC_seen_evals > (I32)U16_MAX) ? U16_MAX : (U16)RExC_seen_evals;
3814 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
3816 if (reg(pRExC_state, 0, &flags,1) == NULL)
3818 /* XXXX To minimize changes to RE engine we always allocate
3819 3-units-long substrs field. */
3820 Newx(r->substrs, 1, struct reg_substr_data);
3823 r->minlen = minlen = sawplus = sawopen = 0;
3824 Zero(r->substrs, 1, struct reg_substr_data);
3825 StructCopy(&zero_scan_data, &data, scan_data_t);
3827 #ifdef TRIE_STUDY_OPT
3829 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
3830 RExC_state=copyRExC_state;
3831 if (data.last_found) {
3832 SvREFCNT_dec(data.longest_fixed);
3833 SvREFCNT_dec(data.longest_float);
3834 SvREFCNT_dec(data.last_found);
3837 copyRExC_state=RExC_state;
3841 /* Dig out information for optimizations. */
3842 r->reganch = pm->op_pmflags & PMf_COMPILETIME; /* Again? */
3843 pm->op_pmflags = RExC_flags;
3845 r->reganch |= ROPT_UTF8; /* Unicode in it? */
3846 r->regstclass = NULL;
3847 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
3848 r->reganch |= ROPT_NAUGHTY;
3849 scan = r->program + 1; /* First BRANCH. */
3851 /* testing for BRANCH here tells us whether there is "must appear"
3852 data in the pattern. If there is then we can use it for optimisations */
3853 if (OP(scan) != BRANCH) { /* Only one top-level choice. */
3855 STRLEN longest_float_length, longest_fixed_length;
3856 struct regnode_charclass_class ch_class; /* pointed to by data */
3858 I32 last_close = 0; /* pointed to by data */
3861 /* Skip introductions and multiplicators >= 1. */
3862 while ((OP(first) == OPEN && (sawopen = 1)) ||
3863 /* An OR of *one* alternative - should not happen now. */
3864 (OP(first) == BRANCH && OP(regnext(first)) != BRANCH) ||
3865 /* for now we can't handle lookbehind IFMATCH*/
3866 (OP(first) == IFMATCH && !first->flags) ||
3867 (OP(first) == PLUS) ||
3868 (OP(first) == MINMOD) ||
3869 /* An {n,m} with n>0 */
3870 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) )
3873 if (OP(first) == PLUS)
3876 first += regarglen[OP(first)];
3877 if (OP(first) == IFMATCH) {
3878 first = NEXTOPER(first);
3879 first += EXTRA_STEP_2ARGS;
3880 } else /* XXX possible optimisation for /(?=)/ */
3881 first = NEXTOPER(first);
3884 /* Starting-point info. */
3886 DEBUG_PEEP("first:",first,0);
3887 /* Ignore EXACT as we deal with it later. */
3888 if (PL_regkind[OP(first)] == EXACT) {
3889 if (OP(first) == EXACT)
3890 NOOP; /* Empty, get anchored substr later. */