3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * I sit beside the fire and think
13 * of all that I have seen.
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
20 =head1 Hash Manipulation Functions
22 A HV structure represents a Perl hash. It consists mainly of an array
23 of pointers, each of which points to a linked list of HE structures. The
24 array is indexed by the hash function of the key, so each linked list
25 represents all the hash entries with the same hash value. Each HE contains
26 a pointer to the actual value, plus a pointer to a HEK structure which
27 holds the key and hash value.
35 #define PERL_HASH_INTERNAL_ACCESS
38 #define HV_MAX_LENGTH_BEFORE_SPLIT 14
40 static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
45 #define new_HE() (HE*)safemalloc(sizeof(HE))
46 #define del_HE(p) safefree((char*)p)
55 void ** const root = &PL_body_roots[HE_SVSLOT];
58 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
65 #define new_HE() new_he()
68 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
69 PL_body_roots[HE_SVSLOT] = p; \
77 S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
79 const int flags_masked = flags & HVhek_MASK;
83 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
85 Newx(k, HEK_BASESIZE + len + 2, char);
87 Copy(str, HEK_KEY(hek), len, char);
88 HEK_KEY(hek)[len] = 0;
91 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
93 if (flags & HVhek_FREEKEY)
98 /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
102 Perl_free_tied_hv_pool(pTHX)
105 HE *he = PL_hv_fetch_ent_mh;
108 Safefree(HeKEY_hek(he));
112 PL_hv_fetch_ent_mh = NULL;
115 #if defined(USE_ITHREADS)
117 Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
121 PERL_ARGS_ASSERT_HEK_DUP;
122 PERL_UNUSED_ARG(param);
127 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
129 /* We already shared this hash key. */
130 (void)share_hek_hek(shared);
134 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
135 HEK_HASH(source), HEK_FLAGS(source));
136 ptr_table_store(PL_ptr_table, source, shared);
142 Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
146 PERL_ARGS_ASSERT_HE_DUP;
150 /* look for it in the table first */
151 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
155 /* create anew and remember what it is */
157 ptr_table_store(PL_ptr_table, e, ret);
159 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
160 if (HeKLEN(e) == HEf_SVKEY) {
162 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
163 HeKEY_hek(ret) = (HEK*)k;
164 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
167 /* This is hek_dup inlined, which seems to be important for speed
169 HEK * const source = HeKEY_hek(e);
170 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
173 /* We already shared this hash key. */
174 (void)share_hek_hek(shared);
178 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
179 HEK_HASH(source), HEK_FLAGS(source));
180 ptr_table_store(PL_ptr_table, source, shared);
182 HeKEY_hek(ret) = shared;
185 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
187 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
190 #endif /* USE_ITHREADS */
193 S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
196 SV * const sv = sv_newmortal();
198 PERL_ARGS_ASSERT_HV_NOTALLOWED;
200 if (!(flags & HVhek_FREEKEY)) {
201 sv_setpvn(sv, key, klen);
204 /* Need to free saved eventually assign to mortal SV */
205 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
206 sv_usepvn(sv, (char *) key, klen);
208 if (flags & HVhek_UTF8) {
211 Perl_croak(aTHX_ msg, SVfARG(sv));
214 /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
220 Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
221 the length of the key. The C<hash> parameter is the precomputed hash
222 value; if it is zero then Perl will compute it. The return value will be
223 NULL if the operation failed or if the value did not need to be actually
224 stored within the hash (as in the case of tied hashes). Otherwise it can
225 be dereferenced to get the original C<SV*>. Note that the caller is
226 responsible for suitably incrementing the reference count of C<val> before
227 the call, and decrementing it if the function returned NULL. Effectively
228 a successful hv_store takes ownership of one reference to C<val>. This is
229 usually what you want; a newly created SV has a reference count of one, so
230 if all your code does is create SVs then store them in a hash, hv_store
231 will own the only reference to the new SV, and your code doesn't need to do
232 anything further to tidy up. hv_store is not implemented as a call to
233 hv_store_ent, and does not create a temporary SV for the key, so if your
234 key data is not already in SV form then use hv_store in preference to
237 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
238 information on how to use this function on tied hashes.
240 =for apidoc hv_store_ent
242 Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
243 parameter is the precomputed hash value; if it is zero then Perl will
244 compute it. The return value is the new hash entry so created. It will be
245 NULL if the operation failed or if the value did not need to be actually
246 stored within the hash (as in the case of tied hashes). Otherwise the
247 contents of the return value can be accessed using the C<He?> macros
248 described here. Note that the caller is responsible for suitably
249 incrementing the reference count of C<val> before the call, and
250 decrementing it if the function returned NULL. Effectively a successful
251 hv_store_ent takes ownership of one reference to C<val>. This is
252 usually what you want; a newly created SV has a reference count of one, so
253 if all your code does is create SVs then store them in a hash, hv_store
254 will own the only reference to the new SV, and your code doesn't need to do
255 anything further to tidy up. Note that hv_store_ent only reads the C<key>;
256 unlike C<val> it does not take ownership of it, so maintaining the correct
257 reference count on C<key> is entirely the caller's responsibility. hv_store
258 is not implemented as a call to hv_store_ent, and does not create a temporary
259 SV for the key, so if your key data is not already in SV form then use
260 hv_store in preference to hv_store_ent.
262 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
263 information on how to use this function on tied hashes.
265 =for apidoc hv_exists
267 Returns a boolean indicating whether the specified hash key exists. The
268 C<klen> is the length of the key.
272 Returns the SV which corresponds to the specified key in the hash. The
273 C<klen> is the length of the key. If C<lval> is set then the fetch will be
274 part of a store. Check that the return value is non-null before
275 dereferencing it to an C<SV*>.
277 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
278 information on how to use this function on tied hashes.
280 =for apidoc hv_exists_ent
282 Returns a boolean indicating whether the specified hash key exists. C<hash>
283 can be a valid precomputed hash value, or 0 to ask for it to be
289 /* returns an HE * structure with the all fields set */
290 /* note that hent_val will be a mortal sv for MAGICAL hashes */
292 =for apidoc hv_fetch_ent
294 Returns the hash entry which corresponds to the specified key in the hash.
295 C<hash> must be a valid precomputed hash number for the given C<key>, or 0
296 if you want the function to compute it. IF C<lval> is set then the fetch
297 will be part of a store. Make sure the return value is non-null before
298 accessing it. The return value when C<hv> is a tied hash is a pointer to a
299 static location, so be sure to make a copy of the structure if you need to
302 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
303 information on how to use this function on tied hashes.
308 /* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
310 Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
311 const int action, SV *val, const U32 hash)
316 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
325 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
329 Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
330 int flags, int action, SV *val, register U32 hash)
339 const int return_svp = action & HV_FETCH_JUST_SV;
343 if (SvTYPE(hv) == SVTYPEMASK)
346 assert(SvTYPE(hv) == SVt_PVHV);
348 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
350 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
351 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
352 if (uf->uf_set == NULL) {
353 SV* obj = mg->mg_obj;
356 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
357 ((flags & HVhek_UTF8)
361 mg->mg_obj = keysv; /* pass key */
362 uf->uf_index = action; /* pass action */
363 magic_getuvar(MUTABLE_SV(hv), mg);
364 keysv = mg->mg_obj; /* may have changed */
367 /* If the key may have changed, then we need to invalidate
368 any passed-in computed hash value. */
374 if (flags & HVhek_FREEKEY)
376 key = SvPV_const(keysv, klen);
377 is_utf8 = (SvUTF8(keysv) != 0);
378 if (SvIsCOW_shared_hash(keysv)) {
379 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
384 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
387 if (action & HV_DELETE) {
388 return (void *) hv_delete_common(hv, keysv, key, klen,
389 flags | (is_utf8 ? HVhek_UTF8 : 0),
393 xhv = (XPVHV*)SvANY(hv);
395 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
396 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
397 || SvGMAGICAL((const SV *)hv))
399 /* FIXME should be able to skimp on the HE/HEK here when
400 HV_FETCH_JUST_SV is true. */
402 keysv = newSVpvn_utf8(key, klen, is_utf8);
404 keysv = newSVsv(keysv);
407 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
409 /* grab a fake HE/HEK pair from the pool or make a new one */
410 entry = PL_hv_fetch_ent_mh;
412 PL_hv_fetch_ent_mh = HeNEXT(entry);
416 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
417 HeKEY_hek(entry) = (HEK*)k;
419 HeNEXT(entry) = NULL;
420 HeSVKEY_set(entry, keysv);
422 sv_upgrade(sv, SVt_PVLV);
424 /* so we can free entry when freeing sv */
425 LvTARG(sv) = MUTABLE_SV(entry);
427 /* XXX remove at some point? */
428 if (flags & HVhek_FREEKEY)
432 return entry ? (void *) &HeVAL(entry) : NULL;
434 return (void *) entry;
436 #ifdef ENV_IS_CASELESS
437 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
439 for (i = 0; i < klen; ++i)
440 if (isLOWER(key[i])) {
441 /* Would be nice if we had a routine to do the
442 copy and upercase in a single pass through. */
443 const char * const nkey = strupr(savepvn(key,klen));
444 /* Note that this fetch is for nkey (the uppercased
445 key) whereas the store is for key (the original) */
446 void *result = hv_common(hv, NULL, nkey, klen,
447 HVhek_FREEKEY, /* free nkey */
448 0 /* non-LVAL fetch */
449 | HV_DISABLE_UVAR_XKEY
452 0 /* compute hash */);
453 if (!result && (action & HV_FETCH_LVALUE)) {
454 /* This call will free key if necessary.
455 Do it this way to encourage compiler to tail
457 result = hv_common(hv, keysv, key, klen, flags,
459 | HV_DISABLE_UVAR_XKEY
463 if (flags & HVhek_FREEKEY)
471 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
472 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
473 || SvGMAGICAL((const SV *)hv)) {
474 /* I don't understand why hv_exists_ent has svret and sv,
475 whereas hv_exists only had one. */
476 SV * const svret = sv_newmortal();
479 if (keysv || is_utf8) {
481 keysv = newSVpvn_utf8(key, klen, TRUE);
483 keysv = newSVsv(keysv);
485 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
487 mg_copy(MUTABLE_SV(hv), sv, key, klen);
489 if (flags & HVhek_FREEKEY)
491 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
492 /* This cast somewhat evil, but I'm merely using NULL/
493 not NULL to return the boolean exists.
494 And I know hv is not NULL. */
495 return SvTRUE(svret) ? (void *)hv : NULL;
497 #ifdef ENV_IS_CASELESS
498 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
499 /* XXX This code isn't UTF8 clean. */
500 char * const keysave = (char * const)key;
501 /* Will need to free this, so set FREEKEY flag. */
502 key = savepvn(key,klen);
503 key = (const char*)strupr((char*)key);
508 if (flags & HVhek_FREEKEY) {
511 flags |= HVhek_FREEKEY;
515 else if (action & HV_FETCH_ISSTORE) {
518 hv_magic_check (hv, &needs_copy, &needs_store);
520 const bool save_taint = PL_tainted;
521 if (keysv || is_utf8) {
523 keysv = newSVpvn_utf8(key, klen, TRUE);
526 PL_tainted = SvTAINTED(keysv);
527 keysv = sv_2mortal(newSVsv(keysv));
528 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
530 mg_copy(MUTABLE_SV(hv), val, key, klen);
533 TAINT_IF(save_taint);
535 if (flags & HVhek_FREEKEY)
539 #ifdef ENV_IS_CASELESS
540 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
541 /* XXX This code isn't UTF8 clean. */
542 const char *keysave = key;
543 /* Will need to free this, so set FREEKEY flag. */
544 key = savepvn(key,klen);
545 key = (const char*)strupr((char*)key);
550 if (flags & HVhek_FREEKEY) {
553 flags |= HVhek_FREEKEY;
561 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
562 #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
563 || (SvRMAGICAL((const SV *)hv)
564 && mg_find((const SV *)hv, PERL_MAGIC_env))
569 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
571 HvARRAY(hv) = (HE**)array;
573 #ifdef DYNAMIC_ENV_FETCH
574 else if (action & HV_FETCH_ISEXISTS) {
575 /* for an %ENV exists, if we do an insert it's by a recursive
576 store call, so avoid creating HvARRAY(hv) right now. */
580 /* XXX remove at some point? */
581 if (flags & HVhek_FREEKEY)
588 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
589 char * const keysave = (char *)key;
590 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
594 flags &= ~HVhek_UTF8;
595 if (key != keysave) {
596 if (flags & HVhek_FREEKEY)
598 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
599 /* If the caller calculated a hash, it was on the sequence of
600 octets that are the UTF-8 form. We've now changed the sequence
601 of octets stored to that of the equivalent byte representation,
602 so the hash we need is different. */
607 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
608 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
610 hash = SvSHARED_HASH(keysv);
612 /* We don't have a pointer to the hv, so we have to replicate the
613 flag into every HEK, so that hv_iterkeysv can see it.
614 And yes, you do need this even though you are not "storing" because
615 you can flip the flags below if doing an lval lookup. (And that
616 was put in to give the semantics Andreas was expecting.) */
618 flags |= HVhek_REHASH;
620 masked_flags = (flags & HVhek_MASK);
622 #ifdef DYNAMIC_ENV_FETCH
623 if (!HvARRAY(hv)) entry = NULL;
627 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
629 for (; entry; entry = HeNEXT(entry)) {
630 if (HeHASH(entry) != hash) /* strings can't be equal */
632 if (HeKLEN(entry) != (I32)klen)
634 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
636 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
639 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
640 if (HeKFLAGS(entry) != masked_flags) {
641 /* We match if HVhek_UTF8 bit in our flags and hash key's
642 match. But if entry was set previously with HVhek_WASUTF8
643 and key now doesn't (or vice versa) then we should change
644 the key's flag, as this is assignment. */
645 if (HvSHAREKEYS(hv)) {
646 /* Need to swap the key we have for a key with the flags we
647 need. As keys are shared we can't just write to the
648 flag, so we share the new one, unshare the old one. */
649 HEK * const new_hek = share_hek_flags(key, klen, hash,
651 unshare_hek (HeKEY_hek(entry));
652 HeKEY_hek(entry) = new_hek;
654 else if (hv == PL_strtab) {
655 /* PL_strtab is usually the only hash without HvSHAREKEYS,
656 so putting this test here is cheap */
657 if (flags & HVhek_FREEKEY)
659 Perl_croak(aTHX_ S_strtab_error,
660 action & HV_FETCH_LVALUE ? "fetch" : "store");
663 HeKFLAGS(entry) = masked_flags;
664 if (masked_flags & HVhek_ENABLEHVKFLAGS)
667 if (HeVAL(entry) == &PL_sv_placeholder) {
668 /* yes, can store into placeholder slot */
669 if (action & HV_FETCH_LVALUE) {
671 /* This preserves behaviour with the old hv_fetch
672 implementation which at this point would bail out
673 with a break; (at "if we find a placeholder, we
674 pretend we haven't found anything")
676 That break mean that if a placeholder were found, it
677 caused a call into hv_store, which in turn would
678 check magic, and if there is no magic end up pretty
679 much back at this point (in hv_store's code). */
682 /* LVAL fetch which actually needs a store. */
684 HvPLACEHOLDERS(hv)--;
687 if (val != &PL_sv_placeholder)
688 HvPLACEHOLDERS(hv)--;
691 } else if (action & HV_FETCH_ISSTORE) {
692 SvREFCNT_dec(HeVAL(entry));
695 } else if (HeVAL(entry) == &PL_sv_placeholder) {
696 /* if we find a placeholder, we pretend we haven't found
700 if (flags & HVhek_FREEKEY)
703 return entry ? (void *) &HeVAL(entry) : NULL;
707 #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
708 if (!(action & HV_FETCH_ISSTORE)
709 && SvRMAGICAL((const SV *)hv)
710 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
712 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
714 sv = newSVpvn(env,len);
716 return hv_common(hv, keysv, key, klen, flags,
717 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
723 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
724 hv_notallowed(flags, key, klen,
725 "Attempt to access disallowed key '%"SVf"' in"
726 " a restricted hash");
728 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
729 /* Not doing some form of store, so return failure. */
730 if (flags & HVhek_FREEKEY)
734 if (action & HV_FETCH_LVALUE) {
735 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
737 /* At this point the old hv_fetch code would call to hv_store,
738 which in turn might do some tied magic. So we need to make that
739 magic check happen. */
740 /* gonna assign to this, so it better be there */
741 /* If a fetch-as-store fails on the fetch, then the action is to
742 recurse once into "hv_store". If we didn't do this, then that
743 recursive call would call the key conversion routine again.
744 However, as we replace the original key with the converted
745 key, this would result in a double conversion, which would show
746 up as a bug if the conversion routine is not idempotent. */
747 return hv_common(hv, keysv, key, klen, flags,
748 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
750 /* XXX Surely that could leak if the fetch-was-store fails?
751 Just like the hv_fetch. */
755 /* Welcome to hv_store... */
758 /* Not sure if we can get here. I think the only case of oentry being
759 NULL is for %ENV with dynamic env fetch. But that should disappear
760 with magic in the previous code. */
763 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
765 HvARRAY(hv) = (HE**)array;
768 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
771 /* share_hek_flags will do the free for us. This might be considered
774 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
775 else if (hv == PL_strtab) {
776 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
777 this test here is cheap */
778 if (flags & HVhek_FREEKEY)
780 Perl_croak(aTHX_ S_strtab_error,
781 action & HV_FETCH_LVALUE ? "fetch" : "store");
783 else /* gotta do the real thing */
784 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
786 HeNEXT(entry) = *oentry;
789 if (val == &PL_sv_placeholder)
790 HvPLACEHOLDERS(hv)++;
791 if (masked_flags & HVhek_ENABLEHVKFLAGS)
795 const HE *counter = HeNEXT(entry);
797 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
798 if (!counter) { /* initial entry? */
799 } else if (xhv->xhv_keys > xhv->xhv_max) {
800 /* Use only the old HvUSEDKEYS(hv) > HvMAX(hv) condition to limit
801 bucket splits on a rehashed hash, as we're not going to
802 split it again, and if someone is lucky (evil) enough to
803 get all the keys in one list they could exhaust our memory
804 as we repeatedly double the number of buckets on every
805 entry. Linear search feels a less worse thing to do. */
807 } else if(!HvREHASH(hv)) {
810 while ((counter = HeNEXT(counter)))
813 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
820 return entry ? (void *) &HeVAL(entry) : NULL;
822 return (void *) entry;
826 S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
828 const MAGIC *mg = SvMAGIC(hv);
830 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
835 if (isUPPER(mg->mg_type)) {
837 if (mg->mg_type == PERL_MAGIC_tied) {
838 *needs_store = FALSE;
839 return; /* We've set all there is to set. */
842 mg = mg->mg_moremagic;
847 =for apidoc hv_scalar
849 Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
855 Perl_hv_scalar(pTHX_ HV *hv)
859 PERL_ARGS_ASSERT_HV_SCALAR;
861 if (SvRMAGICAL(hv)) {
862 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
864 return magic_scalarpack(hv, mg);
868 if (HvTOTALKEYS((const HV *)hv))
869 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
870 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
878 =for apidoc hv_delete
880 Deletes a key/value pair in the hash. The value's SV is removed from the
881 hash, made mortal, and returned to the caller. The C<klen> is the length of
882 the key. The C<flags> value will normally be zero; if set to G_DISCARD then
883 NULL will be returned. NULL will also be returned if the key is not found.
885 =for apidoc hv_delete_ent
887 Deletes a key/value pair in the hash. The value SV is removed from the hash,
888 made mortal, and returned to the caller. The C<flags> value will normally be
889 zero; if set to G_DISCARD then NULL will be returned. NULL will also be
890 returned if the key is not found. C<hash> can be a valid precomputed hash
891 value, or 0 to ask for it to be computed.
897 S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
898 int k_flags, I32 d_flags, U32 hash)
903 register HE **oentry;
904 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
907 if (SvRMAGICAL(hv)) {
910 hv_magic_check (hv, &needs_copy, &needs_store);
914 entry = (HE *) hv_common(hv, keysv, key, klen,
915 k_flags & ~HVhek_FREEKEY,
916 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
918 sv = entry ? HeVAL(entry) : NULL;
924 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
925 /* No longer an element */
926 sv_unmagic(sv, PERL_MAGIC_tiedelem);
929 return NULL; /* element cannot be deleted */
931 #ifdef ENV_IS_CASELESS
932 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
933 /* XXX This code isn't UTF8 clean. */
934 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
935 if (k_flags & HVhek_FREEKEY) {
938 key = strupr(SvPVX(keysv));
947 xhv = (XPVHV*)SvANY(hv);
952 const char * const keysave = key;
953 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
956 k_flags |= HVhek_UTF8;
958 k_flags &= ~HVhek_UTF8;
959 if (key != keysave) {
960 if (k_flags & HVhek_FREEKEY) {
961 /* This shouldn't happen if our caller does what we expect,
962 but strictly the API allows it. */
965 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
967 HvHASKFLAGS_on(MUTABLE_SV(hv));
970 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
971 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
973 hash = SvSHARED_HASH(keysv);
975 masked_flags = (k_flags & HVhek_MASK);
977 oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
979 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
981 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
985 if (HeHASH(entry) != hash) /* strings can't be equal */
987 if (HeKLEN(entry) != (I32)klen)
989 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
991 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
994 if (hv == PL_strtab) {
995 if (k_flags & HVhek_FREEKEY)
997 Perl_croak(aTHX_ S_strtab_error, "delete");
1000 /* if placeholder is here, it's already been deleted.... */
1001 if (HeVAL(entry) == &PL_sv_placeholder) {
1002 if (k_flags & HVhek_FREEKEY)
1006 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1007 hv_notallowed(k_flags, key, klen,
1008 "Attempt to delete readonly key '%"SVf"' from"
1009 " a restricted hash");
1011 if (k_flags & HVhek_FREEKEY)
1014 /* If this is a stash and the key ends with ::, then someone is
1015 * deleting a package.
1017 if (HeVAL(entry) && HvENAME_get(hv)) {
1018 gv = (GV *)HeVAL(entry);
1019 if (keysv) key = SvPV(keysv, klen);
1021 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1023 (klen == 1 && key[0] == ':')
1025 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1026 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1027 && HvENAME_get(stash)) {
1028 /* A previous version of this code checked that the
1029 * GV was still in the symbol table by fetching the
1030 * GV with its name. That is not necessary (and
1031 * sometimes incorrect), as HvENAME cannot be set
1032 * on hv if it is not in the symtab. */
1034 /* Hang on to it for a bit. */
1035 SvREFCNT_inc_simple_void_NN(
1036 sv_2mortal((SV *)gv)
1039 else if (klen == 3 && strnEQ(key, "ISA", 3))
1043 if (d_flags & G_DISCARD) {
1046 /* deletion of method from stash */
1047 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1049 mro_method_changed_in(hv);
1053 } else sv = sv_2mortal(HeVAL(entry));
1054 HeVAL(entry) = &PL_sv_placeholder;
1057 * If a restricted hash, rather than really deleting the entry, put
1058 * a placeholder there. This marks the key as being "approved", so
1059 * we can still access via not-really-existing key without raising
1063 /* We'll be saving this slot, so the number of allocated keys
1064 * doesn't go down, but the number placeholders goes up */
1065 HvPLACEHOLDERS(hv)++;
1067 *oentry = HeNEXT(entry);
1068 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1071 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1072 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1073 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1074 hv_free_ent(hv, entry);
1076 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1077 if (xhv->xhv_keys == 0)
1078 HvHASKFLAGS_off(hv);
1081 if (mro_changes == 1) mro_isa_changed_in(hv);
1082 else if (mro_changes == 2)
1083 mro_package_moved(NULL, stash, gv, 1);
1087 if (SvREADONLY(hv)) {
1088 hv_notallowed(k_flags, key, klen,
1089 "Attempt to delete disallowed key '%"SVf"' from"
1090 " a restricted hash");
1093 if (k_flags & HVhek_FREEKEY)
1099 S_hsplit(pTHX_ HV *hv)
1102 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1103 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1104 register I32 newsize = oldsize * 2;
1106 char *a = (char*) HvARRAY(hv);
1108 int longest_chain = 0;
1111 PERL_ARGS_ASSERT_HSPLIT;
1113 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1114 (void*)hv, (int) oldsize);*/
1116 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1117 /* Can make this clear any placeholders first for non-restricted hashes,
1118 even though Storable rebuilds restricted hashes by putting in all the
1119 placeholders (first) before turning on the readonly flag, because
1120 Storable always pre-splits the hash. */
1121 hv_clear_placeholders(hv);
1125 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1126 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1127 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1133 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1136 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1137 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1142 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1144 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1146 Safefree(HvARRAY(hv));
1150 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1151 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1152 HvARRAY(hv) = (HE**) a;
1155 for (i=0; i<oldsize; i++,aep++) {
1156 int left_length = 0;
1157 int right_length = 0;
1162 if (!entry) /* non-existent */
1166 if ((HeHASH(entry) & newsize) != (U32)i) {
1167 *oentry = HeNEXT(entry);
1168 HeNEXT(entry) = *bep;
1173 oentry = &HeNEXT(entry);
1178 /* I think we don't actually need to keep track of the longest length,
1179 merely flag if anything is too long. But for the moment while
1180 developing this code I'll track it. */
1181 if (left_length > longest_chain)
1182 longest_chain = left_length;
1183 if (right_length > longest_chain)
1184 longest_chain = right_length;
1188 /* Pick your policy for "hashing isn't working" here: */
1189 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1194 if (hv == PL_strtab) {
1195 /* Urg. Someone is doing something nasty to the string table.
1200 /* Awooga. Awooga. Pathological data. */
1201 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1202 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1205 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1206 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1208 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1211 was_shared = HvSHAREKEYS(hv);
1213 HvSHAREKEYS_off(hv);
1218 for (i=0; i<newsize; i++,aep++) {
1219 register HE *entry = *aep;
1221 /* We're going to trash this HE's next pointer when we chain it
1222 into the new hash below, so store where we go next. */
1223 HE * const next = HeNEXT(entry);
1228 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1233 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1234 hash, HeKFLAGS(entry));
1235 unshare_hek (HeKEY_hek(entry));
1236 HeKEY_hek(entry) = new_hek;
1238 /* Not shared, so simply write the new hash in. */
1239 HeHASH(entry) = hash;
1241 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1242 HEK_REHASH_on(HeKEY_hek(entry));
1243 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1245 /* Copy oentry to the correct new chain. */
1246 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1247 HeNEXT(entry) = *bep;
1253 Safefree (HvARRAY(hv));
1254 HvARRAY(hv) = (HE **)a;
1258 Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1261 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1262 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1263 register I32 newsize;
1268 PERL_ARGS_ASSERT_HV_KSPLIT;
1270 newsize = (I32) newmax; /* possible truncation here */
1271 if (newsize != newmax || newmax <= oldsize)
1273 while ((newsize & (1 + ~newsize)) != newsize) {
1274 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1276 if (newsize < newmax)
1278 if (newsize < newmax)
1279 return; /* overflow detection */
1281 a = (char *) HvARRAY(hv);
1284 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1285 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1286 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1292 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1295 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1296 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1301 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1303 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1305 Safefree(HvARRAY(hv));
1308 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1311 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1313 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1314 HvARRAY(hv) = (HE **) a;
1315 if (!xhv->xhv_keys /* !HvTOTALKEYS(hv) */) /* skip rest if no entries */
1319 for (i=0; i<oldsize; i++,aep++) {
1323 if (!entry) /* non-existent */
1326 register I32 j = (HeHASH(entry) & newsize);
1330 *oentry = HeNEXT(entry);
1331 HeNEXT(entry) = aep[j];
1335 oentry = &HeNEXT(entry);
1342 Perl_newHVhv(pTHX_ HV *ohv)
1345 HV * const hv = newHV();
1348 if (!ohv || !HvTOTALKEYS(ohv))
1350 hv_max = HvMAX(ohv);
1352 if (!SvMAGICAL((const SV *)ohv)) {
1353 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1355 const bool shared = !!HvSHAREKEYS(ohv);
1356 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1358 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1361 /* In each bucket... */
1362 for (i = 0; i <= hv_max; i++) {
1364 HE *oent = oents[i];
1371 /* Copy the linked list of entries. */
1372 for (; oent; oent = HeNEXT(oent)) {
1373 const U32 hash = HeHASH(oent);
1374 const char * const key = HeKEY(oent);
1375 const STRLEN len = HeKLEN(oent);
1376 const int flags = HeKFLAGS(oent);
1377 HE * const ent = new_HE();
1378 SV *const val = HeVAL(oent);
1380 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1382 = shared ? share_hek_flags(key, len, hash, flags)
1383 : save_hek_flags(key, len, hash, flags);
1394 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1398 /* Iterate over ohv, copying keys and values one at a time. */
1400 const I32 riter = HvRITER_get(ohv);
1401 HE * const eiter = HvEITER_get(ohv);
1402 STRLEN hv_fill = HvFILL(ohv);
1404 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1405 while (hv_max && hv_max + 1 >= hv_fill * 2)
1406 hv_max = hv_max / 2;
1410 while ((entry = hv_iternext_flags(ohv, 0))) {
1411 SV *const val = HeVAL(entry);
1412 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1413 SvIMMORTAL(val) ? val : newSVsv(val),
1414 HeHASH(entry), HeKFLAGS(entry));
1416 HvRITER_set(ohv, riter);
1417 HvEITER_set(ohv, eiter);
1424 =for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1426 A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1427 a pointer to a hash (which may have C<%^H> magic, but should be generally
1428 non-magical), or C<NULL> (interpreted as an empty hash). The content
1429 of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1430 added to it. A pointer to the new hash is returned.
1436 Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1438 HV * const hv = newHV();
1440 if (ohv && HvTOTALKEYS(ohv)) {
1441 STRLEN hv_max = HvMAX(ohv);
1442 STRLEN hv_fill = HvFILL(ohv);
1444 const I32 riter = HvRITER_get(ohv);
1445 HE * const eiter = HvEITER_get(ohv);
1447 while (hv_max && hv_max + 1 >= hv_fill * 2)
1448 hv_max = hv_max / 2;
1452 while ((entry = hv_iternext_flags(ohv, 0))) {
1453 SV *const sv = newSVsv(HeVAL(entry));
1454 SV *heksv = newSVhek(HeKEY_hek(entry));
1455 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1456 (char *)heksv, HEf_SVKEY);
1457 SvREFCNT_dec(heksv);
1458 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1459 sv, HeHASH(entry), HeKFLAGS(entry));
1461 HvRITER_set(ohv, riter);
1462 HvEITER_set(ohv, eiter);
1464 hv_magic(hv, NULL, PERL_MAGIC_hints);
1468 /* like hv_free_ent, but returns the SV rather than freeing it */
1470 S_hv_free_ent_ret(pTHX_ HV *hv, register HE *entry)
1475 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1480 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvENAME(hv))
1481 mro_method_changed_in(hv); /* deletion of method from stash */
1482 if (HeKLEN(entry) == HEf_SVKEY) {
1483 SvREFCNT_dec(HeKEY_sv(entry));
1484 Safefree(HeKEY_hek(entry));
1486 else if (HvSHAREKEYS(hv))
1487 unshare_hek(HeKEY_hek(entry));
1489 Safefree(HeKEY_hek(entry));
1496 Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1501 PERL_ARGS_ASSERT_HV_FREE_ENT;
1505 val = hv_free_ent_ret(hv, entry);
1511 Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1515 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1519 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1520 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1521 if (HeKLEN(entry) == HEf_SVKEY) {
1522 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1524 hv_free_ent(hv, entry);
1528 =for apidoc hv_clear
1530 Frees the all the elements of a hash, leaving it empty.
1531 The XS equivalent of %hash = (). See also L</hv_undef>.
1537 Perl_hv_clear(pTHX_ HV *hv)
1540 register XPVHV* xhv;
1544 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1546 xhv = (XPVHV*)SvANY(hv);
1548 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1549 /* restricted hash: convert all keys to placeholders */
1551 for (i = 0; i <= xhv->xhv_max; i++) {
1552 HE *entry = (HvARRAY(hv))[i];
1553 for (; entry; entry = HeNEXT(entry)) {
1554 /* not already placeholder */
1555 if (HeVAL(entry) != &PL_sv_placeholder) {
1556 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1557 SV* const keysv = hv_iterkeysv(entry);
1559 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1562 SvREFCNT_dec(HeVAL(entry));
1563 HeVAL(entry) = &PL_sv_placeholder;
1564 HvPLACEHOLDERS(hv)++;
1571 HvPLACEHOLDERS_set(hv, 0);
1574 mg_clear(MUTABLE_SV(hv));
1576 HvHASKFLAGS_off(hv);
1581 mro_isa_changed_in(hv);
1582 HvEITER_set(hv, NULL);
1587 =for apidoc hv_clear_placeholders
1589 Clears any placeholders from a hash. If a restricted hash has any of its keys
1590 marked as readonly and the key is subsequently deleted, the key is not actually
1591 deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1592 it so it will be ignored by future operations such as iterating over the hash,
1593 but will still allow the hash to have a value reassigned to the key at some
1594 future point. This function clears any such placeholder keys from the hash.
1595 See Hash::Util::lock_keys() for an example of its use.
1601 Perl_hv_clear_placeholders(pTHX_ HV *hv)
1604 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1606 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1609 clear_placeholders(hv, items);
1613 S_clear_placeholders(pTHX_ HV *hv, U32 items)
1618 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1625 /* Loop down the linked list heads */
1626 HE **oentry = &(HvARRAY(hv))[i];
1629 while ((entry = *oentry)) {
1630 if (HeVAL(entry) == &PL_sv_placeholder) {
1631 *oentry = HeNEXT(entry);
1632 if (entry == HvEITER_get(hv))
1635 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1636 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1637 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1638 hv_free_ent(hv, entry);
1643 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1644 if (HvUSEDKEYS(hv) == 0)
1645 HvHASKFLAGS_off(hv);
1646 HvPLACEHOLDERS_set(hv, 0);
1650 oentry = &HeNEXT(entry);
1654 /* You can't get here, hence assertion should always fail. */
1655 assert (items == 0);
1660 S_hfreeentries(pTHX_ HV *hv)
1665 PERL_ARGS_ASSERT_HFREEENTRIES;
1667 while ( ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))) ) {
1673 /* hfree_next_entry()
1674 * For use only by S_hfreeentries() and sv_clear().
1675 * Delete the next available HE from hv and return the associated SV.
1676 * Returns null on empty hash.
1677 * indexp is a pointer to the current index into HvARRAY. The index should
1678 * initially be set to 0. hfree_next_entry() may update it. */
1681 Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1683 struct xpvhv_aux *iter;
1687 STRLEN orig_index = *indexp;
1690 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1692 if (SvOOK(hv) && ((iter = HvAUX(hv)))
1693 && ((entry = iter->xhv_eiter)) )
1695 /* the iterator may get resurrected after each
1696 * destructor call, so check each time */
1697 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1699 hv_free_ent(hv, entry);
1700 /* warning: at this point HvARRAY may have been
1701 * re-allocated, HvMAX changed etc */
1703 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1704 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1707 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1710 array = HvARRAY(hv);
1712 while ( ! ((entry = array[*indexp])) ) {
1713 if ((*indexp)++ >= HvMAX(hv))
1715 assert(*indexp != orig_index);
1717 array[*indexp] = HeNEXT(entry);
1718 ((XPVHV*) SvANY(hv))->xhv_keys--;
1720 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1721 && HeVAL(entry) && isGV(HeVAL(entry))
1722 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1725 const char * const key = HePV(entry,klen);
1726 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1727 || (klen == 1 && key[0] == ':')) {
1729 NULL, GvHV(HeVAL(entry)),
1730 (GV *)HeVAL(entry), 0
1734 return hv_free_ent_ret(hv, entry);
1739 =for apidoc hv_undef
1741 Undefines the hash. The XS equivalent of undef(%hash).
1743 As well as freeing all the elements of the hash (like hv_clear()), this
1744 also frees any auxiliary data and storage associated with the hash.
1745 See also L</hv_clear>.
1751 Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1754 register XPVHV* xhv;
1759 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1760 xhv = (XPVHV*)SvANY(hv);
1762 /* The name must be deleted before the call to hfreeeeentries so that
1763 CVs are anonymised properly. But the effective name must be pre-
1764 served until after that call (and only deleted afterwards if the
1765 call originated from sv_clear). For stashes with one name that is
1766 both the canonical name and the effective name, hv_name_set has to
1767 allocate an array for storing the effective name. We can skip that
1768 during global destruction, as it does not matter where the CVs point
1769 if they will be freed anyway. */
1770 /* note that the code following prior to hfreeentries is duplicated
1771 * in sv_clear(), and changes here should be done there too */
1772 if (PL_phase != PERL_PHASE_DESTRUCT && (name = HvNAME(hv))) {
1774 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1775 hv_name_set(hv, NULL, 0, 0);
1779 struct xpvhv_aux * const aux = HvAUX(hv);
1780 struct mro_meta *meta;
1782 if ((name = HvENAME_get(hv))) {
1783 if (PL_phase != PERL_PHASE_DESTRUCT)
1784 mro_isa_changed_in(hv);
1787 PL_stashcache, name, HvENAMELEN_get(hv), G_DISCARD
1791 /* If this call originated from sv_clear, then we must check for
1792 * effective names that need freeing, as well as the usual name. */
1794 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1795 if (name && PL_stashcache)
1796 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1797 hv_name_set(hv, NULL, 0, flags);
1799 if((meta = aux->xhv_mro_meta)) {
1800 if (meta->mro_linear_all) {
1801 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1802 meta->mro_linear_all = NULL;
1803 /* This is just acting as a shortcut pointer. */
1804 meta->mro_linear_current = NULL;
1805 } else if (meta->mro_linear_current) {
1806 /* Only the current MRO is stored, so this owns the data.
1808 SvREFCNT_dec(meta->mro_linear_current);
1809 meta->mro_linear_current = NULL;
1811 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1812 SvREFCNT_dec(meta->isa);
1814 aux->xhv_mro_meta = NULL;
1816 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1817 SvFLAGS(hv) &= ~SVf_OOK;
1820 Safefree(HvARRAY(hv));
1821 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1824 HvPLACEHOLDERS_set(hv, 0);
1827 mg_clear(MUTABLE_SV(hv));
1833 Returns the number of hash buckets that happen to be in use. This function is
1834 wrapped by the macro C<HvFILL>.
1836 Previously this value was stored in the HV structure, rather than being
1837 calculated on demand.
1843 Perl_hv_fill(pTHX_ HV const *const hv)
1846 HE **ents = HvARRAY(hv);
1848 PERL_ARGS_ASSERT_HV_FILL;
1851 HE *const *const last = ents + HvMAX(hv);
1852 count = last + 1 - ents;
1857 } while (++ents <= last);
1862 static struct xpvhv_aux*
1863 S_hv_auxinit(HV *hv) {
1864 struct xpvhv_aux *iter;
1867 PERL_ARGS_ASSERT_HV_AUXINIT;
1870 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1871 + sizeof(struct xpvhv_aux), char);
1873 array = (char *) HvARRAY(hv);
1874 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1875 + sizeof(struct xpvhv_aux), char);
1877 HvARRAY(hv) = (HE**) array;
1878 /* SvOOK_on(hv) attacks the IV flags. */
1879 SvFLAGS(hv) |= SVf_OOK;
1882 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1883 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1884 iter->xhv_name_u.xhvnameu_name = 0;
1885 iter->xhv_name_count = 0;
1886 iter->xhv_backreferences = 0;
1887 iter->xhv_mro_meta = NULL;
1892 =for apidoc hv_iterinit
1894 Prepares a starting point to traverse a hash table. Returns the number of
1895 keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1896 currently only meaningful for hashes without tie magic.
1898 NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1899 hash buckets that happen to be in use. If you still need that esoteric
1900 value, you can get it through the macro C<HvFILL(hv)>.
1907 Perl_hv_iterinit(pTHX_ HV *hv)
1909 PERL_ARGS_ASSERT_HV_ITERINIT;
1911 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1914 Perl_croak(aTHX_ "Bad hash");
1917 struct xpvhv_aux * const iter = HvAUX(hv);
1918 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1919 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1921 hv_free_ent(hv, entry);
1923 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1924 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1929 /* used to be xhv->xhv_fill before 5.004_65 */
1930 return HvTOTALKEYS(hv);
1934 Perl_hv_riter_p(pTHX_ HV *hv) {
1935 struct xpvhv_aux *iter;
1937 PERL_ARGS_ASSERT_HV_RITER_P;
1940 Perl_croak(aTHX_ "Bad hash");
1942 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1943 return &(iter->xhv_riter);
1947 Perl_hv_eiter_p(pTHX_ HV *hv) {
1948 struct xpvhv_aux *iter;
1950 PERL_ARGS_ASSERT_HV_EITER_P;
1953 Perl_croak(aTHX_ "Bad hash");
1955 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1956 return &(iter->xhv_eiter);
1960 Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1961 struct xpvhv_aux *iter;
1963 PERL_ARGS_ASSERT_HV_RITER_SET;
1966 Perl_croak(aTHX_ "Bad hash");
1974 iter = hv_auxinit(hv);
1976 iter->xhv_riter = riter;
1980 Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1981 struct xpvhv_aux *iter;
1983 PERL_ARGS_ASSERT_HV_EITER_SET;
1986 Perl_croak(aTHX_ "Bad hash");
1991 /* 0 is the default so don't go malloc()ing a new structure just to
1996 iter = hv_auxinit(hv);
1998 iter->xhv_eiter = eiter;
2002 Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2005 struct xpvhv_aux *iter;
2009 PERL_ARGS_ASSERT_HV_NAME_SET;
2010 PERL_UNUSED_ARG(flags);
2013 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2017 if (iter->xhv_name_u.xhvnameu_name) {
2018 if(iter->xhv_name_count) {
2019 if(flags & HV_NAME_SETALL) {
2020 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2021 HEK **hekp = name + (
2022 iter->xhv_name_count < 0
2023 ? -iter->xhv_name_count
2024 : iter->xhv_name_count
2026 while(hekp-- > name+1)
2027 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2028 /* The first elem may be null. */
2029 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2031 spot = &iter->xhv_name_u.xhvnameu_name;
2032 iter->xhv_name_count = 0;
2035 if(iter->xhv_name_count > 0) {
2036 /* shift some things over */
2038 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2040 spot = iter->xhv_name_u.xhvnameu_names;
2041 spot[iter->xhv_name_count] = spot[1];
2043 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2045 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2046 unshare_hek_or_pvn(*spot, 0, 0, 0);
2050 else if (flags & HV_NAME_SETALL) {
2051 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2052 spot = &iter->xhv_name_u.xhvnameu_name;
2055 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2056 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2057 iter->xhv_name_count = -2;
2058 spot = iter->xhv_name_u.xhvnameu_names;
2059 spot[1] = existing_name;
2062 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2067 iter = hv_auxinit(hv);
2068 spot = &iter->xhv_name_u.xhvnameu_name;
2070 PERL_HASH(hash, name, len);
2071 *spot = name ? share_hek(name, len, hash) : NULL;
2075 =for apidoc hv_ename_add
2077 Adds a name to a stash's internal list of effective names. See
2080 This is called when a stash is assigned to a new location in the symbol
2087 Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2090 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2093 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2094 PERL_UNUSED_ARG(flags);
2097 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2099 PERL_HASH(hash, name, len);
2101 if (aux->xhv_name_count) {
2102 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2103 I32 count = aux->xhv_name_count;
2104 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2105 while (hekp-- > xhv_name)
2107 HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len)
2109 if (hekp == xhv_name && count < 0)
2110 aux->xhv_name_count = -count;
2113 if (count < 0) aux->xhv_name_count--, count = -count;
2114 else aux->xhv_name_count++;
2115 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2116 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, len, hash);
2119 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2121 existing_name && HEK_LEN(existing_name) == (I32)len
2122 && memEQ(HEK_KEY(existing_name), name, len)
2124 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2125 aux->xhv_name_count = existing_name ? 2 : -2;
2126 *aux->xhv_name_u.xhvnameu_names = existing_name;
2127 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, len, hash);
2132 =for apidoc hv_ename_delete
2134 Removes a name from a stash's internal list of effective names. If this is
2135 the name returned by C<HvENAME>, then another name in the list will take
2136 its place (C<HvENAME> will use it).
2138 This is called when a stash is deleted from the symbol table.
2144 Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2147 struct xpvhv_aux *aux;
2149 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2150 PERL_UNUSED_ARG(flags);
2153 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2155 if (!SvOOK(hv)) return;
2158 if (!aux->xhv_name_u.xhvnameu_name) return;
2160 if (aux->xhv_name_count) {
2161 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2162 I32 const count = aux->xhv_name_count;
2163 HEK **victim = namep + (count < 0 ? -count : count);
2164 while (victim-- > namep + 1)
2166 HEK_LEN(*victim) == (I32)len
2167 && memEQ(HEK_KEY(*victim), name, len)
2169 unshare_hek_or_pvn(*victim, 0, 0, 0);
2170 if (count < 0) ++aux->xhv_name_count;
2171 else --aux->xhv_name_count;
2173 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2175 ) { /* if there are none left */
2177 aux->xhv_name_u.xhvnameu_names = NULL;
2178 aux->xhv_name_count = 0;
2181 /* Move the last one back to fill the empty slot. It
2182 does not matter what order they are in. */
2183 *victim = *(namep + (count < 0 ? -count : count) - 1);
2188 count > 0 && HEK_LEN(*namep) == (I32)len
2189 && memEQ(HEK_KEY(*namep),name,len)
2191 aux->xhv_name_count = -count;
2195 HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len
2196 && memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len)
2198 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2199 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2200 *aux->xhv_name_u.xhvnameu_names = namehek;
2201 aux->xhv_name_count = -1;
2206 Perl_hv_backreferences_p(pTHX_ HV *hv) {
2207 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2209 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2210 PERL_UNUSED_CONTEXT;
2212 return &(iter->xhv_backreferences);
2216 Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2219 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2224 av = HvAUX(hv)->xhv_backreferences;
2227 HvAUX(hv)->xhv_backreferences = 0;
2228 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2229 if (SvTYPE(av) == SVt_PVAV)
2235 hv_iternext is implemented as a macro in hv.h
2237 =for apidoc hv_iternext
2239 Returns entries from a hash iterator. See C<hv_iterinit>.
2241 You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2242 iterator currently points to, without losing your place or invalidating your
2243 iterator. Note that in this case the current entry is deleted from the hash
2244 with your iterator holding the last reference to it. Your iterator is flagged
2245 to free the entry on the next call to C<hv_iternext>, so you must not discard
2246 your iterator immediately else the entry will leak - call C<hv_iternext> to
2247 trigger the resource deallocation.
2249 =for apidoc hv_iternext_flags
2251 Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2252 The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2253 set the placeholders keys (for restricted hashes) will be returned in addition
2254 to normal keys. By default placeholders are automatically skipped over.
2255 Currently a placeholder is implemented with a value that is
2256 C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2257 restricted hashes may change, and the implementation currently is
2258 insufficiently abstracted for any change to be tidy.
2264 Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2267 register XPVHV* xhv;
2271 struct xpvhv_aux *iter;
2273 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2276 Perl_croak(aTHX_ "Bad hash");
2278 xhv = (XPVHV*)SvANY(hv);
2281 /* Too many things (well, pp_each at least) merrily assume that you can
2282 call iv_iternext without calling hv_iterinit, so we'll have to deal
2288 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2289 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2290 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2291 SV * const key = sv_newmortal();
2293 sv_setsv(key, HeSVKEY_force(entry));
2294 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2300 /* one HE per MAGICAL hash */
2301 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2303 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2305 HeKEY_hek(entry) = hek;
2306 HeKLEN(entry) = HEf_SVKEY;
2308 magic_nextpack(MUTABLE_SV(hv),mg,key);
2310 /* force key to stay around until next time */
2311 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2312 return entry; /* beware, hent_val is not set */
2314 SvREFCNT_dec(HeVAL(entry));
2315 Safefree(HeKEY_hek(entry));
2317 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2321 #if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2322 if (!entry && SvRMAGICAL((const SV *)hv)
2323 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2326 /* The prime_env_iter() on VMS just loaded up new hash values
2327 * so the iteration count needs to be reset back to the beginning
2331 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2336 /* hv_iterint now ensures this. */
2337 assert (HvARRAY(hv));
2339 /* At start of hash, entry is NULL. */
2342 entry = HeNEXT(entry);
2343 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2345 * Skip past any placeholders -- don't want to include them in
2348 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2349 entry = HeNEXT(entry);
2354 /* Skip the entire loop if the hash is empty. */
2355 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2356 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2358 /* OK. Come to the end of the current list. Grab the next one. */
2360 iter->xhv_riter++; /* HvRITER(hv)++ */
2361 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2362 /* There is no next one. End of the hash. */
2363 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2366 entry = (HvARRAY(hv))[iter->xhv_riter];
2368 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2369 /* If we have an entry, but it's a placeholder, don't count it.
2371 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2372 entry = HeNEXT(entry);
2374 /* Will loop again if this linked list starts NULL
2375 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2376 or if we run through it and find only placeholders. */
2380 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2382 hv_free_ent(hv, oldentry);
2385 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2386 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2388 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2393 =for apidoc hv_iterkey
2395 Returns the key from the current position of the hash iterator. See
2402 Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2404 PERL_ARGS_ASSERT_HV_ITERKEY;
2406 if (HeKLEN(entry) == HEf_SVKEY) {
2408 char * const p = SvPV(HeKEY_sv(entry), len);
2413 *retlen = HeKLEN(entry);
2414 return HeKEY(entry);
2418 /* unlike hv_iterval(), this always returns a mortal copy of the key */
2420 =for apidoc hv_iterkeysv
2422 Returns the key as an C<SV*> from the current position of the hash
2423 iterator. The return value will always be a mortal copy of the key. Also
2430 Perl_hv_iterkeysv(pTHX_ register HE *entry)
2432 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2434 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2438 =for apidoc hv_iterval
2440 Returns the value from the current position of the hash iterator. See
2447 Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2449 PERL_ARGS_ASSERT_HV_ITERVAL;
2451 if (SvRMAGICAL(hv)) {
2452 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2453 SV* const sv = sv_newmortal();
2454 if (HeKLEN(entry) == HEf_SVKEY)
2455 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2457 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2461 return HeVAL(entry);
2465 =for apidoc hv_iternextsv
2467 Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2474 Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2476 HE * const he = hv_iternext_flags(hv, 0);
2478 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2482 *key = hv_iterkey(he, retlen);
2483 return hv_iterval(hv, he);
2490 =for apidoc hv_magic
2492 Adds magic to a hash. See C<sv_magic>.
2497 /* possibly free a shared string if no one has access to it
2498 * len and hash must both be valid for str.
2501 Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2503 unshare_hek_or_pvn (NULL, str, len, hash);
2508 Perl_unshare_hek(pTHX_ HEK *hek)
2511 unshare_hek_or_pvn(hek, NULL, 0, 0);
2514 /* possibly free a shared string if no one has access to it
2515 hek if non-NULL takes priority over the other 3, else str, len and hash
2516 are used. If so, len and hash must both be valid for str.
2519 S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2522 register XPVHV* xhv;
2524 register HE **oentry;
2525 bool is_utf8 = FALSE;
2527 const char * const save = str;
2528 struct shared_he *he = NULL;
2531 /* Find the shared he which is just before us in memory. */
2532 he = (struct shared_he *)(((char *)hek)
2533 - STRUCT_OFFSET(struct shared_he,
2536 /* Assert that the caller passed us a genuine (or at least consistent)
2538 assert (he->shared_he_he.hent_hek == hek);
2540 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2541 --he->shared_he_he.he_valu.hent_refcount;
2545 hash = HEK_HASH(hek);
2546 } else if (len < 0) {
2547 STRLEN tmplen = -len;
2549 /* See the note in hv_fetch(). --jhi */
2550 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2553 k_flags = HVhek_UTF8;
2555 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2558 /* what follows was the moral equivalent of:
2559 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2561 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2563 xhv = (XPVHV*)SvANY(PL_strtab);
2564 /* assert(xhv_array != 0) */
2565 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2567 const HE *const he_he = &(he->shared_he_he);
2568 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2573 const int flags_masked = k_flags & HVhek_MASK;
2574 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2575 if (HeHASH(entry) != hash) /* strings can't be equal */
2577 if (HeKLEN(entry) != len)
2579 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2581 if (HeKFLAGS(entry) != flags_masked)
2588 if (--entry->he_valu.hent_refcount == 0) {
2589 *oentry = HeNEXT(entry);
2591 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2596 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2597 "Attempt to free non-existent shared string '%s'%s"
2599 hek ? HEK_KEY(hek) : str,
2600 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2601 if (k_flags & HVhek_FREEKEY)
2605 /* get a (constant) string ptr from the global string table
2606 * string will get added if it is not already there.
2607 * len and hash must both be valid for str.
2610 Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2612 bool is_utf8 = FALSE;
2614 const char * const save = str;
2616 PERL_ARGS_ASSERT_SHARE_HEK;
2619 STRLEN tmplen = -len;
2621 /* See the note in hv_fetch(). --jhi */
2622 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2624 /* If we were able to downgrade here, then than means that we were passed
2625 in a key which only had chars 0-255, but was utf8 encoded. */
2628 /* If we found we were able to downgrade the string to bytes, then
2629 we should flag that it needs upgrading on keys or each. Also flag
2630 that we need share_hek_flags to free the string. */
2632 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2635 return share_hek_flags (str, len, hash, flags);
2639 S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2643 const int flags_masked = flags & HVhek_MASK;
2644 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2645 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2647 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2649 /* what follows is the moral equivalent of:
2651 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2652 hv_store(PL_strtab, str, len, NULL, hash);
2654 Can't rehash the shared string table, so not sure if it's worth
2655 counting the number of entries in the linked list
2658 /* assert(xhv_array != 0) */
2659 entry = (HvARRAY(PL_strtab))[hindex];
2660 for (;entry; entry = HeNEXT(entry)) {
2661 if (HeHASH(entry) != hash) /* strings can't be equal */
2663 if (HeKLEN(entry) != len)
2665 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2667 if (HeKFLAGS(entry) != flags_masked)
2673 /* What used to be head of the list.
2674 If this is NULL, then we're the first entry for this slot, which
2675 means we need to increate fill. */
2676 struct shared_he *new_entry;
2679 HE **const head = &HvARRAY(PL_strtab)[hindex];
2680 HE *const next = *head;
2682 /* We don't actually store a HE from the arena and a regular HEK.
2683 Instead we allocate one chunk of memory big enough for both,
2684 and put the HEK straight after the HE. This way we can find the
2685 HEK directly from the HE.
2688 Newx(k, STRUCT_OFFSET(struct shared_he,
2689 shared_he_hek.hek_key[0]) + len + 2, char);
2690 new_entry = (struct shared_he *)k;
2691 entry = &(new_entry->shared_he_he);
2692 hek = &(new_entry->shared_he_hek);
2694 Copy(str, HEK_KEY(hek), len, char);
2695 HEK_KEY(hek)[len] = 0;
2697 HEK_HASH(hek) = hash;
2698 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2700 /* Still "point" to the HEK, so that other code need not know what
2702 HeKEY_hek(entry) = hek;
2703 entry->he_valu.hent_refcount = 0;
2704 HeNEXT(entry) = next;
2707 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2708 if (!next) { /* initial entry? */
2709 } else if (xhv->xhv_keys > xhv->xhv_max /* HvUSEDKEYS(hv) > HvMAX(hv) */) {
2714 ++entry->he_valu.hent_refcount;
2716 if (flags & HVhek_FREEKEY)
2719 return HeKEY_hek(entry);
2723 Perl_hv_placeholders_p(pTHX_ HV *hv)
2726 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2728 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2731 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2734 Perl_die(aTHX_ "panic: hv_placeholders_p");
2737 return &(mg->mg_len);
2742 Perl_hv_placeholders_get(pTHX_ const HV *hv)
2745 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2747 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2749 return mg ? mg->mg_len : 0;
2753 Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2756 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2758 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2763 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2764 Perl_die(aTHX_ "panic: hv_placeholders_set");
2766 /* else we don't need to add magic to record 0 placeholders. */
2770 S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2775 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2777 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2782 value = &PL_sv_placeholder;
2785 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2788 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2791 case HVrhek_PV_UTF8:
2792 /* Create a string SV that directly points to the bytes in our
2794 value = newSV_type(SVt_PV);
2795 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2796 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2797 /* This stops anything trying to free it */
2798 SvLEN_set(value, 0);
2800 SvREADONLY_on(value);
2801 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2805 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2806 (UV)he->refcounted_he_data[0]);
2812 =for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2814 Generates and returns a C<HV *> representing the content of a
2815 C<refcounted_he> chain.
2816 I<flags> is currently unused and must be zero.
2821 Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2825 U32 placeholders, max;
2828 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
2831 /* We could chase the chain once to get an idea of the number of keys,
2832 and call ksplit. But for now we'll make a potentially inefficient
2833 hash with only 8 entries in its array. */
2838 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2839 HvARRAY(hv) = (HE**)array;
2845 U32 hash = chain->refcounted_he_hash;
2847 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2849 HE **oentry = &((HvARRAY(hv))[hash & max]);
2850 HE *entry = *oentry;
2853 for (; entry; entry = HeNEXT(entry)) {
2854 if (HeHASH(entry) == hash) {
2855 /* We might have a duplicate key here. If so, entry is older
2856 than the key we've already put in the hash, so if they are
2857 the same, skip adding entry. */
2859 const STRLEN klen = HeKLEN(entry);
2860 const char *const key = HeKEY(entry);
2861 if (klen == chain->refcounted_he_keylen
2862 && (!!HeKUTF8(entry)
2863 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2864 && memEQ(key, REF_HE_KEY(chain), klen))
2867 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2869 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2870 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2871 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2882 = share_hek_flags(REF_HE_KEY(chain),
2883 chain->refcounted_he_keylen,
2884 chain->refcounted_he_hash,
2885 (chain->refcounted_he_data[0]
2886 & (HVhek_UTF8|HVhek_WASUTF8)));
2888 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2890 value = refcounted_he_value(chain);
2891 if (value == &PL_sv_placeholder)
2893 HeVAL(entry) = value;
2895 /* Link it into the chain. */
2896 HeNEXT(entry) = *oentry;
2902 chain = chain->refcounted_he_next;
2906 clear_placeholders(hv, placeholders);
2907 HvTOTALKEYS(hv) -= placeholders;
2910 /* We could check in the loop to see if we encounter any keys with key
2911 flags, but it's probably not worth it, as this per-hash flag is only
2912 really meant as an optimisation for things like Storable. */
2914 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2920 =for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
2922 Search along a C<refcounted_he> chain for an entry with the key specified
2923 by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
2924 bit set, the key octets are interpreted as UTF-8, otherwise they
2925 are interpreted as Latin-1. I<hash> is a precomputed hash of the key
2926 string, or zero if it has not been precomputed. Returns a mortal scalar
2927 representing the value associated with the key, or C<&PL_sv_placeholder>
2928 if there is no value associated with the key.
2934 Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
2935 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
2939 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
2941 if (flags & ~REFCOUNTED_HE_KEY_UTF8)
2942 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
2945 return &PL_sv_placeholder;
2946 if (flags & REFCOUNTED_HE_KEY_UTF8) {
2947 /* For searching purposes, canonicalise to Latin-1 where possible. */
2948 const char *keyend = keypv + keylen, *p;
2949 STRLEN nonascii_count = 0;
2950 for (p = keypv; p != keyend; p++) {
2953 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
2954 (((U8)*p) & 0xc0) == 0x80))
2955 goto canonicalised_key;
2959 if (nonascii_count) {
2961 const char *p = keypv, *keyend = keypv + keylen;
2962 keylen -= nonascii_count;
2963 Newx(q, keylen, char);
2966 for (; p != keyend; p++, q++) {
2969 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
2972 flags &= ~REFCOUNTED_HE_KEY_UTF8;
2973 canonicalised_key: ;
2975 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
2977 PERL_HASH(hash, keypv, keylen);
2979 for (; chain; chain = chain->refcounted_he_next) {
2982 hash == chain->refcounted_he_hash &&
2983 keylen == chain->refcounted_he_keylen &&
2984 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
2985 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
2987 hash == HEK_HASH(chain->refcounted_he_hek) &&
2988 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
2989 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
2990 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
2993 return sv_2mortal(refcounted_he_value(chain));
2995 return &PL_sv_placeholder;
2999 =for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3001 Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3002 instead of a string/length pair.
3008 Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3009 const char *key, U32 hash, U32 flags)
3011 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3012 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3016 =for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3018 Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3025 Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3026 SV *key, U32 hash, U32 flags)
3030 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3031 if (flags & REFCOUNTED_HE_KEY_UTF8)
3032 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3034 keypv = SvPV_const(key, keylen);
3036 flags |= REFCOUNTED_HE_KEY_UTF8;
3037 if (!hash && SvIsCOW_shared_hash(key))
3038 hash = SvSHARED_HASH(key);
3039 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3043 =for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3045 Creates a new C<refcounted_he>. This consists of a single key/value
3046 pair and a reference to an existing C<refcounted_he> chain (which may
3047 be empty), and thus forms a longer chain. When using the longer chain,
3048 the new key/value pair takes precedence over any entry for the same key
3049 further along the chain.
3051 The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3052 the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3053 as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3054 a precomputed hash of the key string, or zero if it has not been
3057 I<value> is the scalar value to store for this key. I<value> is copied
3058 by this function, which thus does not take ownership of any reference
3059 to it, and later changes to the scalar will not be reflected in the
3060 value visible in the C<refcounted_he>. Complex types of scalar will not
3061 be stored with referential integrity, but will be coerced to strings.
3062 I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3063 value is to be associated with the key; this, as with any non-null value,
3064 takes precedence over the existence of a value for the key further along
3067 I<parent> points to the rest of the C<refcounted_he> chain to be
3068 attached to the new C<refcounted_he>. This function takes ownership
3069 of one reference to I<parent>, and returns one reference to the new
3075 struct refcounted_he *
3076 Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3077 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3080 STRLEN value_len = 0;
3081 const char *value_p = NULL;
3085 STRLEN key_offset = 1;
3086 struct refcounted_he *he;
3087 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3089 if (!value || value == &PL_sv_placeholder) {
3090 value_type = HVrhek_delete;
3091 } else if (SvPOK(value)) {
3092 value_type = HVrhek_PV;
3093 } else if (SvIOK(value)) {
3094 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3095 } else if (!SvOK(value)) {
3096 value_type = HVrhek_undef;
3098 value_type = HVrhek_PV;
3100 is_pv = value_type == HVrhek_PV;
3102 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3103 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3104 value_p = SvPV_const(value, value_len);
3106 value_type = HVrhek_PV_UTF8;
3107 key_offset = value_len + 2;
3109 hekflags = value_type;
3111 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3112 /* Canonicalise to Latin-1 where possible. */
3113 const char *keyend = keypv + keylen, *p;
3114 STRLEN nonascii_count = 0;
3115 for (p = keypv; p != keyend; p++) {
3118 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3119 (((U8)*p) & 0xc0) == 0x80))
3120 goto canonicalised_key;
3124 if (nonascii_count) {
3126 const char *p = keypv, *keyend = keypv + keylen;
3127 keylen -= nonascii_count;
3128 Newx(q, keylen, char);
3131 for (; p != keyend; p++, q++) {
3134 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3137 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3138 canonicalised_key: ;
3140 if (flags & REFCOUNTED_HE_KEY_UTF8)
3141 hekflags |= HVhek_UTF8;
3143 PERL_HASH(hash, keypv, keylen);
3146 he = (struct refcounted_he*)
3147 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3151 he = (struct refcounted_he*)
3152 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3156 he->refcounted_he_next = parent;
3159 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3160 he->refcounted_he_val.refcounted_he_u_len = value_len;
3161 } else if (value_type == HVrhek_IV) {
3162 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3163 } else if (value_type == HVrhek_UV) {
3164 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3168 he->refcounted_he_hash = hash;
3169 he->refcounted_he_keylen = keylen;
3170 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3172 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3175 he->refcounted_he_data[0] = hekflags;
3176 he->refcounted_he_refcnt = 1;
3182 =for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3184 Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3185 of a string/length pair.
3190 struct refcounted_he *
3191 Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3192 const char *key, U32 hash, SV *value, U32 flags)
3194 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3195 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3199 =for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3201 Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3207 struct refcounted_he *
3208 Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3209 SV *key, U32 hash, SV *value, U32 flags)
3213 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3214 if (flags & REFCOUNTED_HE_KEY_UTF8)
3215 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3217 keypv = SvPV_const(key, keylen);
3219 flags |= REFCOUNTED_HE_KEY_UTF8;
3220 if (!hash && SvIsCOW_shared_hash(key))
3221 hash = SvSHARED_HASH(key);
3222 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3226 =for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3228 Decrements the reference count of a C<refcounted_he> by one. If the
3229 reference count reaches zero the structure's memory is freed, which
3230 (recursively) causes a reduction of its parent C<refcounted_he>'s
3231 reference count. It is safe to pass a null pointer to this function:
3232 no action occurs in this case.
3238 Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3240 PERL_UNUSED_CONTEXT;
3243 struct refcounted_he *copy;
3247 new_count = --he->refcounted_he_refcnt;
3248 HINTS_REFCNT_UNLOCK;
3254 #ifndef USE_ITHREADS
3255 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3258 he = he->refcounted_he_next;
3259 PerlMemShared_free(copy);
3264 =for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3266 Increment the reference count of a C<refcounted_he>. The pointer to the
3267 C<refcounted_he> is also returned. It is safe to pass a null pointer
3268 to this function: no action occurs and a null pointer is returned.
3273 struct refcounted_he *
3274 Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3279 he->refcounted_he_refcnt++;
3280 HINTS_REFCNT_UNLOCK;
3285 /* pp_entereval is aware that labels are stored with a key ':' at the top of
3288 Perl_fetch_cop_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3289 struct refcounted_he *const chain = cop->cop_hints_hash;
3291 PERL_ARGS_ASSERT_FETCH_COP_LABEL;
3296 if (chain->refcounted_he_keylen != 1)
3298 if (*REF_HE_KEY(chain) != ':')
3301 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3303 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3306 /* Stop anyone trying to really mess us up by adding their own value for
3308 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3309 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3313 *len = chain->refcounted_he_val.refcounted_he_u_len;
3315 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3316 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3318 return chain->refcounted_he_data + 1;
3322 Perl_store_cop_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3326 PERL_ARGS_ASSERT_STORE_COP_LABEL;
3328 if (flags & ~(SVf_UTF8))
3329 Perl_croak(aTHX_ "panic: store_cop_label illegal flag bits 0x%" UVxf,
3331 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3332 if (flags & SVf_UTF8)
3335 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3339 =for apidoc hv_assert
3341 Check that a hash is in an internally consistent state.
3349 Perl_hv_assert(pTHX_ HV *hv)
3354 int placeholders = 0;
3357 const I32 riter = HvRITER_get(hv);
3358 HE *eiter = HvEITER_get(hv);
3360 PERL_ARGS_ASSERT_HV_ASSERT;
3362 (void)hv_iterinit(hv);
3364 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3365 /* sanity check the values */
3366 if (HeVAL(entry) == &PL_sv_placeholder)
3370 /* sanity check the keys */
3371 if (HeSVKEY(entry)) {
3372 NOOP; /* Don't know what to check on SV keys. */
3373 } else if (HeKUTF8(entry)) {
3375 if (HeKWASUTF8(entry)) {
3376 PerlIO_printf(Perl_debug_log,
3377 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3378 (int) HeKLEN(entry), HeKEY(entry));
3381 } else if (HeKWASUTF8(entry))
3384 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3385 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3386 const int nhashkeys = HvUSEDKEYS(hv);
3387 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3389 if (nhashkeys != real) {
3390 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3393 if (nhashplaceholders != placeholders) {
3394 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3398 if (withflags && ! HvHASKFLAGS(hv)) {
3399 PerlIO_printf(Perl_debug_log,
3400 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3405 sv_dump(MUTABLE_SV(hv));
3407 HvRITER_set(hv, riter); /* Restore hash iterator state */
3408 HvEITER_set(hv, eiter);
3415 * c-indentation-style: bsd
3417 * indent-tabs-mode: t
3420 * ex: set ts=8 sts=4 sw=4 noet: