5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
78 #ifdef PERL_IN_XSUB_RE
80 EXTERN_C const struct regexp_engine my_reg_engine;
85 #include "dquote_inline.h"
86 #include "invlist_inline.h"
87 #include "unicode_constants.h"
89 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
90 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
91 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
92 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
93 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
94 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
100 /* this is a chain of data about sub patterns we are processing that
101 need to be handled separately/specially in study_chunk. Its so
102 we can simulate recursion without losing state. */
104 typedef struct scan_frame {
105 regnode *last_regnode; /* last node to process in this frame */
106 regnode *next_regnode; /* next node to process when last is reached */
107 U32 prev_recursed_depth;
108 I32 stopparen; /* what stopparen do we use */
110 struct scan_frame *this_prev_frame; /* this previous frame */
111 struct scan_frame *prev_frame; /* previous frame */
112 struct scan_frame *next_frame; /* next frame */
115 /* Certain characters are output as a sequence with the first being a
117 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
120 struct RExC_state_t {
121 U32 flags; /* RXf_* are we folding, multilining? */
122 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
123 char *precomp; /* uncompiled string. */
124 char *precomp_end; /* pointer to end of uncompiled string. */
125 REGEXP *rx_sv; /* The SV that is the regexp. */
126 regexp *rx; /* perl core regexp structure */
127 regexp_internal *rxi; /* internal data for regexp object
129 char *start; /* Start of input for compile */
130 char *end; /* End of input for compile */
131 char *parse; /* Input-scan pointer. */
132 char *copy_start; /* start of copy of input within
133 constructed parse string */
134 char *save_copy_start; /* Provides one level of saving
135 and restoring 'copy_start' */
136 char *copy_start_in_input; /* Position in input string
137 corresponding to copy_start */
138 SSize_t whilem_seen; /* number of WHILEM in this expr */
139 regnode *emit_start; /* Start of emitted-code area */
140 regnode_offset emit; /* Code-emit pointer */
141 I32 naughty; /* How bad is this pattern? */
142 I32 sawback; /* Did we see \1, ...? */
144 SSize_t size; /* Number of regnode equivalents in
147 /* position beyond 'precomp' of the warning message furthest away from
148 * 'precomp'. During the parse, no warnings are raised for any problems
149 * earlier in the parse than this position. This works if warnings are
150 * raised the first time a given spot is parsed, and if only one
151 * independent warning is raised for any given spot */
152 Size_t latest_warn_offset;
154 I32 npar; /* Capture buffer count so far in the
155 parse, (OPEN) plus one. ("par" 0 is
157 I32 total_par; /* During initial parse, is either 0,
158 or -1; the latter indicating a
159 reparse is needed. After that pass,
160 it is what 'npar' became after the
161 pass. Hence, it being > 0 indicates
162 we are in a reparse situation */
163 I32 nestroot; /* root parens we are in - used by
166 regnode_offset *open_parens; /* offsets to open parens */
167 regnode_offset *close_parens; /* offsets to close parens */
168 I32 parens_buf_size; /* #slots malloced open/close_parens */
169 regnode *end_op; /* END node in program */
170 I32 utf8; /* whether the pattern is utf8 or not */
171 I32 orig_utf8; /* whether the pattern was originally in utf8 */
172 /* XXX use this for future optimisation of case
173 * where pattern must be upgraded to utf8. */
174 I32 uni_semantics; /* If a d charset modifier should use unicode
175 rules, even if the pattern is not in
177 HV *paren_names; /* Paren names */
179 regnode **recurse; /* Recurse regops */
180 I32 recurse_count; /* Number of recurse regops we have generated */
181 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
183 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
187 I32 override_recoding;
188 I32 recode_x_to_native;
189 I32 in_multi_char_class;
190 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
192 int code_index; /* next code_blocks[] slot */
193 SSize_t maxlen; /* mininum possible number of chars in string to match */
194 scan_frame *frame_head;
195 scan_frame *frame_last;
199 #ifdef ADD_TO_REGEXEC
200 char *starttry; /* -Dr: where regtry was called. */
201 #define RExC_starttry (pRExC_state->starttry)
203 SV *runtime_code_qr; /* qr with the runtime code blocks */
205 const char *lastparse;
207 AV *paren_name_list; /* idx -> name */
208 U32 study_chunk_recursed_count;
212 #define RExC_lastparse (pRExC_state->lastparse)
213 #define RExC_lastnum (pRExC_state->lastnum)
214 #define RExC_paren_name_list (pRExC_state->paren_name_list)
215 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
216 #define RExC_mysv (pRExC_state->mysv1)
217 #define RExC_mysv1 (pRExC_state->mysv1)
218 #define RExC_mysv2 (pRExC_state->mysv2)
228 #define RExC_flags (pRExC_state->flags)
229 #define RExC_pm_flags (pRExC_state->pm_flags)
230 #define RExC_precomp (pRExC_state->precomp)
231 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
232 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
233 #define RExC_save_copy_start_in_constructed (pRExC_state->save_copy_start)
234 #define RExC_precomp_end (pRExC_state->precomp_end)
235 #define RExC_rx_sv (pRExC_state->rx_sv)
236 #define RExC_rx (pRExC_state->rx)
237 #define RExC_rxi (pRExC_state->rxi)
238 #define RExC_start (pRExC_state->start)
239 #define RExC_end (pRExC_state->end)
240 #define RExC_parse (pRExC_state->parse)
241 #define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
242 #define RExC_whilem_seen (pRExC_state->whilem_seen)
243 #define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
244 under /d from /u ? */
246 #ifdef RE_TRACK_PATTERN_OFFSETS
247 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
250 #define RExC_emit (pRExC_state->emit)
251 #define RExC_emit_start (pRExC_state->emit_start)
252 #define RExC_sawback (pRExC_state->sawback)
253 #define RExC_seen (pRExC_state->seen)
254 #define RExC_size (pRExC_state->size)
255 #define RExC_maxlen (pRExC_state->maxlen)
256 #define RExC_npar (pRExC_state->npar)
257 #define RExC_total_parens (pRExC_state->total_par)
258 #define RExC_parens_buf_size (pRExC_state->parens_buf_size)
259 #define RExC_nestroot (pRExC_state->nestroot)
260 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
261 #define RExC_utf8 (pRExC_state->utf8)
262 #define RExC_uni_semantics (pRExC_state->uni_semantics)
263 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
264 #define RExC_open_parens (pRExC_state->open_parens)
265 #define RExC_close_parens (pRExC_state->close_parens)
266 #define RExC_end_op (pRExC_state->end_op)
267 #define RExC_paren_names (pRExC_state->paren_names)
268 #define RExC_recurse (pRExC_state->recurse)
269 #define RExC_recurse_count (pRExC_state->recurse_count)
270 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
271 #define RExC_study_chunk_recursed_bytes \
272 (pRExC_state->study_chunk_recursed_bytes)
273 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
274 #define RExC_in_lookahead (pRExC_state->in_lookahead)
275 #define RExC_contains_locale (pRExC_state->contains_locale)
276 #define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
279 # define SET_recode_x_to_native(x) \
280 STMT_START { RExC_recode_x_to_native = (x); } STMT_END
282 # define SET_recode_x_to_native(x) NOOP
285 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
286 #define RExC_frame_head (pRExC_state->frame_head)
287 #define RExC_frame_last (pRExC_state->frame_last)
288 #define RExC_frame_count (pRExC_state->frame_count)
289 #define RExC_strict (pRExC_state->strict)
290 #define RExC_study_started (pRExC_state->study_started)
291 #define RExC_warn_text (pRExC_state->warn_text)
292 #define RExC_in_script_run (pRExC_state->in_script_run)
293 #define RExC_use_BRANCHJ (pRExC_state->use_BRANCHJ)
294 #define RExC_unlexed_names (pRExC_state->unlexed_names)
296 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
297 * a flag to disable back-off on the fixed/floating substrings - if it's
298 * a high complexity pattern we assume the benefit of avoiding a full match
299 * is worth the cost of checking for the substrings even if they rarely help.
301 #define RExC_naughty (pRExC_state->naughty)
302 #define TOO_NAUGHTY (10)
303 #define MARK_NAUGHTY(add) \
304 if (RExC_naughty < TOO_NAUGHTY) \
305 RExC_naughty += (add)
306 #define MARK_NAUGHTY_EXP(exp, add) \
307 if (RExC_naughty < TOO_NAUGHTY) \
308 RExC_naughty += RExC_naughty / (exp) + (add)
310 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
311 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
312 ((*s) == '{' && regcurly(s)))
315 * Flags to be passed up and down.
317 #define WORST 0 /* Worst case. */
318 #define HASWIDTH 0x01 /* Known to not match null strings, could match
321 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
322 * character. (There needs to be a case: in the switch statement in regexec.c
323 * for any node marked SIMPLE.) Note that this is not the same thing as
326 #define SPSTART 0x04 /* Starts with * or + */
327 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
328 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
329 #define RESTART_PARSE 0x20 /* Need to redo the parse */
330 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
331 calcuate sizes as UTF-8 */
333 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
335 /* whether trie related optimizations are enabled */
336 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
337 #define TRIE_STUDY_OPT
338 #define FULL_TRIE_STUDY
344 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
345 #define PBITVAL(paren) (1 << ((paren) & 7))
346 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
347 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
348 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
350 #define REQUIRE_UTF8(flagp) STMT_START { \
352 *flagp = RESTART_PARSE|NEED_UTF8; \
357 /* Change from /d into /u rules, and restart the parse. RExC_uni_semantics is
358 * a flag that indicates we need to override /d with /u as a result of
359 * something in the pattern. It should only be used in regards to calling
360 * set_regex_charset() or get_regex_charse() */
361 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
363 if (DEPENDS_SEMANTICS) { \
364 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
365 RExC_uni_semantics = 1; \
366 if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) { \
367 /* No need to restart the parse if we haven't seen \
368 * anything that differs between /u and /d, and no need \
369 * to restart immediately if we're going to reparse \
370 * anyway to count parens */ \
371 *flagp |= RESTART_PARSE; \
372 return restart_retval; \
377 #define REQUIRE_BRANCHJ(flagp, restart_retval) \
379 RExC_use_BRANCHJ = 1; \
380 *flagp |= RESTART_PARSE; \
381 return restart_retval; \
384 /* Until we have completed the parse, we leave RExC_total_parens at 0 or
385 * less. After that, it must always be positive, because the whole re is
386 * considered to be surrounded by virtual parens. Setting it to negative
387 * indicates there is some construct that needs to know the actual number of
388 * parens to be properly handled. And that means an extra pass will be
389 * required after we've counted them all */
390 #define ALL_PARENS_COUNTED (RExC_total_parens > 0)
391 #define REQUIRE_PARENS_PASS \
392 STMT_START { /* No-op if have completed a pass */ \
393 if (! ALL_PARENS_COUNTED) RExC_total_parens = -1; \
395 #define IN_PARENS_PASS (RExC_total_parens < 0)
398 /* This is used to return failure (zero) early from the calling function if
399 * various flags in 'flags' are set. Two flags always cause a return:
400 * 'RESTART_PARSE' and 'NEED_UTF8'. 'extra' can be used to specify any
401 * additional flags that should cause a return; 0 if none. If the return will
402 * be done, '*flagp' is first set to be all of the flags that caused the
404 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
406 if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
407 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
412 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
414 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
415 RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
416 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
417 if (MUST_RESTART(*(flagp))) return 0
419 /* This converts the named class defined in regcomp.h to its equivalent class
420 * number defined in handy.h. */
421 #define namedclass_to_classnum(class) ((int) ((class) / 2))
422 #define classnum_to_namedclass(classnum) ((classnum) * 2)
424 #define _invlist_union_complement_2nd(a, b, output) \
425 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
426 #define _invlist_intersection_complement_2nd(a, b, output) \
427 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
429 /* About scan_data_t.
431 During optimisation we recurse through the regexp program performing
432 various inplace (keyhole style) optimisations. In addition study_chunk
433 and scan_commit populate this data structure with information about
434 what strings MUST appear in the pattern. We look for the longest
435 string that must appear at a fixed location, and we look for the
436 longest string that may appear at a floating location. So for instance
441 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
442 strings (because they follow a .* construct). study_chunk will identify
443 both FOO and BAR as being the longest fixed and floating strings respectively.
445 The strings can be composites, for instance
449 will result in a composite fixed substring 'foo'.
451 For each string some basic information is maintained:
454 This is the position the string must appear at, or not before.
455 It also implicitly (when combined with minlenp) tells us how many
456 characters must match before the string we are searching for.
457 Likewise when combined with minlenp and the length of the string it
458 tells us how many characters must appear after the string we have
462 Only used for floating strings. This is the rightmost point that
463 the string can appear at. If set to SSize_t_MAX it indicates that the
464 string can occur infinitely far to the right.
465 For fixed strings, it is equal to min_offset.
468 A pointer to the minimum number of characters of the pattern that the
469 string was found inside. This is important as in the case of positive
470 lookahead or positive lookbehind we can have multiple patterns
475 The minimum length of the pattern overall is 3, the minimum length
476 of the lookahead part is 3, but the minimum length of the part that
477 will actually match is 1. So 'FOO's minimum length is 3, but the
478 minimum length for the F is 1. This is important as the minimum length
479 is used to determine offsets in front of and behind the string being
480 looked for. Since strings can be composites this is the length of the
481 pattern at the time it was committed with a scan_commit. Note that
482 the length is calculated by study_chunk, so that the minimum lengths
483 are not known until the full pattern has been compiled, thus the
484 pointer to the value.
488 In the case of lookbehind the string being searched for can be
489 offset past the start point of the final matching string.
490 If this value was just blithely removed from the min_offset it would
491 invalidate some of the calculations for how many chars must match
492 before or after (as they are derived from min_offset and minlen and
493 the length of the string being searched for).
494 When the final pattern is compiled and the data is moved from the
495 scan_data_t structure into the regexp structure the information
496 about lookbehind is factored in, with the information that would
497 have been lost precalculated in the end_shift field for the
500 The fields pos_min and pos_delta are used to store the minimum offset
501 and the delta to the maximum offset at the current point in the pattern.
505 struct scan_data_substrs {
506 SV *str; /* longest substring found in pattern */
507 SSize_t min_offset; /* earliest point in string it can appear */
508 SSize_t max_offset; /* latest point in string it can appear */
509 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
510 SSize_t lookbehind; /* is the pos of the string modified by LB */
511 I32 flags; /* per substring SF_* and SCF_* flags */
514 typedef struct scan_data_t {
515 /*I32 len_min; unused */
516 /*I32 len_delta; unused */
520 SSize_t last_end; /* min value, <0 unless valid. */
521 SSize_t last_start_min;
522 SSize_t last_start_max;
523 U8 cur_is_floating; /* whether the last_* values should be set as
524 * the next fixed (0) or floating (1)
527 /* [0] is longest fixed substring so far, [1] is longest float so far */
528 struct scan_data_substrs substrs[2];
530 I32 flags; /* common SF_* and SCF_* flags */
532 SSize_t *last_closep;
533 regnode_ssc *start_class;
537 * Forward declarations for pregcomp()'s friends.
540 static const scan_data_t zero_scan_data = {
541 0, 0, NULL, 0, 0, 0, 0,
543 { NULL, 0, 0, 0, 0, 0 },
544 { NULL, 0, 0, 0, 0, 0 },
551 #define SF_BEFORE_SEOL 0x0001
552 #define SF_BEFORE_MEOL 0x0002
553 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
555 #define SF_IS_INF 0x0040
556 #define SF_HAS_PAR 0x0080
557 #define SF_IN_PAR 0x0100
558 #define SF_HAS_EVAL 0x0200
561 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
562 * longest substring in the pattern. When it is not set the optimiser keeps
563 * track of position, but does not keep track of the actual strings seen,
565 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
568 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
569 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
570 * turned off because of the alternation (BRANCH). */
571 #define SCF_DO_SUBSTR 0x0400
573 #define SCF_DO_STCLASS_AND 0x0800
574 #define SCF_DO_STCLASS_OR 0x1000
575 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
576 #define SCF_WHILEM_VISITED_POS 0x2000
578 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
579 #define SCF_SEEN_ACCEPT 0x8000
580 #define SCF_TRIE_DOING_RESTUDY 0x10000
581 #define SCF_IN_DEFINE 0x20000
586 #define UTF cBOOL(RExC_utf8)
588 /* The enums for all these are ordered so things work out correctly */
589 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
590 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
591 == REGEX_DEPENDS_CHARSET)
592 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
593 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
594 >= REGEX_UNICODE_CHARSET)
595 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
596 == REGEX_ASCII_RESTRICTED_CHARSET)
597 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
598 >= REGEX_ASCII_RESTRICTED_CHARSET)
599 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
600 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
602 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
604 /* For programs that want to be strictly Unicode compatible by dying if any
605 * attempt is made to match a non-Unicode code point against a Unicode
607 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
609 #define OOB_NAMEDCLASS -1
611 /* There is no code point that is out-of-bounds, so this is problematic. But
612 * its only current use is to initialize a variable that is always set before
614 #define OOB_UNICODE 0xDEADBEEF
616 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
619 /* length of regex to show in messages that don't mark a position within */
620 #define RegexLengthToShowInErrorMessages 127
623 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
624 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
625 * op/pragma/warn/regcomp.
627 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
628 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
630 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
631 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
633 /* The code in this file in places uses one level of recursion with parsing
634 * rebased to an alternate string constructed by us in memory. This can take
635 * the form of something that is completely different from the input, or
636 * something that uses the input as part of the alternate. In the first case,
637 * there should be no possibility of an error, as we are in complete control of
638 * the alternate string. But in the second case we don't completely control
639 * the input portion, so there may be errors in that. Here's an example:
641 * is handled specially because \x{df} folds to a sequence of more than one
642 * character: 'ss'. What is done is to create and parse an alternate string,
643 * which looks like this:
644 * /(?:\x{DF}|[abc\x{DF}def])/ui
645 * where it uses the input unchanged in the middle of something it constructs,
646 * which is a branch for the DF outside the character class, and clustering
647 * parens around the whole thing. (It knows enough to skip the DF inside the
648 * class while in this substitute parse.) 'abc' and 'def' may have errors that
649 * need to be reported. The general situation looks like this:
651 * |<------- identical ------>|
653 * Input: ---------------------------------------------------------------
654 * Constructed: ---------------------------------------------------
656 * |<------- identical ------>|
658 * sI..eI is the portion of the input pattern we are concerned with here.
659 * sC..EC is the constructed substitute parse string.
660 * sC..tC is constructed by us
661 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
662 * In the diagram, these are vertically aligned.
663 * eC..EC is also constructed by us.
664 * xC is the position in the substitute parse string where we found a
666 * xI is the position in the original pattern corresponding to xC.
668 * We want to display a message showing the real input string. Thus we need to
669 * translate from xC to xI. We know that xC >= tC, since the portion of the
670 * string sC..tC has been constructed by us, and so shouldn't have errors. We
672 * xI = tI + (xC - tC)
674 * When the substitute parse is constructed, the code needs to set:
677 * RExC_copy_start_in_input (tI)
678 * RExC_copy_start_in_constructed (tC)
679 * and restore them when done.
681 * During normal processing of the input pattern, both
682 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
683 * sI, so that xC equals xI.
686 #define sI RExC_precomp
687 #define eI RExC_precomp_end
688 #define sC RExC_start
690 #define tI RExC_copy_start_in_input
691 #define tC RExC_copy_start_in_constructed
692 #define xI(xC) (tI + (xC - tC))
693 #define xI_offset(xC) (xI(xC) - sI)
695 #define REPORT_LOCATION_ARGS(xC) \
697 (xI(xC) > eI) /* Don't run off end */ \
698 ? eI - sI /* Length before the <--HERE */ \
699 : ((xI_offset(xC) >= 0) \
701 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
702 IVdf " trying to output message for " \
704 __FILE__, __LINE__, (IV) xI_offset(xC), \
705 ((int) (eC - sC)), sC), 0)), \
706 sI), /* The input pattern printed up to the <--HERE */ \
708 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
709 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
711 /* Used to point after bad bytes for an error message, but avoid skipping
712 * past a nul byte. */
713 #define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)
715 /* Set up to clean up after our imminent demise */
716 #define PREPARE_TO_DIE \
719 SAVEFREESV(RExC_rx_sv); \
720 if (RExC_open_parens) \
721 SAVEFREEPV(RExC_open_parens); \
722 if (RExC_close_parens) \
723 SAVEFREEPV(RExC_close_parens); \
727 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
728 * arg. Show regex, up to a maximum length. If it's too long, chop and add
731 #define _FAIL(code) STMT_START { \
732 const char *ellipses = ""; \
733 IV len = RExC_precomp_end - RExC_precomp; \
736 if (len > RegexLengthToShowInErrorMessages) { \
737 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
738 len = RegexLengthToShowInErrorMessages - 10; \
744 #define FAIL(msg) _FAIL( \
745 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
746 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
748 #define FAIL2(msg,arg) _FAIL( \
749 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
750 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
752 #define FAIL3(msg,arg1,arg2) _FAIL( \
753 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
754 arg1, arg2, UTF8fARG(UTF, len, RExC_precomp), ellipses))
757 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
759 #define Simple_vFAIL(m) STMT_START { \
760 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
761 m, REPORT_LOCATION_ARGS(RExC_parse)); \
765 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
767 #define vFAIL(m) STMT_START { \
773 * Like Simple_vFAIL(), but accepts two arguments.
775 #define Simple_vFAIL2(m,a1) STMT_START { \
776 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
777 REPORT_LOCATION_ARGS(RExC_parse)); \
781 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
783 #define vFAIL2(m,a1) STMT_START { \
785 Simple_vFAIL2(m, a1); \
790 * Like Simple_vFAIL(), but accepts three arguments.
792 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
793 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
794 REPORT_LOCATION_ARGS(RExC_parse)); \
798 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
800 #define vFAIL3(m,a1,a2) STMT_START { \
802 Simple_vFAIL3(m, a1, a2); \
806 * Like Simple_vFAIL(), but accepts four arguments.
808 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
809 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
810 REPORT_LOCATION_ARGS(RExC_parse)); \
813 #define vFAIL4(m,a1,a2,a3) STMT_START { \
815 Simple_vFAIL4(m, a1, a2, a3); \
818 /* A specialized version of vFAIL2 that works with UTF8f */
819 #define vFAIL2utf8f(m, a1) STMT_START { \
821 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
822 REPORT_LOCATION_ARGS(RExC_parse)); \
825 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
827 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
828 REPORT_LOCATION_ARGS(RExC_parse)); \
831 /* Setting this to NULL is a signal to not output warnings */
832 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE \
834 RExC_save_copy_start_in_constructed = RExC_copy_start_in_constructed;\
835 RExC_copy_start_in_constructed = NULL; \
837 #define RESTORE_WARNINGS \
838 RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed
840 /* Since a warning can be generated multiple times as the input is reparsed, we
841 * output it the first time we come to that point in the parse, but suppress it
842 * otherwise. 'RExC_copy_start_in_constructed' being NULL is a flag to not
843 * generate any warnings */
844 #define TO_OUTPUT_WARNINGS(loc) \
845 ( RExC_copy_start_in_constructed \
846 && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
848 /* After we've emitted a warning, we save the position in the input so we don't
850 #define UPDATE_WARNINGS_LOC(loc) \
852 if (TO_OUTPUT_WARNINGS(loc)) { \
853 RExC_latest_warn_offset = MAX(sI, MIN(eI, xI(loc))) \
858 /* 'warns' is the output of the packWARNx macro used in 'code' */
859 #define _WARN_HELPER(loc, warns, code) \
861 if (! RExC_copy_start_in_constructed) { \
862 Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
863 " expected at '%s'", \
864 __FILE__, __LINE__, loc); \
866 if (TO_OUTPUT_WARNINGS(loc)) { \
870 UPDATE_WARNINGS_LOC(loc); \
874 /* m is not necessarily a "literal string", in this macro */
875 #define reg_warn_non_literal_string(loc, m) \
876 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
877 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
878 "%s" REPORT_LOCATION, \
879 m, REPORT_LOCATION_ARGS(loc)))
881 #define ckWARNreg(loc,m) \
882 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
883 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
885 REPORT_LOCATION_ARGS(loc)))
887 #define vWARN(loc, m) \
888 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
889 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
891 REPORT_LOCATION_ARGS(loc))) \
893 #define vWARN_dep(loc, m) \
894 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
895 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
897 REPORT_LOCATION_ARGS(loc)))
899 #define ckWARNdep(loc,m) \
900 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
901 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
903 REPORT_LOCATION_ARGS(loc)))
905 #define ckWARNregdep(loc,m) \
906 _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
907 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
910 REPORT_LOCATION_ARGS(loc)))
912 #define ckWARN2reg_d(loc,m, a1) \
913 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
914 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
916 a1, REPORT_LOCATION_ARGS(loc)))
918 #define ckWARN2reg(loc, m, a1) \
919 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
920 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
922 a1, REPORT_LOCATION_ARGS(loc)))
924 #define vWARN3(loc, m, a1, a2) \
925 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
926 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
928 a1, a2, REPORT_LOCATION_ARGS(loc)))
930 #define ckWARN3reg(loc, m, a1, a2) \
931 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
932 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
935 REPORT_LOCATION_ARGS(loc)))
937 #define vWARN4(loc, m, a1, a2, a3) \
938 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
939 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
942 REPORT_LOCATION_ARGS(loc)))
944 #define ckWARN4reg(loc, m, a1, a2, a3) \
945 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
946 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
949 REPORT_LOCATION_ARGS(loc)))
951 #define vWARN5(loc, m, a1, a2, a3, a4) \
952 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
953 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
956 REPORT_LOCATION_ARGS(loc)))
958 #define ckWARNexperimental(loc, class, m) \
959 _WARN_HELPER(loc, packWARN(class), \
960 Perl_ck_warner_d(aTHX_ packWARN(class), \
962 REPORT_LOCATION_ARGS(loc)))
964 /* Convert between a pointer to a node and its offset from the beginning of the
966 #define REGNODE_p(offset) (RExC_emit_start + (offset))
967 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
969 /* Macros for recording node offsets. 20001227 mjd@plover.com
970 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
971 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
972 * Element 0 holds the number n.
973 * Position is 1 indexed.
975 #ifndef RE_TRACK_PATTERN_OFFSETS
976 #define Set_Node_Offset_To_R(offset,byte)
977 #define Set_Node_Offset(node,byte)
978 #define Set_Cur_Node_Offset
979 #define Set_Node_Length_To_R(node,len)
980 #define Set_Node_Length(node,len)
981 #define Set_Node_Cur_Length(node,start)
982 #define Node_Offset(n)
983 #define Node_Length(n)
984 #define Set_Node_Offset_Length(node,offset,len)
985 #define ProgLen(ri) ri->u.proglen
986 #define SetProgLen(ri,x) ri->u.proglen = x
987 #define Track_Code(code)
989 #define ProgLen(ri) ri->u.offsets[0]
990 #define SetProgLen(ri,x) ri->u.offsets[0] = x
991 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
992 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
993 __LINE__, (int)(offset), (int)(byte))); \
995 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
998 RExC_offsets[2*(offset)-1] = (byte); \
1002 #define Set_Node_Offset(node,byte) \
1003 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
1004 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
1006 #define Set_Node_Length_To_R(node,len) STMT_START { \
1007 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
1008 __LINE__, (int)(node), (int)(len))); \
1010 Perl_croak(aTHX_ "value of node is %d in Length macro", \
1013 RExC_offsets[2*(node)] = (len); \
1017 #define Set_Node_Length(node,len) \
1018 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
1019 #define Set_Node_Cur_Length(node, start) \
1020 Set_Node_Length(node, RExC_parse - start)
1022 /* Get offsets and lengths */
1023 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
1024 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
1026 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
1027 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
1028 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
1031 #define Track_Code(code) STMT_START { code } STMT_END
1034 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
1035 #define EXPERIMENTAL_INPLACESCAN
1036 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
1040 Perl_re_printf(pTHX_ const char *fmt, ...)
1044 PerlIO *f= Perl_debug_log;
1045 PERL_ARGS_ASSERT_RE_PRINTF;
1047 result = PerlIO_vprintf(f, fmt, ap);
1053 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1057 PerlIO *f= Perl_debug_log;
1058 PERL_ARGS_ASSERT_RE_INDENTF;
1059 va_start(ap, depth);
1060 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1061 result = PerlIO_vprintf(f, fmt, ap);
1065 #endif /* DEBUGGING */
1067 #define DEBUG_RExC_seen() \
1068 DEBUG_OPTIMISE_MORE_r({ \
1069 Perl_re_printf( aTHX_ "RExC_seen: "); \
1071 if (RExC_seen & REG_ZERO_LEN_SEEN) \
1072 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
1074 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
1075 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
1077 if (RExC_seen & REG_GPOS_SEEN) \
1078 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1080 if (RExC_seen & REG_RECURSE_SEEN) \
1081 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1083 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1084 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1086 if (RExC_seen & REG_VERBARG_SEEN) \
1087 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1089 if (RExC_seen & REG_CUTGROUP_SEEN) \
1090 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1092 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1093 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1095 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1096 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1098 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1099 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1101 Perl_re_printf( aTHX_ "\n"); \
1104 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1105 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1110 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1111 const char *close_str)
1116 Perl_re_printf( aTHX_ "%s", open_str);
1117 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1118 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1119 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1120 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1121 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1122 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1123 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1124 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1125 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1126 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1127 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1128 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1129 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1130 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1131 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1132 Perl_re_printf( aTHX_ "%s", close_str);
1137 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1138 U32 depth, int is_inf)
1140 GET_RE_DEBUG_FLAGS_DECL;
1142 DEBUG_OPTIMISE_MORE_r({
1145 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1149 (IV)data->pos_delta,
1153 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1155 Perl_re_printf( aTHX_
1156 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1158 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1159 is_inf ? "INF " : ""
1162 if (data->last_found) {
1164 Perl_re_printf(aTHX_
1165 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1166 SvPVX_const(data->last_found),
1168 (IV)data->last_start_min,
1169 (IV)data->last_start_max
1172 for (i = 0; i < 2; i++) {
1173 Perl_re_printf(aTHX_
1174 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1175 data->cur_is_floating == i ? "*" : "",
1176 i ? "Float" : "Fixed",
1177 SvPVX_const(data->substrs[i].str),
1178 (IV)data->substrs[i].min_offset,
1179 (IV)data->substrs[i].max_offset
1181 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1185 Perl_re_printf( aTHX_ "\n");
1191 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1192 regnode *scan, U32 depth, U32 flags)
1194 GET_RE_DEBUG_FLAGS_DECL;
1201 Next = regnext(scan);
1202 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1203 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1206 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1207 Next ? (REG_NODE_NUM(Next)) : 0 );
1208 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1209 Perl_re_printf( aTHX_ "\n");
1214 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1215 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1217 # define DEBUG_PEEP(str, scan, depth, flags) \
1218 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1221 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1222 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1226 /* =========================================================
1227 * BEGIN edit_distance stuff.
1229 * This calculates how many single character changes of any type are needed to
1230 * transform a string into another one. It is taken from version 3.1 of
1232 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1235 /* Our unsorted dictionary linked list. */
1236 /* Note we use UVs, not chars. */
1241 struct dictionary* next;
1243 typedef struct dictionary item;
1246 PERL_STATIC_INLINE item*
1247 push(UV key, item* curr)
1250 Newx(head, 1, item);
1258 PERL_STATIC_INLINE item*
1259 find(item* head, UV key)
1261 item* iterator = head;
1263 if (iterator->key == key){
1266 iterator = iterator->next;
1272 PERL_STATIC_INLINE item*
1273 uniquePush(item* head, UV key)
1275 item* iterator = head;
1278 if (iterator->key == key) {
1281 iterator = iterator->next;
1284 return push(key, head);
1287 PERL_STATIC_INLINE void
1288 dict_free(item* head)
1290 item* iterator = head;
1293 item* temp = iterator;
1294 iterator = iterator->next;
1301 /* End of Dictionary Stuff */
1303 /* All calculations/work are done here */
1305 S_edit_distance(const UV* src,
1307 const STRLEN x, /* length of src[] */
1308 const STRLEN y, /* length of tgt[] */
1309 const SSize_t maxDistance
1313 UV swapCount, swapScore, targetCharCount, i, j;
1315 UV score_ceil = x + y;
1317 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1319 /* intialize matrix start values */
1320 Newx(scores, ( (x + 2) * (y + 2)), UV);
1321 scores[0] = score_ceil;
1322 scores[1 * (y + 2) + 0] = score_ceil;
1323 scores[0 * (y + 2) + 1] = score_ceil;
1324 scores[1 * (y + 2) + 1] = 0;
1325 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1330 for (i=1;i<=x;i++) {
1332 head = uniquePush(head, src[i]);
1333 scores[(i+1) * (y + 2) + 1] = i;
1334 scores[(i+1) * (y + 2) + 0] = score_ceil;
1337 for (j=1;j<=y;j++) {
1340 head = uniquePush(head, tgt[j]);
1341 scores[1 * (y + 2) + (j + 1)] = j;
1342 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1345 targetCharCount = find(head, tgt[j-1])->value;
1346 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1348 if (src[i-1] != tgt[j-1]){
1349 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1353 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1357 find(head, src[i-1])->value = i;
1361 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1364 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1368 /* END of edit_distance() stuff
1369 * ========================================================= */
1371 /* is c a control character for which we have a mnemonic? */
1372 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1375 S_cntrl_to_mnemonic(const U8 c)
1377 /* Returns the mnemonic string that represents character 'c', if one
1378 * exists; NULL otherwise. The only ones that exist for the purposes of
1379 * this routine are a few control characters */
1382 case '\a': return "\\a";
1383 case '\b': return "\\b";
1384 case ESC_NATIVE: return "\\e";
1385 case '\f': return "\\f";
1386 case '\n': return "\\n";
1387 case '\r': return "\\r";
1388 case '\t': return "\\t";
1394 /* Mark that we cannot extend a found fixed substring at this point.
1395 Update the longest found anchored substring or the longest found
1396 floating substrings if needed. */
1399 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1400 SSize_t *minlenp, int is_inf)
1402 const STRLEN l = CHR_SVLEN(data->last_found);
1403 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1404 const STRLEN old_l = CHR_SVLEN(longest_sv);
1405 GET_RE_DEBUG_FLAGS_DECL;
1407 PERL_ARGS_ASSERT_SCAN_COMMIT;
1409 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1410 const U8 i = data->cur_is_floating;
1411 SvSetMagicSV(longest_sv, data->last_found);
1412 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1415 data->substrs[0].max_offset = data->substrs[0].min_offset;
1417 data->substrs[1].max_offset = (l
1418 ? data->last_start_max
1419 : (data->pos_delta > SSize_t_MAX - data->pos_min
1421 : data->pos_min + data->pos_delta));
1423 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1424 data->substrs[1].max_offset = SSize_t_MAX;
1427 if (data->flags & SF_BEFORE_EOL)
1428 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1430 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1431 data->substrs[i].minlenp = minlenp;
1432 data->substrs[i].lookbehind = 0;
1435 SvCUR_set(data->last_found, 0);
1437 SV * const sv = data->last_found;
1438 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1439 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1444 data->last_end = -1;
1445 data->flags &= ~SF_BEFORE_EOL;
1446 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1449 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1450 * list that describes which code points it matches */
1453 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1455 /* Set the SSC 'ssc' to match an empty string or any code point */
1457 PERL_ARGS_ASSERT_SSC_ANYTHING;
1459 assert(is_ANYOF_SYNTHETIC(ssc));
1461 /* mortalize so won't leak */
1462 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1463 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1467 S_ssc_is_anything(const regnode_ssc *ssc)
1469 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1470 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1471 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1472 * in any way, so there's no point in using it */
1477 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1479 assert(is_ANYOF_SYNTHETIC(ssc));
1481 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1485 /* See if the list consists solely of the range 0 - Infinity */
1486 invlist_iterinit(ssc->invlist);
1487 ret = invlist_iternext(ssc->invlist, &start, &end)
1491 invlist_iterfinish(ssc->invlist);
1497 /* If e.g., both \w and \W are set, matches everything */
1498 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1500 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1501 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1511 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1513 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1514 * string, any code point, or any posix class under locale */
1516 PERL_ARGS_ASSERT_SSC_INIT;
1518 Zero(ssc, 1, regnode_ssc);
1519 set_ANYOF_SYNTHETIC(ssc);
1520 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1523 /* If any portion of the regex is to operate under locale rules that aren't
1524 * fully known at compile time, initialization includes it. The reason
1525 * this isn't done for all regexes is that the optimizer was written under
1526 * the assumption that locale was all-or-nothing. Given the complexity and
1527 * lack of documentation in the optimizer, and that there are inadequate
1528 * test cases for locale, many parts of it may not work properly, it is
1529 * safest to avoid locale unless necessary. */
1530 if (RExC_contains_locale) {
1531 ANYOF_POSIXL_SETALL(ssc);
1534 ANYOF_POSIXL_ZERO(ssc);
1539 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1540 const regnode_ssc *ssc)
1542 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1543 * to the list of code points matched, and locale posix classes; hence does
1544 * not check its flags) */
1549 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1551 assert(is_ANYOF_SYNTHETIC(ssc));
1553 invlist_iterinit(ssc->invlist);
1554 ret = invlist_iternext(ssc->invlist, &start, &end)
1558 invlist_iterfinish(ssc->invlist);
1564 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1571 #define INVLIST_INDEX 0
1572 #define ONLY_LOCALE_MATCHES_INDEX 1
1573 #define DEFERRED_USER_DEFINED_INDEX 2
1576 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1577 const regnode_charclass* const node)
1579 /* Returns a mortal inversion list defining which code points are matched
1580 * by 'node', which is of type ANYOF. Handles complementing the result if
1581 * appropriate. If some code points aren't knowable at this time, the
1582 * returned list must, and will, contain every code point that is a
1587 SV* only_utf8_locale_invlist = NULL;
1589 const U32 n = ARG(node);
1590 bool new_node_has_latin1 = FALSE;
1591 const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFHr))
1593 : ANYOF_FLAGS(node);
1595 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1597 /* Look at the data structure created by S_set_ANYOF_arg() */
1598 if (n != ANYOF_ONLY_HAS_BITMAP) {
1599 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1600 AV * const av = MUTABLE_AV(SvRV(rv));
1601 SV **const ary = AvARRAY(av);
1602 assert(RExC_rxi->data->what[n] == 's');
1604 if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
1606 /* Here there are things that won't be known until runtime -- we
1607 * have to assume it could be anything */
1608 invlist = sv_2mortal(_new_invlist(1));
1609 return _add_range_to_invlist(invlist, 0, UV_MAX);
1611 else if (ary[INVLIST_INDEX]) {
1613 /* Use the node's inversion list */
1614 invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
1617 /* Get the code points valid only under UTF-8 locales */
1618 if ( (flags & ANYOFL_FOLD)
1619 && av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
1621 only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
1626 invlist = sv_2mortal(_new_invlist(0));
1629 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1630 * code points, and an inversion list for the others, but if there are code
1631 * points that should match only conditionally on the target string being
1632 * UTF-8, those are placed in the inversion list, and not the bitmap.
1633 * Since there are circumstances under which they could match, they are
1634 * included in the SSC. But if the ANYOF node is to be inverted, we have
1635 * to exclude them here, so that when we invert below, the end result
1636 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1637 * have to do this here before we add the unconditionally matched code
1639 if (flags & ANYOF_INVERT) {
1640 _invlist_intersection_complement_2nd(invlist,
1645 /* Add in the points from the bit map */
1646 if (! inRANGE(OP(node), ANYOFH, ANYOFHr)) {
1647 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1648 if (ANYOF_BITMAP_TEST(node, i)) {
1649 unsigned int start = i++;
1651 for (; i < NUM_ANYOF_CODE_POINTS
1652 && ANYOF_BITMAP_TEST(node, i); ++i)
1656 invlist = _add_range_to_invlist(invlist, start, i-1);
1657 new_node_has_latin1 = TRUE;
1662 /* If this can match all upper Latin1 code points, have to add them
1663 * as well. But don't add them if inverting, as when that gets done below,
1664 * it would exclude all these characters, including the ones it shouldn't
1665 * that were added just above */
1666 if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
1667 && (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1669 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1672 /* Similarly for these */
1673 if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1674 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1677 if (flags & ANYOF_INVERT) {
1678 _invlist_invert(invlist);
1680 else if (flags & ANYOFL_FOLD) {
1681 if (new_node_has_latin1) {
1683 /* Under /li, any 0-255 could fold to any other 0-255, depending on
1684 * the locale. We can skip this if there are no 0-255 at all. */
1685 _invlist_union(invlist, PL_Latin1, &invlist);
1687 invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
1688 invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
1691 if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
1692 invlist = add_cp_to_invlist(invlist, 'I');
1694 if (_invlist_contains_cp(invlist,
1695 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
1697 invlist = add_cp_to_invlist(invlist, 'i');
1702 /* Similarly add the UTF-8 locale possible matches. These have to be
1703 * deferred until after the non-UTF-8 locale ones are taken care of just
1704 * above, or it leads to wrong results under ANYOF_INVERT */
1705 if (only_utf8_locale_invlist) {
1706 _invlist_union_maybe_complement_2nd(invlist,
1707 only_utf8_locale_invlist,
1708 flags & ANYOF_INVERT,
1715 /* These two functions currently do the exact same thing */
1716 #define ssc_init_zero ssc_init
1718 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1719 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1721 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1722 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1723 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1726 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1727 const regnode_charclass *and_with)
1729 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1730 * another SSC or a regular ANYOF class. Can create false positives. */
1733 U8 and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFHr)
1735 : ANYOF_FLAGS(and_with);
1738 PERL_ARGS_ASSERT_SSC_AND;
1740 assert(is_ANYOF_SYNTHETIC(ssc));
1742 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1743 * the code point inversion list and just the relevant flags */
1744 if (is_ANYOF_SYNTHETIC(and_with)) {
1745 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1746 anded_flags = and_with_flags;
1748 /* XXX This is a kludge around what appears to be deficiencies in the
1749 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1750 * there are paths through the optimizer where it doesn't get weeded
1751 * out when it should. And if we don't make some extra provision for
1752 * it like the code just below, it doesn't get added when it should.
1753 * This solution is to add it only when AND'ing, which is here, and
1754 * only when what is being AND'ed is the pristine, original node
1755 * matching anything. Thus it is like adding it to ssc_anything() but
1756 * only when the result is to be AND'ed. Probably the same solution
1757 * could be adopted for the same problem we have with /l matching,
1758 * which is solved differently in S_ssc_init(), and that would lead to
1759 * fewer false positives than that solution has. But if this solution
1760 * creates bugs, the consequences are only that a warning isn't raised
1761 * that should be; while the consequences for having /l bugs is
1762 * incorrect matches */
1763 if (ssc_is_anything((regnode_ssc *)and_with)) {
1764 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1768 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1769 if (OP(and_with) == ANYOFD) {
1770 anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
1773 anded_flags = and_with_flags
1774 &( ANYOF_COMMON_FLAGS
1775 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1776 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1777 if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
1779 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1784 ANYOF_FLAGS(ssc) &= anded_flags;
1786 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1787 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1788 * 'and_with' may be inverted. When not inverted, we have the situation of
1790 * (C1 | P1) & (C2 | P2)
1791 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1792 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1793 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1794 * <= ((C1 & C2) | P1 | P2)
1795 * Alternatively, the last few steps could be:
1796 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1797 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1798 * <= (C1 | C2 | (P1 & P2))
1799 * We favor the second approach if either P1 or P2 is non-empty. This is
1800 * because these components are a barrier to doing optimizations, as what
1801 * they match cannot be known until the moment of matching as they are
1802 * dependent on the current locale, 'AND"ing them likely will reduce or
1804 * But we can do better if we know that C1,P1 are in their initial state (a
1805 * frequent occurrence), each matching everything:
1806 * (<everything>) & (C2 | P2) = C2 | P2
1807 * Similarly, if C2,P2 are in their initial state (again a frequent
1808 * occurrence), the result is a no-op
1809 * (C1 | P1) & (<everything>) = C1 | P1
1812 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1813 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1814 * <= (C1 & ~C2) | (P1 & ~P2)
1817 if ((and_with_flags & ANYOF_INVERT)
1818 && ! is_ANYOF_SYNTHETIC(and_with))
1822 ssc_intersection(ssc,
1824 FALSE /* Has already been inverted */
1827 /* If either P1 or P2 is empty, the intersection will be also; can skip
1829 if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
1830 ANYOF_POSIXL_ZERO(ssc);
1832 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1834 /* Note that the Posix class component P from 'and_with' actually
1836 * P = Pa | Pb | ... | Pn
1837 * where each component is one posix class, such as in [\w\s].
1839 * ~P = ~(Pa | Pb | ... | Pn)
1840 * = ~Pa & ~Pb & ... & ~Pn
1841 * <= ~Pa | ~Pb | ... | ~Pn
1842 * The last is something we can easily calculate, but unfortunately
1843 * is likely to have many false positives. We could do better
1844 * in some (but certainly not all) instances if two classes in
1845 * P have known relationships. For example
1846 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1848 * :lower: & :print: = :lower:
1849 * And similarly for classes that must be disjoint. For example,
1850 * since \s and \w can have no elements in common based on rules in
1851 * the POSIX standard,
1852 * \w & ^\S = nothing
1853 * Unfortunately, some vendor locales do not meet the Posix
1854 * standard, in particular almost everything by Microsoft.
1855 * The loop below just changes e.g., \w into \W and vice versa */
1857 regnode_charclass_posixl temp;
1858 int add = 1; /* To calculate the index of the complement */
1860 Zero(&temp, 1, regnode_charclass_posixl);
1861 ANYOF_POSIXL_ZERO(&temp);
1862 for (i = 0; i < ANYOF_MAX; i++) {
1864 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1865 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1867 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1868 ANYOF_POSIXL_SET(&temp, i + add);
1870 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1872 ANYOF_POSIXL_AND(&temp, ssc);
1874 } /* else ssc already has no posixes */
1875 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1876 in its initial state */
1877 else if (! is_ANYOF_SYNTHETIC(and_with)
1878 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1880 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1881 * copy it over 'ssc' */
1882 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1883 if (is_ANYOF_SYNTHETIC(and_with)) {
1884 StructCopy(and_with, ssc, regnode_ssc);
1887 ssc->invlist = anded_cp_list;
1888 ANYOF_POSIXL_ZERO(ssc);
1889 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1890 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1894 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1895 || (and_with_flags & ANYOF_MATCHES_POSIXL))
1897 /* One or the other of P1, P2 is non-empty. */
1898 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1899 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1901 ssc_union(ssc, anded_cp_list, FALSE);
1903 else { /* P1 = P2 = empty */
1904 ssc_intersection(ssc, anded_cp_list, FALSE);
1910 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1911 const regnode_charclass *or_with)
1913 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1914 * another SSC or a regular ANYOF class. Can create false positives if
1915 * 'or_with' is to be inverted. */
1919 U8 or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFHr)
1921 : ANYOF_FLAGS(or_with);
1923 PERL_ARGS_ASSERT_SSC_OR;
1925 assert(is_ANYOF_SYNTHETIC(ssc));
1927 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1928 * the code point inversion list and just the relevant flags */
1929 if (is_ANYOF_SYNTHETIC(or_with)) {
1930 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1931 ored_flags = or_with_flags;
1934 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1935 ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
1936 if (OP(or_with) != ANYOFD) {
1939 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1940 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1941 if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
1943 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1948 ANYOF_FLAGS(ssc) |= ored_flags;
1950 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1951 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1952 * 'or_with' may be inverted. When not inverted, we have the simple
1953 * situation of computing:
1954 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1955 * If P1|P2 yields a situation with both a class and its complement are
1956 * set, like having both \w and \W, this matches all code points, and we
1957 * can delete these from the P component of the ssc going forward. XXX We
1958 * might be able to delete all the P components, but I (khw) am not certain
1959 * about this, and it is better to be safe.
1962 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1963 * <= (C1 | P1) | ~C2
1964 * <= (C1 | ~C2) | P1
1965 * (which results in actually simpler code than the non-inverted case)
1968 if ((or_with_flags & ANYOF_INVERT)
1969 && ! is_ANYOF_SYNTHETIC(or_with))
1971 /* We ignore P2, leaving P1 going forward */
1972 } /* else Not inverted */
1973 else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
1974 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1975 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1977 for (i = 0; i < ANYOF_MAX; i += 2) {
1978 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1980 ssc_match_all_cp(ssc);
1981 ANYOF_POSIXL_CLEAR(ssc, i);
1982 ANYOF_POSIXL_CLEAR(ssc, i+1);
1990 FALSE /* Already has been inverted */
1994 PERL_STATIC_INLINE void
1995 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1997 PERL_ARGS_ASSERT_SSC_UNION;
1999 assert(is_ANYOF_SYNTHETIC(ssc));
2001 _invlist_union_maybe_complement_2nd(ssc->invlist,
2007 PERL_STATIC_INLINE void
2008 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
2010 const bool invert2nd)
2012 PERL_ARGS_ASSERT_SSC_INTERSECTION;
2014 assert(is_ANYOF_SYNTHETIC(ssc));
2016 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
2022 PERL_STATIC_INLINE void
2023 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
2025 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
2027 assert(is_ANYOF_SYNTHETIC(ssc));
2029 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
2032 PERL_STATIC_INLINE void
2033 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
2035 /* AND just the single code point 'cp' into the SSC 'ssc' */
2037 SV* cp_list = _new_invlist(2);
2039 PERL_ARGS_ASSERT_SSC_CP_AND;
2041 assert(is_ANYOF_SYNTHETIC(ssc));
2043 cp_list = add_cp_to_invlist(cp_list, cp);
2044 ssc_intersection(ssc, cp_list,
2045 FALSE /* Not inverted */
2047 SvREFCNT_dec_NN(cp_list);
2050 PERL_STATIC_INLINE void
2051 S_ssc_clear_locale(regnode_ssc *ssc)
2053 /* Set the SSC 'ssc' to not match any locale things */
2054 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
2056 assert(is_ANYOF_SYNTHETIC(ssc));
2058 ANYOF_POSIXL_ZERO(ssc);
2059 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
2062 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
2065 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
2067 /* The synthetic start class is used to hopefully quickly winnow down
2068 * places where a pattern could start a match in the target string. If it
2069 * doesn't really narrow things down that much, there isn't much point to
2070 * having the overhead of using it. This function uses some very crude
2071 * heuristics to decide if to use the ssc or not.
2073 * It returns TRUE if 'ssc' rules out more than half what it considers to
2074 * be the "likely" possible matches, but of course it doesn't know what the
2075 * actual things being matched are going to be; these are only guesses
2077 * For /l matches, it assumes that the only likely matches are going to be
2078 * in the 0-255 range, uniformly distributed, so half of that is 127
2079 * For /a and /d matches, it assumes that the likely matches will be just
2080 * the ASCII range, so half of that is 63
2081 * For /u and there isn't anything matching above the Latin1 range, it
2082 * assumes that that is the only range likely to be matched, and uses
2083 * half that as the cut-off: 127. If anything matches above Latin1,
2084 * it assumes that all of Unicode could match (uniformly), except for
2085 * non-Unicode code points and things in the General Category "Other"
2086 * (unassigned, private use, surrogates, controls and formats). This
2087 * is a much large number. */
2089 U32 count = 0; /* Running total of number of code points matched by
2091 UV start, end; /* Start and end points of current range in inversion
2092 XXX outdated. UTF-8 locales are common, what about invert? list */
2093 const U32 max_code_points = (LOC)
2095 : (( ! UNI_SEMANTICS
2096 || invlist_highest(ssc->invlist) < 256)
2099 const U32 max_match = max_code_points / 2;
2101 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2103 invlist_iterinit(ssc->invlist);
2104 while (invlist_iternext(ssc->invlist, &start, &end)) {
2105 if (start >= max_code_points) {
2108 end = MIN(end, max_code_points - 1);
2109 count += end - start + 1;
2110 if (count >= max_match) {
2111 invlist_iterfinish(ssc->invlist);
2121 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2123 /* The inversion list in the SSC is marked mortal; now we need a more
2124 * permanent copy, which is stored the same way that is done in a regular
2125 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2128 SV* invlist = invlist_clone(ssc->invlist, NULL);
2130 PERL_ARGS_ASSERT_SSC_FINALIZE;
2132 assert(is_ANYOF_SYNTHETIC(ssc));
2134 /* The code in this file assumes that all but these flags aren't relevant
2135 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2136 * by the time we reach here */
2137 assert(! (ANYOF_FLAGS(ssc)
2138 & ~( ANYOF_COMMON_FLAGS
2139 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2140 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2142 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2144 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
2146 /* Make sure is clone-safe */
2147 ssc->invlist = NULL;
2149 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2150 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2151 OP(ssc) = ANYOFPOSIXL;
2153 else if (RExC_contains_locale) {
2157 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2160 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2161 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2162 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2163 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2164 ? (TRIE_LIST_CUR( idx ) - 1) \
2170 dump_trie(trie,widecharmap,revcharmap)
2171 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2172 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2174 These routines dump out a trie in a somewhat readable format.
2175 The _interim_ variants are used for debugging the interim
2176 tables that are used to generate the final compressed
2177 representation which is what dump_trie expects.
2179 Part of the reason for their existence is to provide a form
2180 of documentation as to how the different representations function.
2185 Dumps the final compressed table form of the trie to Perl_debug_log.
2186 Used for debugging make_trie().
2190 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2191 AV *revcharmap, U32 depth)
2194 SV *sv=sv_newmortal();
2195 int colwidth= widecharmap ? 6 : 4;
2197 GET_RE_DEBUG_FLAGS_DECL;
2199 PERL_ARGS_ASSERT_DUMP_TRIE;
2201 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2202 depth+1, "Match","Base","Ofs" );
2204 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2205 SV ** const tmp = av_fetch( revcharmap, state, 0);
2207 Perl_re_printf( aTHX_ "%*s",
2209 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2210 PL_colors[0], PL_colors[1],
2211 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2212 PERL_PV_ESCAPE_FIRSTCHAR
2217 Perl_re_printf( aTHX_ "\n");
2218 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2220 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2221 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2222 Perl_re_printf( aTHX_ "\n");
2224 for( state = 1 ; state < trie->statecount ; state++ ) {
2225 const U32 base = trie->states[ state ].trans.base;
2227 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2229 if ( trie->states[ state ].wordnum ) {
2230 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2232 Perl_re_printf( aTHX_ "%6s", "" );
2235 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2240 while( ( base + ofs < trie->uniquecharcount ) ||
2241 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2242 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2246 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2248 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2249 if ( ( base + ofs >= trie->uniquecharcount )
2250 && ( base + ofs - trie->uniquecharcount
2252 && trie->trans[ base + ofs
2253 - trie->uniquecharcount ].check == state )
2255 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2256 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2259 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2263 Perl_re_printf( aTHX_ "]");
2266 Perl_re_printf( aTHX_ "\n" );
2268 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2270 for (word=1; word <= trie->wordcount; word++) {
2271 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2272 (int)word, (int)(trie->wordinfo[word].prev),
2273 (int)(trie->wordinfo[word].len));
2275 Perl_re_printf( aTHX_ "\n" );
2278 Dumps a fully constructed but uncompressed trie in list form.
2279 List tries normally only are used for construction when the number of
2280 possible chars (trie->uniquecharcount) is very high.
2281 Used for debugging make_trie().
2284 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2285 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2289 SV *sv=sv_newmortal();
2290 int colwidth= widecharmap ? 6 : 4;
2291 GET_RE_DEBUG_FLAGS_DECL;
2293 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2295 /* print out the table precompression. */
2296 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2298 Perl_re_indentf( aTHX_ "%s",
2299 depth+1, "------:-----+-----------------\n" );
2301 for( state=1 ; state < next_alloc ; state ++ ) {
2304 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2305 depth+1, (UV)state );
2306 if ( ! trie->states[ state ].wordnum ) {
2307 Perl_re_printf( aTHX_ "%5s| ","");
2309 Perl_re_printf( aTHX_ "W%4x| ",
2310 trie->states[ state ].wordnum
2313 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2314 SV ** const tmp = av_fetch( revcharmap,
2315 TRIE_LIST_ITEM(state, charid).forid, 0);
2317 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2319 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2321 PL_colors[0], PL_colors[1],
2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2323 | PERL_PV_ESCAPE_FIRSTCHAR
2325 TRIE_LIST_ITEM(state, charid).forid,
2326 (UV)TRIE_LIST_ITEM(state, charid).newstate
2329 Perl_re_printf( aTHX_ "\n%*s| ",
2330 (int)((depth * 2) + 14), "");
2333 Perl_re_printf( aTHX_ "\n");
2338 Dumps a fully constructed but uncompressed trie in table form.
2339 This is the normal DFA style state transition table, with a few
2340 twists to facilitate compression later.
2341 Used for debugging make_trie().
2344 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2345 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2350 SV *sv=sv_newmortal();
2351 int colwidth= widecharmap ? 6 : 4;
2352 GET_RE_DEBUG_FLAGS_DECL;
2354 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2357 print out the table precompression so that we can do a visual check
2358 that they are identical.
2361 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2363 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2364 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2366 Perl_re_printf( aTHX_ "%*s",
2368 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2369 PL_colors[0], PL_colors[1],
2370 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2371 PERL_PV_ESCAPE_FIRSTCHAR
2377 Perl_re_printf( aTHX_ "\n");
2378 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2380 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2381 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2384 Perl_re_printf( aTHX_ "\n" );
2386 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2388 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2390 (UV)TRIE_NODENUM( state ) );
2392 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2393 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2395 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2397 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2399 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2400 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2401 (UV)trie->trans[ state ].check );
2403 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2404 (UV)trie->trans[ state ].check,
2405 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2413 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2414 startbranch: the first branch in the whole branch sequence
2415 first : start branch of sequence of branch-exact nodes.
2416 May be the same as startbranch
2417 last : Thing following the last branch.
2418 May be the same as tail.
2419 tail : item following the branch sequence
2420 count : words in the sequence
2421 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2422 depth : indent depth
2424 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2426 A trie is an N'ary tree where the branches are determined by digital
2427 decomposition of the key. IE, at the root node you look up the 1st character and
2428 follow that branch repeat until you find the end of the branches. Nodes can be
2429 marked as "accepting" meaning they represent a complete word. Eg:
2433 would convert into the following structure. Numbers represent states, letters
2434 following numbers represent valid transitions on the letter from that state, if
2435 the number is in square brackets it represents an accepting state, otherwise it
2436 will be in parenthesis.
2438 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2442 (1) +-i->(6)-+-s->[7]
2444 +-s->(3)-+-h->(4)-+-e->[5]
2446 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2448 This shows that when matching against the string 'hers' we will begin at state 1
2449 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2450 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2451 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2452 single traverse. We store a mapping from accepting to state to which word was
2453 matched, and then when we have multiple possibilities we try to complete the
2454 rest of the regex in the order in which they occurred in the alternation.
2456 The only prior NFA like behaviour that would be changed by the TRIE support is
2457 the silent ignoring of duplicate alternations which are of the form:
2459 / (DUPE|DUPE) X? (?{ ... }) Y /x
2461 Thus EVAL blocks following a trie may be called a different number of times with
2462 and without the optimisation. With the optimisations dupes will be silently
2463 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2464 the following demonstrates:
2466 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2468 which prints out 'word' three times, but
2470 'words'=~/(word|word|word)(?{ print $1 })S/
2472 which doesnt print it out at all. This is due to other optimisations kicking in.
2474 Example of what happens on a structural level:
2476 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2478 1: CURLYM[1] {1,32767}(18)
2489 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2490 and should turn into:
2492 1: CURLYM[1] {1,32767}(18)
2494 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2502 Cases where tail != last would be like /(?foo|bar)baz/:
2512 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2513 and would end up looking like:
2516 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2523 d = uvchr_to_utf8_flags(d, uv, 0);
2525 is the recommended Unicode-aware way of saying
2530 #define TRIE_STORE_REVCHAR(val) \
2533 SV *zlopp = newSV(UTF8_MAXBYTES); \
2534 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2535 unsigned char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2537 SvCUR_set(zlopp, kapow - flrbbbbb); \
2540 av_push(revcharmap, zlopp); \
2542 char ooooff = (char)val; \
2543 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2547 /* This gets the next character from the input, folding it if not already
2549 #define TRIE_READ_CHAR STMT_START { \
2552 /* if it is UTF then it is either already folded, or does not need \
2554 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2556 else if (folder == PL_fold_latin1) { \
2557 /* This folder implies Unicode rules, which in the range expressible \
2558 * by not UTF is the lower case, with the two exceptions, one of \
2559 * which should have been taken care of before calling this */ \
2560 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2561 uvc = toLOWER_L1(*uc); \
2562 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2565 /* raw data, will be folded later if needed */ \
2573 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2574 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2575 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2576 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2577 TRIE_LIST_LEN( state ) = ging; \
2579 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2580 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2581 TRIE_LIST_CUR( state )++; \
2584 #define TRIE_LIST_NEW(state) STMT_START { \
2585 Newx( trie->states[ state ].trans.list, \
2586 4, reg_trie_trans_le ); \
2587 TRIE_LIST_CUR( state ) = 1; \
2588 TRIE_LIST_LEN( state ) = 4; \
2591 #define TRIE_HANDLE_WORD(state) STMT_START { \
2592 U16 dupe= trie->states[ state ].wordnum; \
2593 regnode * const noper_next = regnext( noper ); \
2596 /* store the word for dumping */ \
2598 if (OP(noper) != NOTHING) \
2599 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2601 tmp = newSVpvn_utf8( "", 0, UTF ); \
2602 av_push( trie_words, tmp ); \
2606 trie->wordinfo[curword].prev = 0; \
2607 trie->wordinfo[curword].len = wordlen; \
2608 trie->wordinfo[curword].accept = state; \
2610 if ( noper_next < tail ) { \
2612 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2614 trie->jump[curword] = (U16)(noper_next - convert); \
2616 jumper = noper_next; \
2618 nextbranch= regnext(cur); \
2622 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2623 /* chain, so that when the bits of chain are later */\
2624 /* linked together, the dups appear in the chain */\
2625 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2626 trie->wordinfo[dupe].prev = curword; \
2628 /* we haven't inserted this word yet. */ \
2629 trie->states[ state ].wordnum = curword; \
2634 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2635 ( ( base + charid >= ucharcount \
2636 && base + charid < ubound \
2637 && state == trie->trans[ base - ucharcount + charid ].check \
2638 && trie->trans[ base - ucharcount + charid ].next ) \
2639 ? trie->trans[ base - ucharcount + charid ].next \
2640 : ( state==1 ? special : 0 ) \
2643 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2645 TRIE_BITMAP_SET(trie, uvc); \
2646 /* store the folded codepoint */ \
2648 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2651 /* store first byte of utf8 representation of */ \
2652 /* variant codepoints */ \
2653 if (! UVCHR_IS_INVARIANT(uvc)) { \
2654 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2659 #define MADE_JUMP_TRIE 2
2660 #define MADE_EXACT_TRIE 4
2663 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2664 regnode *first, regnode *last, regnode *tail,
2665 U32 word_count, U32 flags, U32 depth)
2667 /* first pass, loop through and scan words */
2668 reg_trie_data *trie;
2669 HV *widecharmap = NULL;
2670 AV *revcharmap = newAV();
2676 regnode *jumper = NULL;
2677 regnode *nextbranch = NULL;
2678 regnode *convert = NULL;
2679 U32 *prev_states; /* temp array mapping each state to previous one */
2680 /* we just use folder as a flag in utf8 */
2681 const U8 * folder = NULL;
2683 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2684 * which stands for one trie structure, one hash, optionally followed
2687 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2688 AV *trie_words = NULL;
2689 /* along with revcharmap, this only used during construction but both are
2690 * useful during debugging so we store them in the struct when debugging.
2693 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2694 STRLEN trie_charcount=0;
2696 SV *re_trie_maxbuff;
2697 GET_RE_DEBUG_FLAGS_DECL;
2699 PERL_ARGS_ASSERT_MAKE_TRIE;
2701 PERL_UNUSED_ARG(depth);
2705 case EXACT: case EXACT_REQ8: case EXACTL: break;
2709 case EXACTFLU8: folder = PL_fold_latin1; break;
2710 case EXACTF: folder = PL_fold; break;
2711 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2714 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2716 trie->startstate = 1;
2717 trie->wordcount = word_count;
2718 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2719 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2720 if (flags == EXACT || flags == EXACT_REQ8 || flags == EXACTL)
2721 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2722 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2723 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2726 trie_words = newAV();
2729 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
2730 assert(re_trie_maxbuff);
2731 if (!SvIOK(re_trie_maxbuff)) {
2732 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2734 DEBUG_TRIE_COMPILE_r({
2735 Perl_re_indentf( aTHX_
2736 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2738 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2739 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2742 /* Find the node we are going to overwrite */
2743 if ( first == startbranch && OP( last ) != BRANCH ) {
2744 /* whole branch chain */
2747 /* branch sub-chain */
2748 convert = NEXTOPER( first );
2751 /* -- First loop and Setup --
2753 We first traverse the branches and scan each word to determine if it
2754 contains widechars, and how many unique chars there are, this is
2755 important as we have to build a table with at least as many columns as we
2758 We use an array of integers to represent the character codes 0..255
2759 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2760 the native representation of the character value as the key and IV's for
2763 *TODO* If we keep track of how many times each character is used we can
2764 remap the columns so that the table compression later on is more
2765 efficient in terms of memory by ensuring the most common value is in the
2766 middle and the least common are on the outside. IMO this would be better
2767 than a most to least common mapping as theres a decent chance the most
2768 common letter will share a node with the least common, meaning the node
2769 will not be compressible. With a middle is most common approach the worst
2770 case is when we have the least common nodes twice.
2774 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2775 regnode *noper = NEXTOPER( cur );
2779 U32 wordlen = 0; /* required init */
2780 STRLEN minchars = 0;
2781 STRLEN maxchars = 0;
2782 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2785 if (OP(noper) == NOTHING) {
2786 /* skip past a NOTHING at the start of an alternation
2787 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2789 regnode *noper_next= regnext(noper);
2790 if (noper_next < tail)
2795 && ( OP(noper) == flags
2796 || (flags == EXACT && OP(noper) == EXACT_REQ8)
2797 || (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
2798 || OP(noper) == EXACTFUP))))
2800 uc= (U8*)STRING(noper);
2801 e= uc + STR_LEN(noper);
2808 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2809 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2810 regardless of encoding */
2811 if (OP( noper ) == EXACTFUP) {
2812 /* false positives are ok, so just set this */
2813 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2817 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2819 TRIE_CHARCOUNT(trie)++;
2822 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2823 * is in effect. Under /i, this character can match itself, or
2824 * anything that folds to it. If not under /i, it can match just
2825 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2826 * all fold to k, and all are single characters. But some folds
2827 * expand to more than one character, so for example LATIN SMALL
2828 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2829 * the string beginning at 'uc' is 'ffi', it could be matched by
2830 * three characters, or just by the one ligature character. (It
2831 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2832 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2833 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2834 * match.) The trie needs to know the minimum and maximum number
2835 * of characters that could match so that it can use size alone to
2836 * quickly reject many match attempts. The max is simple: it is
2837 * the number of folded characters in this branch (since a fold is
2838 * never shorter than what folds to it. */
2842 /* And the min is equal to the max if not under /i (indicated by
2843 * 'folder' being NULL), or there are no multi-character folds. If
2844 * there is a multi-character fold, the min is incremented just
2845 * once, for the character that folds to the sequence. Each
2846 * character in the sequence needs to be added to the list below of
2847 * characters in the trie, but we count only the first towards the
2848 * min number of characters needed. This is done through the
2849 * variable 'foldlen', which is returned by the macros that look
2850 * for these sequences as the number of bytes the sequence
2851 * occupies. Each time through the loop, we decrement 'foldlen' by
2852 * how many bytes the current char occupies. Only when it reaches
2853 * 0 do we increment 'minchars' or look for another multi-character
2855 if (folder == NULL) {
2858 else if (foldlen > 0) {
2859 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2864 /* See if *uc is the beginning of a multi-character fold. If
2865 * so, we decrement the length remaining to look at, to account
2866 * for the current character this iteration. (We can use 'uc'
2867 * instead of the fold returned by TRIE_READ_CHAR because for
2868 * non-UTF, the latin1_safe macro is smart enough to account
2869 * for all the unfolded characters, and because for UTF, the
2870 * string will already have been folded earlier in the
2871 * compilation process */
2873 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2874 foldlen -= UTF8SKIP(uc);
2877 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2882 /* The current character (and any potential folds) should be added
2883 * to the possible matching characters for this position in this
2887 U8 folded= folder[ (U8) uvc ];
2888 if ( !trie->charmap[ folded ] ) {
2889 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2890 TRIE_STORE_REVCHAR( folded );
2893 if ( !trie->charmap[ uvc ] ) {
2894 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2895 TRIE_STORE_REVCHAR( uvc );
2898 /* store the codepoint in the bitmap, and its folded
2900 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2901 set_bit = 0; /* We've done our bit :-) */
2905 /* XXX We could come up with the list of code points that fold
2906 * to this using PL_utf8_foldclosures, except not for
2907 * multi-char folds, as there may be multiple combinations
2908 * there that could work, which needs to wait until runtime to
2909 * resolve (The comment about LIGATURE FFI above is such an
2914 widecharmap = newHV();
2916 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2919 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2921 if ( !SvTRUE( *svpp ) ) {
2922 sv_setiv( *svpp, ++trie->uniquecharcount );
2923 TRIE_STORE_REVCHAR(uvc);
2926 } /* end loop through characters in this branch of the trie */
2928 /* We take the min and max for this branch and combine to find the min
2929 * and max for all branches processed so far */
2930 if( cur == first ) {
2931 trie->minlen = minchars;
2932 trie->maxlen = maxchars;
2933 } else if (minchars < trie->minlen) {
2934 trie->minlen = minchars;
2935 } else if (maxchars > trie->maxlen) {
2936 trie->maxlen = maxchars;
2938 } /* end first pass */
2939 DEBUG_TRIE_COMPILE_r(
2940 Perl_re_indentf( aTHX_
2941 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2943 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2944 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2945 (int)trie->minlen, (int)trie->maxlen )
2949 We now know what we are dealing with in terms of unique chars and
2950 string sizes so we can calculate how much memory a naive
2951 representation using a flat table will take. If it's over a reasonable
2952 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2953 conservative but potentially much slower representation using an array
2956 At the end we convert both representations into the same compressed
2957 form that will be used in regexec.c for matching with. The latter
2958 is a form that cannot be used to construct with but has memory
2959 properties similar to the list form and access properties similar
2960 to the table form making it both suitable for fast searches and
2961 small enough that its feasable to store for the duration of a program.
2963 See the comment in the code where the compressed table is produced
2964 inplace from the flat tabe representation for an explanation of how
2965 the compression works.
2970 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2973 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2974 > SvIV(re_trie_maxbuff) )
2977 Second Pass -- Array Of Lists Representation
2979 Each state will be represented by a list of charid:state records
2980 (reg_trie_trans_le) the first such element holds the CUR and LEN
2981 points of the allocated array. (See defines above).
2983 We build the initial structure using the lists, and then convert
2984 it into the compressed table form which allows faster lookups
2985 (but cant be modified once converted).
2988 STRLEN transcount = 1;
2990 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2993 trie->states = (reg_trie_state *)
2994 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2995 sizeof(reg_trie_state) );
2999 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3001 regnode *noper = NEXTOPER( cur );
3002 U32 state = 1; /* required init */
3003 U16 charid = 0; /* sanity init */
3004 U32 wordlen = 0; /* required init */
3006 if (OP(noper) == NOTHING) {
3007 regnode *noper_next= regnext(noper);
3008 if (noper_next < tail)
3013 && ( OP(noper) == flags
3014 || (flags == EXACT && OP(noper) == EXACT_REQ8)
3015 || (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
3016 || OP(noper) == EXACTFUP))))
3018 const U8 *uc= (U8*)STRING(noper);
3019 const U8 *e= uc + STR_LEN(noper);
3021 for ( ; uc < e ; uc += len ) {
3026 charid = trie->charmap[ uvc ];
3028 SV** const svpp = hv_fetch( widecharmap,
3035 charid=(U16)SvIV( *svpp );
3038 /* charid is now 0 if we dont know the char read, or
3039 * nonzero if we do */
3046 if ( !trie->states[ state ].trans.list ) {
3047 TRIE_LIST_NEW( state );
3050 check <= TRIE_LIST_USED( state );
3053 if ( TRIE_LIST_ITEM( state, check ).forid
3056 newstate = TRIE_LIST_ITEM( state, check ).newstate;
3061 newstate = next_alloc++;
3062 prev_states[newstate] = state;
3063 TRIE_LIST_PUSH( state, charid, newstate );
3068 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3072 TRIE_HANDLE_WORD(state);
3074 } /* end second pass */
3076 /* next alloc is the NEXT state to be allocated */
3077 trie->statecount = next_alloc;
3078 trie->states = (reg_trie_state *)
3079 PerlMemShared_realloc( trie->states,
3081 * sizeof(reg_trie_state) );
3083 /* and now dump it out before we compress it */
3084 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3085 revcharmap, next_alloc,
3089 trie->trans = (reg_trie_trans *)
3090 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3097 for( state=1 ; state < next_alloc ; state ++ ) {
3101 DEBUG_TRIE_COMPILE_MORE_r(
3102 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
3106 if (trie->states[state].trans.list) {
3107 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3111 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3112 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3113 if ( forid < minid ) {
3115 } else if ( forid > maxid ) {
3119 if ( transcount < tp + maxid - minid + 1) {
3121 trie->trans = (reg_trie_trans *)
3122 PerlMemShared_realloc( trie->trans,
3124 * sizeof(reg_trie_trans) );
3125 Zero( trie->trans + (transcount / 2),
3129 base = trie->uniquecharcount + tp - minid;
3130 if ( maxid == minid ) {
3132 for ( ; zp < tp ; zp++ ) {
3133 if ( ! trie->trans[ zp ].next ) {
3134 base = trie->uniquecharcount + zp - minid;
3135 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3137 trie->trans[ zp ].check = state;
3143 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3145 trie->trans[ tp ].check = state;
3150 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3151 const U32 tid = base
3152 - trie->uniquecharcount
3153 + TRIE_LIST_ITEM( state, idx ).forid;
3154 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3156 trie->trans[ tid ].check = state;
3158 tp += ( maxid - minid + 1 );
3160 Safefree(trie->states[ state ].trans.list);
3163 DEBUG_TRIE_COMPILE_MORE_r(
3164 Perl_re_printf( aTHX_ " base: %d\n",base);
3167 trie->states[ state ].trans.base=base;
3169 trie->lasttrans = tp + 1;
3173 Second Pass -- Flat Table Representation.
3175 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3176 each. We know that we will need Charcount+1 trans at most to store
3177 the data (one row per char at worst case) So we preallocate both
3178 structures assuming worst case.
3180 We then construct the trie using only the .next slots of the entry
3183 We use the .check field of the first entry of the node temporarily
3184 to make compression both faster and easier by keeping track of how
3185 many non zero fields are in the node.
3187 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3190 There are two terms at use here: state as a TRIE_NODEIDX() which is
3191 a number representing the first entry of the node, and state as a
3192 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3193 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3194 if there are 2 entrys per node. eg:
3202 The table is internally in the right hand, idx form. However as we
3203 also have to deal with the states array which is indexed by nodenum
3204 we have to use TRIE_NODENUM() to convert.
3207 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3210 trie->trans = (reg_trie_trans *)
3211 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3212 * trie->uniquecharcount + 1,
3213 sizeof(reg_trie_trans) );
3214 trie->states = (reg_trie_state *)
3215 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3216 sizeof(reg_trie_state) );
3217 next_alloc = trie->uniquecharcount + 1;
3220 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3222 regnode *noper = NEXTOPER( cur );
3224 U32 state = 1; /* required init */
3226 U16 charid = 0; /* sanity init */
3227 U32 accept_state = 0; /* sanity init */
3229 U32 wordlen = 0; /* required init */
3231 if (OP(noper) == NOTHING) {
3232 regnode *noper_next= regnext(noper);
3233 if (noper_next < tail)
3238 && ( OP(noper) == flags
3239 || (flags == EXACT && OP(noper) == EXACT_REQ8)
3240 || (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
3241 || OP(noper) == EXACTFUP))))
3243 const U8 *uc= (U8*)STRING(noper);
3244 const U8 *e= uc + STR_LEN(noper);
3246 for ( ; uc < e ; uc += len ) {
3251 charid = trie->charmap[ uvc ];
3253 SV* const * const svpp = hv_fetch( widecharmap,
3257 charid = svpp ? (U16)SvIV(*svpp) : 0;
3261 if ( !trie->trans[ state + charid ].next ) {
3262 trie->trans[ state + charid ].next = next_alloc;
3263 trie->trans[ state ].check++;
3264 prev_states[TRIE_NODENUM(next_alloc)]
3265 = TRIE_NODENUM(state);
3266 next_alloc += trie->uniquecharcount;
3268 state = trie->trans[ state + charid ].next;
3270 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3272 /* charid is now 0 if we dont know the char read, or
3273 * nonzero if we do */
3276 accept_state = TRIE_NODENUM( state );
3277 TRIE_HANDLE_WORD(accept_state);
3279 } /* end second pass */
3281 /* and now dump it out before we compress it */
3282 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3284 next_alloc, depth+1));
3288 * Inplace compress the table.*
3290 For sparse data sets the table constructed by the trie algorithm will
3291 be mostly 0/FAIL transitions or to put it another way mostly empty.
3292 (Note that leaf nodes will not contain any transitions.)
3294 This algorithm compresses the tables by eliminating most such
3295 transitions, at the cost of a modest bit of extra work during lookup:
3297 - Each states[] entry contains a .base field which indicates the
3298 index in the state[] array wheres its transition data is stored.
3300 - If .base is 0 there are no valid transitions from that node.
3302 - If .base is nonzero then charid is added to it to find an entry in
3305 -If trans[states[state].base+charid].check!=state then the
3306 transition is taken to be a 0/Fail transition. Thus if there are fail
3307 transitions at the front of the node then the .base offset will point
3308 somewhere inside the previous nodes data (or maybe even into a node
3309 even earlier), but the .check field determines if the transition is
3313 The following process inplace converts the table to the compressed
3314 table: We first do not compress the root node 1,and mark all its
3315 .check pointers as 1 and set its .base pointer as 1 as well. This
3316 allows us to do a DFA construction from the compressed table later,
3317 and ensures that any .base pointers we calculate later are greater
3320 - We set 'pos' to indicate the first entry of the second node.
3322 - We then iterate over the columns of the node, finding the first and
3323 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3324 and set the .check pointers accordingly, and advance pos
3325 appropriately and repreat for the next node. Note that when we copy
3326 the next pointers we have to convert them from the original
3327 NODEIDX form to NODENUM form as the former is not valid post
3330 - If a node has no transitions used we mark its base as 0 and do not
3331 advance the pos pointer.
3333 - If a node only has one transition we use a second pointer into the
3334 structure to fill in allocated fail transitions from other states.
3335 This pointer is independent of the main pointer and scans forward
3336 looking for null transitions that are allocated to a state. When it
3337 finds one it writes the single transition into the "hole". If the
3338 pointer doesnt find one the single transition is appended as normal.
3340 - Once compressed we can Renew/realloc the structures to release the
3343 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3344 specifically Fig 3.47 and the associated pseudocode.
3348 const U32 laststate = TRIE_NODENUM( next_alloc );
3351 trie->statecount = laststate;
3353 for ( state = 1 ; state < laststate ; state++ ) {
3355 const U32 stateidx = TRIE_NODEIDX( state );
3356 const U32 o_used = trie->trans[ stateidx ].check;
3357 U32 used = trie->trans[ stateidx ].check;
3358 trie->trans[ stateidx ].check = 0;
3361 used && charid < trie->uniquecharcount;
3364 if ( flag || trie->trans[ stateidx + charid ].next ) {
3365 if ( trie->trans[ stateidx + charid ].next ) {
3367 for ( ; zp < pos ; zp++ ) {
3368 if ( ! trie->trans[ zp ].next ) {
3372 trie->states[ state ].trans.base
3374 + trie->uniquecharcount
3376 trie->trans[ zp ].next
3377 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3379 trie->trans[ zp ].check = state;
3380 if ( ++zp > pos ) pos = zp;
3387 trie->states[ state ].trans.base
3388 = pos + trie->uniquecharcount - charid ;
3390 trie->trans[ pos ].next
3391 = SAFE_TRIE_NODENUM(
3392 trie->trans[ stateidx + charid ].next );
3393 trie->trans[ pos ].check = state;
3398 trie->lasttrans = pos + 1;
3399 trie->states = (reg_trie_state *)
3400 PerlMemShared_realloc( trie->states, laststate
3401 * sizeof(reg_trie_state) );
3402 DEBUG_TRIE_COMPILE_MORE_r(
3403 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3405 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3409 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3412 } /* end table compress */
3414 DEBUG_TRIE_COMPILE_MORE_r(
3415 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3417 (UV)trie->statecount,
3418 (UV)trie->lasttrans)
3420 /* resize the trans array to remove unused space */
3421 trie->trans = (reg_trie_trans *)
3422 PerlMemShared_realloc( trie->trans, trie->lasttrans
3423 * sizeof(reg_trie_trans) );
3425 { /* Modify the program and insert the new TRIE node */
3426 U8 nodetype =(U8)(flags & 0xFF);
3430 regnode *optimize = NULL;
3431 #ifdef RE_TRACK_PATTERN_OFFSETS
3434 U32 mjd_nodelen = 0;
3435 #endif /* RE_TRACK_PATTERN_OFFSETS */
3436 #endif /* DEBUGGING */
3438 This means we convert either the first branch or the first Exact,
3439 depending on whether the thing following (in 'last') is a branch
3440 or not and whther first is the startbranch (ie is it a sub part of
3441 the alternation or is it the whole thing.)
3442 Assuming its a sub part we convert the EXACT otherwise we convert
3443 the whole branch sequence, including the first.
3445 /* Find the node we are going to overwrite */
3446 if ( first != startbranch || OP( last ) == BRANCH ) {
3447 /* branch sub-chain */
3448 NEXT_OFF( first ) = (U16)(last - first);
3449 #ifdef RE_TRACK_PATTERN_OFFSETS
3451 mjd_offset= Node_Offset((convert));
3452 mjd_nodelen= Node_Length((convert));
3455 /* whole branch chain */
3457 #ifdef RE_TRACK_PATTERN_OFFSETS
3460 const regnode *nop = NEXTOPER( convert );
3461 mjd_offset= Node_Offset((nop));
3462 mjd_nodelen= Node_Length((nop));
3466 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3468 (UV)mjd_offset, (UV)mjd_nodelen)
3471 /* But first we check to see if there is a common prefix we can
3472 split out as an EXACT and put in front of the TRIE node. */
3473 trie->startstate= 1;
3474 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3475 /* we want to find the first state that has more than
3476 * one transition, if that state is not the first state
3477 * then we have a common prefix which we can remove.
3480 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3482 I32 first_ofs = -1; /* keeps track of the ofs of the first
3483 transition, -1 means none */
3485 const U32 base = trie->states[ state ].trans.base;
3487 /* does this state terminate an alternation? */
3488 if ( trie->states[state].wordnum )
3491 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3492 if ( ( base + ofs >= trie->uniquecharcount ) &&
3493 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3494 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3496 if ( ++count > 1 ) {
3497 /* we have more than one transition */
3500 /* if this is the first state there is no common prefix
3501 * to extract, so we can exit */
3502 if ( state == 1 ) break;
3503 tmp = av_fetch( revcharmap, ofs, 0);
3504 ch = (U8*)SvPV_nolen_const( *tmp );
3506 /* if we are on count 2 then we need to initialize the
3507 * bitmap, and store the previous char if there was one
3510 /* clear the bitmap */
3511 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3513 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3516 if (first_ofs >= 0) {
3517 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3518 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3520 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3522 Perl_re_printf( aTHX_ "%s", (char*)ch)
3526 /* store the current firstchar in the bitmap */
3527 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3528 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3534 /* This state has only one transition, its transition is part
3535 * of a common prefix - we need to concatenate the char it
3536 * represents to what we have so far. */
3537 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3539 char *ch = SvPV( *tmp, len );
3541 SV *sv=sv_newmortal();
3542 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3544 (UV)state, (UV)first_ofs,
3545 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3546 PL_colors[0], PL_colors[1],
3547 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3548 PERL_PV_ESCAPE_FIRSTCHAR
3553 OP( convert ) = nodetype;
3554 str=STRING(convert);
3555 setSTR_LEN(convert, 0);
3557 setSTR_LEN(convert, STR_LEN(convert) + len);
3563 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3568 trie->prefixlen = (state-1);
3570 regnode *n = convert+NODE_SZ_STR(convert);
3571 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3572 trie->startstate = state;
3573 trie->minlen -= (state - 1);
3574 trie->maxlen -= (state - 1);
3576 /* At least the UNICOS C compiler choked on this
3577 * being argument to DEBUG_r(), so let's just have
3580 #ifdef PERL_EXT_RE_BUILD
3586 regnode *fix = convert;
3587 U32 word = trie->wordcount;
3588 #ifdef RE_TRACK_PATTERN_OFFSETS
3591 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3592 while( ++fix < n ) {
3593 Set_Node_Offset_Length(fix, 0, 0);
3596 SV ** const tmp = av_fetch( trie_words, word, 0 );
3598 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3599 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3601 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3609 NEXT_OFF(convert) = (U16)(tail - convert);
3610 DEBUG_r(optimize= n);
3616 if ( trie->maxlen ) {
3617 NEXT_OFF( convert ) = (U16)(tail - convert);
3618 ARG_SET( convert, data_slot );
3619 /* Store the offset to the first unabsorbed branch in
3620 jump[0], which is otherwise unused by the jump logic.
3621 We use this when dumping a trie and during optimisation. */
3623 trie->jump[0] = (U16)(nextbranch - convert);
3625 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3626 * and there is a bitmap
3627 * and the first "jump target" node we found leaves enough room
3628 * then convert the TRIE node into a TRIEC node, with the bitmap
3629 * embedded inline in the opcode - this is hypothetically faster.
3631 if ( !trie->states[trie->startstate].wordnum
3633 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3635 OP( convert ) = TRIEC;
3636 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3637 PerlMemShared_free(trie->bitmap);
3640 OP( convert ) = TRIE;
3642 /* store the type in the flags */
3643 convert->flags = nodetype;
3647 + regarglen[ OP( convert ) ];
3649 /* XXX We really should free up the resource in trie now,
3650 as we won't use them - (which resources?) dmq */
3652 /* needed for dumping*/
3653 DEBUG_r(if (optimize) {
3654 regnode *opt = convert;
3656 while ( ++opt < optimize) {
3657 Set_Node_Offset_Length(opt, 0, 0);
3660 Try to clean up some of the debris left after the
3663 while( optimize < jumper ) {
3664 Track_Code( mjd_nodelen += Node_Length((optimize)); );
3665 OP( optimize ) = OPTIMIZED;
3666 Set_Node_Offset_Length(optimize, 0, 0);
3669 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3671 } /* end node insert */
3673 /* Finish populating the prev field of the wordinfo array. Walk back
3674 * from each accept state until we find another accept state, and if
3675 * so, point the first word's .prev field at the second word. If the
3676 * second already has a .prev field set, stop now. This will be the
3677 * case either if we've already processed that word's accept state,
3678 * or that state had multiple words, and the overspill words were
3679 * already linked up earlier.
3686 for (word=1; word <= trie->wordcount; word++) {
3688 if (trie->wordinfo[word].prev)
3690 state = trie->wordinfo[word].accept;
3692 state = prev_states[state];
3695 prev = trie->states[state].wordnum;
3699 trie->wordinfo[word].prev = prev;
3701 Safefree(prev_states);
3705 /* and now dump out the compressed format */
3706 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3708 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3710 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3711 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3713 SvREFCNT_dec_NN(revcharmap);
3717 : trie->startstate>1
3723 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3725 /* The Trie is constructed and compressed now so we can build a fail array if
3728 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3730 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3734 We find the fail state for each state in the trie, this state is the longest
3735 proper suffix of the current state's 'word' that is also a proper prefix of
3736 another word in our trie. State 1 represents the word '' and is thus the
3737 default fail state. This allows the DFA not to have to restart after its
3738 tried and failed a word at a given point, it simply continues as though it
3739 had been matching the other word in the first place.
3741 'abcdgu'=~/abcdefg|cdgu/
3742 When we get to 'd' we are still matching the first word, we would encounter
3743 'g' which would fail, which would bring us to the state representing 'd' in
3744 the second word where we would try 'g' and succeed, proceeding to match
3747 /* add a fail transition */
3748 const U32 trie_offset = ARG(source);
3749 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3751 const U32 ucharcount = trie->uniquecharcount;
3752 const U32 numstates = trie->statecount;
3753 const U32 ubound = trie->lasttrans + ucharcount;
3757 U32 base = trie->states[ 1 ].trans.base;
3760 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3762 GET_RE_DEBUG_FLAGS_DECL;
3764 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3765 PERL_UNUSED_CONTEXT;
3767 PERL_UNUSED_ARG(depth);
3770 if ( OP(source) == TRIE ) {
3771 struct regnode_1 *op = (struct regnode_1 *)
3772 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3773 StructCopy(source, op, struct regnode_1);
3774 stclass = (regnode *)op;
3776 struct regnode_charclass *op = (struct regnode_charclass *)
3777 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3778 StructCopy(source, op, struct regnode_charclass);
3779 stclass = (regnode *)op;
3781 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3783 ARG_SET( stclass, data_slot );
3784 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3785 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3786 aho->trie=trie_offset;
3787 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3788 Copy( trie->states, aho->states, numstates, reg_trie_state );
3789 Newx( q, numstates, U32);
3790 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3793 /* initialize fail[0..1] to be 1 so that we always have
3794 a valid final fail state */
3795 fail[ 0 ] = fail[ 1 ] = 1;
3797 for ( charid = 0; charid < ucharcount ; charid++ ) {
3798 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3800 q[ q_write ] = newstate;
3801 /* set to point at the root */
3802 fail[ q[ q_write++ ] ]=1;
3805 while ( q_read < q_write) {
3806 const U32 cur = q[ q_read++ % numstates ];
3807 base = trie->states[ cur ].trans.base;
3809 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3810 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3812 U32 fail_state = cur;
3815 fail_state = fail[ fail_state ];
3816 fail_base = aho->states[ fail_state ].trans.base;
3817 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3819 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3820 fail[ ch_state ] = fail_state;
3821 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3823 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3825 q[ q_write++ % numstates] = ch_state;
3829 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3830 when we fail in state 1, this allows us to use the
3831 charclass scan to find a valid start char. This is based on the principle
3832 that theres a good chance the string being searched contains lots of stuff
3833 that cant be a start char.
3835 fail[ 0 ] = fail[ 1 ] = 0;
3836 DEBUG_TRIE_COMPILE_r({
3837 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3838 depth, (UV)numstates
3840 for( q_read=1; q_read<numstates; q_read++ ) {
3841 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3843 Perl_re_printf( aTHX_ "\n");
3846 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3851 /* The below joins as many adjacent EXACTish nodes as possible into a single
3852 * one. The regop may be changed if the node(s) contain certain sequences that
3853 * require special handling. The joining is only done if:
3854 * 1) there is room in the current conglomerated node to entirely contain the
3856 * 2) they are compatible node types
3858 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3859 * these get optimized out
3861 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3862 * as possible, even if that means splitting an existing node so that its first
3863 * part is moved to the preceeding node. This would maximise the efficiency of
3864 * memEQ during matching.
3866 * If a node is to match under /i (folded), the number of characters it matches
3867 * can be different than its character length if it contains a multi-character
3868 * fold. *min_subtract is set to the total delta number of characters of the
3871 * And *unfolded_multi_char is set to indicate whether or not the node contains
3872 * an unfolded multi-char fold. This happens when it won't be known until
3873 * runtime whether the fold is valid or not; namely
3874 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3875 * target string being matched against turns out to be UTF-8 is that fold
3877 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3879 * (Multi-char folds whose components are all above the Latin1 range are not
3880 * run-time locale dependent, and have already been folded by the time this
3881 * function is called.)
3883 * This is as good a place as any to discuss the design of handling these
3884 * multi-character fold sequences. It's been wrong in Perl for a very long
3885 * time. There are three code points in Unicode whose multi-character folds
3886 * were long ago discovered to mess things up. The previous designs for
3887 * dealing with these involved assigning a special node for them. This
3888 * approach doesn't always work, as evidenced by this example:
3889 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3890 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3891 * would match just the \xDF, it won't be able to handle the case where a
3892 * successful match would have to cross the node's boundary. The new approach
3893 * that hopefully generally solves the problem generates an EXACTFUP node
3894 * that is "sss" in this case.
3896 * It turns out that there are problems with all multi-character folds, and not
3897 * just these three. Now the code is general, for all such cases. The
3898 * approach taken is:
3899 * 1) This routine examines each EXACTFish node that could contain multi-
3900 * character folded sequences. Since a single character can fold into
3901 * such a sequence, the minimum match length for this node is less than
3902 * the number of characters in the node. This routine returns in
3903 * *min_subtract how many characters to subtract from the the actual
3904 * length of the string to get a real minimum match length; it is 0 if
3905 * there are no multi-char foldeds. This delta is used by the caller to
3906 * adjust the min length of the match, and the delta between min and max,
3907 * so that the optimizer doesn't reject these possibilities based on size
3910 * 2) For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
3911 * under /u, we fold it to 'ss' in regatom(), and in this routine, after
3912 * joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
3913 * EXACTFU nodes. The node type of such nodes is then changed to
3914 * EXACTFUP, indicating it is problematic, and needs careful handling.
3915 * (The procedures in step 1) above are sufficient to handle this case in
3916 * UTF-8 encoded nodes.) The reason this is problematic is that this is
3917 * the only case where there is a possible fold length change in non-UTF-8
3918 * patterns. By reserving a special node type for problematic cases, the
3919 * far more common regular EXACTFU nodes can be processed faster.
3920 * regexec.c takes advantage of this.
3922 * EXACTFUP has been created as a grab-bag for (hopefully uncommon)
3923 * problematic cases. These all only occur when the pattern is not
3924 * UTF-8. In addition to the 'ss' sequence where there is a possible fold
3925 * length change, it handles the situation where the string cannot be
3926 * entirely folded. The strings in an EXACTFish node are folded as much
3927 * as possible during compilation in regcomp.c. This saves effort in
3928 * regex matching. By using an EXACTFUP node when it is not possible to
3929 * fully fold at compile time, regexec.c can know that everything in an
3930 * EXACTFU node is folded, so folding can be skipped at runtime. The only
3931 * case where folding in EXACTFU nodes can't be done at compile time is
3932 * the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8. This
3933 * is because its fold requires UTF-8 to represent. Thus EXACTFUP nodes
3934 * handle two very different cases. Alternatively, there could have been
3935 * a node type where there are length changes, one for unfolded, and one
3936 * for both. If yet another special case needed to be created, the number
3937 * of required node types would have to go to 7. khw figures that even
3938 * though there are plenty of node types to spare, that the maintenance
3939 * cost wasn't worth the small speedup of doing it that way, especially
3940 * since he thinks the MICRO SIGN is rarely encountered in practice.
3942 * There are other cases where folding isn't done at compile time, but
3943 * none of them are under /u, and hence not for EXACTFU nodes. The folds
3944 * in EXACTFL nodes aren't known until runtime, and vary as the locale
3945 * changes. Some folds in EXACTF depend on if the runtime target string
3946 * is UTF-8 or not. (regatom() will create an EXACTFU node even under /di
3947 * when no fold in it depends on the UTF-8ness of the target string.)
3949 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3950 * validity of the fold won't be known until runtime, and so must remain
3951 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3952 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3953 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3954 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3955 * The reason this is a problem is that the optimizer part of regexec.c
3956 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3957 * that a character in the pattern corresponds to at most a single
3958 * character in the target string. (And I do mean character, and not byte
3959 * here, unlike other parts of the documentation that have never been
3960 * updated to account for multibyte Unicode.) Sharp s in EXACTF and
3961 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3962 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3963 * EXACTFL nodes, violate the assumption, and they are the only instances
3964 * where it is violated. I'm reluctant to try to change the assumption,
3965 * as the code involved is impenetrable to me (khw), so instead the code
3966 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3967 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3968 * boolean indicating whether or not the node contains such a fold. When
3969 * it is true, the caller sets a flag that later causes the optimizer in
3970 * this file to not set values for the floating and fixed string lengths,
3971 * and thus avoids the optimizer code in regexec.c that makes the invalid
3972 * assumption. Thus, there is no optimization based on string lengths for
3973 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3974 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3975 * assumption is wrong only in these cases is that all other non-UTF-8
3976 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3977 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3978 * EXACTF nodes because we don't know at compile time if it actually
3979 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3980 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3981 * always matches; and EXACTFAA where it never does. In an EXACTFAA node
3982 * in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3983 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3984 * string would require the pattern to be forced into UTF-8, the overhead
3985 * of which we want to avoid.&n