3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifdef PERL_NEW_COPY_ON_WRITE
52 # ifndef SV_COW_THRESHOLD
53 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
55 # ifndef SV_COWBUF_THRESHOLD
56 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
58 # ifndef SV_COW_MAX_WASTE_THRESHOLD
59 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
61 # ifndef SV_COWBUF_WASTE_THRESHOLD
62 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
64 # ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
65 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
67 # ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
68 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
71 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
74 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
76 # define GE_COW_THRESHOLD(cur) 1
78 #if SV_COWBUF_THRESHOLD
79 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
81 # define GE_COWBUF_THRESHOLD(cur) 1
83 #if SV_COW_MAX_WASTE_THRESHOLD
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
86 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
88 #if SV_COWBUF_WASTE_THRESHOLD
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
91 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
93 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
96 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
98 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
101 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
104 #define CHECK_COW_THRESHOLD(cur,len) (\
105 GE_COW_THRESHOLD((cur)) && \
106 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
107 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
109 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
110 GE_COWBUF_THRESHOLD((cur)) && \
111 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
112 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
115 #ifdef PERL_UTF8_CACHE_ASSERT
116 /* if adding more checks watch out for the following tests:
117 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
118 * lib/utf8.t lib/Unicode/Collate/t/index.t
121 # define ASSERT_UTF8_CACHE(cache) \
122 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
123 assert((cache)[2] <= (cache)[3]); \
124 assert((cache)[3] <= (cache)[1]);} \
127 # define ASSERT_UTF8_CACHE(cache) NOOP
130 #ifdef PERL_OLD_COPY_ON_WRITE
131 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
132 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
135 /* ============================================================================
137 =head1 Allocation and deallocation of SVs.
138 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
139 sv, av, hv...) contains type and reference count information, and for
140 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
141 contains fields specific to each type. Some types store all they need
142 in the head, so don't have a body.
144 In all but the most memory-paranoid configurations (ex: PURIFY), heads
145 and bodies are allocated out of arenas, which by default are
146 approximately 4K chunks of memory parcelled up into N heads or bodies.
147 Sv-bodies are allocated by their sv-type, guaranteeing size
148 consistency needed to allocate safely from arrays.
150 For SV-heads, the first slot in each arena is reserved, and holds a
151 link to the next arena, some flags, and a note of the number of slots.
152 Snaked through each arena chain is a linked list of free items; when
153 this becomes empty, an extra arena is allocated and divided up into N
154 items which are threaded into the free list.
156 SV-bodies are similar, but they use arena-sets by default, which
157 separate the link and info from the arena itself, and reclaim the 1st
158 slot in the arena. SV-bodies are further described later.
160 The following global variables are associated with arenas:
162 PL_sv_arenaroot pointer to list of SV arenas
163 PL_sv_root pointer to list of free SV structures
165 PL_body_arenas head of linked-list of body arenas
166 PL_body_roots[] array of pointers to list of free bodies of svtype
167 arrays are indexed by the svtype needed
169 A few special SV heads are not allocated from an arena, but are
170 instead directly created in the interpreter structure, eg PL_sv_undef.
171 The size of arenas can be changed from the default by setting
172 PERL_ARENA_SIZE appropriately at compile time.
174 The SV arena serves the secondary purpose of allowing still-live SVs
175 to be located and destroyed during final cleanup.
177 At the lowest level, the macros new_SV() and del_SV() grab and free
178 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
179 to return the SV to the free list with error checking.) new_SV() calls
180 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
181 SVs in the free list have their SvTYPE field set to all ones.
183 At the time of very final cleanup, sv_free_arenas() is called from
184 perl_destruct() to physically free all the arenas allocated since the
185 start of the interpreter.
187 The function visit() scans the SV arenas list, and calls a specified
188 function for each SV it finds which is still live - ie which has an SvTYPE
189 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
190 following functions (specified as [function that calls visit()] / [function
191 called by visit() for each SV]):
193 sv_report_used() / do_report_used()
194 dump all remaining SVs (debugging aid)
196 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
197 do_clean_named_io_objs(),do_curse()
198 Attempt to free all objects pointed to by RVs,
199 try to do the same for all objects indir-
200 ectly referenced by typeglobs too, and
201 then do a final sweep, cursing any
202 objects that remain. Called once from
203 perl_destruct(), prior to calling sv_clean_all()
206 sv_clean_all() / do_clean_all()
207 SvREFCNT_dec(sv) each remaining SV, possibly
208 triggering an sv_free(). It also sets the
209 SVf_BREAK flag on the SV to indicate that the
210 refcnt has been artificially lowered, and thus
211 stopping sv_free() from giving spurious warnings
212 about SVs which unexpectedly have a refcnt
213 of zero. called repeatedly from perl_destruct()
214 until there are no SVs left.
216 =head2 Arena allocator API Summary
218 Private API to rest of sv.c
222 new_XPVNV(), del_XPVGV(),
227 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
231 * ========================================================================= */
234 * "A time to plant, and a time to uproot what was planted..."
238 # define MEM_LOG_NEW_SV(sv, file, line, func) \
239 Perl_mem_log_new_sv(sv, file, line, func)
240 # define MEM_LOG_DEL_SV(sv, file, line, func) \
241 Perl_mem_log_del_sv(sv, file, line, func)
243 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
244 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
247 #ifdef DEBUG_LEAKING_SCALARS
248 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
249 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
251 # define DEBUG_SV_SERIAL(sv) \
252 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
253 PTR2UV(sv), (long)(sv)->sv_debug_serial))
255 # define FREE_SV_DEBUG_FILE(sv)
256 # define DEBUG_SV_SERIAL(sv) NOOP
260 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
261 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
262 /* Whilst I'd love to do this, it seems that things like to check on
264 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
266 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
267 PoisonNew(&SvREFCNT(sv), 1, U32)
269 # define SvARENA_CHAIN(sv) SvANY(sv)
270 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
271 # define POSION_SV_HEAD(sv)
274 /* Mark an SV head as unused, and add to free list.
276 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
277 * its refcount artificially decremented during global destruction, so
278 * there may be dangling pointers to it. The last thing we want in that
279 * case is for it to be reused. */
281 #define plant_SV(p) \
283 const U32 old_flags = SvFLAGS(p); \
284 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
285 DEBUG_SV_SERIAL(p); \
286 FREE_SV_DEBUG_FILE(p); \
288 SvFLAGS(p) = SVTYPEMASK; \
289 if (!(old_flags & SVf_BREAK)) { \
290 SvARENA_CHAIN_SET(p, PL_sv_root); \
296 #define uproot_SV(p) \
299 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
304 /* make some more SVs by adding another arena */
310 char *chunk; /* must use New here to match call to */
311 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
312 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
317 /* new_SV(): return a new, empty SV head */
319 #ifdef DEBUG_LEAKING_SCALARS
320 /* provide a real function for a debugger to play with */
322 S_new_SV(pTHX_ const char *file, int line, const char *func)
329 sv = S_more_sv(aTHX);
333 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
334 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
340 sv->sv_debug_inpad = 0;
341 sv->sv_debug_parent = NULL;
342 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
344 sv->sv_debug_serial = PL_sv_serial++;
346 MEM_LOG_NEW_SV(sv, file, line, func);
347 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
348 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
352 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
360 (p) = S_more_sv(aTHX); \
364 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
369 /* del_SV(): return an empty SV head to the free list */
382 S_del_sv(pTHX_ SV *p)
384 PERL_ARGS_ASSERT_DEL_SV;
389 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
390 const SV * const sv = sva + 1;
391 const SV * const svend = &sva[SvREFCNT(sva)];
392 if (p >= sv && p < svend) {
398 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
399 "Attempt to free non-arena SV: 0x%"UVxf
400 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
407 #else /* ! DEBUGGING */
409 #define del_SV(p) plant_SV(p)
411 #endif /* DEBUGGING */
415 =head1 SV Manipulation Functions
417 =for apidoc sv_add_arena
419 Given a chunk of memory, link it to the head of the list of arenas,
420 and split it into a list of free SVs.
426 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
428 SV *const sva = MUTABLE_SV(ptr);
432 PERL_ARGS_ASSERT_SV_ADD_ARENA;
434 /* The first SV in an arena isn't an SV. */
435 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
436 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
437 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
439 PL_sv_arenaroot = sva;
440 PL_sv_root = sva + 1;
442 svend = &sva[SvREFCNT(sva) - 1];
445 SvARENA_CHAIN_SET(sv, (sv + 1));
449 /* Must always set typemask because it's always checked in on cleanup
450 when the arenas are walked looking for objects. */
451 SvFLAGS(sv) = SVTYPEMASK;
454 SvARENA_CHAIN_SET(sv, 0);
458 SvFLAGS(sv) = SVTYPEMASK;
461 /* visit(): call the named function for each non-free SV in the arenas
462 * whose flags field matches the flags/mask args. */
465 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
470 PERL_ARGS_ASSERT_VISIT;
472 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
473 const SV * const svend = &sva[SvREFCNT(sva)];
475 for (sv = sva + 1; sv < svend; ++sv) {
476 if (SvTYPE(sv) != (svtype)SVTYPEMASK
477 && (sv->sv_flags & mask) == flags
490 /* called by sv_report_used() for each live SV */
493 do_report_used(pTHX_ SV *const sv)
495 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
496 PerlIO_printf(Perl_debug_log, "****\n");
503 =for apidoc sv_report_used
505 Dump the contents of all SVs not yet freed (debugging aid).
511 Perl_sv_report_used(pTHX)
514 visit(do_report_used, 0, 0);
520 /* called by sv_clean_objs() for each live SV */
523 do_clean_objs(pTHX_ SV *const ref)
527 SV * const target = SvRV(ref);
528 if (SvOBJECT(target)) {
529 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
530 if (SvWEAKREF(ref)) {
531 sv_del_backref(target, ref);
537 SvREFCNT_dec_NN(target);
544 /* clear any slots in a GV which hold objects - except IO;
545 * called by sv_clean_objs() for each live GV */
548 do_clean_named_objs(pTHX_ SV *const sv)
551 assert(SvTYPE(sv) == SVt_PVGV);
552 assert(isGV_with_GP(sv));
556 /* freeing GP entries may indirectly free the current GV;
557 * hold onto it while we mess with the GP slots */
560 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
561 DEBUG_D((PerlIO_printf(Perl_debug_log,
562 "Cleaning named glob SV object:\n "), sv_dump(obj)));
564 SvREFCNT_dec_NN(obj);
566 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
567 DEBUG_D((PerlIO_printf(Perl_debug_log,
568 "Cleaning named glob AV object:\n "), sv_dump(obj)));
570 SvREFCNT_dec_NN(obj);
572 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
573 DEBUG_D((PerlIO_printf(Perl_debug_log,
574 "Cleaning named glob HV object:\n "), sv_dump(obj)));
576 SvREFCNT_dec_NN(obj);
578 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
579 DEBUG_D((PerlIO_printf(Perl_debug_log,
580 "Cleaning named glob CV object:\n "), sv_dump(obj)));
582 SvREFCNT_dec_NN(obj);
584 SvREFCNT_dec_NN(sv); /* undo the inc above */
587 /* clear any IO slots in a GV which hold objects (except stderr, defout);
588 * called by sv_clean_objs() for each live GV */
591 do_clean_named_io_objs(pTHX_ SV *const sv)
594 assert(SvTYPE(sv) == SVt_PVGV);
595 assert(isGV_with_GP(sv));
596 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
600 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
601 DEBUG_D((PerlIO_printf(Perl_debug_log,
602 "Cleaning named glob IO object:\n "), sv_dump(obj)));
604 SvREFCNT_dec_NN(obj);
606 SvREFCNT_dec_NN(sv); /* undo the inc above */
609 /* Void wrapper to pass to visit() */
611 do_curse(pTHX_ SV * const sv) {
612 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
613 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
619 =for apidoc sv_clean_objs
621 Attempt to destroy all objects not yet freed.
627 Perl_sv_clean_objs(pTHX)
630 PL_in_clean_objs = TRUE;
631 visit(do_clean_objs, SVf_ROK, SVf_ROK);
632 /* Some barnacles may yet remain, clinging to typeglobs.
633 * Run the non-IO destructors first: they may want to output
634 * error messages, close files etc */
635 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
636 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
637 /* And if there are some very tenacious barnacles clinging to arrays,
638 closures, or what have you.... */
639 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
640 olddef = PL_defoutgv;
641 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
642 if (olddef && isGV_with_GP(olddef))
643 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
644 olderr = PL_stderrgv;
645 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
646 if (olderr && isGV_with_GP(olderr))
647 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
648 SvREFCNT_dec(olddef);
649 PL_in_clean_objs = FALSE;
652 /* called by sv_clean_all() for each live SV */
655 do_clean_all(pTHX_ SV *const sv)
657 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
658 /* don't clean pid table and strtab */
661 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
662 SvFLAGS(sv) |= SVf_BREAK;
667 =for apidoc sv_clean_all
669 Decrement the refcnt of each remaining SV, possibly triggering a
670 cleanup. This function may have to be called multiple times to free
671 SVs which are in complex self-referential hierarchies.
677 Perl_sv_clean_all(pTHX)
680 PL_in_clean_all = TRUE;
681 cleaned = visit(do_clean_all, 0,0);
686 ARENASETS: a meta-arena implementation which separates arena-info
687 into struct arena_set, which contains an array of struct
688 arena_descs, each holding info for a single arena. By separating
689 the meta-info from the arena, we recover the 1st slot, formerly
690 borrowed for list management. The arena_set is about the size of an
691 arena, avoiding the needless malloc overhead of a naive linked-list.
693 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
694 memory in the last arena-set (1/2 on average). In trade, we get
695 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
696 smaller types). The recovery of the wasted space allows use of
697 small arenas for large, rare body types, by changing array* fields
698 in body_details_by_type[] below.
701 char *arena; /* the raw storage, allocated aligned */
702 size_t size; /* its size ~4k typ */
703 svtype utype; /* bodytype stored in arena */
708 /* Get the maximum number of elements in set[] such that struct arena_set
709 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
710 therefore likely to be 1 aligned memory page. */
712 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
713 - 2 * sizeof(int)) / sizeof (struct arena_desc))
716 struct arena_set* next;
717 unsigned int set_size; /* ie ARENAS_PER_SET */
718 unsigned int curr; /* index of next available arena-desc */
719 struct arena_desc set[ARENAS_PER_SET];
723 =for apidoc sv_free_arenas
725 Deallocate the memory used by all arenas. Note that all the individual SV
726 heads and bodies within the arenas must already have been freed.
732 Perl_sv_free_arenas(pTHX)
738 /* Free arenas here, but be careful about fake ones. (We assume
739 contiguity of the fake ones with the corresponding real ones.) */
741 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
742 svanext = MUTABLE_SV(SvANY(sva));
743 while (svanext && SvFAKE(svanext))
744 svanext = MUTABLE_SV(SvANY(svanext));
751 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
754 struct arena_set *current = aroot;
757 assert(aroot->set[i].arena);
758 Safefree(aroot->set[i].arena);
766 i = PERL_ARENA_ROOTS_SIZE;
768 PL_body_roots[i] = 0;
775 Here are mid-level routines that manage the allocation of bodies out
776 of the various arenas. There are 5 kinds of arenas:
778 1. SV-head arenas, which are discussed and handled above
779 2. regular body arenas
780 3. arenas for reduced-size bodies
783 Arena types 2 & 3 are chained by body-type off an array of
784 arena-root pointers, which is indexed by svtype. Some of the
785 larger/less used body types are malloced singly, since a large
786 unused block of them is wasteful. Also, several svtypes dont have
787 bodies; the data fits into the sv-head itself. The arena-root
788 pointer thus has a few unused root-pointers (which may be hijacked
789 later for arena types 4,5)
791 3 differs from 2 as an optimization; some body types have several
792 unused fields in the front of the structure (which are kept in-place
793 for consistency). These bodies can be allocated in smaller chunks,
794 because the leading fields arent accessed. Pointers to such bodies
795 are decremented to point at the unused 'ghost' memory, knowing that
796 the pointers are used with offsets to the real memory.
799 =head1 SV-Body Allocation
803 Allocation of SV-bodies is similar to SV-heads, differing as follows;
804 the allocation mechanism is used for many body types, so is somewhat
805 more complicated, it uses arena-sets, and has no need for still-live
808 At the outermost level, (new|del)_X*V macros return bodies of the
809 appropriate type. These macros call either (new|del)_body_type or
810 (new|del)_body_allocated macro pairs, depending on specifics of the
811 type. Most body types use the former pair, the latter pair is used to
812 allocate body types with "ghost fields".
814 "ghost fields" are fields that are unused in certain types, and
815 consequently don't need to actually exist. They are declared because
816 they're part of a "base type", which allows use of functions as
817 methods. The simplest examples are AVs and HVs, 2 aggregate types
818 which don't use the fields which support SCALAR semantics.
820 For these types, the arenas are carved up into appropriately sized
821 chunks, we thus avoid wasted memory for those unaccessed members.
822 When bodies are allocated, we adjust the pointer back in memory by the
823 size of the part not allocated, so it's as if we allocated the full
824 structure. (But things will all go boom if you write to the part that
825 is "not there", because you'll be overwriting the last members of the
826 preceding structure in memory.)
828 We calculate the correction using the STRUCT_OFFSET macro on the first
829 member present. If the allocated structure is smaller (no initial NV
830 actually allocated) then the net effect is to subtract the size of the NV
831 from the pointer, to return a new pointer as if an initial NV were actually
832 allocated. (We were using structures named *_allocated for this, but
833 this turned out to be a subtle bug, because a structure without an NV
834 could have a lower alignment constraint, but the compiler is allowed to
835 optimised accesses based on the alignment constraint of the actual pointer
836 to the full structure, for example, using a single 64 bit load instruction
837 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
839 This is the same trick as was used for NV and IV bodies. Ironically it
840 doesn't need to be used for NV bodies any more, because NV is now at
841 the start of the structure. IV bodies don't need it either, because
842 they are no longer allocated.
844 In turn, the new_body_* allocators call S_new_body(), which invokes
845 new_body_inline macro, which takes a lock, and takes a body off the
846 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
847 necessary to refresh an empty list. Then the lock is released, and
848 the body is returned.
850 Perl_more_bodies allocates a new arena, and carves it up into an array of N
851 bodies, which it strings into a linked list. It looks up arena-size
852 and body-size from the body_details table described below, thus
853 supporting the multiple body-types.
855 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
856 the (new|del)_X*V macros are mapped directly to malloc/free.
858 For each sv-type, struct body_details bodies_by_type[] carries
859 parameters which control these aspects of SV handling:
861 Arena_size determines whether arenas are used for this body type, and if
862 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
863 zero, forcing individual mallocs and frees.
865 Body_size determines how big a body is, and therefore how many fit into
866 each arena. Offset carries the body-pointer adjustment needed for
867 "ghost fields", and is used in *_allocated macros.
869 But its main purpose is to parameterize info needed in
870 Perl_sv_upgrade(). The info here dramatically simplifies the function
871 vs the implementation in 5.8.8, making it table-driven. All fields
872 are used for this, except for arena_size.
874 For the sv-types that have no bodies, arenas are not used, so those
875 PL_body_roots[sv_type] are unused, and can be overloaded. In
876 something of a special case, SVt_NULL is borrowed for HE arenas;
877 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
878 bodies_by_type[SVt_NULL] slot is not used, as the table is not
883 struct body_details {
884 U8 body_size; /* Size to allocate */
885 U8 copy; /* Size of structure to copy (may be shorter) */
887 unsigned int type : 4; /* We have space for a sanity check. */
888 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
889 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
890 unsigned int arena : 1; /* Allocated from an arena */
891 size_t arena_size; /* Size of arena to allocate */
899 /* With -DPURFIY we allocate everything directly, and don't use arenas.
900 This seems a rather elegant way to simplify some of the code below. */
901 #define HASARENA FALSE
903 #define HASARENA TRUE
905 #define NOARENA FALSE
907 /* Size the arenas to exactly fit a given number of bodies. A count
908 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
909 simplifying the default. If count > 0, the arena is sized to fit
910 only that many bodies, allowing arenas to be used for large, rare
911 bodies (XPVFM, XPVIO) without undue waste. The arena size is
912 limited by PERL_ARENA_SIZE, so we can safely oversize the
915 #define FIT_ARENA0(body_size) \
916 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
917 #define FIT_ARENAn(count,body_size) \
918 ( count * body_size <= PERL_ARENA_SIZE) \
919 ? count * body_size \
920 : FIT_ARENA0 (body_size)
921 #define FIT_ARENA(count,body_size) \
923 ? FIT_ARENAn (count, body_size) \
924 : FIT_ARENA0 (body_size)
926 /* Calculate the length to copy. Specifically work out the length less any
927 final padding the compiler needed to add. See the comment in sv_upgrade
928 for why copying the padding proved to be a bug. */
930 #define copy_length(type, last_member) \
931 STRUCT_OFFSET(type, last_member) \
932 + sizeof (((type*)SvANY((const SV *)0))->last_member)
934 static const struct body_details bodies_by_type[] = {
935 /* HEs use this offset for their arena. */
936 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
938 /* IVs are in the head, so the allocation size is 0. */
940 sizeof(IV), /* This is used to copy out the IV body. */
941 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
942 NOARENA /* IVS don't need an arena */, 0
945 { sizeof(NV), sizeof(NV),
946 STRUCT_OFFSET(XPVNV, xnv_u),
947 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
949 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
950 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
951 + STRUCT_OFFSET(XPV, xpv_cur),
952 SVt_PV, FALSE, NONV, HASARENA,
953 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
955 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
956 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
957 + STRUCT_OFFSET(XPV, xpv_cur),
958 SVt_INVLIST, TRUE, NONV, HASARENA,
959 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
961 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
962 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
963 + STRUCT_OFFSET(XPV, xpv_cur),
964 SVt_PVIV, FALSE, NONV, HASARENA,
965 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
967 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
968 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
969 + STRUCT_OFFSET(XPV, xpv_cur),
970 SVt_PVNV, FALSE, HADNV, HASARENA,
971 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
973 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
974 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
979 SVt_REGEXP, TRUE, NONV, HASARENA,
980 FIT_ARENA(0, sizeof(regexp))
983 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
984 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
986 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
987 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
990 copy_length(XPVAV, xav_alloc),
992 SVt_PVAV, TRUE, NONV, HASARENA,
993 FIT_ARENA(0, sizeof(XPVAV)) },
996 copy_length(XPVHV, xhv_max),
998 SVt_PVHV, TRUE, NONV, HASARENA,
999 FIT_ARENA(0, sizeof(XPVHV)) },
1004 SVt_PVCV, TRUE, NONV, HASARENA,
1005 FIT_ARENA(0, sizeof(XPVCV)) },
1010 SVt_PVFM, TRUE, NONV, NOARENA,
1011 FIT_ARENA(20, sizeof(XPVFM)) },
1016 SVt_PVIO, TRUE, NONV, HASARENA,
1017 FIT_ARENA(24, sizeof(XPVIO)) },
1020 #define new_body_allocated(sv_type) \
1021 (void *)((char *)S_new_body(aTHX_ sv_type) \
1022 - bodies_by_type[sv_type].offset)
1024 /* return a thing to the free list */
1026 #define del_body(thing, root) \
1028 void ** const thing_copy = (void **)thing; \
1029 *thing_copy = *root; \
1030 *root = (void*)thing_copy; \
1035 #define new_XNV() safemalloc(sizeof(XPVNV))
1036 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1037 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1039 #define del_XPVGV(p) safefree(p)
1043 #define new_XNV() new_body_allocated(SVt_NV)
1044 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1045 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1047 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1048 &PL_body_roots[SVt_PVGV])
1052 /* no arena for you! */
1054 #define new_NOARENA(details) \
1055 safemalloc((details)->body_size + (details)->offset)
1056 #define new_NOARENAZ(details) \
1057 safecalloc((details)->body_size + (details)->offset, 1)
1060 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1061 const size_t arena_size)
1063 void ** const root = &PL_body_roots[sv_type];
1064 struct arena_desc *adesc;
1065 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1069 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1070 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1073 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1074 static bool done_sanity_check;
1076 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1077 * variables like done_sanity_check. */
1078 if (!done_sanity_check) {
1079 unsigned int i = SVt_LAST;
1081 done_sanity_check = TRUE;
1084 assert (bodies_by_type[i].type == i);
1090 /* may need new arena-set to hold new arena */
1091 if (!aroot || aroot->curr >= aroot->set_size) {
1092 struct arena_set *newroot;
1093 Newxz(newroot, 1, struct arena_set);
1094 newroot->set_size = ARENAS_PER_SET;
1095 newroot->next = aroot;
1097 PL_body_arenas = (void *) newroot;
1098 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1101 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1102 curr = aroot->curr++;
1103 adesc = &(aroot->set[curr]);
1104 assert(!adesc->arena);
1106 Newx(adesc->arena, good_arena_size, char);
1107 adesc->size = good_arena_size;
1108 adesc->utype = sv_type;
1109 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1110 curr, (void*)adesc->arena, (UV)good_arena_size));
1112 start = (char *) adesc->arena;
1114 /* Get the address of the byte after the end of the last body we can fit.
1115 Remember, this is integer division: */
1116 end = start + good_arena_size / body_size * body_size;
1118 /* computed count doesn't reflect the 1st slot reservation */
1119 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1120 DEBUG_m(PerlIO_printf(Perl_debug_log,
1121 "arena %p end %p arena-size %d (from %d) type %d "
1123 (void*)start, (void*)end, (int)good_arena_size,
1124 (int)arena_size, sv_type, (int)body_size,
1125 (int)good_arena_size / (int)body_size));
1127 DEBUG_m(PerlIO_printf(Perl_debug_log,
1128 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1129 (void*)start, (void*)end,
1130 (int)arena_size, sv_type, (int)body_size,
1131 (int)good_arena_size / (int)body_size));
1133 *root = (void *)start;
1136 /* Where the next body would start: */
1137 char * const next = start + body_size;
1140 /* This is the last body: */
1141 assert(next == end);
1143 *(void **)start = 0;
1147 *(void**) start = (void *)next;
1152 /* grab a new thing from the free list, allocating more if necessary.
1153 The inline version is used for speed in hot routines, and the
1154 function using it serves the rest (unless PURIFY).
1156 #define new_body_inline(xpv, sv_type) \
1158 void ** const r3wt = &PL_body_roots[sv_type]; \
1159 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1160 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1161 bodies_by_type[sv_type].body_size,\
1162 bodies_by_type[sv_type].arena_size)); \
1163 *(r3wt) = *(void**)(xpv); \
1169 S_new_body(pTHX_ const svtype sv_type)
1172 new_body_inline(xpv, sv_type);
1178 static const struct body_details fake_rv =
1179 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1182 =for apidoc sv_upgrade
1184 Upgrade an SV to a more complex form. Generally adds a new body type to the
1185 SV, then copies across as much information as possible from the old body.
1186 It croaks if the SV is already in a more complex form than requested. You
1187 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1188 before calling C<sv_upgrade>, and hence does not croak. See also
1195 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1199 const svtype old_type = SvTYPE(sv);
1200 const struct body_details *new_type_details;
1201 const struct body_details *old_type_details
1202 = bodies_by_type + old_type;
1203 SV *referant = NULL;
1205 PERL_ARGS_ASSERT_SV_UPGRADE;
1207 if (old_type == new_type)
1210 /* This clause was purposefully added ahead of the early return above to
1211 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1212 inference by Nick I-S that it would fix other troublesome cases. See
1213 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1215 Given that shared hash key scalars are no longer PVIV, but PV, there is
1216 no longer need to unshare so as to free up the IVX slot for its proper
1217 purpose. So it's safe to move the early return earlier. */
1219 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1220 sv_force_normal_flags(sv, 0);
1223 old_body = SvANY(sv);
1225 /* Copying structures onto other structures that have been neatly zeroed
1226 has a subtle gotcha. Consider XPVMG
1228 +------+------+------+------+------+-------+-------+
1229 | NV | CUR | LEN | IV | MAGIC | STASH |
1230 +------+------+------+------+------+-------+-------+
1231 0 4 8 12 16 20 24 28
1233 where NVs are aligned to 8 bytes, so that sizeof that structure is
1234 actually 32 bytes long, with 4 bytes of padding at the end:
1236 +------+------+------+------+------+-------+-------+------+
1237 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1238 +------+------+------+------+------+-------+-------+------+
1239 0 4 8 12 16 20 24 28 32
1241 so what happens if you allocate memory for this structure:
1243 +------+------+------+------+------+-------+-------+------+------+...
1244 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1245 +------+------+------+------+------+-------+-------+------+------+...
1246 0 4 8 12 16 20 24 28 32 36
1248 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1249 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1250 started out as zero once, but it's quite possible that it isn't. So now,
1251 rather than a nicely zeroed GP, you have it pointing somewhere random.
1254 (In fact, GP ends up pointing at a previous GP structure, because the
1255 principle cause of the padding in XPVMG getting garbage is a copy of
1256 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1257 this happens to be moot because XPVGV has been re-ordered, with GP
1258 no longer after STASH)
1260 So we are careful and work out the size of used parts of all the
1268 referant = SvRV(sv);
1269 old_type_details = &fake_rv;
1270 if (new_type == SVt_NV)
1271 new_type = SVt_PVNV;
1273 if (new_type < SVt_PVIV) {
1274 new_type = (new_type == SVt_NV)
1275 ? SVt_PVNV : SVt_PVIV;
1280 if (new_type < SVt_PVNV) {
1281 new_type = SVt_PVNV;
1285 assert(new_type > SVt_PV);
1286 assert(SVt_IV < SVt_PV);
1287 assert(SVt_NV < SVt_PV);
1294 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1295 there's no way that it can be safely upgraded, because perl.c
1296 expects to Safefree(SvANY(PL_mess_sv)) */
1297 assert(sv != PL_mess_sv);
1298 /* This flag bit is used to mean other things in other scalar types.
1299 Given that it only has meaning inside the pad, it shouldn't be set
1300 on anything that can get upgraded. */
1301 assert(!SvPAD_TYPED(sv));
1304 if (UNLIKELY(old_type_details->cant_upgrade))
1305 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1306 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1309 if (UNLIKELY(old_type > new_type))
1310 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1311 (int)old_type, (int)new_type);
1313 new_type_details = bodies_by_type + new_type;
1315 SvFLAGS(sv) &= ~SVTYPEMASK;
1316 SvFLAGS(sv) |= new_type;
1318 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1319 the return statements above will have triggered. */
1320 assert (new_type != SVt_NULL);
1323 assert(old_type == SVt_NULL);
1324 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1328 assert(old_type == SVt_NULL);
1329 SvANY(sv) = new_XNV();
1334 assert(new_type_details->body_size);
1337 assert(new_type_details->arena);
1338 assert(new_type_details->arena_size);
1339 /* This points to the start of the allocated area. */
1340 new_body_inline(new_body, new_type);
1341 Zero(new_body, new_type_details->body_size, char);
1342 new_body = ((char *)new_body) - new_type_details->offset;
1344 /* We always allocated the full length item with PURIFY. To do this
1345 we fake things so that arena is false for all 16 types.. */
1346 new_body = new_NOARENAZ(new_type_details);
1348 SvANY(sv) = new_body;
1349 if (new_type == SVt_PVAV) {
1353 if (old_type_details->body_size) {
1356 /* It will have been zeroed when the new body was allocated.
1357 Lets not write to it, in case it confuses a write-back
1363 #ifndef NODEFAULT_SHAREKEYS
1364 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1366 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1367 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1370 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1371 The target created by newSVrv also is, and it can have magic.
1372 However, it never has SvPVX set.
1374 if (old_type == SVt_IV) {
1376 } else if (old_type >= SVt_PV) {
1377 assert(SvPVX_const(sv) == 0);
1380 if (old_type >= SVt_PVMG) {
1381 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1382 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1384 sv->sv_u.svu_array = NULL; /* or svu_hash */
1389 /* XXX Is this still needed? Was it ever needed? Surely as there is
1390 no route from NV to PVIV, NOK can never be true */
1391 assert(!SvNOKp(sv));
1404 assert(new_type_details->body_size);
1405 /* We always allocated the full length item with PURIFY. To do this
1406 we fake things so that arena is false for all 16 types.. */
1407 if(new_type_details->arena) {
1408 /* This points to the start of the allocated area. */
1409 new_body_inline(new_body, new_type);
1410 Zero(new_body, new_type_details->body_size, char);
1411 new_body = ((char *)new_body) - new_type_details->offset;
1413 new_body = new_NOARENAZ(new_type_details);
1415 SvANY(sv) = new_body;
1417 if (old_type_details->copy) {
1418 /* There is now the potential for an upgrade from something without
1419 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1420 int offset = old_type_details->offset;
1421 int length = old_type_details->copy;
1423 if (new_type_details->offset > old_type_details->offset) {
1424 const int difference
1425 = new_type_details->offset - old_type_details->offset;
1426 offset += difference;
1427 length -= difference;
1429 assert (length >= 0);
1431 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1435 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1436 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1437 * correct 0.0 for us. Otherwise, if the old body didn't have an
1438 * NV slot, but the new one does, then we need to initialise the
1439 * freshly created NV slot with whatever the correct bit pattern is
1441 if (old_type_details->zero_nv && !new_type_details->zero_nv
1442 && !isGV_with_GP(sv))
1446 if (UNLIKELY(new_type == SVt_PVIO)) {
1447 IO * const io = MUTABLE_IO(sv);
1448 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1451 /* Clear the stashcache because a new IO could overrule a package
1453 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1454 hv_clear(PL_stashcache);
1456 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1457 IoPAGE_LEN(sv) = 60;
1459 if (UNLIKELY(new_type == SVt_REGEXP))
1460 sv->sv_u.svu_rx = (regexp *)new_body;
1461 else if (old_type < SVt_PV) {
1462 /* referant will be NULL unless the old type was SVt_IV emulating
1464 sv->sv_u.svu_rv = referant;
1468 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1469 (unsigned long)new_type);
1472 if (old_type > SVt_IV) {
1476 /* Note that there is an assumption that all bodies of types that
1477 can be upgraded came from arenas. Only the more complex non-
1478 upgradable types are allowed to be directly malloc()ed. */
1479 assert(old_type_details->arena);
1480 del_body((void*)((char*)old_body + old_type_details->offset),
1481 &PL_body_roots[old_type]);
1487 =for apidoc sv_backoff
1489 Remove any string offset. You should normally use the C<SvOOK_off> macro
1496 Perl_sv_backoff(SV *const sv)
1499 const char * const s = SvPVX_const(sv);
1501 PERL_ARGS_ASSERT_SV_BACKOFF;
1504 assert(SvTYPE(sv) != SVt_PVHV);
1505 assert(SvTYPE(sv) != SVt_PVAV);
1507 SvOOK_offset(sv, delta);
1509 SvLEN_set(sv, SvLEN(sv) + delta);
1510 SvPV_set(sv, SvPVX(sv) - delta);
1511 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1512 SvFLAGS(sv) &= ~SVf_OOK;
1519 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1520 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1521 Use the C<SvGROW> wrapper instead.
1526 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1529 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1533 PERL_ARGS_ASSERT_SV_GROW;
1537 if (SvTYPE(sv) < SVt_PV) {
1538 sv_upgrade(sv, SVt_PV);
1539 s = SvPVX_mutable(sv);
1541 else if (SvOOK(sv)) { /* pv is offset? */
1543 s = SvPVX_mutable(sv);
1544 if (newlen > SvLEN(sv))
1545 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1549 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1550 s = SvPVX_mutable(sv);
1553 #ifdef PERL_NEW_COPY_ON_WRITE
1554 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1555 * to store the COW count. So in general, allocate one more byte than
1556 * asked for, to make it likely this byte is always spare: and thus
1557 * make more strings COW-able.
1558 * If the new size is a big power of two, don't bother: we assume the
1559 * caller wanted a nice 2^N sized block and will be annoyed at getting
1565 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1566 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1569 if (newlen > SvLEN(sv)) { /* need more room? */
1570 STRLEN minlen = SvCUR(sv);
1571 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1572 if (newlen < minlen)
1574 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1576 /* Don't round up on the first allocation, as odds are pretty good that
1577 * the initial request is accurate as to what is really needed */
1579 newlen = PERL_STRLEN_ROUNDUP(newlen);
1582 if (SvLEN(sv) && s) {
1583 s = (char*)saferealloc(s, newlen);
1586 s = (char*)safemalloc(newlen);
1587 if (SvPVX_const(sv) && SvCUR(sv)) {
1588 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1592 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1593 /* Do this here, do it once, do it right, and then we will never get
1594 called back into sv_grow() unless there really is some growing
1596 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1598 SvLEN_set(sv, newlen);
1605 =for apidoc sv_setiv
1607 Copies an integer into the given SV, upgrading first if necessary.
1608 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1614 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1616 PERL_ARGS_ASSERT_SV_SETIV;
1618 SV_CHECK_THINKFIRST_COW_DROP(sv);
1619 switch (SvTYPE(sv)) {
1622 sv_upgrade(sv, SVt_IV);
1625 sv_upgrade(sv, SVt_PVIV);
1629 if (!isGV_with_GP(sv))
1636 /* diag_listed_as: Can't coerce %s to %s in %s */
1637 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1641 (void)SvIOK_only(sv); /* validate number */
1647 =for apidoc sv_setiv_mg
1649 Like C<sv_setiv>, but also handles 'set' magic.
1655 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1657 PERL_ARGS_ASSERT_SV_SETIV_MG;
1664 =for apidoc sv_setuv
1666 Copies an unsigned integer into the given SV, upgrading first if necessary.
1667 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1673 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1675 PERL_ARGS_ASSERT_SV_SETUV;
1677 /* With the if statement to ensure that integers are stored as IVs whenever
1679 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1682 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1684 If you wish to remove the following if statement, so that this routine
1685 (and its callers) always return UVs, please benchmark to see what the
1686 effect is. Modern CPUs may be different. Or may not :-)
1688 if (u <= (UV)IV_MAX) {
1689 sv_setiv(sv, (IV)u);
1698 =for apidoc sv_setuv_mg
1700 Like C<sv_setuv>, but also handles 'set' magic.
1706 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1708 PERL_ARGS_ASSERT_SV_SETUV_MG;
1715 =for apidoc sv_setnv
1717 Copies a double into the given SV, upgrading first if necessary.
1718 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1724 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1726 PERL_ARGS_ASSERT_SV_SETNV;
1728 SV_CHECK_THINKFIRST_COW_DROP(sv);
1729 switch (SvTYPE(sv)) {
1732 sv_upgrade(sv, SVt_NV);
1736 sv_upgrade(sv, SVt_PVNV);
1740 if (!isGV_with_GP(sv))
1747 /* diag_listed_as: Can't coerce %s to %s in %s */
1748 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1753 (void)SvNOK_only(sv); /* validate number */
1758 =for apidoc sv_setnv_mg
1760 Like C<sv_setnv>, but also handles 'set' magic.
1766 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1768 PERL_ARGS_ASSERT_SV_SETNV_MG;
1774 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1775 * not incrementable warning display.
1776 * Originally part of S_not_a_number().
1777 * The return value may be != tmpbuf.
1781 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1784 PERL_ARGS_ASSERT_SV_DISPLAY;
1787 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1788 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1791 const char * const limit = tmpbuf + tmpbuf_size - 8;
1792 /* each *s can expand to 4 chars + "...\0",
1793 i.e. need room for 8 chars */
1795 const char *s = SvPVX_const(sv);
1796 const char * const end = s + SvCUR(sv);
1797 for ( ; s < end && d < limit; s++ ) {
1799 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1803 /* Map to ASCII "equivalent" of Latin1 */
1804 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1810 else if (ch == '\r') {
1814 else if (ch == '\f') {
1818 else if (ch == '\\') {
1822 else if (ch == '\0') {
1826 else if (isPRINT_LC(ch))
1845 /* Print an "isn't numeric" warning, using a cleaned-up,
1846 * printable version of the offending string
1850 S_not_a_number(pTHX_ SV *const sv)
1855 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1857 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1860 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1861 /* diag_listed_as: Argument "%s" isn't numeric%s */
1862 "Argument \"%s\" isn't numeric in %s", pv,
1865 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1866 /* diag_listed_as: Argument "%s" isn't numeric%s */
1867 "Argument \"%s\" isn't numeric", pv);
1871 S_not_incrementable(pTHX_ SV *const sv) {
1875 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1877 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1879 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1880 "Argument \"%s\" treated as 0 in increment (++)", pv);
1884 =for apidoc looks_like_number
1886 Test if the content of an SV looks like a number (or is a number).
1887 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1888 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1895 Perl_looks_like_number(pTHX_ SV *const sv)
1900 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1902 if (SvPOK(sv) || SvPOKp(sv)) {
1903 sbegin = SvPV_nomg_const(sv, len);
1906 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1907 return grok_number(sbegin, len, NULL);
1911 S_glob_2number(pTHX_ GV * const gv)
1913 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1915 /* We know that all GVs stringify to something that is not-a-number,
1916 so no need to test that. */
1917 if (ckWARN(WARN_NUMERIC))
1919 SV *const buffer = sv_newmortal();
1920 gv_efullname3(buffer, gv, "*");
1921 not_a_number(buffer);
1923 /* We just want something true to return, so that S_sv_2iuv_common
1924 can tail call us and return true. */
1928 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1929 until proven guilty, assume that things are not that bad... */
1934 As 64 bit platforms often have an NV that doesn't preserve all bits of
1935 an IV (an assumption perl has been based on to date) it becomes necessary
1936 to remove the assumption that the NV always carries enough precision to
1937 recreate the IV whenever needed, and that the NV is the canonical form.
1938 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1939 precision as a side effect of conversion (which would lead to insanity
1940 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1941 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1942 where precision was lost, and IV/UV/NV slots that have a valid conversion
1943 which has lost no precision
1944 2) to ensure that if a numeric conversion to one form is requested that
1945 would lose precision, the precise conversion (or differently
1946 imprecise conversion) is also performed and cached, to prevent
1947 requests for different numeric formats on the same SV causing
1948 lossy conversion chains. (lossless conversion chains are perfectly
1953 SvIOKp is true if the IV slot contains a valid value
1954 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1955 SvNOKp is true if the NV slot contains a valid value
1956 SvNOK is true only if the NV value is accurate
1959 while converting from PV to NV, check to see if converting that NV to an
1960 IV(or UV) would lose accuracy over a direct conversion from PV to
1961 IV(or UV). If it would, cache both conversions, return NV, but mark
1962 SV as IOK NOKp (ie not NOK).
1964 While converting from PV to IV, check to see if converting that IV to an
1965 NV would lose accuracy over a direct conversion from PV to NV. If it
1966 would, cache both conversions, flag similarly.
1968 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1969 correctly because if IV & NV were set NV *always* overruled.
1970 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1971 changes - now IV and NV together means that the two are interchangeable:
1972 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1974 The benefit of this is that operations such as pp_add know that if
1975 SvIOK is true for both left and right operands, then integer addition
1976 can be used instead of floating point (for cases where the result won't
1977 overflow). Before, floating point was always used, which could lead to
1978 loss of precision compared with integer addition.
1980 * making IV and NV equal status should make maths accurate on 64 bit
1982 * may speed up maths somewhat if pp_add and friends start to use
1983 integers when possible instead of fp. (Hopefully the overhead in
1984 looking for SvIOK and checking for overflow will not outweigh the
1985 fp to integer speedup)
1986 * will slow down integer operations (callers of SvIV) on "inaccurate"
1987 values, as the change from SvIOK to SvIOKp will cause a call into
1988 sv_2iv each time rather than a macro access direct to the IV slot
1989 * should speed up number->string conversion on integers as IV is
1990 favoured when IV and NV are equally accurate
1992 ####################################################################
1993 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1994 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1995 On the other hand, SvUOK is true iff UV.
1996 ####################################################################
1998 Your mileage will vary depending your CPU's relative fp to integer
2002 #ifndef NV_PRESERVES_UV
2003 # define IS_NUMBER_UNDERFLOW_IV 1
2004 # define IS_NUMBER_UNDERFLOW_UV 2
2005 # define IS_NUMBER_IV_AND_UV 2
2006 # define IS_NUMBER_OVERFLOW_IV 4
2007 # define IS_NUMBER_OVERFLOW_UV 5
2009 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2011 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2013 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2019 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2020 PERL_UNUSED_CONTEXT;
2022 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2023 if (SvNVX(sv) < (NV)IV_MIN) {
2024 (void)SvIOKp_on(sv);
2026 SvIV_set(sv, IV_MIN);
2027 return IS_NUMBER_UNDERFLOW_IV;
2029 if (SvNVX(sv) > (NV)UV_MAX) {
2030 (void)SvIOKp_on(sv);
2033 SvUV_set(sv, UV_MAX);
2034 return IS_NUMBER_OVERFLOW_UV;
2036 (void)SvIOKp_on(sv);
2038 /* Can't use strtol etc to convert this string. (See truth table in
2040 if (SvNVX(sv) <= (UV)IV_MAX) {
2041 SvIV_set(sv, I_V(SvNVX(sv)));
2042 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2043 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2045 /* Integer is imprecise. NOK, IOKp */
2047 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2050 SvUV_set(sv, U_V(SvNVX(sv)));
2051 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2052 if (SvUVX(sv) == UV_MAX) {
2053 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2054 possibly be preserved by NV. Hence, it must be overflow.
2056 return IS_NUMBER_OVERFLOW_UV;
2058 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2060 /* Integer is imprecise. NOK, IOKp */
2062 return IS_NUMBER_OVERFLOW_IV;
2064 #endif /* !NV_PRESERVES_UV*/
2067 S_sv_2iuv_common(pTHX_ SV *const sv)
2069 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2072 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2073 * without also getting a cached IV/UV from it at the same time
2074 * (ie PV->NV conversion should detect loss of accuracy and cache
2075 * IV or UV at same time to avoid this. */
2076 /* IV-over-UV optimisation - choose to cache IV if possible */
2078 if (Perl_isinfnan(SvNVX(sv)))
2081 if (SvTYPE(sv) == SVt_NV)
2082 sv_upgrade(sv, SVt_PVNV);
2084 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2085 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2086 certainly cast into the IV range at IV_MAX, whereas the correct
2087 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2089 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2090 SvIV_set(sv, I_V(SvNVX(sv)));
2091 if (SvNVX(sv) == (NV) SvIVX(sv)
2092 #ifndef NV_PRESERVES_UV
2093 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2094 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2095 /* Don't flag it as "accurately an integer" if the number
2096 came from a (by definition imprecise) NV operation, and
2097 we're outside the range of NV integer precision */
2101 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2103 /* scalar has trailing garbage, eg "42a" */
2105 DEBUG_c(PerlIO_printf(Perl_debug_log,
2106 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2112 /* IV not precise. No need to convert from PV, as NV
2113 conversion would already have cached IV if it detected
2114 that PV->IV would be better than PV->NV->IV
2115 flags already correct - don't set public IOK. */
2116 DEBUG_c(PerlIO_printf(Perl_debug_log,
2117 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2122 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2123 but the cast (NV)IV_MIN rounds to a the value less (more
2124 negative) than IV_MIN which happens to be equal to SvNVX ??
2125 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2126 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2127 (NV)UVX == NVX are both true, but the values differ. :-(
2128 Hopefully for 2s complement IV_MIN is something like
2129 0x8000000000000000 which will be exact. NWC */
2132 SvUV_set(sv, U_V(SvNVX(sv)));
2134 (SvNVX(sv) == (NV) SvUVX(sv))
2135 #ifndef NV_PRESERVES_UV
2136 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2137 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2138 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2139 /* Don't flag it as "accurately an integer" if the number
2140 came from a (by definition imprecise) NV operation, and
2141 we're outside the range of NV integer precision */
2147 DEBUG_c(PerlIO_printf(Perl_debug_log,
2148 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2154 else if (SvPOKp(sv)) {
2156 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2157 /* We want to avoid a possible problem when we cache an IV/ a UV which
2158 may be later translated to an NV, and the resulting NV is not
2159 the same as the direct translation of the initial string
2160 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2161 be careful to ensure that the value with the .456 is around if the
2162 NV value is requested in the future).
2164 This means that if we cache such an IV/a UV, we need to cache the
2165 NV as well. Moreover, we trade speed for space, and do not
2166 cache the NV if we are sure it's not needed.
2169 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2170 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2171 == IS_NUMBER_IN_UV) {
2172 /* It's definitely an integer, only upgrade to PVIV */
2173 if (SvTYPE(sv) < SVt_PVIV)
2174 sv_upgrade(sv, SVt_PVIV);
2176 } else if (SvTYPE(sv) < SVt_PVNV)
2177 sv_upgrade(sv, SVt_PVNV);
2179 /* If NVs preserve UVs then we only use the UV value if we know that
2180 we aren't going to call atof() below. If NVs don't preserve UVs
2181 then the value returned may have more precision than atof() will
2182 return, even though value isn't perfectly accurate. */
2183 if ((numtype & (IS_NUMBER_IN_UV
2184 #ifdef NV_PRESERVES_UV
2187 )) == IS_NUMBER_IN_UV) {
2188 /* This won't turn off the public IOK flag if it was set above */
2189 (void)SvIOKp_on(sv);
2191 if (!(numtype & IS_NUMBER_NEG)) {
2193 if (value <= (UV)IV_MAX) {
2194 SvIV_set(sv, (IV)value);
2196 /* it didn't overflow, and it was positive. */
2197 SvUV_set(sv, value);
2201 /* 2s complement assumption */
2202 if (value <= (UV)IV_MIN) {
2203 SvIV_set(sv, -(IV)value);
2205 /* Too negative for an IV. This is a double upgrade, but
2206 I'm assuming it will be rare. */
2207 if (SvTYPE(sv) < SVt_PVNV)
2208 sv_upgrade(sv, SVt_PVNV);
2212 SvNV_set(sv, -(NV)value);
2213 SvIV_set(sv, IV_MIN);
2217 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2218 will be in the previous block to set the IV slot, and the next
2219 block to set the NV slot. So no else here. */
2221 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2222 != IS_NUMBER_IN_UV) {
2223 /* It wasn't an (integer that doesn't overflow the UV). */
2224 SvNV_set(sv, Atof(SvPVX_const(sv)));
2226 if (! numtype && ckWARN(WARN_NUMERIC))
2229 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n",
2230 PTR2UV(sv), SvNVX(sv)));
2232 #ifdef NV_PRESERVES_UV
2233 (void)SvIOKp_on(sv);
2235 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2236 SvIV_set(sv, I_V(SvNVX(sv)));
2237 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2240 NOOP; /* Integer is imprecise. NOK, IOKp */
2242 /* UV will not work better than IV */
2244 if (SvNVX(sv) > (NV)UV_MAX) {
2246 /* Integer is inaccurate. NOK, IOKp, is UV */
2247 SvUV_set(sv, UV_MAX);
2249 SvUV_set(sv, U_V(SvNVX(sv)));
2250 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2251 NV preservse UV so can do correct comparison. */
2252 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2255 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2260 #else /* NV_PRESERVES_UV */
2261 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2262 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2263 /* The IV/UV slot will have been set from value returned by
2264 grok_number above. The NV slot has just been set using
2267 assert (SvIOKp(sv));
2269 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2270 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2271 /* Small enough to preserve all bits. */
2272 (void)SvIOKp_on(sv);
2274 SvIV_set(sv, I_V(SvNVX(sv)));
2275 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2277 /* Assumption: first non-preserved integer is < IV_MAX,
2278 this NV is in the preserved range, therefore: */
2279 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2281 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2285 0 0 already failed to read UV.
2286 0 1 already failed to read UV.
2287 1 0 you won't get here in this case. IV/UV
2288 slot set, public IOK, Atof() unneeded.
2289 1 1 already read UV.
2290 so there's no point in sv_2iuv_non_preserve() attempting
2291 to use atol, strtol, strtoul etc. */
2293 sv_2iuv_non_preserve (sv, numtype);
2295 sv_2iuv_non_preserve (sv);
2299 #endif /* NV_PRESERVES_UV */
2300 /* It might be more code efficient to go through the entire logic above
2301 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2302 gets complex and potentially buggy, so more programmer efficient
2303 to do it this way, by turning off the public flags: */
2305 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2309 if (isGV_with_GP(sv))
2310 return glob_2number(MUTABLE_GV(sv));
2312 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2314 if (SvTYPE(sv) < SVt_IV)
2315 /* Typically the caller expects that sv_any is not NULL now. */
2316 sv_upgrade(sv, SVt_IV);
2317 /* Return 0 from the caller. */
2324 =for apidoc sv_2iv_flags
2326 Return the integer value of an SV, doing any necessary string
2327 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2328 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2334 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2336 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2338 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2339 && SvTYPE(sv) != SVt_PVFM);
2341 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2344 if (SvNOK(sv) && Perl_isinfnan(SvNVX(sv)))
2345 return 0; /* So wrong but what can we do. */
2350 if (flags & SV_SKIP_OVERLOAD)
2352 tmpstr = AMG_CALLunary(sv, numer_amg);
2353 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2354 return SvIV(tmpstr);
2357 return PTR2IV(SvRV(sv));
2360 if (SvVALID(sv) || isREGEXP(sv)) {
2361 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2362 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2363 In practice they are extremely unlikely to actually get anywhere
2364 accessible by user Perl code - the only way that I'm aware of is when
2365 a constant subroutine which is used as the second argument to index.
2367 Regexps have no SvIVX and SvNVX fields.
2369 assert(isREGEXP(sv) || SvPOKp(sv));
2372 const char * const ptr =
2373 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2374 const int numtype = grok_number(ptr, SvCUR(sv), &value);
2376 assert((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN)) == 0);
2378 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2379 == IS_NUMBER_IN_UV) {
2380 /* It's definitely an integer */
2381 if (numtype & IS_NUMBER_NEG) {
2382 if (value < (UV)IV_MIN)
2385 if (value < (UV)IV_MAX)
2391 if (ckWARN(WARN_NUMERIC))
2394 return I_V(Atof(ptr));
2398 if (SvTHINKFIRST(sv)) {
2399 #ifdef PERL_OLD_COPY_ON_WRITE
2401 sv_force_normal_flags(sv, 0);
2404 if (SvREADONLY(sv) && !SvOK(sv)) {
2405 if (ckWARN(WARN_UNINITIALIZED))
2412 if (S_sv_2iuv_common(aTHX_ sv))
2416 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2417 PTR2UV(sv),SvIVX(sv)));
2418 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2422 =for apidoc sv_2uv_flags
2424 Return the unsigned integer value of an SV, doing any necessary string
2425 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2426 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2432 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2434 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2436 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2439 if (SvNOK(sv) && Perl_isinfnan(SvNVX(sv)))
2440 return 0; /* So wrong but what can we do. */
2445 if (flags & SV_SKIP_OVERLOAD)
2447 tmpstr = AMG_CALLunary(sv, numer_amg);
2448 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2449 return SvUV(tmpstr);
2452 return PTR2UV(SvRV(sv));
2455 if (SvVALID(sv) || isREGEXP(sv)) {
2456 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2457 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2458 Regexps have no SvIVX and SvNVX fields. */
2459 assert(isREGEXP(sv) || SvPOKp(sv));
2462 const char * const ptr =
2463 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2464 const int numtype = grok_number(ptr, SvCUR(sv), &value);
2466 assert((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN)) == 0);
2468 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2469 == IS_NUMBER_IN_UV) {
2470 /* It's definitely an integer */
2471 if (!(numtype & IS_NUMBER_NEG))
2476 if (ckWARN(WARN_NUMERIC))
2479 return U_V(Atof(ptr));
2483 if (SvTHINKFIRST(sv)) {
2484 #ifdef PERL_OLD_COPY_ON_WRITE
2486 sv_force_normal_flags(sv, 0);
2489 if (SvREADONLY(sv) && !SvOK(sv)) {
2490 if (ckWARN(WARN_UNINITIALIZED))
2497 if (S_sv_2iuv_common(aTHX_ sv))
2501 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2502 PTR2UV(sv),SvUVX(sv)));
2503 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2507 =for apidoc sv_2nv_flags
2509 Return the num value of an SV, doing any necessary string or integer
2510 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2511 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2517 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2519 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2521 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2522 && SvTYPE(sv) != SVt_PVFM);
2523 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2524 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2525 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2526 Regexps have no SvIVX and SvNVX fields. */
2528 if (flags & SV_GMAGIC)
2532 if (SvPOKp(sv) && !SvIOKp(sv)) {
2533 ptr = SvPVX_const(sv);
2535 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2536 !grok_number(ptr, SvCUR(sv), NULL))
2542 return (NV)SvUVX(sv);
2544 return (NV)SvIVX(sv);
2550 ptr = RX_WRAPPED((REGEXP *)sv);
2553 assert(SvTYPE(sv) >= SVt_PVMG);
2554 /* This falls through to the report_uninit near the end of the
2556 } else if (SvTHINKFIRST(sv)) {
2561 if (flags & SV_SKIP_OVERLOAD)
2563 tmpstr = AMG_CALLunary(sv, numer_amg);
2564 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2565 return SvNV(tmpstr);
2568 return PTR2NV(SvRV(sv));
2570 #ifdef PERL_OLD_COPY_ON_WRITE
2572 sv_force_normal_flags(sv, 0);
2575 if (SvREADONLY(sv) && !SvOK(sv)) {
2576 if (ckWARN(WARN_UNINITIALIZED))
2581 if (SvTYPE(sv) < SVt_NV) {
2582 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2583 sv_upgrade(sv, SVt_NV);
2585 STORE_NUMERIC_LOCAL_SET_STANDARD();
2586 PerlIO_printf(Perl_debug_log,
2587 "0x%"UVxf" num(%" NVgf ")\n",
2588 PTR2UV(sv), SvNVX(sv));
2589 RESTORE_NUMERIC_LOCAL();
2592 else if (SvTYPE(sv) < SVt_PVNV)
2593 sv_upgrade(sv, SVt_PVNV);
2598 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2599 #ifdef NV_PRESERVES_UV
2605 /* Only set the public NV OK flag if this NV preserves the IV */
2606 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2608 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2609 : (SvIVX(sv) == I_V(SvNVX(sv))))
2615 else if (SvPOKp(sv)) {
2617 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2618 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2620 #ifdef NV_PRESERVES_UV
2621 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2622 == IS_NUMBER_IN_UV) {
2623 /* It's definitely an integer */
2624 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2626 if ((numtype & IS_NUMBER_INFINITY))
2627 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2628 else if ((numtype & IS_NUMBER_NAN))
2629 SvNV_set(sv, NV_NAN);
2631 SvNV_set(sv, Atof(SvPVX_const(sv)));
2638 if ((numtype & IS_NUMBER_INFINITY)) {
2639 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2641 } else if ((numtype & IS_NUMBER_NAN)) {
2642 SvNV_set(sv, NV_NAN);
2645 SvNV_set(sv, Atof(SvPVX_const(sv)));
2646 /* Only set the public NV OK flag if this NV preserves the value in
2647 the PV at least as well as an IV/UV would.
2648 Not sure how to do this 100% reliably. */
2649 /* if that shift count is out of range then Configure's test is
2650 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2652 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2653 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2654 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2655 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2656 /* Can't use strtol etc to convert this string, so don't try.
2657 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2660 /* value has been set. It may not be precise. */
2661 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2662 /* 2s complement assumption for (UV)IV_MIN */
2663 SvNOK_on(sv); /* Integer is too negative. */
2668 if (numtype & IS_NUMBER_NEG) {
2669 SvIV_set(sv, -(IV)value);
2670 } else if (value <= (UV)IV_MAX) {
2671 SvIV_set(sv, (IV)value);
2673 SvUV_set(sv, value);
2677 if (numtype & IS_NUMBER_NOT_INT) {
2678 /* I believe that even if the original PV had decimals,
2679 they are lost beyond the limit of the FP precision.
2680 However, neither is canonical, so both only get p
2681 flags. NWC, 2000/11/25 */
2682 /* Both already have p flags, so do nothing */
2684 const NV nv = SvNVX(sv);
2685 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2686 if (SvIVX(sv) == I_V(nv)) {
2689 /* It had no "." so it must be integer. */
2693 /* between IV_MAX and NV(UV_MAX).
2694 Could be slightly > UV_MAX */
2696 if (numtype & IS_NUMBER_NOT_INT) {
2697 /* UV and NV both imprecise. */
2699 const UV nv_as_uv = U_V(nv);
2701 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2710 /* It might be more code efficient to go through the entire logic above
2711 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2712 gets complex and potentially buggy, so more programmer efficient
2713 to do it this way, by turning off the public flags: */
2715 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2717 #endif /* NV_PRESERVES_UV */
2720 if (isGV_with_GP(sv)) {
2721 glob_2number(MUTABLE_GV(sv));
2725 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2727 assert (SvTYPE(sv) >= SVt_NV);
2728 /* Typically the caller expects that sv_any is not NULL now. */
2729 /* XXX Ilya implies that this is a bug in callers that assume this
2730 and ideally should be fixed. */
2734 STORE_NUMERIC_LOCAL_SET_STANDARD();
2735 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n",
2736 PTR2UV(sv), SvNVX(sv));
2737 RESTORE_NUMERIC_LOCAL();
2745 Return an SV with the numeric value of the source SV, doing any necessary
2746 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2747 access this function.
2753 Perl_sv_2num(pTHX_ SV *const sv)
2755 PERL_ARGS_ASSERT_SV_2NUM;
2760 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2761 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2762 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2763 return sv_2num(tmpsv);
2765 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2768 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2769 * UV as a string towards the end of buf, and return pointers to start and
2772 * We assume that buf is at least TYPE_CHARS(UV) long.
2776 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2778 char *ptr = buf + TYPE_CHARS(UV);
2779 char * const ebuf = ptr;
2782 PERL_ARGS_ASSERT_UIV_2BUF;
2794 *--ptr = '0' + (char)(uv % 10);
2802 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2803 * infinity or a not-a-number, writes the appropriate strings to the
2804 * buffer, including a zero byte. On success returns the written length,
2805 * excluding the zero byte, on failure (not an infinity, not a nan, or the
2806 * maxlen too small) returns zero.
2808 * XXX for "Inf", "-Inf", and "NaN", we could have three read-only
2809 * shared string constants we point to, instead of generating a new
2810 * string for each instance. */
2812 S_infnan_2pv(NV nv, char* buffer, size_t maxlen) {
2813 assert(maxlen >= 4);
2814 if (maxlen < 4) /* "Inf\0", "NaN\0" */
2818 if (Perl_isinf(nv)) {
2820 if (maxlen < 5) /* "-Inf\0" */
2827 } else if (Perl_isnan(nv)) {
2831 /* XXX optionally output the payload mantissa bits as
2832 * "(unsigned)" (to match the nan("...") C99 function,
2833 * or maybe as "(0xhhh...)" would make more sense...
2834 * provide a format string so that the user can decide?
2835 * NOTE: would affect the maxlen and assert() logic.*/
2840 assert((s == buffer + 3) || (s == buffer + 4));
2842 return s - buffer - 1; /* -1: excluding the zero byte */
2847 =for apidoc sv_2pv_flags
2849 Returns a pointer to the string value of an SV, and sets *lp to its length.
2850 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2851 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2852 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2858 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2862 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2864 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2865 && SvTYPE(sv) != SVt_PVFM);
2866 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2871 if (flags & SV_SKIP_OVERLOAD)
2873 tmpstr = AMG_CALLunary(sv, string_amg);
2874 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2875 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2877 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2881 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2882 if (flags & SV_CONST_RETURN) {
2883 pv = (char *) SvPVX_const(tmpstr);
2885 pv = (flags & SV_MUTABLE_RETURN)
2886 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2889 *lp = SvCUR(tmpstr);
2891 pv = sv_2pv_flags(tmpstr, lp, flags);
2904 SV *const referent = SvRV(sv);
2908 retval = buffer = savepvn("NULLREF", len);
2909 } else if (SvTYPE(referent) == SVt_REGEXP &&
2910 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2911 amagic_is_enabled(string_amg))) {
2912 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2916 /* If the regex is UTF-8 we want the containing scalar to
2917 have an UTF-8 flag too */
2924 *lp = RX_WRAPLEN(re);
2926 return RX_WRAPPED(re);
2928 const char *const typestr = sv_reftype(referent, 0);
2929 const STRLEN typelen = strlen(typestr);
2930 UV addr = PTR2UV(referent);
2931 const char *stashname = NULL;
2932 STRLEN stashnamelen = 0; /* hush, gcc */
2933 const char *buffer_end;
2935 if (SvOBJECT(referent)) {
2936 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2939 stashname = HEK_KEY(name);
2940 stashnamelen = HEK_LEN(name);
2942 if (HEK_UTF8(name)) {
2948 stashname = "__ANON__";
2951 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2952 + 2 * sizeof(UV) + 2 /* )\0 */;
2954 len = typelen + 3 /* (0x */
2955 + 2 * sizeof(UV) + 2 /* )\0 */;
2958 Newx(buffer, len, char);
2959 buffer_end = retval = buffer + len;
2961 /* Working backwards */
2965 *--retval = PL_hexdigit[addr & 15];
2966 } while (addr >>= 4);
2972 memcpy(retval, typestr, typelen);
2976 retval -= stashnamelen;
2977 memcpy(retval, stashname, stashnamelen);
2979 /* retval may not necessarily have reached the start of the
2981 assert (retval >= buffer);
2983 len = buffer_end - retval - 1; /* -1 for that \0 */
2995 if (flags & SV_MUTABLE_RETURN)
2996 return SvPVX_mutable(sv);
2997 if (flags & SV_CONST_RETURN)
2998 return (char *)SvPVX_const(sv);
3003 /* I'm assuming that if both IV and NV are equally valid then
3004 converting the IV is going to be more efficient */
3005 const U32 isUIOK = SvIsUV(sv);
3006 char buf[TYPE_CHARS(UV)];
3010 if (SvTYPE(sv) < SVt_PVIV)
3011 sv_upgrade(sv, SVt_PVIV);
3012 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3014 /* inlined from sv_setpvn */
3015 s = SvGROW_mutable(sv, len + 1);
3016 Move(ptr, s, len, char);
3021 else if (SvNOK(sv)) {
3022 if (SvTYPE(sv) < SVt_PVNV)
3023 sv_upgrade(sv, SVt_PVNV);
3024 if (SvNVX(sv) == 0.0
3025 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3026 /* XXX Create SvNVXeq(sv, x)? Or just SvNVXzero(sv)? */
3027 && !Perl_isnan(SvNVX(sv))
3030 s = SvGROW_mutable(sv, 2);
3035 STRLEN size = 5; /* "-Inf\0" */
3037 s = SvGROW_mutable(sv, size);
3038 len = S_infnan_2pv(SvNVX(sv), s, size);
3044 /* some Xenix systems wipe out errno here */
3053 5 + /* exponent digits */
3057 s = SvGROW_mutable(sv, size);
3058 #ifndef USE_LOCALE_NUMERIC
3059 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3065 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
3069 PL_numeric_radix_sv &&
3070 SvUTF8(PL_numeric_radix_sv);
3071 if (local_radix && SvLEN(PL_numeric_radix_sv) > 1) {
3072 size += SvLEN(PL_numeric_radix_sv) - 1;
3073 s = SvGROW_mutable(sv, size);
3076 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3078 /* If the radix character is UTF-8, and actually is in the
3079 * output, turn on the UTF-8 flag for the scalar */
3081 instr(s, SvPVX_const(PL_numeric_radix_sv))) {
3085 RESTORE_LC_NUMERIC();
3088 /* We don't call SvPOK_on(), because it may come to
3089 * pass that the locale changes so that the
3090 * stringification we just did is no longer correct. We
3091 * will have to re-stringify every time it is needed */
3098 else if (isGV_with_GP(sv)) {
3099 GV *const gv = MUTABLE_GV(sv);
3100 SV *const buffer = sv_newmortal();
3102 gv_efullname3(buffer, gv, "*");
3104 assert(SvPOK(buffer));
3108 *lp = SvCUR(buffer);
3109 return SvPVX(buffer);
3111 else if (isREGEXP(sv)) {
3112 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
3113 return RX_WRAPPED((REGEXP *)sv);
3118 if (flags & SV_UNDEF_RETURNS_NULL)
3120 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3122 /* Typically the caller expects that sv_any is not NULL now. */
3123 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3124 sv_upgrade(sv, SVt_PV);
3129 const STRLEN len = s - SvPVX_const(sv);
3134 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3135 PTR2UV(sv),SvPVX_const(sv)));
3136 if (flags & SV_CONST_RETURN)
3137 return (char *)SvPVX_const(sv);
3138 if (flags & SV_MUTABLE_RETURN)
3139 return SvPVX_mutable(sv);
3144 =for apidoc sv_copypv
3146 Copies a stringified representation of the source SV into the
3147 destination SV. Automatically performs any necessary mg_get and
3148 coercion of numeric values into strings. Guaranteed to preserve
3149 UTF8 flag even from overloaded objects. Similar in nature to
3150 sv_2pv[_flags] but operates directly on an SV instead of just the
3151 string. Mostly uses sv_2pv_flags to do its work, except when that
3152 would lose the UTF-8'ness of the PV.
3154 =for apidoc sv_copypv_nomg
3156 Like sv_copypv, but doesn't invoke get magic first.
3158 =for apidoc sv_copypv_flags
3160 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3167 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3169 PERL_ARGS_ASSERT_SV_COPYPV;
3171 sv_copypv_flags(dsv, ssv, 0);
3175 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3180 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3182 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3183 sv_setpvn(dsv,s,len);
3191 =for apidoc sv_2pvbyte
3193 Return a pointer to the byte-encoded representation of the SV, and set *lp
3194 to its length. May cause the SV to be downgraded from UTF-8 as a
3197 Usually accessed via the C<SvPVbyte> macro.
3203 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3205 PERL_ARGS_ASSERT_SV_2PVBYTE;
3208 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3209 || isGV_with_GP(sv) || SvROK(sv)) {
3210 SV *sv2 = sv_newmortal();
3211 sv_copypv_nomg(sv2,sv);
3214 sv_utf8_downgrade(sv,0);
3215 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3219 =for apidoc sv_2pvutf8
3221 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3222 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3224 Usually accessed via the C<SvPVutf8> macro.
3230 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3232 PERL_ARGS_ASSERT_SV_2PVUTF8;
3234 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3235 || isGV_with_GP(sv) || SvROK(sv))
3236 sv = sv_mortalcopy(sv);
3239 sv_utf8_upgrade_nomg(sv);
3240 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3245 =for apidoc sv_2bool
3247 This macro is only used by sv_true() or its macro equivalent, and only if
3248 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3249 It calls sv_2bool_flags with the SV_GMAGIC flag.
3251 =for apidoc sv_2bool_flags
3253 This function is only used by sv_true() and friends, and only if
3254 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3255 contain SV_GMAGIC, then it does an mg_get() first.
3262 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3264 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3267 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3273 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3274 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3277 if(SvGMAGICAL(sv)) {
3279 goto restart; /* call sv_2bool */
3281 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3282 else if(!SvOK(sv)) {
3285 else if(SvPOK(sv)) {
3286 svb = SvPVXtrue(sv);
3288 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3289 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3290 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3294 goto restart; /* call sv_2bool_nomg */
3299 return SvRV(sv) != 0;
3303 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3304 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3308 =for apidoc sv_utf8_upgrade
3310 Converts the PV of an SV to its UTF-8-encoded form.
3311 Forces the SV to string form if it is not already.
3312 Will C<mg_get> on C<sv> if appropriate.
3313 Always sets the SvUTF8 flag to avoid future validity checks even
3314 if the whole string is the same in UTF-8 as not.
3315 Returns the number of bytes in the converted string
3317 This is not a general purpose byte encoding to Unicode interface:
3318 use the Encode extension for that.
3320 =for apidoc sv_utf8_upgrade_nomg
3322 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3324 =for apidoc sv_utf8_upgrade_flags
3326 Converts the PV of an SV to its UTF-8-encoded form.
3327 Forces the SV to string form if it is not already.
3328 Always sets the SvUTF8 flag to avoid future validity checks even
3329 if all the bytes are invariant in UTF-8.
3330 If C<flags> has C<SV_GMAGIC> bit set,
3331 will C<mg_get> on C<sv> if appropriate, else not.
3333 If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
3334 will expand when converted to UTF-8, and skips the extra work of checking for
3335 that. Typically this flag is used by a routine that has already parsed the
3336 string and found such characters, and passes this information on so that the
3337 work doesn't have to be repeated.
3339 Returns the number of bytes in the converted string.
3341 This is not a general purpose byte encoding to Unicode interface:
3342 use the Encode extension for that.
3344 =for apidoc sv_utf8_upgrade_flags_grow
3346 Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is
3347 the number of unused bytes the string of 'sv' is guaranteed to have free after
3348 it upon return. This allows the caller to reserve extra space that it intends
3349 to fill, to avoid extra grows.
3351 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3352 are implemented in terms of this function.
3354 Returns the number of bytes in the converted string (not including the spares).
3358 (One might think that the calling routine could pass in the position of the
3359 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3360 have to be found again. But that is not the case, because typically when the
3361 caller is likely to use this flag, it won't be calling this routine unless it
3362 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3363 and just use bytes. But some things that do fit into a byte are variants in
3364 utf8, and the caller may not have been keeping track of these.)
3366 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3367 C<NUL> isn't guaranteed due to having other routines do the work in some input
3368 cases, or if the input is already flagged as being in utf8.
3370 The speed of this could perhaps be improved for many cases if someone wanted to
3371 write a fast function that counts the number of variant characters in a string,
3372 especially if it could return the position of the first one.
3377 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3379 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3381 if (sv == &PL_sv_undef)
3383 if (!SvPOK_nog(sv)) {
3385 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3386 (void) sv_2pv_flags(sv,&len, flags);
3388 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3392 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3397 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3402 S_sv_uncow(aTHX_ sv, 0);
3405 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3406 sv_recode_to_utf8(sv, PL_encoding);
3407 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3411 if (SvCUR(sv) == 0) {
3412 if (extra) SvGROW(sv, extra);
3413 } else { /* Assume Latin-1/EBCDIC */
3414 /* This function could be much more efficient if we
3415 * had a FLAG in SVs to signal if there are any variant
3416 * chars in the PV. Given that there isn't such a flag
3417 * make the loop as fast as possible (although there are certainly ways
3418 * to speed this up, eg. through vectorization) */
3419 U8 * s = (U8 *) SvPVX_const(sv);
3420 U8 * e = (U8 *) SvEND(sv);
3422 STRLEN two_byte_count = 0;
3424 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3426 /* See if really will need to convert to utf8. We mustn't rely on our
3427 * incoming SV being well formed and having a trailing '\0', as certain
3428 * code in pp_formline can send us partially built SVs. */
3432 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3434 t--; /* t already incremented; re-point to first variant */
3439 /* utf8 conversion not needed because all are invariants. Mark as
3440 * UTF-8 even if no variant - saves scanning loop */
3442 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3447 /* Here, the string should be converted to utf8, either because of an
3448 * input flag (two_byte_count = 0), or because a character that
3449 * requires 2 bytes was found (two_byte_count = 1). t points either to
3450 * the beginning of the string (if we didn't examine anything), or to
3451 * the first variant. In either case, everything from s to t - 1 will
3452 * occupy only 1 byte each on output.
3454 * There are two main ways to convert. One is to create a new string
3455 * and go through the input starting from the beginning, appending each
3456 * converted value onto the new string as we go along. It's probably
3457 * best to allocate enough space in the string for the worst possible
3458 * case rather than possibly running out of space and having to
3459 * reallocate and then copy what we've done so far. Since everything
3460 * from s to t - 1 is invariant, the destination can be initialized
3461 * with these using a fast memory copy
3463 * The other way is to figure out exactly how big the string should be
3464 * by parsing the entire input. Then you don't have to make it big
3465 * enough to handle the worst possible case, and more importantly, if
3466 * the string you already have is large enough, you don't have to
3467 * allocate a new string, you can copy the last character in the input
3468 * string to the final position(s) that will be occupied by the
3469 * converted string and go backwards, stopping at t, since everything
3470 * before that is invariant.
3472 * There are advantages and disadvantages to each method.
3474 * In the first method, we can allocate a new string, do the memory
3475 * copy from the s to t - 1, and then proceed through the rest of the
3476 * string byte-by-byte.
3478 * In the second method, we proceed through the rest of the input
3479 * string just calculating how big the converted string will be. Then
3480 * there are two cases:
3481 * 1) if the string has enough extra space to handle the converted
3482 * value. We go backwards through the string, converting until we
3483 * get to the position we are at now, and then stop. If this
3484 * position is far enough along in the string, this method is
3485 * faster than the other method. If the memory copy were the same
3486 * speed as the byte-by-byte loop, that position would be about
3487 * half-way, as at the half-way mark, parsing to the end and back
3488 * is one complete string's parse, the same amount as starting
3489 * over and going all the way through. Actually, it would be
3490 * somewhat less than half-way, as it's faster to just count bytes
3491 * than to also copy, and we don't have the overhead of allocating
3492 * a new string, changing the scalar to use it, and freeing the
3493 * existing one. But if the memory copy is fast, the break-even
3494 * point is somewhere after half way. The counting loop could be
3495 * sped up by vectorization, etc, to move the break-even point
3496 * further towards the beginning.
3497 * 2) if the string doesn't have enough space to handle the converted
3498 * value. A new string will have to be allocated, and one might
3499 * as well, given that, start from the beginning doing the first
3500 * method. We've spent extra time parsing the string and in
3501 * exchange all we've gotten is that we know precisely how big to
3502 * make the new one. Perl is more optimized for time than space,
3503 * so this case is a loser.
3504 * So what I've decided to do is not use the 2nd method unless it is
3505 * guaranteed that a new string won't have to be allocated, assuming
3506 * the worst case. I also decided not to put any more conditions on it
3507 * than this, for now. It seems likely that, since the worst case is
3508 * twice as big as the unknown portion of the string (plus 1), we won't
3509 * be guaranteed enough space, causing us to go to the first method,
3510 * unless the string is short, or the first variant character is near
3511 * the end of it. In either of these cases, it seems best to use the
3512 * 2nd method. The only circumstance I can think of where this would
3513 * be really slower is if the string had once had much more data in it
3514 * than it does now, but there is still a substantial amount in it */
3517 STRLEN invariant_head = t - s;
3518 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3519 if (SvLEN(sv) < size) {
3521 /* Here, have decided to allocate a new string */
3526 Newx(dst, size, U8);
3528 /* If no known invariants at the beginning of the input string,
3529 * set so starts from there. Otherwise, can use memory copy to
3530 * get up to where we are now, and then start from here */
3532 if (invariant_head == 0) {
3535 Copy(s, dst, invariant_head, char);
3536 d = dst + invariant_head;
3540 append_utf8_from_native_byte(*t, &d);
3544 SvPV_free(sv); /* No longer using pre-existing string */
3545 SvPV_set(sv, (char*)dst);
3546 SvCUR_set(sv, d - dst);
3547 SvLEN_set(sv, size);
3550 /* Here, have decided to get the exact size of the string.
3551 * Currently this happens only when we know that there is
3552 * guaranteed enough space to fit the converted string, so
3553 * don't have to worry about growing. If two_byte_count is 0,
3554 * then t points to the first byte of the string which hasn't
3555 * been examined yet. Otherwise two_byte_count is 1, and t
3556 * points to the first byte in the string that will expand to
3557 * two. Depending on this, start examining at t or 1 after t.
3560 U8 *d = t + two_byte_count;
3563 /* Count up the remaining bytes that expand to two */
3566 const U8 chr = *d++;
3567 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3570 /* The string will expand by just the number of bytes that
3571 * occupy two positions. But we are one afterwards because of
3572 * the increment just above. This is the place to put the
3573 * trailing NUL, and to set the length before we decrement */
3575 d += two_byte_count;
3576 SvCUR_set(sv, d - s);
3580 /* Having decremented d, it points to the position to put the
3581 * very last byte of the expanded string. Go backwards through
3582 * the string, copying and expanding as we go, stopping when we
3583 * get to the part that is invariant the rest of the way down */
3587 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3590 *d-- = UTF8_EIGHT_BIT_LO(*e);
3591 *d-- = UTF8_EIGHT_BIT_HI(*e);
3597 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3598 /* Update pos. We do it at the end rather than during
3599 * the upgrade, to avoid slowing down the common case
3600 * (upgrade without pos).
3601 * pos can be stored as either bytes or characters. Since
3602 * this was previously a byte string we can just turn off
3603 * the bytes flag. */
3604 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3606 mg->mg_flags &= ~MGf_BYTES;
3608 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3609 magic_setutf8(sv,mg); /* clear UTF8 cache */
3614 /* Mark as UTF-8 even if no variant - saves scanning loop */
3620 =for apidoc sv_utf8_downgrade
3622 Attempts to convert the PV of an SV from characters to bytes.
3623 If the PV contains a character that cannot fit
3624 in a byte, this conversion will fail;
3625 in this case, either returns false or, if C<fail_ok> is not
3628 This is not a general purpose Unicode to byte encoding interface:
3629 use the Encode extension for that.
3635 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3637 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3639 if (SvPOKp(sv) && SvUTF8(sv)) {
3643 int mg_flags = SV_GMAGIC;
3646 S_sv_uncow(aTHX_ sv, 0);
3648 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3650 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3651 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3652 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3653 SV_GMAGIC|SV_CONST_RETURN);
3654 mg_flags = 0; /* sv_pos_b2u does get magic */
3656 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3657 magic_setutf8(sv,mg); /* clear UTF8 cache */
3660 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3662 if (!utf8_to_bytes(s, &len)) {
3667 Perl_croak(aTHX_ "Wide character in %s",
3670 Perl_croak(aTHX_ "Wide character");
3681 =for apidoc sv_utf8_encode
3683 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3684 flag off so that it looks like octets again.
3690 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3692 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3694 if (SvREADONLY(sv)) {
3695 sv_force_normal_flags(sv, 0);
3697 (void) sv_utf8_upgrade(sv);
3702 =for apidoc sv_utf8_decode
3704 If the PV of the SV is an octet sequence in UTF-8
3705 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3706 so that it looks like a character. If the PV contains only single-byte
3707 characters, the C<SvUTF8> flag stays off.
3708 Scans PV for validity and returns false if the PV is invalid UTF-8.
3714 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3716 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3719 const U8 *start, *c;
3722 /* The octets may have got themselves encoded - get them back as
3725 if (!sv_utf8_downgrade(sv, TRUE))
3728 /* it is actually just a matter of turning the utf8 flag on, but
3729 * we want to make sure everything inside is valid utf8 first.
3731 c = start = (const U8 *) SvPVX_const(sv);
3732 if (!is_utf8_string(c, SvCUR(sv)))
3734 e = (const U8 *) SvEND(sv);
3737 if (!UTF8_IS_INVARIANT(ch)) {
3742 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3743 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3744 after this, clearing pos. Does anything on CPAN
3746 /* adjust pos to the start of a UTF8 char sequence */
3747 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3749 I32 pos = mg->mg_len;
3751 for (c = start + pos; c > start; c--) {
3752 if (UTF8_IS_START(*c))
3755 mg->mg_len = c - start;
3758 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3759 magic_setutf8(sv,mg); /* clear UTF8 cache */
3766 =for apidoc sv_setsv
3768 Copies the contents of the source SV C<ssv> into the destination SV
3769 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3770 function if the source SV needs to be reused. Does not handle 'set' magic on
3771 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3772 performs a copy-by-value, obliterating any previous content of the
3775 You probably want to use one of the assortment of wrappers, such as
3776 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3777 C<SvSetMagicSV_nosteal>.
3779 =for apidoc sv_setsv_flags
3781 Copies the contents of the source SV C<ssv> into the destination SV
3782 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3783 function if the source SV needs to be reused. Does not handle 'set' magic.
3784 Loosely speaking, it performs a copy-by-value, obliterating any previous
3785 content of the destination.
3786 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3787 C<ssv> if appropriate, else not. If the C<flags>
3788 parameter has the C<SV_NOSTEAL> bit set then the
3789 buffers of temps will not be stolen. <sv_setsv>
3790 and C<sv_setsv_nomg> are implemented in terms of this function.
3792 You probably want to use one of the assortment of wrappers, such as
3793 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3794 C<SvSetMagicSV_nosteal>.
3796 This is the primary function for copying scalars, and most other
3797 copy-ish functions and macros use this underneath.
3803 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3805 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3806 HV *old_stash = NULL;
3808 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3810 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3811 const char * const name = GvNAME(sstr);
3812 const STRLEN len = GvNAMELEN(sstr);
3814 if (dtype >= SVt_PV) {
3820 SvUPGRADE(dstr, SVt_PVGV);
3821 (void)SvOK_off(dstr);
3822 isGV_with_GP_on(dstr);
3824 GvSTASH(dstr) = GvSTASH(sstr);
3826 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3827 gv_name_set(MUTABLE_GV(dstr), name, len,
3828 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3829 SvFAKE_on(dstr); /* can coerce to non-glob */
3832 if(GvGP(MUTABLE_GV(sstr))) {
3833 /* If source has method cache entry, clear it */
3835 SvREFCNT_dec(GvCV(sstr));
3836 GvCV_set(sstr, NULL);
3839 /* If source has a real method, then a method is
3842 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3848 /* If dest already had a real method, that's a change as well */
3850 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3851 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3856 /* We don't need to check the name of the destination if it was not a
3857 glob to begin with. */
3858 if(dtype == SVt_PVGV) {
3859 const char * const name = GvNAME((const GV *)dstr);
3862 /* The stash may have been detached from the symbol table, so
3864 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3868 const STRLEN len = GvNAMELEN(dstr);
3869 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3870 || (len == 1 && name[0] == ':')) {
3873 /* Set aside the old stash, so we can reset isa caches on
3875 if((old_stash = GvHV(dstr)))
3876 /* Make sure we do not lose it early. */
3877 SvREFCNT_inc_simple_void_NN(
3878 sv_2mortal((SV *)old_stash)
3883 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3886 gp_free(MUTABLE_GV(dstr));
3887 GvINTRO_off(dstr); /* one-shot flag */
3888 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3889 if (SvTAINTED(sstr))
3891 if (GvIMPORTED(dstr) != GVf_IMPORTED
3892 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3894 GvIMPORTED_on(dstr);
3897 if(mro_changes == 2) {
3898 if (GvAV((const GV *)sstr)) {
3900 SV * const sref = (SV *)GvAV((const GV *)dstr);
3901 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3902 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3903 AV * const ary = newAV();
3904 av_push(ary, mg->mg_obj); /* takes the refcount */
3905 mg->mg_obj = (SV *)ary;
3907 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3909 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3911 mro_isa_changed_in(GvSTASH(dstr));
3913 else if(mro_changes == 3) {
3914 HV * const stash = GvHV(dstr);
3915 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3921 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3922 if (GvIO(dstr) && dtype == SVt_PVGV) {
3923 DEBUG_o(Perl_deb(aTHX_
3924 "glob_assign_glob clearing PL_stashcache\n"));
3925 /* It's a cache. It will rebuild itself quite happily.
3926 It's a lot of effort to work out exactly which key (or keys)
3927 might be invalidated by the creation of the this file handle.
3929 hv_clear(PL_stashcache);
3935 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3937 SV * const sref = SvRV(sstr);
3939 const int intro = GvINTRO(dstr);
3942 const U32 stype = SvTYPE(sref);
3944 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3947 GvINTRO_off(dstr); /* one-shot flag */
3948 GvLINE(dstr) = CopLINE(PL_curcop);
3949 GvEGV(dstr) = MUTABLE_GV(dstr);
3954 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3955 import_flag = GVf_IMPORTED_CV;
3958 location = (SV **) &GvHV(dstr);
3959 import_flag = GVf_IMPORTED_HV;
3962 location = (SV **) &GvAV(dstr);
3963 import_flag = GVf_IMPORTED_AV;
3966 location = (SV **) &GvIOp(dstr);
3969 location = (SV **) &GvFORM(dstr);
3972 location = &GvSV(dstr);
3973 import_flag = GVf_IMPORTED_SV;
3976 if (stype == SVt_PVCV) {
3977 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3978 if (GvCVGEN(dstr)) {
3979 SvREFCNT_dec(GvCV(dstr));
3980 GvCV_set(dstr, NULL);
3981 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3984 /* SAVEt_GVSLOT takes more room on the savestack and has more
3985 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3986 leave_scope needs access to the GV so it can reset method
3987 caches. We must use SAVEt_GVSLOT whenever the type is
3988 SVt_PVCV, even if the stash is anonymous, as the stash may
3989 gain a name somehow before leave_scope. */
3990 if (stype == SVt_PVCV) {
3991 /* There is no save_pushptrptrptr. Creating it for this
3992 one call site would be overkill. So inline the ss add
3996 SS_ADD_PTR(location);
3997 SS_ADD_PTR(SvREFCNT_inc(*location));
3998 SS_ADD_UV(SAVEt_GVSLOT);
4001 else SAVEGENERICSV(*location);
4004 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
4005 CV* const cv = MUTABLE_CV(*location);
4007 if (!GvCVGEN((const GV *)dstr) &&
4008 (CvROOT(cv) || CvXSUB(cv)) &&
4009 /* redundant check that avoids creating the extra SV
4010 most of the time: */
4011 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
4013 SV * const new_const_sv =
4014 CvCONST((const CV *)sref)
4015 ? cv_const_sv((const CV *)sref)
4017 report_redefined_cv(
4018 sv_2mortal(Perl_newSVpvf(aTHX_
4021 HvNAME_HEK(GvSTASH((const GV *)dstr))
4023 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
4026 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4030 cv_ckproto_len_flags(cv, (const GV *)dstr,
4031 SvPOK(sref) ? CvPROTO(sref) : NULL,
4032 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4033 SvPOK(sref) ? SvUTF8(sref) : 0);
4035 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4036 GvASSUMECV_on(dstr);
4037 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4038 if (intro && GvREFCNT(dstr) > 1) {
4039 /* temporary remove extra savestack's ref */
4041 gv_method_changed(dstr);
4044 else gv_method_changed(dstr);
4047 *location = SvREFCNT_inc_simple_NN(sref);
4048 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4049 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4050 GvFLAGS(dstr) |= import_flag;
4052 if (import_flag == GVf_IMPORTED_SV) {
4055 SS_ADD_PTR(gp_ref(GvGP(dstr)));
4056 SS_ADD_UV(SAVEt_GP_ALIASED_SV
4057 | cBOOL(GvALIASED_SV(dstr)) << 8);
4060 /* Turn off the flag if sref is not referenced elsewhere,
4061 even by weak refs. (SvRMAGICAL is a pessimistic check for
4063 if (SvREFCNT(sref) <= 2 && !SvRMAGICAL(sref))
4064 GvALIASED_SV_off(dstr);
4066 GvALIASED_SV_on(dstr);
4068 if (stype == SVt_PVHV) {
4069 const char * const name = GvNAME((GV*)dstr);
4070 const STRLEN len = GvNAMELEN(dstr);
4073 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4074 || (len == 1 && name[0] == ':')
4076 && (!dref || HvENAME_get(dref))
4079 (HV *)sref, (HV *)dref,
4085 stype == SVt_PVAV && sref != dref
4086 && strEQ(GvNAME((GV*)dstr), "ISA")
4087 /* The stash may have been detached from the symbol table, so
4088 check its name before doing anything. */
4089 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4092 MAGIC * const omg = dref && SvSMAGICAL(dref)
4093 ? mg_find(dref, PERL_MAGIC_isa)
4095 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4096 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4097 AV * const ary = newAV();
4098 av_push(ary, mg->mg_obj); /* takes the refcount */
4099 mg->mg_obj = (SV *)ary;
4102 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4103 SV **svp = AvARRAY((AV *)omg->mg_obj);
4104 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4108 SvREFCNT_inc_simple_NN(*svp++)
4114 SvREFCNT_inc_simple_NN(omg->mg_obj)
4118 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4123 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4125 mg = mg_find(sref, PERL_MAGIC_isa);
4127 /* Since the *ISA assignment could have affected more than
4128 one stash, don't call mro_isa_changed_in directly, but let
4129 magic_clearisa do it for us, as it already has the logic for
4130 dealing with globs vs arrays of globs. */
4132 Perl_magic_clearisa(aTHX_ NULL, mg);
4134 else if (stype == SVt_PVIO) {
4135 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
4136 /* It's a cache. It will rebuild itself quite happily.
4137 It's a lot of effort to work out exactly which key (or keys)
4138 might be invalidated by the creation of the this file handle.
4140 hv_clear(PL_stashcache);
4144 if (!intro) SvREFCNT_dec(dref);
4145 if (SvTAINTED(sstr))
4153 #ifdef PERL_DEBUG_READONLY_COW
4154 # include <sys/mman.h>
4156 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4157 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4161 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4163 struct perl_memory_debug_header * const header =
4164 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4165 const MEM_SIZE len = header->size;
4166 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4167 # ifdef PERL_TRACK_MEMPOOL
4168 if (!header->readonly) header->readonly = 1;
4170 if (mprotect(header, len, PROT_READ))
4171 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4172 header, len, errno);
4176 S_sv_buf_to_rw(pTHX_ SV *sv)
4178 struct perl_memory_debug_header * const header =
4179 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4180 const MEM_SIZE len = header->size;
4181 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4182 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4183 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4184 header, len, errno);
4185 # ifdef PERL_TRACK_MEMPOOL
4186 header->readonly = 0;
4191 # define sv_buf_to_ro(sv) NOOP
4192 # define sv_buf_to_rw(sv) NOOP
4196 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4202 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4207 if (SvIS_FREED(dstr)) {
4208 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4209 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4211 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4213 sstr = &PL_sv_undef;
4214 if (SvIS_FREED(sstr)) {
4215 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4216 (void*)sstr, (void*)dstr);
4218 stype = SvTYPE(sstr);
4219 dtype = SvTYPE(dstr);
4221 /* There's a lot of redundancy below but we're going for speed here */
4226 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4227 (void)SvOK_off(dstr);
4235 sv_upgrade(dstr, SVt_IV);
4239 sv_upgrade(dstr, SVt_PVIV);
4243 goto end_of_first_switch;
4245 (void)SvIOK_only(dstr);
4246 SvIV_set(dstr, SvIVX(sstr));
4249 /* SvTAINTED can only be true if the SV has taint magic, which in
4250 turn means that the SV type is PVMG (or greater). This is the
4251 case statement for SVt_IV, so this cannot be true (whatever gcov
4253 assert(!SvTAINTED(sstr));
4258 if (dtype < SVt_PV && dtype != SVt_IV)
4259 sv_upgrade(dstr, SVt_IV);
4267 sv_upgrade(dstr, SVt_NV);
4271 sv_upgrade(dstr, SVt_PVNV);
4275 goto end_of_first_switch;
4277 SvNV_set(dstr, SvNVX(sstr));
4278 (void)SvNOK_only(dstr);
4279 /* SvTAINTED can only be true if the SV has taint magic, which in
4280 turn means that the SV type is PVMG (or greater). This is the
4281 case statement for SVt_NV, so this cannot be true (whatever gcov
4283 assert(!SvTAINTED(sstr));
4290 sv_upgrade(dstr, SVt_PV);
4293 if (dtype < SVt_PVIV)
4294 sv_upgrade(dstr, SVt_PVIV);
4297 if (dtype < SVt_PVNV)
4298 sv_upgrade(dstr, SVt_PVNV);
4302 const char * const type = sv_reftype(sstr,0);
4304 /* diag_listed_as: Bizarre copy of %s */
4305 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4307 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4309 NOT_REACHED; /* NOTREACHED */
4313 if (dtype < SVt_REGEXP)
4315 if (dtype >= SVt_PV) {
4321 sv_upgrade(dstr, SVt_REGEXP);
4329 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4331 if (SvTYPE(sstr) != stype)
4332 stype = SvTYPE(sstr);
4334 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4335 glob_assign_glob(dstr, sstr, dtype);
4338 if (stype == SVt_PVLV)
4340 if (isREGEXP(sstr)) goto upgregexp;
4341 SvUPGRADE(dstr, SVt_PVNV);
4344 SvUPGRADE(dstr, (svtype)stype);
4346 end_of_first_switch:
4348 /* dstr may have been upgraded. */
4349 dtype = SvTYPE(dstr);
4350 sflags = SvFLAGS(sstr);
4352 if (dtype == SVt_PVCV) {
4353 /* Assigning to a subroutine sets the prototype. */
4356 const char *const ptr = SvPV_const(sstr, len);
4358 SvGROW(dstr, len + 1);
4359 Copy(ptr, SvPVX(dstr), len + 1, char);
4360 SvCUR_set(dstr, len);
4362 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4363 CvAUTOLOAD_off(dstr);
4368 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4369 const char * const type = sv_reftype(dstr,0);
4371 /* diag_listed_as: Cannot copy to %s */
4372 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4374 Perl_croak(aTHX_ "Cannot copy to %s", type);
4375 } else if (sflags & SVf_ROK) {
4376 if (isGV_with_GP(dstr)
4377 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4380 if (GvIMPORTED(dstr) != GVf_IMPORTED
4381 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4383 GvIMPORTED_on(dstr);
4388 glob_assign_glob(dstr, sstr, dtype);
4392 if (dtype >= SVt_PV) {
4393 if (isGV_with_GP(dstr)) {
4394 glob_assign_ref(dstr, sstr);
4397 if (SvPVX_const(dstr)) {
4403 (void)SvOK_off(dstr);
4404 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4405 SvFLAGS(dstr) |= sflags & SVf_ROK;
4406 assert(!(sflags & SVp_NOK));
4407 assert(!(sflags & SVp_IOK));
4408 assert(!(sflags & SVf_NOK));
4409 assert(!(sflags & SVf_IOK));
4411 else if (isGV_with_GP(dstr)) {
4412 if (!(sflags & SVf_OK)) {
4413 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4414 "Undefined value assigned to typeglob");
4417 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4418 if (dstr != (const SV *)gv) {
4419 const char * const name = GvNAME((const GV *)dstr);
4420 const STRLEN len = GvNAMELEN(dstr);
4421 HV *old_stash = NULL;
4422 bool reset_isa = FALSE;
4423 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4424 || (len == 1 && name[0] == ':')) {
4425 /* Set aside the old stash, so we can reset isa caches
4426 on its subclasses. */
4427 if((old_stash = GvHV(dstr))) {
4428 /* Make sure we do not lose it early. */
4429 SvREFCNT_inc_simple_void_NN(
4430 sv_2mortal((SV *)old_stash)
4437 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4438 gp_free(MUTABLE_GV(dstr));
4440 GvGP_set(dstr, gp_ref(GvGP(gv)));
4443 HV * const stash = GvHV(dstr);
4445 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4455 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4456 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4457 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4459 else if (sflags & SVp_POK) {
4460 const STRLEN cur = SvCUR(sstr);
4461 const STRLEN len = SvLEN(sstr);
4464 * We have three basic ways to copy the string:
4470 * Which we choose is based on various factors. The following
4471 * things are listed in order of speed, fastest to slowest:
4473 * - Copying a short string
4474 * - Copy-on-write bookkeeping
4476 * - Copying a long string
4478 * We swipe the string (steal the string buffer) if the SV on the
4479 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4480 * big win on long strings. It should be a win on short strings if
4481 * SvPVX_const(dstr) has to be allocated. If not, it should not
4482 * slow things down, as SvPVX_const(sstr) would have been freed
4485 * We also steal the buffer from a PADTMP (operator target) if it
4486 * is ‘long enough’. For short strings, a swipe does not help
4487 * here, as it causes more malloc calls the next time the target
4488 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4489 * be allocated it is still not worth swiping PADTMPs for short
4490 * strings, as the savings here are small.
4492 * If the rhs is already flagged as a copy-on-write string and COW
4493 * is possible here, we use copy-on-write and make both SVs share
4494 * the string buffer.
4496 * If the rhs is not flagged as copy-on-write, then we see whether
4497 * it is worth upgrading it to such. If the lhs already has a buf-
4498 * fer big enough and the string is short, we skip it and fall back
4499 * to method 3, since memcpy is faster for short strings than the
4500 * later bookkeeping overhead that copy-on-write entails.
4502 * If there is no buffer on the left, or the buffer is too small,
4503 * then we use copy-on-write.
4506 /* Whichever path we take through the next code, we want this true,
4507 and doing it now facilitates the COW check. */
4508 (void)SvPOK_only(dstr);
4512 /* slated for free anyway (and not COW)? */
4513 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4514 /* or a swipable TARG */
4516 (SVs_PADTMP|SVf_READONLY|SVf_PROTECT|SVf_IsCOW))
4518 /* whose buffer is worth stealing */
4519 && CHECK_COWBUF_THRESHOLD(cur,len)
4522 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4523 (!(flags & SV_NOSTEAL)) &&
4524 /* and we're allowed to steal temps */
4525 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4526 len) /* and really is a string */
4527 { /* Passes the swipe test. */
4528 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4530 SvPV_set(dstr, SvPVX_mutable(sstr));
4531 SvLEN_set(dstr, SvLEN(sstr));
4532 SvCUR_set(dstr, SvCUR(sstr));
4535 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4536 SvPV_set(sstr, NULL);
4541 else if (flags & SV_COW_SHARED_HASH_KEYS
4543 #ifdef PERL_OLD_COPY_ON_WRITE
4544 ( sflags & SVf_IsCOW
4545 || ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4546 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4547 && SvTYPE(sstr) >= SVt_PVIV && len
4550 #elif defined(PERL_NEW_COPY_ON_WRITE)
4553 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4554 /* If this is a regular (non-hek) COW, only so
4555 many COW "copies" are possible. */
4556 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4557 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4558 && !(SvFLAGS(dstr) & SVf_BREAK)
4559 && CHECK_COW_THRESHOLD(cur,len) && cur+1 < len
4560 && (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4564 && !(SvFLAGS(dstr) & SVf_BREAK)
4567 /* Either it's a shared hash key, or it's suitable for
4570 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4575 if (!(sflags & SVf_IsCOW)) {
4577 # ifdef PERL_OLD_COPY_ON_WRITE
4578 /* Make the source SV into a loop of 1.
4579 (about to become 2) */
4580 SV_COW_NEXT_SV_SET(sstr, sstr);
4582 CowREFCNT(sstr) = 0;
4586 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4592 # ifdef PERL_OLD_COPY_ON_WRITE
4593 assert (SvTYPE(dstr) >= SVt_PVIV);
4594 /* SvIsCOW_normal */
4595 /* splice us in between source and next-after-source. */
4596 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4597 SV_COW_NEXT_SV_SET(sstr, dstr);
4599 if (sflags & SVf_IsCOW) {
4604 SvPV_set(dstr, SvPVX_mutable(sstr));