3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
19 =head1 Numeric functions
23 This file contains all the stuff needed by perl for manipulating numeric
24 values, including such things as replacements for the OS's atof() function
29 #define PERL_IN_NUMERIC_C
36 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
39 if (f < U32_MAX_P1_HALF)
42 return ((U32) f) | (1 + U32_MAX >> 1);
47 return f > 0 ? U32_MAX : 0 /* NaN */;
54 return f < I32_MIN ? I32_MIN : (I32) f;
57 if (f < U32_MAX_P1_HALF)
60 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
65 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
72 return f < IV_MIN ? IV_MIN : (IV) f;
75 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
76 if (f < UV_MAX_P1_HALF)
79 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
84 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
91 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
94 if (f < UV_MAX_P1_HALF)
97 return ((UV) f) | (1 + UV_MAX >> 1);
102 return f > 0 ? UV_MAX : 0 /* NaN */;
108 converts a string representing a binary number to numeric form.
110 On entry I<start> and I<*len> give the string to scan, I<*flags> gives
111 conversion flags, and I<result> should be NULL or a pointer to an NV.
112 The scan stops at the end of the string, or the first invalid character.
113 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
114 invalid character will also trigger a warning.
115 On return I<*len> is set to the length of the scanned string,
116 and I<*flags> gives output flags.
118 If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
119 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
120 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
121 and writes the value to I<*result> (or the value is discarded if I<result>
124 The binary number may optionally be prefixed with "0b" or "b" unless
125 C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
126 C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
127 number may use '_' characters to separate digits.
131 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
132 which suppresses any message for non-portable numbers that are still valid
137 Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
139 const char *s = start;
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
149 PERL_ARGS_ASSERT_GROK_BIN;
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
156 if (isALPHA_FOLD_EQ(s[0], 'b')) {
160 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
178 /* Bah. We're just overflowed. */
179 /* diag_listed_as: Integer overflow in %s number */
180 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
181 "Integer overflow in binary number");
183 value_nv = (NV) value;
186 /* If an NV has not enough bits in its mantissa to
187 * represent a UV this summing of small low-order numbers
188 * is a waste of time (because the NV cannot preserve
189 * the low-order bits anyway): we could just remember when
190 * did we overflow and in the end just multiply value_nv by the
192 value_nv += (NV)(bit - '0');
195 if (bit == '_' && len && allow_underscores && (bit = s[1])
196 && (bit == '0' || bit == '1'))
202 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
203 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
204 "Illegal binary digit '%c' ignored", *s);
208 if ( ( overflowed && value_nv > 4294967295.0)
210 || (!overflowed && value > 0xffffffff
211 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
214 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
215 "Binary number > 0b11111111111111111111111111111111 non-portable");
222 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
231 converts a string representing a hex number to numeric form.
233 On entry I<start> and I<*len_p> give the string to scan, I<*flags> gives
234 conversion flags, and I<result> should be NULL or a pointer to an NV.
235 The scan stops at the end of the string, or the first invalid character.
236 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
237 invalid character will also trigger a warning.
238 On return I<*len> is set to the length of the scanned string,
239 and I<*flags> gives output flags.
241 If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
242 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
243 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
244 and writes the value to I<*result> (or the value is discarded if I<result>
247 The hex number may optionally be prefixed with "0x" or "x" unless
248 C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
249 C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
250 number may use '_' characters to separate digits.
254 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
255 which suppresses any message for non-portable numbers, but which are valid
260 Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
262 const char *s = start;
266 const UV max_div_16 = UV_MAX / 16;
267 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
268 bool overflowed = FALSE;
270 PERL_ARGS_ASSERT_GROK_HEX;
272 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
273 /* strip off leading x or 0x.
274 for compatibility silently suffer "x" and "0x" as valid hex numbers.
277 if (isALPHA_FOLD_EQ(s[0], 'x')) {
281 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
288 for (; len-- && *s; s++) {
290 /* Write it in this wonky order with a goto to attempt to get the
291 compiler to make the common case integer-only loop pretty tight.
292 With gcc seems to be much straighter code than old scan_hex. */
295 if (value <= max_div_16) {
296 value = (value << 4) | XDIGIT_VALUE(*s);
299 /* Bah. We're just overflowed. */
300 /* diag_listed_as: Integer overflow in %s number */
301 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
302 "Integer overflow in hexadecimal number");
304 value_nv = (NV) value;
307 /* If an NV has not enough bits in its mantissa to
308 * represent a UV this summing of small low-order numbers
309 * is a waste of time (because the NV cannot preserve
310 * the low-order bits anyway): we could just remember when
311 * did we overflow and in the end just multiply value_nv by the
312 * right amount of 16-tuples. */
313 value_nv += (NV) XDIGIT_VALUE(*s);
316 if (*s == '_' && len && allow_underscores && s[1]
323 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
324 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
325 "Illegal hexadecimal digit '%c' ignored", *s);
329 if ( ( overflowed && value_nv > 4294967295.0)
331 || (!overflowed && value > 0xffffffff
332 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
335 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
336 "Hexadecimal number > 0xffffffff non-portable");
343 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
352 converts a string representing an octal number to numeric form.
354 On entry I<start> and I<*len> give the string to scan, I<*flags> gives
355 conversion flags, and I<result> should be NULL or a pointer to an NV.
356 The scan stops at the end of the string, or the first invalid character.
357 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
358 8 or 9 will also trigger a warning.
359 On return I<*len> is set to the length of the scanned string,
360 and I<*flags> gives output flags.
362 If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
363 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
364 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
365 and writes the value to I<*result> (or the value is discarded if I<result>
368 If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
369 number may use '_' characters to separate digits.
373 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
374 which suppresses any message for non-portable numbers, but which are valid
379 Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
381 const char *s = start;
385 const UV max_div_8 = UV_MAX / 8;
386 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
387 bool overflowed = FALSE;
389 PERL_ARGS_ASSERT_GROK_OCT;
391 for (; len-- && *s; s++) {
393 /* Write it in this wonky order with a goto to attempt to get the
394 compiler to make the common case integer-only loop pretty tight.
398 if (value <= max_div_8) {
399 value = (value << 3) | OCTAL_VALUE(*s);
402 /* Bah. We're just overflowed. */
403 /* diag_listed_as: Integer overflow in %s number */
404 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
405 "Integer overflow in octal number");
407 value_nv = (NV) value;
410 /* If an NV has not enough bits in its mantissa to
411 * represent a UV this summing of small low-order numbers
412 * is a waste of time (because the NV cannot preserve
413 * the low-order bits anyway): we could just remember when
414 * did we overflow and in the end just multiply value_nv by the
415 * right amount of 8-tuples. */
416 value_nv += (NV) OCTAL_VALUE(*s);
419 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
424 /* Allow \octal to work the DWIM way (that is, stop scanning
425 * as soon as non-octal characters are seen, complain only if
426 * someone seems to want to use the digits eight and nine. Since we
427 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
429 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
430 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
431 "Illegal octal digit '%c' ignored", *s);
436 if ( ( overflowed && value_nv > 4294967295.0)
438 || (!overflowed && value > 0xffffffff
439 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
442 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
443 "Octal number > 037777777777 non-portable");
450 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
459 For backwards compatibility. Use C<grok_bin> instead.
463 For backwards compatibility. Use C<grok_hex> instead.
467 For backwards compatibility. Use C<grok_oct> instead.
473 Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
476 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
477 const UV ruv = grok_bin (start, &len, &flags, &rnv);
479 PERL_ARGS_ASSERT_SCAN_BIN;
482 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
486 Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
489 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
490 const UV ruv = grok_oct (start, &len, &flags, &rnv);
492 PERL_ARGS_ASSERT_SCAN_OCT;
495 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
499 Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
502 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
503 const UV ruv = grok_hex (start, &len, &flags, &rnv);
505 PERL_ARGS_ASSERT_SCAN_HEX;
508 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
512 =for apidoc grok_numeric_radix
514 Scan and skip for a numeric decimal separator (radix).
519 Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
521 #ifdef USE_LOCALE_NUMERIC
522 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
524 if (IN_LC(LC_NUMERIC)) {
525 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
526 if (PL_numeric_radix_sv) {
528 const char * const radix = SvPV(PL_numeric_radix_sv, len);
529 if (*sp + len <= send && memEQ(*sp, radix, len)) {
531 RESTORE_LC_NUMERIC();
535 RESTORE_LC_NUMERIC();
537 /* always try "." if numeric radix didn't match because
538 * we may have data from different locales mixed */
541 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
543 if (*sp < send && **sp == '.') {
550 /* x86 80-bit extended precision mantissa bits:
552 * 63 62 61 30387+ pre-387
553 * -------- ---- --------
554 * 0 0 0 invalid infinity
557 * 1 0 0 infinity snan
559 * 1 1 0 qnan (1.#IND)
562 * This means that there are 61 bits for nan payload.
564 #if defined(USE_LONG_DOUBLE) && (LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN)
565 # define NV_NAN_BITS 61
567 # define NV_NAN_BITS (NV_MANT_REAL_DIG - 1)
571 =for apidoc nan_hibyte
573 Given an NV, returns pointer to the byte containing the most
574 significant bit of the NaN, this bit is most commonly the
575 quiet/signaling bit of the NaN. The mask will contain a mask
576 appropriate for manipulating the most significant bit.
577 Note that this bit may not be the highest bit of the byte.
579 If the NV is not a NaN, returns NULL.
581 Most platforms have "high bit is one" -> quiet nan.
582 The known opposite exceptions are older MIPS and HPPA platforms.
584 Some platforms do not differentiate between quiet and signaling NaNs.
589 Perl_nan_hibyte(NV *nvp, U8* mask)
591 STRLEN i = (NV_MANT_REAL_DIG - 1) / 8;
593 PERL_ARGS_ASSERT_NAN_HIBYTE;
595 #if defined(USE_LONG_DOUBLE) && (LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN)
596 /* See the definition of NV_NAN_BITS. */
600 STRLEN j = (NV_MANT_REAL_DIG - 1) % 8;
605 return (U8*) nvp + NVSIZE - 1 - i;
607 #ifdef NV_LITTLE_ENDIAN
608 return (U8*) nvp + i;
613 =for apidoc nan_signaling_set
615 Set or unset the NaN signaling-ness.
617 Of those platforms that differentiate between quiet and signaling
618 platforms the majority has the semantics of the most significant bit
619 being on meaning quiet NaN, so for signaling we need to clear the bit.
621 Some platforms (older MIPS, and HPPA) have the opposite
622 semantics, and we set the bit for a signaling NaN.
627 Perl_nan_signaling_set(pTHX_ NV *nvp, bool signaling)
632 PERL_ARGS_ASSERT_NAN_SIGNALING_SET;
634 hibyte = nan_hibyte(nvp, &mask);
636 const NV nan = NV_NAN;
637 /* Decent optimizers should make the irrelevant branch to disappear. */
638 if ((((U8*)&nan)[hibyte - (U8*)nvp] & mask)) {
639 /* x86 style: the most significant bit of the NaN is off
640 * for a signaling NaN, and on for a quiet NaN. */
647 /* MIPS/HPPA style: the most significant bit of the NaN is on
648 * for a signaling NaN, and off for a quiet NaN. */
659 =for apidoc nan_is_signaling
661 Returns true if the nv is a NaN is a signaling NaN.
666 Perl_nan_is_signaling(NV nv)
668 /* Quiet NaN bit pattern (64-bit doubles, ignore endianness):
669 * x86 00 00 00 00 00 00 f8 7f
670 * sparc 7f ff ff ff ff ff ff ff
671 * mips 7f f7 ff ff ff ff ff ff
672 * hppa 7f f4 00 00 00 00 00 00
673 * The "7ff" is the exponent. The most significant bit of the NaN
674 * (note: here, not the most significant bit of the byte) is of
675 * interest: in the x86 style (also in sparc) the bit on means
676 * 'quiet', in the mips style the bit off means 'quiet'. */
677 #ifdef Perl_fp_classify_snan
678 return Perl_fp_classify_snan(nv);
680 if (Perl_isnan(nv)) {
682 U8 *hibyte = nan_hibyte(&nv, &mask);
683 /* Hoping NV_NAN is a quiet nan - this might be a false hope.
684 * XXX Configure test */
685 const NV nan = NV_NAN;
686 return (*hibyte & mask) != (((U8*)&nan)[hibyte - (U8*)&nv] & mask);
693 /* The largest known floating point numbers are the IEEE quadruple
694 * precision of 128 bits. */
695 #define MAX_NV_BYTES (128/8)
697 static const char nan_payload_error[] = "NaN payload error";
701 =for apidoc nan_payload_set
703 Set the NaN payload of the nv.
705 The first byte is the highest order byte of the payload (big-endian).
707 The signaling flag, if true, turns the generated NaN into a signaling one.
708 In most platforms this means turning _off_ the most significant bit of the
709 NaN. Note the _most_ - some platforms have the opposite semantics.
710 Do not assume any portability of the NaN semantics.
715 Perl_nan_payload_set(pTHX_ NV *nvp, const void *bytes, STRLEN byten, bool signaling)
717 /* How many bits we can set in the payload.
719 * Note that whether the most signicant bit is a quiet or
720 * signaling NaN is actually unstandardized. Most platforms use
721 * it as the 'quiet' bit. The known exceptions to this are older
724 * Yet another unstandardized area is what does the difference
725 * actually mean - if it exists: some platforms do not even have
728 * C99 nan() is supposed to generate quiet NaNs. */
729 int bits = NV_NAN_BITS;
734 /* XXX None of this works for doubledouble platforms, or for mixendians. */
736 PERL_ARGS_ASSERT_NAN_PAYLOAD_SET;
743 #ifdef NV_LITTLE_ENDIAN
747 if (byten > MAX_NV_BYTES) {
748 byten = MAX_NV_BYTES;
751 for (i = 0; bits > 0; i++) {
752 U8 b = i < byten ? ((U8*) bytes)[i] : 0;
753 if (bits > 0 && bits < 8) {
754 U8 m = (1 << bits) - 1;
755 ((U8*)nvp)[nvi] &= ~m;
756 ((U8*)nvp)[nvi] |= b & m;
765 #ifdef NV_LITTLE_ENDIAN
770 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
773 nan_signaling_set(nvp, signaling);
777 =for apidoc grok_nan_payload
779 Helper for grok_nan().
781 Parses the "..." in C99-style "nan(...)" strings, and sets the nvp accordingly.
783 If you want the parse the "nan" part you need to use grok_nan().
788 Perl_grok_nan_payload(pTHX_ const char* s, const char* send, bool signaling, int *flags, NV* nvp)
790 U8 bytes[MAX_NV_BYTES];
792 const char *t = send - 1; /* minus one for ')' */
795 PERL_ARGS_ASSERT_GROK_NAN_PAYLOAD;
797 /* XXX: legacy nan payload formats like "nan123",
798 * "nan0xabc", or "nan(s123)" ("s" for signaling). */
800 while (t > s && isSPACE(*t)) t--;
806 *flags |= IS_NUMBER_TRAILING;
810 while (s < t && byten < MAX_NV_BYTES) {
814 if (s[0] == '0' && s + 2 < t &&
815 isALPHA_FOLD_EQ(s[1], 'x') &&
817 const char *u = s + 3;
821 while (isXDIGIT(*u)) u++;
823 uvflags = PERL_SCAN_ALLOW_UNDERSCORES;
824 uv = grok_hex(s, &len, &uvflags, NULL);
825 if ((uvflags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
828 nantype = IS_NUMBER_IN_UV;
831 } else if (s[0] == '0' && s + 2 < t &&
832 isALPHA_FOLD_EQ(s[1], 'b') &&
833 (s[2] == '0' || s[2] == '1')) {
834 const char *u = s + 3;
838 while (*u == '0' || *u == '1') u++;
840 uvflags = PERL_SCAN_ALLOW_UNDERSCORES;
841 uv = grok_bin(s, &len, &uvflags, NULL);
842 if ((uvflags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
845 nantype = IS_NUMBER_IN_UV;
848 } else if ((s[0] == '\'' || s[0] == '"') &&
849 s + 2 < t && t[-1] == s[0]) {
850 /* Perl extension: if the input looks like a string
851 * constant ('' or ""), read its bytes as-they-come. */
852 STRLEN n = t - s - 2;
854 if ((n > MAX_NV_BYTES - byten) ||
855 (n * 8 > NV_MANT_REAL_DIG)) {
859 /* Copy the bytes in reverse so that \x41\x42 ('AB')
860 * is equivalent to 0x4142. In other words, the bytes
861 * are in big-endian order. */
862 for (i = 0; i < n; i++) {
863 bytes[n - i - 1] = s[i + 1];
867 } else if (s < t && isDIGIT(*s)) {
870 grok_number_flags(s, (STRLEN)(t - s), &uv,
872 PERL_SCAN_ALLOW_UNDERSCORES);
873 /* Unfortunately grok_number_flags() doesn't
874 * tell how far we got and the ')' will always
875 * be "trailing", so we need to double-check
876 * whether we had something dubious. */
877 for (u = s; u < send - 1; u++) {
879 *flags |= IS_NUMBER_TRAILING;
888 /* XXX Doesn't do octal: nan("0123").
889 * Probably not a big loss. */
891 if (!(nantype & IS_NUMBER_IN_UV)) {
897 while (uv && byten < MAX_NV_BYTES) {
898 bytes[byten++] = (U8) (uv & 0xFF);
909 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
914 *flags |= IS_NUMBER_TRAILING;
919 nan_payload_set(nvp, bytes, byten, signaling);
928 Helper for grok_infnan().
930 Parses the C99-style "nan(...)" strings, and sets the nvp accordingly.
932 *sp points to the beginning of "nan", which can be also "qnan", "nanq",
933 or "snan", "nans", and case is ignored.
935 The "..." is parsed with grok_nan_payload().
940 Perl_grok_nan(pTHX_ const char* s, const char* send, int *flags, NV* nvp)
942 bool signaling = FALSE;
944 PERL_ARGS_ASSERT_GROK_NAN;
946 if (isALPHA_FOLD_EQ(*s, 'S')) {
948 s++; if (s == send) return s;
949 } else if (isALPHA_FOLD_EQ(*s, 'Q')) {
950 s++; if (s == send) return s;
953 if (isALPHA_FOLD_EQ(*s, 'N')) {
954 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return s;
955 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return s;
958 *flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
960 /* NaN can be followed by various stuff (NaNQ, NaNS), while
961 * some legacy implementations have weird stuff like "NaN%"
962 * (no idea what that means). */
963 if (isALPHA_FOLD_EQ(*s, 's')) {
966 } else if (isALPHA_FOLD_EQ(*s, 'q')) {
971 const char *n = grok_nan_payload(s, send, signaling, flags, nvp);
972 if (n == send) return NULL;
975 *flags |= IS_NUMBER_TRAILING;
981 nan_payload_set(nvp, bytes, 1, signaling);
984 while (s < send && isSPACE(*s)) s++;
986 if (s < send && *s) {
987 /* Note that we here implicitly accept (parse as
988 * "nan", but with warnings) also any other weird
989 * trailing stuff for "nan". In the above we just
990 * check that if we got the C99-style "nan(...)",
991 * the "..." looks sane. If in future we accept
992 * more ways of specifying the nan payload (like
993 * "nan123" or "nan0xabc"), the accepting would
994 * happen around here. */
995 *flags |= IS_NUMBER_TRAILING;
1008 =for apidoc grok_infnan
1010 Helper for grok_number(), accepts various ways of spelling "infinity"
1011 or "not a number", and returns one of the following flag combinations:
1015 IS_NUMBER_INFINITE | IS_NUMBER_NEG
1016 IS_NUMBER_NAN | IS_NUMBER_NEG
1019 possibly |-ed with IS_NUMBER_TRAILING.
1021 If an infinity or a not-a-number is recognized, the *sp will point to
1022 one byte past the end of the recognized string. If the recognition fails,
1023 zero is returned, and the *sp will not move.
1029 Perl_grok_infnan(pTHX_ const char** sp, const char* send, NV* nvp)
1031 const char* s = *sp;
1033 bool odh = FALSE; /* one-dot-hash: 1.#INF */
1035 PERL_ARGS_ASSERT_GROK_INFNAN;
1037 /* XXX there are further legacy formats like HP-UX "++" for Inf
1038 * and "--" for -Inf. While we might be able to grok those in
1039 * string numification, having those in source code might open
1040 * up too much golfing: ++++;
1044 s++; if (s == send) return 0;
1046 else if (*s == '-') {
1047 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
1048 s++; if (s == send) return 0;
1052 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
1053 * Let's keep the dot optional. */
1054 s++; if (s == send) return 0;
1056 s++; if (s == send) return 0;
1059 s++; if (s == send) return 0;
1065 if (isALPHA_FOLD_EQ(*s, 'I')) {
1066 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
1068 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
1069 s++; if (s == send) return 0;
1070 if (isALPHA_FOLD_EQ(*s, 'F')) {
1072 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
1074 flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
1075 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
1076 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
1077 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
1078 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
1081 while (*s == '0') { /* 1.#INF00 */
1085 while (s < send && isSPACE(*s))
1087 if (s < send && *s) {
1088 flags |= IS_NUMBER_TRAILING;
1090 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
1092 *nvp = (flags & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1095 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
1097 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
1101 while (*s == '0') { /* 1.#IND00 */
1105 flags |= IS_NUMBER_TRAILING;
1111 /* Maybe NAN of some sort */
1112 const char *n = grok_nan(s, send, &flags, nvp);
1113 if (n == NULL) return 0;
1117 while (s < send && isSPACE(*s))
1125 =for apidoc grok_number2_flags
1127 Recognise (or not) a number. The type of the number is returned
1128 (0 if unrecognised), otherwise it is a bit-ORed combination of
1129 IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
1130 IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
1132 If the value of the number can fit in a UV, it is returned in the *valuep
1133 IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
1134 will never be set unless *valuep is valid, but *valuep may have been assigned
1135 to during processing even though IS_NUMBER_IN_UV is not set on return.
1136 If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
1137 valuep is non-NULL, but no actual assignment (or SEGV) will occur.
1139 The nvp is used to directly set the value for infinities (Inf) and
1140 not-a-numbers (NaN).
1142 IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
1143 seen (in which case *valuep gives the true value truncated to an integer), and
1144 IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
1145 absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
1146 number is larger than a UV.
1148 C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
1149 non-numeric text on an otherwise successful I<grok>, setting
1150 C<IS_NUMBER_TRAILING> on the result.
1152 =for apidoc grok_number_flags
1154 Identical to grok_number2_flags() with nvp and flags set to zero.
1156 =for apidoc grok_number
1158 Identical to grok_number_flags() with flags set to zero.
1163 Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
1165 PERL_ARGS_ASSERT_GROK_NUMBER;
1167 return grok_number_flags(pv, len, valuep, 0);
1171 Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
1173 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
1175 return grok_number2_flags(pv, len, valuep, NULL, flags);
1178 static const UV uv_max_div_10 = UV_MAX / 10;
1179 static const U8 uv_max_mod_10 = UV_MAX % 10;
1182 Perl_grok_number2_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, NV *nvp, U32 flags)
1185 const char * const send = pv + len;
1189 PERL_ARGS_ASSERT_GROK_NUMBER2_FLAGS;
1191 while (s < send && isSPACE(*s))
1195 } else if (*s == '-') {
1197 numtype = IS_NUMBER_NEG;
1205 /* The first digit (after optional sign): note that might
1206 * also point to "infinity" or "nan", or "1.#INF". */
1209 /* next must be digit or the radix separator or beginning of infinity/nan */
1211 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
1213 UV value = *s - '0';
1214 /* This construction seems to be more optimiser friendly.
1215 (without it gcc does the isDIGIT test and the *s - '0' separately)
1216 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
1217 In theory the optimiser could deduce how far to unroll the loop
1218 before checking for overflow. */
1220 int digit = *s - '0';
1221 if (digit >= 0 && digit <= 9) {
1222 value = value * 10 + digit;
1225 if (digit >= 0 && digit <= 9) {
1226 value = value * 10 + digit;
1229 if (digit >= 0 && digit <= 9) {
1230 value = value * 10 + digit;
1233 if (digit >= 0 && digit <= 9) {
1234 value = value * 10 + digit;
1237 if (digit >= 0 && digit <= 9) {
1238 value = value * 10 + digit;
1241 if (digit >= 0 && digit <= 9) {
1242 value = value * 10 + digit;
1245 if (digit >= 0 && digit <= 9) {
1246 value = value * 10 + digit;
1249 if (digit >= 0 && digit <= 9) {
1250 value = value * 10 + digit;
1252 /* Now got 9 digits, so need to check
1253 each time for overflow. */
1255 while (digit >= 0 && digit <= 9
1256 && (value < uv_max_div_10
1257 || (value == uv_max_div_10
1258 && digit <= uv_max_mod_10))) {
1259 value = value * 10 + digit;
1265 if (digit >= 0 && digit <= 9
1267 /* value overflowed.
1268 skip the remaining digits, don't
1269 worry about setting *valuep. */
1272 } while (s < send && isDIGIT(*s));
1274 IS_NUMBER_GREATER_THAN_UV_MAX;
1294 numtype |= IS_NUMBER_IN_UV;
1299 if (GROK_NUMERIC_RADIX(&s, send)) {
1300 numtype |= IS_NUMBER_NOT_INT;
1301 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
1305 else if (GROK_NUMERIC_RADIX(&s, send)) {
1306 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
1307 /* no digits before the radix means we need digits after it */
1308 if (s < send && isDIGIT(*s)) {
1311 } while (s < send && isDIGIT(*s));
1313 /* integer approximation is valid - it's 0. */
1321 if (s > d && s < send) {
1322 /* we can have an optional exponent part */
1323 if (isALPHA_FOLD_EQ(*s, 'e')) {
1325 if (s < send && (*s == '-' || *s == '+'))
1327 if (s < send && isDIGIT(*s)) {
1330 } while (s < send && isDIGIT(*s));
1332 else if (flags & PERL_SCAN_TRAILING)
1333 return numtype | IS_NUMBER_TRAILING;
1337 /* The only flag we keep is sign. Blow away any "it's UV" */
1338 numtype &= IS_NUMBER_NEG;
1339 numtype |= IS_NUMBER_NOT_INT;
1342 while (s < send && isSPACE(*s))
1346 if (len == 10 && memEQ(pv, "0 but true", 10)) {
1349 return IS_NUMBER_IN_UV;
1351 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1352 if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
1353 /* Really detect inf/nan. Start at d, not s, since the above
1354 * code might have already consumed the "1." or "1". */
1356 int infnan = Perl_grok_infnan(aTHX_ &d, send, &nanv);
1357 if ((infnan & IS_NUMBER_INFINITY)) {
1359 *nvp = (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF;
1361 return (numtype | infnan); /* Keep sign for infinity. */
1363 else if ((infnan & IS_NUMBER_NAN)) {
1367 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1370 else if (flags & PERL_SCAN_TRAILING) {
1371 return numtype | IS_NUMBER_TRAILING;
1378 =for apidoc grok_atou
1380 grok_atou is a safer replacement for atoi and strtol.
1382 grok_atou parses a C-style zero-byte terminated string, looking for
1383 a decimal unsigned integer.
1385 Returns the unsigned integer, if a valid value can be parsed
1386 from the beginning of the string.
1388 Accepts only the decimal digits '0'..'9'.
1390 As opposed to atoi or strtol, grok_atou does NOT allow optional
1391 leading whitespace, or negative inputs. If such features are
1392 required, the calling code needs to explicitly implement those.
1394 If a valid value cannot be parsed, returns either zero (if non-digits
1395 are met before any digits) or UV_MAX (if the value overflows).
1397 Note that extraneous leading zeros also count as an overflow
1398 (meaning that only "0" is the zero).
1400 On failure, the *endptr is also set to NULL, unless endptr is NULL.
1402 Trailing non-digit bytes are allowed if the endptr is non-NULL.
1403 On return the *endptr will contain the pointer to the first non-digit byte.
1405 If the endptr is NULL, the first non-digit byte MUST be
1406 the zero byte terminating the pv, or zero will be returned.
1408 Background: atoi has severe problems with illegal inputs, it cannot be
1409 used for incremental parsing, and therefore should be avoided
1410 atoi and strtol are also affected by locale settings, which can also be
1411 seen as a bug (global state controlled by user environment).
1417 Perl_grok_atou(const char *pv, const char** endptr)
1421 const char* end2; /* Used in case endptr is NULL. */
1422 UV val = 0; /* The return value. */
1424 PERL_ARGS_ASSERT_GROK_ATOU;
1426 eptr = endptr ? endptr : &end2;
1428 /* Single-digit inputs are quite common. */
1431 /* Extra leading zeros cause overflow. */
1436 while (isDIGIT(*s)) {
1437 /* This could be unrolled like in grok_number(), but
1438 * the expected uses of this are not speed-needy, and
1439 * unlikely to need full 64-bitness. */
1440 U8 digit = *s++ - '0';
1441 if (val < uv_max_div_10 ||
1442 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1443 val = val * 10 + digit;
1452 *eptr = NULL; /* If no progress, failed to parse anything. */
1455 if (endptr == NULL && *s) {
1456 return 0; /* If endptr is NULL, no trailing non-digits allowed. */
1462 #ifndef USE_QUADMATH
1464 S_mulexp10(NV value, I32 exponent)
1476 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1477 * and that format does not have *easy* capabilities [1] for
1478 * overflowing doubles 'silently' as IEEE fp does. We also need
1479 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1480 * range is much larger than D_FLOAT it still doesn't do silent
1481 * overflow. Therefore we need to detect early whether we would
1482 * overflow (this is the behaviour of the native string-to-float
1483 * conversion routines, and therefore of native applications, too).
1485 * [1] Trying to establish a condition handler to trap floating point
1486 * exceptions is not a good idea. */
1488 /* In UNICOS and in certain Cray models (such as T90) there is no
1489 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1490 * There is something you can do if you are willing to use some
1491 * inline assembler: the instruction is called DFI-- but that will
1492 * disable *all* floating point interrupts, a little bit too large
1493 * a hammer. Therefore we need to catch potential overflows before
1496 #if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
1498 const NV exp_v = log10(value);
1499 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1502 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1504 while (-exponent >= NV_MAX_10_EXP) {
1505 /* combination does not overflow, but 10^(-exponent) does */
1515 exponent = -exponent;
1516 #ifdef NV_MAX_10_EXP
1517 /* for something like 1234 x 10^-309, the action of calculating
1518 * the intermediate value 10^309 then returning 1234 / (10^309)
1519 * will fail, since 10^309 becomes infinity. In this case try to
1520 * refactor it as 123 / (10^308) etc.
1522 while (value && exponent > NV_MAX_10_EXP) {
1530 #if defined(__osf__)
1531 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1532 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1533 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1534 * but that breaks another set of infnan.t tests. */
1535 # define FP_OVERFLOWS_TO_ZERO
1537 for (bit = 1; exponent; bit <<= 1) {
1538 if (exponent & bit) {
1541 #ifdef FP_OVERFLOWS_TO_ZERO
1543 return value < 0 ? -NV_INF : NV_INF;
1545 /* Floating point exceptions are supposed to be turned off,
1546 * but if we're obviously done, don't risk another iteration.
1548 if (exponent == 0) break;
1552 return negative ? value / result : value * result;
1554 #endif /* #ifndef USE_QUADMATH */
1557 Perl_my_atof(pTHX_ const char* s)
1561 Perl_my_atof2(aTHX_ s, &x);
1564 # ifdef USE_LOCALE_NUMERIC
1565 PERL_ARGS_ASSERT_MY_ATOF;
1568 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
1569 if (PL_numeric_radix_sv && IN_LC(LC_NUMERIC)) {
1570 const char *standard = NULL, *local = NULL;
1571 bool use_standard_radix;
1573 /* Look through the string for the first thing that looks like a
1574 * decimal point: either the value in the current locale or the
1575 * standard fallback of '.'. The one which appears earliest in the
1576 * input string is the one that we should have atof look for. Note
1577 * that we have to determine this beforehand because on some
1578 * systems, Perl_atof2 is just a wrapper around the system's atof.
1580 standard = strchr(s, '.');
1581 local = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1583 use_standard_radix = standard && (!local || standard < local);
1585 if (use_standard_radix)
1586 SET_NUMERIC_STANDARD();
1590 if (use_standard_radix)
1591 SET_NUMERIC_LOCAL();
1595 RESTORE_LC_NUMERIC();
1606 # pragma warning(push)
1607 # pragma warning(disable:4756;disable:4056)
1610 S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1612 const char *p0 = negative ? s - 1 : s;
1614 int infnan = grok_infnan(&p, send, value);
1615 if (infnan && p != p0) {
1616 /* If we can generate inf/nan directly, let's do so. */
1618 if ((infnan & IS_NUMBER_INFINITY)) {
1619 /* grok_infnan() already set the value. */
1624 if ((infnan & IS_NUMBER_NAN)) {
1625 /* grok_infnan() already set the value. */
1630 /* If still here, we didn't have either NV_INF or NV_NAN,
1631 * and can try falling back to native strtod/strtold.
1633 * (Though, are our NV_INF or NV_NAN ever not defined?)
1635 * The native interface might not recognize all the possible
1636 * inf/nan strings Perl recognizes. What we can try
1637 * is to try faking the input. We will try inf/-inf/nan
1638 * as the most promising/portable input. */
1640 const char* fake = NULL;
1643 if ((infnan & IS_NUMBER_INFINITY)) {
1644 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1646 else if ((infnan & IS_NUMBER_NAN)) {
1650 nv = Perl_strtod(fake, &endp);
1652 if ((infnan & IS_NUMBER_INFINITY)) {
1657 /* last resort, may generate SIGFPE */
1658 *value = Perl_exp((NV)1e9);
1659 if ((infnan & IS_NUMBER_NEG))
1662 return (char*)p; /* p, not endp */
1664 else if ((infnan & IS_NUMBER_NAN)) {
1669 /* last resort, may generate SIGFPE */
1670 *value = Perl_log((NV)-1.0);
1672 return (char*)p; /* p, not endp */
1676 #endif /* #ifdef Perl_strtod */
1681 # pragma warning(pop)
1685 Perl_my_atof2(pTHX_ const char* orig, NV* value)
1687 const char* s = orig;
1688 NV result[3] = {0.0, 0.0, 0.0};
1689 #if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1690 const char* send = s + strlen(orig); /* one past the last */
1693 #if defined(USE_PERL_ATOF) && !defined(USE_QUADMATH)
1694 UV accumulator[2] = {0,0}; /* before/after dp */
1695 bool seen_digit = 0;
1696 I32 exp_adjust[2] = {0,0};
1697 I32 exp_acc[2] = {-1, -1};
1698 /* the current exponent adjust for the accumulators */
1703 I32 sig_digits = 0; /* noof significant digits seen so far */
1706 #if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1707 PERL_ARGS_ASSERT_MY_ATOF2;
1709 /* leading whitespace */
1726 if ((endp = S_my_atof_infnan(s, negative, send, value)))
1728 result[2] = strtoflt128(s, &endp);
1730 *value = negative ? -result[2] : result[2];
1735 #elif defined(USE_PERL_ATOF)
1737 /* There is no point in processing more significant digits
1738 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1739 * while we need an upper-bound value. We add 2 to account for this;
1740 * since it will have been conservative on both the first and last digit.
1741 * For example a 32-bit mantissa with an exponent of 4 would have
1742 * exact values in the set
1750 * where for the purposes of calculating NV_DIG we would have to discount
1751 * both the first and last digit, since neither can hold all values from
1752 * 0..9; but for calculating the value we must examine those two digits.
1754 #ifdef MAX_SIG_DIG_PLUS
1755 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1756 possible digits in a NV, especially if NVs are not IEEE compliant
1757 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1758 # define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1760 # define MAX_SIG_DIGITS (NV_DIG+2)
1763 /* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1764 #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1768 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1772 /* we accumulate digits into an integer; when this becomes too
1773 * large, we add the total to NV and start again */
1783 /* don't start counting until we see the first significant
1784 * digit, eg the 5 in 0.00005... */
1785 if (!sig_digits && digit == 0)
1788 if (++sig_digits > MAX_SIG_DIGITS) {
1789 /* limits of precision reached */
1791 ++accumulator[seen_dp];
1792 } else if (digit == 5) {
1793 if (old_digit % 2) { /* round to even - Allen */
1794 ++accumulator[seen_dp];
1802 /* skip remaining digits */
1803 while (isDIGIT(*s)) {
1809 /* warn of loss of precision? */
1812 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1813 /* add accumulator to result and start again */
1814 result[seen_dp] = S_mulexp10(result[seen_dp],
1816 + (NV)accumulator[seen_dp];
1817 accumulator[seen_dp] = 0;
1818 exp_acc[seen_dp] = 0;
1820 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1824 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1826 if (sig_digits > MAX_SIG_DIGITS) {
1829 } while (isDIGIT(*s));
1838 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1840 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1843 if (seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1844 bool expnegative = 0;
1855 exponent = exponent * 10 + (*s++ - '0');
1857 exponent = -exponent;
1862 /* now apply the exponent */
1865 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1866 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1868 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1871 /* now apply the sign */
1873 result[2] = -result[2];
1874 #endif /* USE_PERL_ATOF */
1880 =for apidoc isinfnan
1882 Perl_isinfnan() is utility function that returns true if the NV
1883 argument is either an infinity or a NaN, false otherwise. To test
1884 in more detail, use Perl_isinf() and Perl_isnan().
1886 This is also the logical inverse of Perl_isfinite().
1891 Perl_isinfnan(NV nv)
1907 Checks whether the argument would be either an infinity or NaN when used
1908 as a number, but is careful not to trigger non-numeric or uninitialized
1909 warnings. it assumes the caller has done SvGETMAGIC(sv) already.
1915 Perl_isinfnansv(pTHX_ SV *sv)
1917 PERL_ARGS_ASSERT_ISINFNANSV;
1921 return Perl_isinfnan(SvNVX(sv));
1926 const char *s = SvPV_nomg_const(sv, len);
1927 return cBOOL(grok_infnan(&s, s+len, NULL));
1932 /* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1933 * copysignl to emulate modfl, which is in some platforms missing or
1935 # if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1937 Perl_my_modfl(long double x, long double *ip)
1940 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1942 # elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1944 Perl_my_modfl(long double x, long double *ip)
1947 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1952 /* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1953 #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1955 Perl_my_frexpl(long double x, int *e) {
1956 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1957 return (scalbnl(x, -*e));
1962 =for apidoc Perl_signbit
1964 Return a non-zero integer if the sign bit on an NV is set, and 0 if
1967 If Configure detects this system has a signbit() that will work with
1968 our NVs, then we just use it via the #define in perl.h. Otherwise,
1969 fall back on this implementation. The main use of this function
1972 Configure notes: This function is called 'Perl_signbit' instead of a
1973 plain 'signbit' because it is easy to imagine a system having a signbit()
1974 function or macro that doesn't happen to work with our particular choice
1975 of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
1976 the standard system headers to be happy. Also, this is a no-context
1977 function (no pTHX_) because Perl_signbit() is usually re-#defined in
1978 perl.h as a simple macro call to the system's signbit().
1979 Users should just always call Perl_signbit().
1983 #if !defined(HAS_SIGNBIT)
1985 Perl_signbit(NV x) {
1986 # ifdef Perl_fp_class_nzero
1988 return Perl_fp_class_nzero(x);
1990 return (x < 0.0) ? 1 : 0;
1996 * c-indentation-style: bsd
1998 * indent-tabs-mode: nil
2001 * ex: set ts=8 sts=4 sw=4 et: