3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * I sit beside the fire and think
13 * of all that I have seen.
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
20 =head1 Hash Manipulation Functions
22 A HV structure represents a Perl hash. It consists mainly of an array
23 of pointers, each of which points to a linked list of HE structures. The
24 array is indexed by the hash function of the key, so each linked list
25 represents all the hash entries with the same hash value. Each HE contains
26 a pointer to the actual value, plus a pointer to a HEK structure which
27 holds the key and hash value.
35 #define PERL_HASH_INTERNAL_ACCESS
38 #define HV_MAX_LENGTH_BEFORE_SPLIT 14
40 static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
45 #define new_HE() (HE*)safemalloc(sizeof(HE))
46 #define del_HE(p) safefree((char*)p)
55 void ** const root = &PL_body_roots[HE_SVSLOT];
58 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
65 #define new_HE() new_he()
68 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
69 PL_body_roots[HE_SVSLOT] = p; \
77 S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
79 const int flags_masked = flags & HVhek_MASK;
83 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
85 Newx(k, HEK_BASESIZE + len + 2, char);
87 Copy(str, HEK_KEY(hek), len, char);
88 HEK_KEY(hek)[len] = 0;
91 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
93 if (flags & HVhek_FREEKEY)
98 /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
102 Perl_free_tied_hv_pool(pTHX)
105 HE *he = PL_hv_fetch_ent_mh;
108 Safefree(HeKEY_hek(he));
112 PL_hv_fetch_ent_mh = NULL;
115 #if defined(USE_ITHREADS)
117 Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
121 PERL_ARGS_ASSERT_HEK_DUP;
122 PERL_UNUSED_ARG(param);
127 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
129 /* We already shared this hash key. */
130 (void)share_hek_hek(shared);
134 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
135 HEK_HASH(source), HEK_FLAGS(source));
136 ptr_table_store(PL_ptr_table, source, shared);
142 Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
146 PERL_ARGS_ASSERT_HE_DUP;
150 /* look for it in the table first */
151 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
155 /* create anew and remember what it is */
157 ptr_table_store(PL_ptr_table, e, ret);
159 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
160 if (HeKLEN(e) == HEf_SVKEY) {
162 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
163 HeKEY_hek(ret) = (HEK*)k;
164 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
167 /* This is hek_dup inlined, which seems to be important for speed
169 HEK * const source = HeKEY_hek(e);
170 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
173 /* We already shared this hash key. */
174 (void)share_hek_hek(shared);
178 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
179 HEK_HASH(source), HEK_FLAGS(source));
180 ptr_table_store(PL_ptr_table, source, shared);
182 HeKEY_hek(ret) = shared;
185 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
187 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
190 #endif /* USE_ITHREADS */
193 S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
196 SV * const sv = sv_newmortal();
198 PERL_ARGS_ASSERT_HV_NOTALLOWED;
200 if (!(flags & HVhek_FREEKEY)) {
201 sv_setpvn(sv, key, klen);
204 /* Need to free saved eventually assign to mortal SV */
205 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
206 sv_usepvn(sv, (char *) key, klen);
208 if (flags & HVhek_UTF8) {
211 Perl_croak(aTHX_ msg, SVfARG(sv));
214 /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
220 Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
221 the length of the key. The C<hash> parameter is the precomputed hash
222 value; if it is zero then Perl will compute it. The return value will be
223 NULL if the operation failed or if the value did not need to be actually
224 stored within the hash (as in the case of tied hashes). Otherwise it can
225 be dereferenced to get the original C<SV*>. Note that the caller is
226 responsible for suitably incrementing the reference count of C<val> before
227 the call, and decrementing it if the function returned NULL. Effectively
228 a successful hv_store takes ownership of one reference to C<val>. This is
229 usually what you want; a newly created SV has a reference count of one, so
230 if all your code does is create SVs then store them in a hash, hv_store
231 will own the only reference to the new SV, and your code doesn't need to do
232 anything further to tidy up. hv_store is not implemented as a call to
233 hv_store_ent, and does not create a temporary SV for the key, so if your
234 key data is not already in SV form then use hv_store in preference to
237 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
238 information on how to use this function on tied hashes.
240 =for apidoc hv_store_ent
242 Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
243 parameter is the precomputed hash value; if it is zero then Perl will
244 compute it. The return value is the new hash entry so created. It will be
245 NULL if the operation failed or if the value did not need to be actually
246 stored within the hash (as in the case of tied hashes). Otherwise the
247 contents of the return value can be accessed using the C<He?> macros
248 described here. Note that the caller is responsible for suitably
249 incrementing the reference count of C<val> before the call, and
250 decrementing it if the function returned NULL. Effectively a successful
251 hv_store_ent takes ownership of one reference to C<val>. This is
252 usually what you want; a newly created SV has a reference count of one, so
253 if all your code does is create SVs then store them in a hash, hv_store
254 will own the only reference to the new SV, and your code doesn't need to do
255 anything further to tidy up. Note that hv_store_ent only reads the C<key>;
256 unlike C<val> it does not take ownership of it, so maintaining the correct
257 reference count on C<key> is entirely the caller's responsibility. hv_store
258 is not implemented as a call to hv_store_ent, and does not create a temporary
259 SV for the key, so if your key data is not already in SV form then use
260 hv_store in preference to hv_store_ent.
262 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
263 information on how to use this function on tied hashes.
265 =for apidoc hv_exists
267 Returns a boolean indicating whether the specified hash key exists. The
268 C<klen> is the length of the key.
272 Returns the SV which corresponds to the specified key in the hash. The
273 C<klen> is the length of the key. If C<lval> is set then the fetch will be
274 part of a store. Check that the return value is non-null before
275 dereferencing it to an C<SV*>.
277 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
278 information on how to use this function on tied hashes.
280 =for apidoc hv_exists_ent
282 Returns a boolean indicating whether the specified hash key exists. C<hash>
283 can be a valid precomputed hash value, or 0 to ask for it to be
289 /* returns an HE * structure with the all fields set */
290 /* note that hent_val will be a mortal sv for MAGICAL hashes */
292 =for apidoc hv_fetch_ent
294 Returns the hash entry which corresponds to the specified key in the hash.
295 C<hash> must be a valid precomputed hash number for the given C<key>, or 0
296 if you want the function to compute it. IF C<lval> is set then the fetch
297 will be part of a store. Make sure the return value is non-null before
298 accessing it. The return value when C<hv> is a tied hash is a pointer to a
299 static location, so be sure to make a copy of the structure if you need to
302 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
303 information on how to use this function on tied hashes.
308 /* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
310 Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
311 const int action, SV *val, const U32 hash)
316 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
325 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
329 Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
330 int flags, int action, SV *val, register U32 hash)
339 const int return_svp = action & HV_FETCH_JUST_SV;
343 if (SvTYPE(hv) == SVTYPEMASK)
346 assert(SvTYPE(hv) == SVt_PVHV);
348 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
350 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
351 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
352 if (uf->uf_set == NULL) {
353 SV* obj = mg->mg_obj;
356 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
357 ((flags & HVhek_UTF8)
361 mg->mg_obj = keysv; /* pass key */
362 uf->uf_index = action; /* pass action */
363 magic_getuvar(MUTABLE_SV(hv), mg);
364 keysv = mg->mg_obj; /* may have changed */
367 /* If the key may have changed, then we need to invalidate
368 any passed-in computed hash value. */
374 if (flags & HVhek_FREEKEY)
376 key = SvPV_const(keysv, klen);
377 is_utf8 = (SvUTF8(keysv) != 0);
378 if (SvIsCOW_shared_hash(keysv)) {
379 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
384 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
387 if (action & HV_DELETE) {
388 return (void *) hv_delete_common(hv, keysv, key, klen,
389 flags | (is_utf8 ? HVhek_UTF8 : 0),
393 xhv = (XPVHV*)SvANY(hv);
395 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
396 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
397 || SvGMAGICAL((const SV *)hv))
399 /* FIXME should be able to skimp on the HE/HEK here when
400 HV_FETCH_JUST_SV is true. */
402 keysv = newSVpvn_utf8(key, klen, is_utf8);
404 keysv = newSVsv(keysv);
407 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
409 /* grab a fake HE/HEK pair from the pool or make a new one */
410 entry = PL_hv_fetch_ent_mh;
412 PL_hv_fetch_ent_mh = HeNEXT(entry);
416 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
417 HeKEY_hek(entry) = (HEK*)k;
419 HeNEXT(entry) = NULL;
420 HeSVKEY_set(entry, keysv);
422 sv_upgrade(sv, SVt_PVLV);
424 /* so we can free entry when freeing sv */
425 LvTARG(sv) = MUTABLE_SV(entry);
427 /* XXX remove at some point? */
428 if (flags & HVhek_FREEKEY)
432 return entry ? (void *) &HeVAL(entry) : NULL;
434 return (void *) entry;
436 #ifdef ENV_IS_CASELESS
437 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
439 for (i = 0; i < klen; ++i)
440 if (isLOWER(key[i])) {
441 /* Would be nice if we had a routine to do the
442 copy and upercase in a single pass through. */
443 const char * const nkey = strupr(savepvn(key,klen));
444 /* Note that this fetch is for nkey (the uppercased
445 key) whereas the store is for key (the original) */
446 void *result = hv_common(hv, NULL, nkey, klen,
447 HVhek_FREEKEY, /* free nkey */
448 0 /* non-LVAL fetch */
449 | HV_DISABLE_UVAR_XKEY
452 0 /* compute hash */);
453 if (!result && (action & HV_FETCH_LVALUE)) {
454 /* This call will free key if necessary.
455 Do it this way to encourage compiler to tail
457 result = hv_common(hv, keysv, key, klen, flags,
459 | HV_DISABLE_UVAR_XKEY
463 if (flags & HVhek_FREEKEY)
471 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
472 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
473 || SvGMAGICAL((const SV *)hv)) {
474 /* I don't understand why hv_exists_ent has svret and sv,
475 whereas hv_exists only had one. */
476 SV * const svret = sv_newmortal();
479 if (keysv || is_utf8) {
481 keysv = newSVpvn_utf8(key, klen, TRUE);
483 keysv = newSVsv(keysv);
485 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
487 mg_copy(MUTABLE_SV(hv), sv, key, klen);
489 if (flags & HVhek_FREEKEY)
491 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
492 /* This cast somewhat evil, but I'm merely using NULL/
493 not NULL to return the boolean exists.
494 And I know hv is not NULL. */
495 return SvTRUE(svret) ? (void *)hv : NULL;
497 #ifdef ENV_IS_CASELESS
498 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
499 /* XXX This code isn't UTF8 clean. */
500 char * const keysave = (char * const)key;
501 /* Will need to free this, so set FREEKEY flag. */
502 key = savepvn(key,klen);
503 key = (const char*)strupr((char*)key);
508 if (flags & HVhek_FREEKEY) {
511 flags |= HVhek_FREEKEY;
515 else if (action & HV_FETCH_ISSTORE) {
518 hv_magic_check (hv, &needs_copy, &needs_store);
520 const bool save_taint = PL_tainted;
521 if (keysv || is_utf8) {
523 keysv = newSVpvn_utf8(key, klen, TRUE);
526 PL_tainted = SvTAINTED(keysv);
527 keysv = sv_2mortal(newSVsv(keysv));
528 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
530 mg_copy(MUTABLE_SV(hv), val, key, klen);
533 TAINT_IF(save_taint);
535 if (flags & HVhek_FREEKEY)
539 #ifdef ENV_IS_CASELESS
540 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
541 /* XXX This code isn't UTF8 clean. */
542 const char *keysave = key;
543 /* Will need to free this, so set FREEKEY flag. */
544 key = savepvn(key,klen);
545 key = (const char*)strupr((char*)key);
550 if (flags & HVhek_FREEKEY) {
553 flags |= HVhek_FREEKEY;
561 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
562 #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
563 || (SvRMAGICAL((const SV *)hv)
564 && mg_find((const SV *)hv, PERL_MAGIC_env))
569 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
571 HvARRAY(hv) = (HE**)array;
573 #ifdef DYNAMIC_ENV_FETCH
574 else if (action & HV_FETCH_ISEXISTS) {
575 /* for an %ENV exists, if we do an insert it's by a recursive
576 store call, so avoid creating HvARRAY(hv) right now. */
580 /* XXX remove at some point? */
581 if (flags & HVhek_FREEKEY)
588 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
589 char * const keysave = (char *)key;
590 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
594 flags &= ~HVhek_UTF8;
595 if (key != keysave) {
596 if (flags & HVhek_FREEKEY)
598 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
599 /* If the caller calculated a hash, it was on the sequence of
600 octets that are the UTF-8 form. We've now changed the sequence
601 of octets stored to that of the equivalent byte representation,
602 so the hash we need is different. */
607 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
608 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
610 hash = SvSHARED_HASH(keysv);
612 /* We don't have a pointer to the hv, so we have to replicate the
613 flag into every HEK, so that hv_iterkeysv can see it.
614 And yes, you do need this even though you are not "storing" because
615 you can flip the flags below if doing an lval lookup. (And that
616 was put in to give the semantics Andreas was expecting.) */
618 flags |= HVhek_REHASH;
620 masked_flags = (flags & HVhek_MASK);
622 #ifdef DYNAMIC_ENV_FETCH
623 if (!HvARRAY(hv)) entry = NULL;
627 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
629 for (; entry; entry = HeNEXT(entry)) {
630 if (HeHASH(entry) != hash) /* strings can't be equal */
632 if (HeKLEN(entry) != (I32)klen)
634 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
636 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
639 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
640 if (HeKFLAGS(entry) != masked_flags) {
641 /* We match if HVhek_UTF8 bit in our flags and hash key's
642 match. But if entry was set previously with HVhek_WASUTF8
643 and key now doesn't (or vice versa) then we should change
644 the key's flag, as this is assignment. */
645 if (HvSHAREKEYS(hv)) {
646 /* Need to swap the key we have for a key with the flags we
647 need. As keys are shared we can't just write to the
648 flag, so we share the new one, unshare the old one. */
649 HEK * const new_hek = share_hek_flags(key, klen, hash,
651 unshare_hek (HeKEY_hek(entry));
652 HeKEY_hek(entry) = new_hek;
654 else if (hv == PL_strtab) {
655 /* PL_strtab is usually the only hash without HvSHAREKEYS,
656 so putting this test here is cheap */
657 if (flags & HVhek_FREEKEY)
659 Perl_croak(aTHX_ S_strtab_error,
660 action & HV_FETCH_LVALUE ? "fetch" : "store");
663 HeKFLAGS(entry) = masked_flags;
664 if (masked_flags & HVhek_ENABLEHVKFLAGS)
667 if (HeVAL(entry) == &PL_sv_placeholder) {
668 /* yes, can store into placeholder slot */
669 if (action & HV_FETCH_LVALUE) {
671 /* This preserves behaviour with the old hv_fetch
672 implementation which at this point would bail out
673 with a break; (at "if we find a placeholder, we
674 pretend we haven't found anything")
676 That break mean that if a placeholder were found, it
677 caused a call into hv_store, which in turn would
678 check magic, and if there is no magic end up pretty
679 much back at this point (in hv_store's code). */
682 /* LVAL fetch which actually needs a store. */
684 HvPLACEHOLDERS(hv)--;
687 if (val != &PL_sv_placeholder)
688 HvPLACEHOLDERS(hv)--;
691 } else if (action & HV_FETCH_ISSTORE) {
692 SvREFCNT_dec(HeVAL(entry));
695 } else if (HeVAL(entry) == &PL_sv_placeholder) {
696 /* if we find a placeholder, we pretend we haven't found
700 if (flags & HVhek_FREEKEY)
703 return entry ? (void *) &HeVAL(entry) : NULL;
707 #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
708 if (!(action & HV_FETCH_ISSTORE)
709 && SvRMAGICAL((const SV *)hv)
710 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
712 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
714 sv = newSVpvn(env,len);
716 return hv_common(hv, keysv, key, klen, flags,
717 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
723 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
724 hv_notallowed(flags, key, klen,
725 "Attempt to access disallowed key '%"SVf"' in"
726 " a restricted hash");
728 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
729 /* Not doing some form of store, so return failure. */
730 if (flags & HVhek_FREEKEY)
734 if (action & HV_FETCH_LVALUE) {
735 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
737 /* At this point the old hv_fetch code would call to hv_store,
738 which in turn might do some tied magic. So we need to make that
739 magic check happen. */
740 /* gonna assign to this, so it better be there */
741 /* If a fetch-as-store fails on the fetch, then the action is to
742 recurse once into "hv_store". If we didn't do this, then that
743 recursive call would call the key conversion routine again.
744 However, as we replace the original key with the converted
745 key, this would result in a double conversion, which would show
746 up as a bug if the conversion routine is not idempotent. */
747 return hv_common(hv, keysv, key, klen, flags,
748 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
750 /* XXX Surely that could leak if the fetch-was-store fails?
751 Just like the hv_fetch. */
755 /* Welcome to hv_store... */
758 /* Not sure if we can get here. I think the only case of oentry being
759 NULL is for %ENV with dynamic env fetch. But that should disappear
760 with magic in the previous code. */
763 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
765 HvARRAY(hv) = (HE**)array;
768 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
771 /* share_hek_flags will do the free for us. This might be considered
774 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
775 else if (hv == PL_strtab) {
776 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
777 this test here is cheap */
778 if (flags & HVhek_FREEKEY)
780 Perl_croak(aTHX_ S_strtab_error,
781 action & HV_FETCH_LVALUE ? "fetch" : "store");
783 else /* gotta do the real thing */
784 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
786 HeNEXT(entry) = *oentry;
789 if (val == &PL_sv_placeholder)
790 HvPLACEHOLDERS(hv)++;
791 if (masked_flags & HVhek_ENABLEHVKFLAGS)
795 const HE *counter = HeNEXT(entry);
797 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
798 if (!counter) { /* initial entry? */
799 } else if (xhv->xhv_keys > xhv->xhv_max) {
800 /* Use only the old HvUSEDKEYS(hv) > HvMAX(hv) condition to limit
801 bucket splits on a rehashed hash, as we're not going to
802 split it again, and if someone is lucky (evil) enough to
803 get all the keys in one list they could exhaust our memory
804 as we repeatedly double the number of buckets on every
805 entry. Linear search feels a less worse thing to do. */
807 } else if(!HvREHASH(hv)) {
810 while ((counter = HeNEXT(counter)))
813 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
820 return entry ? (void *) &HeVAL(entry) : NULL;
822 return (void *) entry;
826 S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
828 const MAGIC *mg = SvMAGIC(hv);
830 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
835 if (isUPPER(mg->mg_type)) {
837 if (mg->mg_type == PERL_MAGIC_tied) {
838 *needs_store = FALSE;
839 return; /* We've set all there is to set. */
842 mg = mg->mg_moremagic;
847 =for apidoc hv_scalar
849 Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
855 Perl_hv_scalar(pTHX_ HV *hv)
859 PERL_ARGS_ASSERT_HV_SCALAR;
861 if (SvRMAGICAL(hv)) {
862 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
864 return magic_scalarpack(hv, mg);
868 if (HvTOTALKEYS((const HV *)hv))
869 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
870 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
878 =for apidoc hv_delete
880 Deletes a key/value pair in the hash. The value's SV is removed from the
881 hash, made mortal, and returned to the caller. The C<klen> is the length of
882 the key. The C<flags> value will normally be zero; if set to G_DISCARD then
883 NULL will be returned. NULL will also be returned if the key is not found.
885 =for apidoc hv_delete_ent
887 Deletes a key/value pair in the hash. The value SV is removed from the hash,
888 made mortal, and returned to the caller. The C<flags> value will normally be
889 zero; if set to G_DISCARD then NULL will be returned. NULL will also be
890 returned if the key is not found. C<hash> can be a valid precomputed hash
891 value, or 0 to ask for it to be computed.
897 S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
898 int k_flags, I32 d_flags, U32 hash)
903 register HE **oentry;
904 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
907 if (SvRMAGICAL(hv)) {
910 hv_magic_check (hv, &needs_copy, &needs_store);
914 entry = (HE *) hv_common(hv, keysv, key, klen,
915 k_flags & ~HVhek_FREEKEY,
916 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
918 sv = entry ? HeVAL(entry) : NULL;
924 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
925 /* No longer an element */
926 sv_unmagic(sv, PERL_MAGIC_tiedelem);
929 return NULL; /* element cannot be deleted */
931 #ifdef ENV_IS_CASELESS
932 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
933 /* XXX This code isn't UTF8 clean. */
934 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
935 if (k_flags & HVhek_FREEKEY) {
938 key = strupr(SvPVX(keysv));
947 xhv = (XPVHV*)SvANY(hv);
952 const char * const keysave = key;
953 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
956 k_flags |= HVhek_UTF8;
958 k_flags &= ~HVhek_UTF8;
959 if (key != keysave) {
960 if (k_flags & HVhek_FREEKEY) {
961 /* This shouldn't happen if our caller does what we expect,
962 but strictly the API allows it. */
965 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
967 HvHASKFLAGS_on(MUTABLE_SV(hv));
970 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
971 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
973 hash = SvSHARED_HASH(keysv);
975 masked_flags = (k_flags & HVhek_MASK);
977 oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
979 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
981 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
985 if (HeHASH(entry) != hash) /* strings can't be equal */
987 if (HeKLEN(entry) != (I32)klen)
989 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
991 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
994 if (hv == PL_strtab) {
995 if (k_flags & HVhek_FREEKEY)
997 Perl_croak(aTHX_ S_strtab_error, "delete");
1000 /* if placeholder is here, it's already been deleted.... */
1001 if (HeVAL(entry) == &PL_sv_placeholder) {
1002 if (k_flags & HVhek_FREEKEY)
1006 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1007 hv_notallowed(k_flags, key, klen,
1008 "Attempt to delete readonly key '%"SVf"' from"
1009 " a restricted hash");
1011 if (k_flags & HVhek_FREEKEY)
1014 /* If this is a stash and the key ends with ::, then someone is
1015 * deleting a package.
1017 if (HeVAL(entry) && HvENAME_get(hv)) {
1018 gv = (GV *)HeVAL(entry);
1019 if (keysv) key = SvPV(keysv, klen);
1021 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1023 (klen == 1 && key[0] == ':')
1025 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1026 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1027 && HvENAME_get(stash)) {
1028 /* A previous version of this code checked that the
1029 * GV was still in the symbol table by fetching the
1030 * GV with its name. That is not necessary (and
1031 * sometimes incorrect), as HvENAME cannot be set
1032 * on hv if it is not in the symtab. */
1034 /* Hang on to it for a bit. */
1035 SvREFCNT_inc_simple_void_NN(
1036 sv_2mortal((SV *)gv)
1039 else if (klen == 3 && strnEQ(key, "ISA", 3))
1043 if (d_flags & G_DISCARD)
1046 sv = sv_2mortal(HeVAL(entry));
1047 HeVAL(entry) = &PL_sv_placeholder;
1051 * If a restricted hash, rather than really deleting the entry, put
1052 * a placeholder there. This marks the key as being "approved", so
1053 * we can still access via not-really-existing key without raising
1056 if (SvREADONLY(hv)) {
1057 SvREFCNT_dec(HeVAL(entry));
1058 HeVAL(entry) = &PL_sv_placeholder;
1059 /* We'll be saving this slot, so the number of allocated keys
1060 * doesn't go down, but the number placeholders goes up */
1061 HvPLACEHOLDERS(hv)++;
1063 *oentry = HeNEXT(entry);
1064 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1067 hv_free_ent(hv, entry);
1068 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1069 if (xhv->xhv_keys == 0)
1070 HvHASKFLAGS_off(hv);
1073 if (mro_changes == 1) mro_isa_changed_in(hv);
1074 else if (mro_changes == 2)
1075 mro_package_moved(NULL, stash, gv, 1);
1079 if (SvREADONLY(hv)) {
1080 hv_notallowed(k_flags, key, klen,
1081 "Attempt to delete disallowed key '%"SVf"' from"
1082 " a restricted hash");
1085 if (k_flags & HVhek_FREEKEY)
1091 S_hsplit(pTHX_ HV *hv)
1094 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1095 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1096 register I32 newsize = oldsize * 2;
1098 char *a = (char*) HvARRAY(hv);
1100 int longest_chain = 0;
1103 PERL_ARGS_ASSERT_HSPLIT;
1105 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1106 (void*)hv, (int) oldsize);*/
1108 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1109 /* Can make this clear any placeholders first for non-restricted hashes,
1110 even though Storable rebuilds restricted hashes by putting in all the
1111 placeholders (first) before turning on the readonly flag, because
1112 Storable always pre-splits the hash. */
1113 hv_clear_placeholders(hv);
1117 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1118 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1119 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1125 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1128 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1129 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1134 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1136 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1138 Safefree(HvARRAY(hv));
1142 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1143 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1144 HvARRAY(hv) = (HE**) a;
1147 for (i=0; i<oldsize; i++,aep++) {
1148 int left_length = 0;
1149 int right_length = 0;
1154 if (!entry) /* non-existent */
1158 if ((HeHASH(entry) & newsize) != (U32)i) {
1159 *oentry = HeNEXT(entry);
1160 HeNEXT(entry) = *bep;
1165 oentry = &HeNEXT(entry);
1170 /* I think we don't actually need to keep track of the longest length,
1171 merely flag if anything is too long. But for the moment while
1172 developing this code I'll track it. */
1173 if (left_length > longest_chain)
1174 longest_chain = left_length;
1175 if (right_length > longest_chain)
1176 longest_chain = right_length;
1180 /* Pick your policy for "hashing isn't working" here: */
1181 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1186 if (hv == PL_strtab) {
1187 /* Urg. Someone is doing something nasty to the string table.
1192 /* Awooga. Awooga. Pathological data. */
1193 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1194 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1197 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1198 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1200 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1203 was_shared = HvSHAREKEYS(hv);
1205 HvSHAREKEYS_off(hv);
1210 for (i=0; i<newsize; i++,aep++) {
1211 register HE *entry = *aep;
1213 /* We're going to trash this HE's next pointer when we chain it
1214 into the new hash below, so store where we go next. */
1215 HE * const next = HeNEXT(entry);
1220 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1225 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1226 hash, HeKFLAGS(entry));
1227 unshare_hek (HeKEY_hek(entry));
1228 HeKEY_hek(entry) = new_hek;
1230 /* Not shared, so simply write the new hash in. */
1231 HeHASH(entry) = hash;
1233 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1234 HEK_REHASH_on(HeKEY_hek(entry));
1235 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1237 /* Copy oentry to the correct new chain. */
1238 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1239 HeNEXT(entry) = *bep;
1245 Safefree (HvARRAY(hv));
1246 HvARRAY(hv) = (HE **)a;
1250 Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1253 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1254 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1255 register I32 newsize;
1260 PERL_ARGS_ASSERT_HV_KSPLIT;
1262 newsize = (I32) newmax; /* possible truncation here */
1263 if (newsize != newmax || newmax <= oldsize)
1265 while ((newsize & (1 + ~newsize)) != newsize) {
1266 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1268 if (newsize < newmax)
1270 if (newsize < newmax)
1271 return; /* overflow detection */
1273 a = (char *) HvARRAY(hv);
1276 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1277 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1278 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1284 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1287 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1288 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1293 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1295 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1297 Safefree(HvARRAY(hv));
1300 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1303 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1305 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1306 HvARRAY(hv) = (HE **) a;
1307 if (!xhv->xhv_keys /* !HvTOTALKEYS(hv) */) /* skip rest if no entries */
1311 for (i=0; i<oldsize; i++,aep++) {
1315 if (!entry) /* non-existent */
1318 register I32 j = (HeHASH(entry) & newsize);
1322 *oentry = HeNEXT(entry);
1323 HeNEXT(entry) = aep[j];
1327 oentry = &HeNEXT(entry);
1334 Perl_newHVhv(pTHX_ HV *ohv)
1337 HV * const hv = newHV();
1340 if (!ohv || !HvTOTALKEYS(ohv))
1342 hv_max = HvMAX(ohv);
1344 if (!SvMAGICAL((const SV *)ohv)) {
1345 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1347 const bool shared = !!HvSHAREKEYS(ohv);
1348 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1350 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1353 /* In each bucket... */
1354 for (i = 0; i <= hv_max; i++) {
1356 HE *oent = oents[i];
1363 /* Copy the linked list of entries. */
1364 for (; oent; oent = HeNEXT(oent)) {
1365 const U32 hash = HeHASH(oent);
1366 const char * const key = HeKEY(oent);
1367 const STRLEN len = HeKLEN(oent);
1368 const int flags = HeKFLAGS(oent);
1369 HE * const ent = new_HE();
1370 SV *const val = HeVAL(oent);
1372 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1374 = shared ? share_hek_flags(key, len, hash, flags)
1375 : save_hek_flags(key, len, hash, flags);
1386 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1390 /* Iterate over ohv, copying keys and values one at a time. */
1392 const I32 riter = HvRITER_get(ohv);
1393 HE * const eiter = HvEITER_get(ohv);
1394 STRLEN hv_fill = HvFILL(ohv);
1396 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1397 while (hv_max && hv_max + 1 >= hv_fill * 2)
1398 hv_max = hv_max / 2;
1402 while ((entry = hv_iternext_flags(ohv, 0))) {
1403 SV *const val = HeVAL(entry);
1404 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1405 SvIMMORTAL(val) ? val : newSVsv(val),
1406 HeHASH(entry), HeKFLAGS(entry));
1408 HvRITER_set(ohv, riter);
1409 HvEITER_set(ohv, eiter);
1416 =for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1418 A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1419 a pointer to a hash (which may have C<%^H> magic, but should be generally
1420 non-magical), or C<NULL> (interpreted as an empty hash). The content
1421 of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1422 added to it. A pointer to the new hash is returned.
1428 Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1430 HV * const hv = newHV();
1432 if (ohv && HvTOTALKEYS(ohv)) {
1433 STRLEN hv_max = HvMAX(ohv);
1434 STRLEN hv_fill = HvFILL(ohv);
1436 const I32 riter = HvRITER_get(ohv);
1437 HE * const eiter = HvEITER_get(ohv);
1439 while (hv_max && hv_max + 1 >= hv_fill * 2)
1440 hv_max = hv_max / 2;
1444 while ((entry = hv_iternext_flags(ohv, 0))) {
1445 SV *const sv = newSVsv(HeVAL(entry));
1446 SV *heksv = newSVhek(HeKEY_hek(entry));
1447 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1448 (char *)heksv, HEf_SVKEY);
1449 SvREFCNT_dec(heksv);
1450 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1451 sv, HeHASH(entry), HeKFLAGS(entry));
1453 HvRITER_set(ohv, riter);
1454 HvEITER_set(ohv, eiter);
1456 hv_magic(hv, NULL, PERL_MAGIC_hints);
1460 /* like hv_free_ent, but returns the SV rather than freeing it */
1462 S_hv_free_ent_ret(pTHX_ HV *hv, register HE *entry)
1467 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1472 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvENAME(hv))
1473 mro_method_changed_in(hv); /* deletion of method from stash */
1474 if (HeKLEN(entry) == HEf_SVKEY) {
1475 SvREFCNT_dec(HeKEY_sv(entry));
1476 Safefree(HeKEY_hek(entry));
1478 else if (HvSHAREKEYS(hv))
1479 unshare_hek(HeKEY_hek(entry));
1481 Safefree(HeKEY_hek(entry));
1488 Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1493 PERL_ARGS_ASSERT_HV_FREE_ENT;
1497 val = hv_free_ent_ret(hv, entry);
1503 Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1507 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1511 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1512 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1513 if (HeKLEN(entry) == HEf_SVKEY) {
1514 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1516 hv_free_ent(hv, entry);
1520 =for apidoc hv_clear
1522 Clears a hash, making it empty.
1528 Perl_hv_clear(pTHX_ HV *hv)
1531 register XPVHV* xhv;
1535 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1537 xhv = (XPVHV*)SvANY(hv);
1539 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1540 /* restricted hash: convert all keys to placeholders */
1542 for (i = 0; i <= xhv->xhv_max; i++) {
1543 HE *entry = (HvARRAY(hv))[i];
1544 for (; entry; entry = HeNEXT(entry)) {
1545 /* not already placeholder */
1546 if (HeVAL(entry) != &PL_sv_placeholder) {
1547 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1548 SV* const keysv = hv_iterkeysv(entry);
1550 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1553 SvREFCNT_dec(HeVAL(entry));
1554 HeVAL(entry) = &PL_sv_placeholder;
1555 HvPLACEHOLDERS(hv)++;
1562 HvPLACEHOLDERS_set(hv, 0);
1565 mg_clear(MUTABLE_SV(hv));
1567 HvHASKFLAGS_off(hv);
1572 mro_isa_changed_in(hv);
1573 HvEITER_set(hv, NULL);
1578 =for apidoc hv_clear_placeholders
1580 Clears any placeholders from a hash. If a restricted hash has any of its keys
1581 marked as readonly and the key is subsequently deleted, the key is not actually
1582 deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1583 it so it will be ignored by future operations such as iterating over the hash,
1584 but will still allow the hash to have a value reassigned to the key at some
1585 future point. This function clears any such placeholder keys from the hash.
1586 See Hash::Util::lock_keys() for an example of its use.
1592 Perl_hv_clear_placeholders(pTHX_ HV *hv)
1595 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1597 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1600 clear_placeholders(hv, items);
1604 S_clear_placeholders(pTHX_ HV *hv, U32 items)
1609 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1616 /* Loop down the linked list heads */
1617 HE **oentry = &(HvARRAY(hv))[i];
1620 while ((entry = *oentry)) {
1621 if (HeVAL(entry) == &PL_sv_placeholder) {
1622 *oentry = HeNEXT(entry);
1623 if (entry == HvEITER_get(hv))
1626 hv_free_ent(hv, entry);
1630 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1631 if (HvUSEDKEYS(hv) == 0)
1632 HvHASKFLAGS_off(hv);
1633 HvPLACEHOLDERS_set(hv, 0);
1637 oentry = &HeNEXT(entry);
1641 /* You can't get here, hence assertion should always fail. */
1642 assert (items == 0);
1647 S_hfreeentries(pTHX_ HV *hv)
1652 PERL_ARGS_ASSERT_HFREEENTRIES;
1654 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1657 while ( ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))) ) {
1663 /* hfree_next_entry()
1664 * For use only by S_hfreeentries() and sv_clear().
1665 * Delete the next available HE from hv and return the associated SV.
1666 * Returns null on empty hash.
1667 * indexp is a pointer to the current index into HvARRAY. The index should
1668 * initially be set to 0. hfree_next_entry() may update it. */
1671 Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1673 struct xpvhv_aux *iter;
1677 STRLEN orig_index = *indexp;
1680 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1682 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1685 if (SvOOK(hv) && ((iter = HvAUX(hv)))
1686 && ((entry = iter->xhv_eiter)) )
1688 /* the iterator may get resurrected after each
1689 * destructor call, so check each time */
1690 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1692 hv_free_ent(hv, entry);
1693 /* warning: at this point HvARRAY may have been
1694 * re-allocated, HvMAX changed etc */
1696 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1697 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1700 array = HvARRAY(hv);
1702 while ( ! ((entry = array[*indexp])) ) {
1703 if ((*indexp)++ >= HvMAX(hv))
1705 assert(*indexp != orig_index);
1707 array[*indexp] = HeNEXT(entry);
1708 ((XPVHV*) SvANY(hv))->xhv_keys--;
1710 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1711 && HeVAL(entry) && isGV(HeVAL(entry))
1712 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1715 const char * const key = HePV(entry,klen);
1716 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1717 || (klen == 1 && key[0] == ':')) {
1719 NULL, GvHV(HeVAL(entry)),
1720 (GV *)HeVAL(entry), 0
1724 return hv_free_ent_ret(hv, entry);
1729 =for apidoc hv_undef
1737 Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1740 register XPVHV* xhv;
1745 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1746 xhv = (XPVHV*)SvANY(hv);
1748 /* The name must be deleted before the call to hfreeeeentries so that
1749 CVs are anonymised properly. But the effective name must be pre-
1750 served until after that call (and only deleted afterwards if the
1751 call originated from sv_clear). For stashes with one name that is
1752 both the canonical name and the effective name, hv_name_set has to
1753 allocate an array for storing the effective name. We can skip that
1754 during global destruction, as it does not matter where the CVs point
1755 if they will be freed anyway. */
1756 if (PL_phase != PERL_PHASE_DESTRUCT && (name = HvNAME(hv))) {
1758 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1759 hv_name_set(hv, NULL, 0, 0);
1763 struct xpvhv_aux * const aux = HvAUX(hv);
1764 struct mro_meta *meta;
1766 if ((name = HvENAME_get(hv))) {
1767 if (PL_phase != PERL_PHASE_DESTRUCT)
1768 mro_isa_changed_in(hv);
1771 PL_stashcache, name, HvENAMELEN_get(hv), G_DISCARD
1775 /* If this call originated from sv_clear, then we must check for
1776 * effective names that need freeing, as well as the usual name. */
1778 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1779 if (name && PL_stashcache)
1780 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1781 hv_name_set(hv, NULL, 0, flags);
1783 if((meta = aux->xhv_mro_meta)) {
1784 if (meta->mro_linear_all) {
1785 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1786 meta->mro_linear_all = NULL;
1787 /* This is just acting as a shortcut pointer. */
1788 meta->mro_linear_current = NULL;
1789 } else if (meta->mro_linear_current) {
1790 /* Only the current MRO is stored, so this owns the data.
1792 SvREFCNT_dec(meta->mro_linear_current);
1793 meta->mro_linear_current = NULL;
1795 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1796 SvREFCNT_dec(meta->isa);
1798 aux->xhv_mro_meta = NULL;
1800 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1801 SvFLAGS(hv) &= ~SVf_OOK;
1804 Safefree(HvARRAY(hv));
1805 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1808 HvPLACEHOLDERS_set(hv, 0);
1811 mg_clear(MUTABLE_SV(hv));
1817 Returns the number of hash buckets that happen to be in use. This function is
1818 wrapped by the macro C<HvFILL>.
1820 Previously this value was stored in the HV structure, rather than being
1821 calculated on demand.
1827 Perl_hv_fill(pTHX_ HV const *const hv)
1830 HE **ents = HvARRAY(hv);
1832 PERL_ARGS_ASSERT_HV_FILL;
1835 HE *const *const last = ents + HvMAX(hv);
1836 count = last + 1 - ents;
1841 } while (++ents <= last);
1846 static struct xpvhv_aux*
1847 S_hv_auxinit(HV *hv) {
1848 struct xpvhv_aux *iter;
1851 PERL_ARGS_ASSERT_HV_AUXINIT;
1854 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1855 + sizeof(struct xpvhv_aux), char);
1857 array = (char *) HvARRAY(hv);
1858 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1859 + sizeof(struct xpvhv_aux), char);
1861 HvARRAY(hv) = (HE**) array;
1862 /* SvOOK_on(hv) attacks the IV flags. */
1863 SvFLAGS(hv) |= SVf_OOK;
1866 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1867 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1868 iter->xhv_name_u.xhvnameu_name = 0;
1869 iter->xhv_name_count = 0;
1870 iter->xhv_backreferences = 0;
1871 iter->xhv_mro_meta = NULL;
1876 =for apidoc hv_iterinit
1878 Prepares a starting point to traverse a hash table. Returns the number of
1879 keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1880 currently only meaningful for hashes without tie magic.
1882 NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1883 hash buckets that happen to be in use. If you still need that esoteric
1884 value, you can get it through the macro C<HvFILL(hv)>.
1891 Perl_hv_iterinit(pTHX_ HV *hv)
1893 PERL_ARGS_ASSERT_HV_ITERINIT;
1895 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1898 Perl_croak(aTHX_ "Bad hash");
1901 struct xpvhv_aux * const iter = HvAUX(hv);
1902 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1903 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1905 hv_free_ent(hv, entry);
1907 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1908 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1913 /* used to be xhv->xhv_fill before 5.004_65 */
1914 return HvTOTALKEYS(hv);
1918 Perl_hv_riter_p(pTHX_ HV *hv) {
1919 struct xpvhv_aux *iter;
1921 PERL_ARGS_ASSERT_HV_RITER_P;
1924 Perl_croak(aTHX_ "Bad hash");
1926 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1927 return &(iter->xhv_riter);
1931 Perl_hv_eiter_p(pTHX_ HV *hv) {
1932 struct xpvhv_aux *iter;
1934 PERL_ARGS_ASSERT_HV_EITER_P;
1937 Perl_croak(aTHX_ "Bad hash");
1939 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1940 return &(iter->xhv_eiter);
1944 Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1945 struct xpvhv_aux *iter;
1947 PERL_ARGS_ASSERT_HV_RITER_SET;
1950 Perl_croak(aTHX_ "Bad hash");
1958 iter = hv_auxinit(hv);
1960 iter->xhv_riter = riter;
1964 Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1965 struct xpvhv_aux *iter;
1967 PERL_ARGS_ASSERT_HV_EITER_SET;
1970 Perl_croak(aTHX_ "Bad hash");
1975 /* 0 is the default so don't go malloc()ing a new structure just to
1980 iter = hv_auxinit(hv);
1982 iter->xhv_eiter = eiter;
1986 Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
1989 struct xpvhv_aux *iter;
1993 PERL_ARGS_ASSERT_HV_NAME_SET;
1994 PERL_UNUSED_ARG(flags);
1997 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2001 if (iter->xhv_name_u.xhvnameu_name) {
2002 if(iter->xhv_name_count) {
2003 if(flags & HV_NAME_SETALL) {
2004 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2005 HEK **hekp = name + (
2006 iter->xhv_name_count < 0
2007 ? -iter->xhv_name_count
2008 : iter->xhv_name_count
2010 while(hekp-- > name+1)
2011 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2012 /* The first elem may be null. */
2013 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2015 spot = &iter->xhv_name_u.xhvnameu_name;
2016 iter->xhv_name_count = 0;
2019 if(iter->xhv_name_count > 0) {
2020 /* shift some things over */
2022 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2024 spot = iter->xhv_name_u.xhvnameu_names;
2025 spot[iter->xhv_name_count] = spot[1];
2027 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2029 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2030 unshare_hek_or_pvn(*spot, 0, 0, 0);
2034 else if (flags & HV_NAME_SETALL) {
2035 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2036 spot = &iter->xhv_name_u.xhvnameu_name;
2039 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2040 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2041 iter->xhv_name_count = -2;
2042 spot = iter->xhv_name_u.xhvnameu_names;
2043 spot[1] = existing_name;
2046 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2051 iter = hv_auxinit(hv);
2052 spot = &iter->xhv_name_u.xhvnameu_name;
2054 PERL_HASH(hash, name, len);
2055 *spot = name ? share_hek(name, len, hash) : NULL;
2059 =for apidoc hv_ename_add
2061 Adds a name to a stash's internal list of effective names. See
2064 This is called when a stash is assigned to a new location in the symbol
2071 Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2074 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2077 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2078 PERL_UNUSED_ARG(flags);
2081 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2083 PERL_HASH(hash, name, len);
2085 if (aux->xhv_name_count) {
2086 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2087 I32 count = aux->xhv_name_count;
2088 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2089 while (hekp-- > xhv_name)
2091 HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len)
2093 if (hekp == xhv_name && count < 0)
2094 aux->xhv_name_count = -count;
2097 if (count < 0) aux->xhv_name_count--, count = -count;
2098 else aux->xhv_name_count++;
2099 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2100 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, len, hash);
2103 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2105 existing_name && HEK_LEN(existing_name) == (I32)len
2106 && memEQ(HEK_KEY(existing_name), name, len)
2108 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2109 aux->xhv_name_count = existing_name ? 2 : -2;
2110 *aux->xhv_name_u.xhvnameu_names = existing_name;
2111 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, len, hash);
2116 =for apidoc hv_ename_delete
2118 Removes a name from a stash's internal list of effective names. If this is
2119 the name returned by C<HvENAME>, then another name in the list will take
2120 its place (C<HvENAME> will use it).
2122 This is called when a stash is deleted from the symbol table.
2128 Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2131 struct xpvhv_aux *aux;
2133 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2134 PERL_UNUSED_ARG(flags);
2137 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2139 if (!SvOOK(hv)) return;
2142 if (!aux->xhv_name_u.xhvnameu_name) return;
2144 if (aux->xhv_name_count) {
2145 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2146 I32 const count = aux->xhv_name_count;
2147 HEK **victim = namep + (count < 0 ? -count : count);
2148 while (victim-- > namep + 1)
2150 HEK_LEN(*victim) == (I32)len
2151 && memEQ(HEK_KEY(*victim), name, len)
2153 unshare_hek_or_pvn(*victim, 0, 0, 0);
2154 if (count < 0) ++aux->xhv_name_count;
2155 else --aux->xhv_name_count;
2157 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2159 ) { /* if there are none left */
2161 aux->xhv_name_u.xhvnameu_names = NULL;
2162 aux->xhv_name_count = 0;
2165 /* Move the last one back to fill the empty slot. It
2166 does not matter what order they are in. */
2167 *victim = *(namep + (count < 0 ? -count : count) - 1);
2172 count > 0 && HEK_LEN(*namep) == (I32)len
2173 && memEQ(HEK_KEY(*namep),name,len)
2175 aux->xhv_name_count = -count;
2179 HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len
2180 && memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len)
2182 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2183 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2184 *aux->xhv_name_u.xhvnameu_names = namehek;
2185 aux->xhv_name_count = -1;
2190 Perl_hv_backreferences_p(pTHX_ HV *hv) {
2191 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2193 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2194 PERL_UNUSED_CONTEXT;
2196 return &(iter->xhv_backreferences);
2200 Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2203 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2208 av = HvAUX(hv)->xhv_backreferences;
2211 HvAUX(hv)->xhv_backreferences = 0;
2212 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2213 if (SvTYPE(av) == SVt_PVAV)
2219 hv_iternext is implemented as a macro in hv.h
2221 =for apidoc hv_iternext
2223 Returns entries from a hash iterator. See C<hv_iterinit>.
2225 You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2226 iterator currently points to, without losing your place or invalidating your
2227 iterator. Note that in this case the current entry is deleted from the hash
2228 with your iterator holding the last reference to it. Your iterator is flagged
2229 to free the entry on the next call to C<hv_iternext>, so you must not discard
2230 your iterator immediately else the entry will leak - call C<hv_iternext> to
2231 trigger the resource deallocation.
2233 =for apidoc hv_iternext_flags
2235 Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2236 The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2237 set the placeholders keys (for restricted hashes) will be returned in addition
2238 to normal keys. By default placeholders are automatically skipped over.
2239 Currently a placeholder is implemented with a value that is
2240 C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2241 restricted hashes may change, and the implementation currently is
2242 insufficiently abstracted for any change to be tidy.
2248 Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2251 register XPVHV* xhv;
2255 struct xpvhv_aux *iter;
2257 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2260 Perl_croak(aTHX_ "Bad hash");
2262 xhv = (XPVHV*)SvANY(hv);
2265 /* Too many things (well, pp_each at least) merrily assume that you can
2266 call iv_iternext without calling hv_iterinit, so we'll have to deal
2272 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2273 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2274 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2275 SV * const key = sv_newmortal();
2277 sv_setsv(key, HeSVKEY_force(entry));
2278 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2284 /* one HE per MAGICAL hash */
2285 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2287 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2289 HeKEY_hek(entry) = hek;
2290 HeKLEN(entry) = HEf_SVKEY;
2292 magic_nextpack(MUTABLE_SV(hv),mg,key);
2294 /* force key to stay around until next time */
2295 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2296 return entry; /* beware, hent_val is not set */
2298 SvREFCNT_dec(HeVAL(entry));
2299 Safefree(HeKEY_hek(entry));
2301 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2305 #if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2306 if (!entry && SvRMAGICAL((const SV *)hv)
2307 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2310 /* The prime_env_iter() on VMS just loaded up new hash values
2311 * so the iteration count needs to be reset back to the beginning
2315 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2320 /* hv_iterint now ensures this. */
2321 assert (HvARRAY(hv));
2323 /* At start of hash, entry is NULL. */
2326 entry = HeNEXT(entry);
2327 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2329 * Skip past any placeholders -- don't want to include them in
2332 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2333 entry = HeNEXT(entry);
2338 /* Skip the entire loop if the hash is empty. */
2339 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2340 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2342 /* OK. Come to the end of the current list. Grab the next one. */
2344 iter->xhv_riter++; /* HvRITER(hv)++ */
2345 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2346 /* There is no next one. End of the hash. */
2347 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2350 entry = (HvARRAY(hv))[iter->xhv_riter];
2352 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2353 /* If we have an entry, but it's a placeholder, don't count it.
2355 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2356 entry = HeNEXT(entry);
2358 /* Will loop again if this linked list starts NULL
2359 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2360 or if we run through it and find only placeholders. */
2364 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2366 hv_free_ent(hv, oldentry);
2369 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2370 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2372 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2377 =for apidoc hv_iterkey
2379 Returns the key from the current position of the hash iterator. See
2386 Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2388 PERL_ARGS_ASSERT_HV_ITERKEY;
2390 if (HeKLEN(entry) == HEf_SVKEY) {
2392 char * const p = SvPV(HeKEY_sv(entry), len);
2397 *retlen = HeKLEN(entry);
2398 return HeKEY(entry);
2402 /* unlike hv_iterval(), this always returns a mortal copy of the key */
2404 =for apidoc hv_iterkeysv
2406 Returns the key as an C<SV*> from the current position of the hash
2407 iterator. The return value will always be a mortal copy of the key. Also
2414 Perl_hv_iterkeysv(pTHX_ register HE *entry)
2416 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2418 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2422 =for apidoc hv_iterval
2424 Returns the value from the current position of the hash iterator. See
2431 Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2433 PERL_ARGS_ASSERT_HV_ITERVAL;
2435 if (SvRMAGICAL(hv)) {
2436 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2437 SV* const sv = sv_newmortal();
2438 if (HeKLEN(entry) == HEf_SVKEY)
2439 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2441 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2445 return HeVAL(entry);
2449 =for apidoc hv_iternextsv
2451 Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2458 Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2460 HE * const he = hv_iternext_flags(hv, 0);
2462 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2466 *key = hv_iterkey(he, retlen);
2467 return hv_iterval(hv, he);
2474 =for apidoc hv_magic
2476 Adds magic to a hash. See C<sv_magic>.
2481 /* possibly free a shared string if no one has access to it
2482 * len and hash must both be valid for str.
2485 Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2487 unshare_hek_or_pvn (NULL, str, len, hash);
2492 Perl_unshare_hek(pTHX_ HEK *hek)
2495 unshare_hek_or_pvn(hek, NULL, 0, 0);
2498 /* possibly free a shared string if no one has access to it
2499 hek if non-NULL takes priority over the other 3, else str, len and hash
2500 are used. If so, len and hash must both be valid for str.
2503 S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2506 register XPVHV* xhv;
2508 register HE **oentry;
2509 bool is_utf8 = FALSE;
2511 const char * const save = str;
2512 struct shared_he *he = NULL;
2515 /* Find the shared he which is just before us in memory. */
2516 he = (struct shared_he *)(((char *)hek)
2517 - STRUCT_OFFSET(struct shared_he,
2520 /* Assert that the caller passed us a genuine (or at least consistent)
2522 assert (he->shared_he_he.hent_hek == hek);
2524 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2525 --he->shared_he_he.he_valu.hent_refcount;
2529 hash = HEK_HASH(hek);
2530 } else if (len < 0) {
2531 STRLEN tmplen = -len;
2533 /* See the note in hv_fetch(). --jhi */
2534 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2537 k_flags = HVhek_UTF8;
2539 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2542 /* what follows was the moral equivalent of:
2543 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2545 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2547 xhv = (XPVHV*)SvANY(PL_strtab);
2548 /* assert(xhv_array != 0) */
2549 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2551 const HE *const he_he = &(he->shared_he_he);
2552 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2557 const int flags_masked = k_flags & HVhek_MASK;
2558 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2559 if (HeHASH(entry) != hash) /* strings can't be equal */
2561 if (HeKLEN(entry) != len)
2563 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2565 if (HeKFLAGS(entry) != flags_masked)
2572 if (--entry->he_valu.hent_refcount == 0) {
2573 *oentry = HeNEXT(entry);
2575 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2580 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2581 "Attempt to free non-existent shared string '%s'%s"
2583 hek ? HEK_KEY(hek) : str,
2584 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2585 if (k_flags & HVhek_FREEKEY)
2589 /* get a (constant) string ptr from the global string table
2590 * string will get added if it is not already there.
2591 * len and hash must both be valid for str.
2594 Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2596 bool is_utf8 = FALSE;
2598 const char * const save = str;
2600 PERL_ARGS_ASSERT_SHARE_HEK;
2603 STRLEN tmplen = -len;
2605 /* See the note in hv_fetch(). --jhi */
2606 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2608 /* If we were able to downgrade here, then than means that we were passed
2609 in a key which only had chars 0-255, but was utf8 encoded. */
2612 /* If we found we were able to downgrade the string to bytes, then
2613 we should flag that it needs upgrading on keys or each. Also flag
2614 that we need share_hek_flags to free the string. */
2616 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2619 return share_hek_flags (str, len, hash, flags);
2623 S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2627 const int flags_masked = flags & HVhek_MASK;
2628 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2629 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2631 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2633 /* what follows is the moral equivalent of:
2635 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2636 hv_store(PL_strtab, str, len, NULL, hash);
2638 Can't rehash the shared string table, so not sure if it's worth
2639 counting the number of entries in the linked list
2642 /* assert(xhv_array != 0) */
2643 entry = (HvARRAY(PL_strtab))[hindex];
2644 for (;entry; entry = HeNEXT(entry)) {
2645 if (HeHASH(entry) != hash) /* strings can't be equal */
2647 if (HeKLEN(entry) != len)
2649 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2651 if (HeKFLAGS(entry) != flags_masked)
2657 /* What used to be head of the list.
2658 If this is NULL, then we're the first entry for this slot, which
2659 means we need to increate fill. */
2660 struct shared_he *new_entry;
2663 HE **const head = &HvARRAY(PL_strtab)[hindex];
2664 HE *const next = *head;
2666 /* We don't actually store a HE from the arena and a regular HEK.
2667 Instead we allocate one chunk of memory big enough for both,
2668 and put the HEK straight after the HE. This way we can find the
2669 HEK directly from the HE.
2672 Newx(k, STRUCT_OFFSET(struct shared_he,
2673 shared_he_hek.hek_key[0]) + len + 2, char);
2674 new_entry = (struct shared_he *)k;
2675 entry = &(new_entry->shared_he_he);
2676 hek = &(new_entry->shared_he_hek);
2678 Copy(str, HEK_KEY(hek), len, char);
2679 HEK_KEY(hek)[len] = 0;
2681 HEK_HASH(hek) = hash;
2682 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2684 /* Still "point" to the HEK, so that other code need not know what
2686 HeKEY_hek(entry) = hek;
2687 entry->he_valu.hent_refcount = 0;
2688 HeNEXT(entry) = next;
2691 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2692 if (!next) { /* initial entry? */
2693 } else if (xhv->xhv_keys > xhv->xhv_max /* HvUSEDKEYS(hv) > HvMAX(hv) */) {
2698 ++entry->he_valu.hent_refcount;
2700 if (flags & HVhek_FREEKEY)
2703 return HeKEY_hek(entry);
2707 Perl_hv_placeholders_p(pTHX_ HV *hv)
2710 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2712 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2715 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2718 Perl_die(aTHX_ "panic: hv_placeholders_p");
2721 return &(mg->mg_len);
2726 Perl_hv_placeholders_get(pTHX_ const HV *hv)
2729 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2731 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2733 return mg ? mg->mg_len : 0;
2737 Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2740 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2742 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2747 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2748 Perl_die(aTHX_ "panic: hv_placeholders_set");
2750 /* else we don't need to add magic to record 0 placeholders. */
2754 S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2759 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2761 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2766 value = &PL_sv_placeholder;
2769 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2772 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2775 case HVrhek_PV_UTF8:
2776 /* Create a string SV that directly points to the bytes in our
2778 value = newSV_type(SVt_PV);
2779 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2780 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2781 /* This stops anything trying to free it */
2782 SvLEN_set(value, 0);
2784 SvREADONLY_on(value);
2785 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2789 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2790 (UV)he->refcounted_he_data[0]);
2796 =for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2798 Generates and returns a C<HV *> representing the content of a
2799 C<refcounted_he> chain.
2800 I<flags> is currently unused and must be zero.
2805 Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2809 U32 placeholders, max;
2812 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
2815 /* We could chase the chain once to get an idea of the number of keys,
2816 and call ksplit. But for now we'll make a potentially inefficient
2817 hash with only 8 entries in its array. */
2822 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2823 HvARRAY(hv) = (HE**)array;
2829 U32 hash = chain->refcounted_he_hash;
2831 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2833 HE **oentry = &((HvARRAY(hv))[hash & max]);
2834 HE *entry = *oentry;
2837 for (; entry; entry = HeNEXT(entry)) {
2838 if (HeHASH(entry) == hash) {
2839 /* We might have a duplicate key here. If so, entry is older
2840 than the key we've already put in the hash, so if they are
2841 the same, skip adding entry. */
2843 const STRLEN klen = HeKLEN(entry);
2844 const char *const key = HeKEY(entry);
2845 if (klen == chain->refcounted_he_keylen
2846 && (!!HeKUTF8(entry)
2847 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2848 && memEQ(key, REF_HE_KEY(chain), klen))
2851 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2853 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2854 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2855 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2866 = share_hek_flags(REF_HE_KEY(chain),
2867 chain->refcounted_he_keylen,
2868 chain->refcounted_he_hash,
2869 (chain->refcounted_he_data[0]
2870 & (HVhek_UTF8|HVhek_WASUTF8)));
2872 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2874 value = refcounted_he_value(chain);
2875 if (value == &PL_sv_placeholder)
2877 HeVAL(entry) = value;
2879 /* Link it into the chain. */
2880 HeNEXT(entry) = *oentry;
2886 chain = chain->refcounted_he_next;
2890 clear_placeholders(hv, placeholders);
2891 HvTOTALKEYS(hv) -= placeholders;
2894 /* We could check in the loop to see if we encounter any keys with key
2895 flags, but it's probably not worth it, as this per-hash flag is only
2896 really meant as an optimisation for things like Storable. */
2898 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2904 =for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
2906 Search along a C<refcounted_he> chain for an entry with the key specified
2907 by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
2908 bit set, the key octets are interpreted as UTF-8, otherwise they
2909 are interpreted as Latin-1. I<hash> is a precomputed hash of the key
2910 string, or zero if it has not been precomputed. Returns a mortal scalar
2911 representing the value associated with the key, or C<&PL_sv_placeholder>
2912 if there is no value associated with the key.
2918 Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
2919 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
2923 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
2925 if (flags & ~REFCOUNTED_HE_KEY_UTF8)
2926 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
2929 return &PL_sv_placeholder;
2930 if (flags & REFCOUNTED_HE_KEY_UTF8) {
2931 /* For searching purposes, canonicalise to Latin-1 where possible. */
2932 const char *keyend = keypv + keylen, *p;
2933 STRLEN nonascii_count = 0;
2934 for (p = keypv; p != keyend; p++) {
2937 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
2938 (((U8)*p) & 0xc0) == 0x80))
2939 goto canonicalised_key;
2943 if (nonascii_count) {
2945 const char *p = keypv, *keyend = keypv + keylen;
2946 keylen -= nonascii_count;
2947 Newx(q, keylen, char);
2950 for (; p != keyend; p++, q++) {
2953 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
2956 flags &= ~REFCOUNTED_HE_KEY_UTF8;
2957 canonicalised_key: ;
2959 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
2961 PERL_HASH(hash, keypv, keylen);
2963 for (; chain; chain = chain->refcounted_he_next) {
2966 hash == chain->refcounted_he_hash &&
2967 keylen == chain->refcounted_he_keylen &&
2968 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
2969 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
2971 hash == HEK_HASH(chain->refcounted_he_hek) &&
2972 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
2973 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
2974 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
2977 return sv_2mortal(refcounted_he_value(chain));
2979 return &PL_sv_placeholder;
2983 =for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
2985 Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
2986 instead of a string/length pair.
2992 Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
2993 const char *key, U32 hash, U32 flags)
2995 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
2996 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3000 =for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3002 Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3009 Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3010 SV *key, U32 hash, U32 flags)
3014 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3015 if (flags & REFCOUNTED_HE_KEY_UTF8)
3016 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3018 keypv = SvPV_const(key, keylen);
3020 flags |= REFCOUNTED_HE_KEY_UTF8;
3021 if (!hash && SvIsCOW_shared_hash(key))
3022 hash = SvSHARED_HASH(key);
3023 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3027 =for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3029 Creates a new C<refcounted_he>. This consists of a single key/value
3030 pair and a reference to an existing C<refcounted_he> chain (which may
3031 be empty), and thus forms a longer chain. When using the longer chain,
3032 the new key/value pair takes precedence over any entry for the same key
3033 further along the chain.
3035 The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3036 the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3037 as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3038 a precomputed hash of the key string, or zero if it has not been
3041 I<value> is the scalar value to store for this key. I<value> is copied
3042 by this function, which thus does not take ownership of any reference
3043 to it, and later changes to the scalar will not be reflected in the
3044 value visible in the C<refcounted_he>. Complex types of scalar will not
3045 be stored with referential integrity, but will be coerced to strings.
3046 I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3047 value is to be associated with the key; this, as with any non-null value,
3048 takes precedence over the existence of a value for the key further along
3051 I<parent> points to the rest of the C<refcounted_he> chain to be
3052 attached to the new C<refcounted_he>. This function takes ownership
3053 of one reference to I<parent>, and returns one reference to the new
3059 struct refcounted_he *
3060 Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3061 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3064 STRLEN value_len = 0;
3065 const char *value_p = NULL;
3069 STRLEN key_offset = 1;
3070 struct refcounted_he *he;
3071 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3073 if (!value || value == &PL_sv_placeholder) {
3074 value_type = HVrhek_delete;
3075 } else if (SvPOK(value)) {
3076 value_type = HVrhek_PV;
3077 } else if (SvIOK(value)) {
3078 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3079 } else if (!SvOK(value)) {
3080 value_type = HVrhek_undef;
3082 value_type = HVrhek_PV;
3084 is_pv = value_type == HVrhek_PV;
3086 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3087 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3088 value_p = SvPV_const(value, value_len);
3090 value_type = HVrhek_PV_UTF8;
3091 key_offset = value_len + 2;
3093 hekflags = value_type;
3095 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3096 /* Canonicalise to Latin-1 where possible. */
3097 const char *keyend = keypv + keylen, *p;
3098 STRLEN nonascii_count = 0;
3099 for (p = keypv; p != keyend; p++) {
3102 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3103 (((U8)*p) & 0xc0) == 0x80))
3104 goto canonicalised_key;
3108 if (nonascii_count) {
3110 const char *p = keypv, *keyend = keypv + keylen;
3111 keylen -= nonascii_count;
3112 Newx(q, keylen, char);
3115 for (; p != keyend; p++, q++) {
3118 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3121 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3122 canonicalised_key: ;
3124 if (flags & REFCOUNTED_HE_KEY_UTF8)
3125 hekflags |= HVhek_UTF8;
3127 PERL_HASH(hash, keypv, keylen);
3130 he = (struct refcounted_he*)
3131 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3135 he = (struct refcounted_he*)
3136 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3140 he->refcounted_he_next = parent;
3143 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3144 he->refcounted_he_val.refcounted_he_u_len = value_len;
3145 } else if (value_type == HVrhek_IV) {
3146 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3147 } else if (value_type == HVrhek_UV) {
3148 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3152 he->refcounted_he_hash = hash;
3153 he->refcounted_he_keylen = keylen;
3154 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3156 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3159 he->refcounted_he_data[0] = hekflags;
3160 he->refcounted_he_refcnt = 1;
3166 =for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3168 Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3169 of a string/length pair.
3174 struct refcounted_he *
3175 Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3176 const char *key, U32 hash, SV *value, U32 flags)
3178 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3179 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3183 =for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3185 Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3191 struct refcounted_he *
3192 Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3193 SV *key, U32 hash, SV *value, U32 flags)
3197 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3198 if (flags & REFCOUNTED_HE_KEY_UTF8)
3199 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3201 keypv = SvPV_const(key, keylen);
3203 flags |= REFCOUNTED_HE_KEY_UTF8;
3204 if (!hash && SvIsCOW_shared_hash(key))
3205 hash = SvSHARED_HASH(key);
3206 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3210 =for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3212 Decrements the reference count of a C<refcounted_he> by one. If the
3213 reference count reaches zero the structure's memory is freed, which
3214 (recursively) causes a reduction of its parent C<refcounted_he>'s
3215 reference count. It is safe to pass a null pointer to this function:
3216 no action occurs in this case.
3222 Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3224 PERL_UNUSED_CONTEXT;
3227 struct refcounted_he *copy;
3231 new_count = --he->refcounted_he_refcnt;
3232 HINTS_REFCNT_UNLOCK;
3238 #ifndef USE_ITHREADS
3239 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3242 he = he->refcounted_he_next;
3243 PerlMemShared_free(copy);
3248 =for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3250 Increment the reference count of a C<refcounted_he>. The pointer to the
3251 C<refcounted_he> is also returned. It is safe to pass a null pointer
3252 to this function: no action occurs and a null pointer is returned.
3257 struct refcounted_he *
3258 Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3262 he->refcounted_he_refcnt++;
3263 HINTS_REFCNT_UNLOCK;
3268 /* pp_entereval is aware that labels are stored with a key ':' at the top of
3271 Perl_fetch_cop_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3272 struct refcounted_he *const chain = cop->cop_hints_hash;
3274 PERL_ARGS_ASSERT_FETCH_COP_LABEL;
3279 if (chain->refcounted_he_keylen != 1)
3281 if (*REF_HE_KEY(chain) != ':')
3284 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3286 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3289 /* Stop anyone trying to really mess us up by adding their own value for
3291 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3292 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3296 *len = chain->refcounted_he_val.refcounted_he_u_len;
3298 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3299 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3301 return chain->refcounted_he_data + 1;
3305 Perl_store_cop_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3309 PERL_ARGS_ASSERT_STORE_COP_LABEL;
3311 if (flags & ~(SVf_UTF8))
3312 Perl_croak(aTHX_ "panic: store_cop_label illegal flag bits 0x%" UVxf,
3314 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3315 if (flags & SVf_UTF8)
3318 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3322 =for apidoc hv_assert
3324 Check that a hash is in an internally consistent state.
3332 Perl_hv_assert(pTHX_ HV *hv)
3337 int placeholders = 0;
3340 const I32 riter = HvRITER_get(hv);
3341 HE *eiter = HvEITER_get(hv);
3343 PERL_ARGS_ASSERT_HV_ASSERT;
3345 (void)hv_iterinit(hv);
3347 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3348 /* sanity check the values */
3349 if (HeVAL(entry) == &PL_sv_placeholder)
3353 /* sanity check the keys */
3354 if (HeSVKEY(entry)) {
3355 NOOP; /* Don't know what to check on SV keys. */
3356 } else if (HeKUTF8(entry)) {
3358 if (HeKWASUTF8(entry)) {
3359 PerlIO_printf(Perl_debug_log,
3360 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3361 (int) HeKLEN(entry), HeKEY(entry));
3364 } else if (HeKWASUTF8(entry))
3367 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3368 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3369 const int nhashkeys = HvUSEDKEYS(hv);
3370 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3372 if (nhashkeys != real) {
3373 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3376 if (nhashplaceholders != placeholders) {
3377 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3381 if (withflags && ! HvHASKFLAGS(hv)) {
3382 PerlIO_printf(Perl_debug_log,
3383 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3388 sv_dump(MUTABLE_SV(hv));
3390 HvRITER_set(hv, riter); /* Restore hash iterator state */
3391 HvEITER_set(hv, eiter);
3398 * c-indentation-style: bsd
3400 * indent-tabs-mode: t
3403 * ex: set ts=8 sts=4 sw=4 noet: