3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifdef PERL_NEW_COPY_ON_WRITE
52 # ifndef SV_COW_THRESHOLD
53 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
55 # ifndef SV_COWBUF_THRESHOLD
56 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
58 # ifndef SV_COW_MAX_WASTE_THRESHOLD
59 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
61 # ifndef SV_COWBUF_WASTE_THRESHOLD
62 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
64 # ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
65 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
67 # ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
68 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
71 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
74 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
76 # define GE_COW_THRESHOLD(cur) 1
78 #if SV_COWBUF_THRESHOLD
79 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
81 # define GE_COWBUF_THRESHOLD(cur) 1
83 #if SV_COW_MAX_WASTE_THRESHOLD
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
86 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
88 #if SV_COWBUF_WASTE_THRESHOLD
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
91 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
93 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
96 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
98 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
101 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
104 #define CHECK_COW_THRESHOLD(cur,len) (\
105 GE_COW_THRESHOLD((cur)) && \
106 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
107 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
109 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
110 GE_COWBUF_THRESHOLD((cur)) && \
111 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
112 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
115 #ifdef PERL_UTF8_CACHE_ASSERT
116 /* if adding more checks watch out for the following tests:
117 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
118 * lib/utf8.t lib/Unicode/Collate/t/index.t
121 # define ASSERT_UTF8_CACHE(cache) \
122 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
123 assert((cache)[2] <= (cache)[3]); \
124 assert((cache)[3] <= (cache)[1]);} \
127 # define ASSERT_UTF8_CACHE(cache) NOOP
130 #ifdef PERL_OLD_COPY_ON_WRITE
131 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
132 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
135 /* ============================================================================
137 =head1 Allocation and deallocation of SVs.
138 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
139 sv, av, hv...) contains type and reference count information, and for
140 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
141 contains fields specific to each type. Some types store all they need
142 in the head, so don't have a body.
144 In all but the most memory-paranoid configurations (ex: PURIFY), heads
145 and bodies are allocated out of arenas, which by default are
146 approximately 4K chunks of memory parcelled up into N heads or bodies.
147 Sv-bodies are allocated by their sv-type, guaranteeing size
148 consistency needed to allocate safely from arrays.
150 For SV-heads, the first slot in each arena is reserved, and holds a
151 link to the next arena, some flags, and a note of the number of slots.
152 Snaked through each arena chain is a linked list of free items; when
153 this becomes empty, an extra arena is allocated and divided up into N
154 items which are threaded into the free list.
156 SV-bodies are similar, but they use arena-sets by default, which
157 separate the link and info from the arena itself, and reclaim the 1st
158 slot in the arena. SV-bodies are further described later.
160 The following global variables are associated with arenas:
162 PL_sv_arenaroot pointer to list of SV arenas
163 PL_sv_root pointer to list of free SV structures
165 PL_body_arenas head of linked-list of body arenas
166 PL_body_roots[] array of pointers to list of free bodies of svtype
167 arrays are indexed by the svtype needed
169 A few special SV heads are not allocated from an arena, but are
170 instead directly created in the interpreter structure, eg PL_sv_undef.
171 The size of arenas can be changed from the default by setting
172 PERL_ARENA_SIZE appropriately at compile time.
174 The SV arena serves the secondary purpose of allowing still-live SVs
175 to be located and destroyed during final cleanup.
177 At the lowest level, the macros new_SV() and del_SV() grab and free
178 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
179 to return the SV to the free list with error checking.) new_SV() calls
180 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
181 SVs in the free list have their SvTYPE field set to all ones.
183 At the time of very final cleanup, sv_free_arenas() is called from
184 perl_destruct() to physically free all the arenas allocated since the
185 start of the interpreter.
187 The function visit() scans the SV arenas list, and calls a specified
188 function for each SV it finds which is still live - ie which has an SvTYPE
189 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
190 following functions (specified as [function that calls visit()] / [function
191 called by visit() for each SV]):
193 sv_report_used() / do_report_used()
194 dump all remaining SVs (debugging aid)
196 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
197 do_clean_named_io_objs(),do_curse()
198 Attempt to free all objects pointed to by RVs,
199 try to do the same for all objects indir-
200 ectly referenced by typeglobs too, and
201 then do a final sweep, cursing any
202 objects that remain. Called once from
203 perl_destruct(), prior to calling sv_clean_all()
206 sv_clean_all() / do_clean_all()
207 SvREFCNT_dec(sv) each remaining SV, possibly
208 triggering an sv_free(). It also sets the
209 SVf_BREAK flag on the SV to indicate that the
210 refcnt has been artificially lowered, and thus
211 stopping sv_free() from giving spurious warnings
212 about SVs which unexpectedly have a refcnt
213 of zero. called repeatedly from perl_destruct()
214 until there are no SVs left.
216 =head2 Arena allocator API Summary
218 Private API to rest of sv.c
222 new_XPVNV(), del_XPVGV(),
227 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
231 * ========================================================================= */
234 * "A time to plant, and a time to uproot what was planted..."
238 # define MEM_LOG_NEW_SV(sv, file, line, func) \
239 Perl_mem_log_new_sv(sv, file, line, func)
240 # define MEM_LOG_DEL_SV(sv, file, line, func) \
241 Perl_mem_log_del_sv(sv, file, line, func)
243 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
244 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
247 #ifdef DEBUG_LEAKING_SCALARS
248 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
249 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
251 # define DEBUG_SV_SERIAL(sv) \
252 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
253 PTR2UV(sv), (long)(sv)->sv_debug_serial))
255 # define FREE_SV_DEBUG_FILE(sv)
256 # define DEBUG_SV_SERIAL(sv) NOOP
260 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
261 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
262 /* Whilst I'd love to do this, it seems that things like to check on
264 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
266 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
267 PoisonNew(&SvREFCNT(sv), 1, U32)
269 # define SvARENA_CHAIN(sv) SvANY(sv)
270 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
271 # define POSION_SV_HEAD(sv)
274 /* Mark an SV head as unused, and add to free list.
276 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
277 * its refcount artificially decremented during global destruction, so
278 * there may be dangling pointers to it. The last thing we want in that
279 * case is for it to be reused. */
281 #define plant_SV(p) \
283 const U32 old_flags = SvFLAGS(p); \
284 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
285 DEBUG_SV_SERIAL(p); \
286 FREE_SV_DEBUG_FILE(p); \
288 SvFLAGS(p) = SVTYPEMASK; \
289 if (!(old_flags & SVf_BREAK)) { \
290 SvARENA_CHAIN_SET(p, PL_sv_root); \
296 #define uproot_SV(p) \
299 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
304 /* make some more SVs by adding another arena */
310 char *chunk; /* must use New here to match call to */
311 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
312 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
317 /* new_SV(): return a new, empty SV head */
319 #ifdef DEBUG_LEAKING_SCALARS
320 /* provide a real function for a debugger to play with */
322 S_new_SV(pTHX_ const char *file, int line, const char *func)
329 sv = S_more_sv(aTHX);
333 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
334 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
340 sv->sv_debug_inpad = 0;
341 sv->sv_debug_parent = NULL;
342 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
344 sv->sv_debug_serial = PL_sv_serial++;
346 MEM_LOG_NEW_SV(sv, file, line, func);
347 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
348 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
352 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
360 (p) = S_more_sv(aTHX); \
364 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
369 /* del_SV(): return an empty SV head to the free list */
382 S_del_sv(pTHX_ SV *p)
384 PERL_ARGS_ASSERT_DEL_SV;
389 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
390 const SV * const sv = sva + 1;
391 const SV * const svend = &sva[SvREFCNT(sva)];
392 if (p >= sv && p < svend) {
398 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
399 "Attempt to free non-arena SV: 0x%"UVxf
400 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
407 #else /* ! DEBUGGING */
409 #define del_SV(p) plant_SV(p)
411 #endif /* DEBUGGING */
415 =head1 SV Manipulation Functions
417 =for apidoc sv_add_arena
419 Given a chunk of memory, link it to the head of the list of arenas,
420 and split it into a list of free SVs.
426 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
428 SV *const sva = MUTABLE_SV(ptr);
432 PERL_ARGS_ASSERT_SV_ADD_ARENA;
434 /* The first SV in an arena isn't an SV. */
435 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
436 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
437 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
439 PL_sv_arenaroot = sva;
440 PL_sv_root = sva + 1;
442 svend = &sva[SvREFCNT(sva) - 1];
445 SvARENA_CHAIN_SET(sv, (sv + 1));
449 /* Must always set typemask because it's always checked in on cleanup
450 when the arenas are walked looking for objects. */
451 SvFLAGS(sv) = SVTYPEMASK;
454 SvARENA_CHAIN_SET(sv, 0);
458 SvFLAGS(sv) = SVTYPEMASK;
461 /* visit(): call the named function for each non-free SV in the arenas
462 * whose flags field matches the flags/mask args. */
465 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
470 PERL_ARGS_ASSERT_VISIT;
472 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
473 const SV * const svend = &sva[SvREFCNT(sva)];
475 for (sv = sva + 1; sv < svend; ++sv) {
476 if (SvTYPE(sv) != (svtype)SVTYPEMASK
477 && (sv->sv_flags & mask) == flags
490 /* called by sv_report_used() for each live SV */
493 do_report_used(pTHX_ SV *const sv)
495 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
496 PerlIO_printf(Perl_debug_log, "****\n");
503 =for apidoc sv_report_used
505 Dump the contents of all SVs not yet freed (debugging aid).
511 Perl_sv_report_used(pTHX)
514 visit(do_report_used, 0, 0);
520 /* called by sv_clean_objs() for each live SV */
523 do_clean_objs(pTHX_ SV *const ref)
527 SV * const target = SvRV(ref);
528 if (SvOBJECT(target)) {
529 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
530 if (SvWEAKREF(ref)) {
531 sv_del_backref(target, ref);
537 SvREFCNT_dec_NN(target);
544 /* clear any slots in a GV which hold objects - except IO;
545 * called by sv_clean_objs() for each live GV */
548 do_clean_named_objs(pTHX_ SV *const sv)
551 assert(SvTYPE(sv) == SVt_PVGV);
552 assert(isGV_with_GP(sv));
556 /* freeing GP entries may indirectly free the current GV;
557 * hold onto it while we mess with the GP slots */
560 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
561 DEBUG_D((PerlIO_printf(Perl_debug_log,
562 "Cleaning named glob SV object:\n "), sv_dump(obj)));
564 SvREFCNT_dec_NN(obj);
566 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
567 DEBUG_D((PerlIO_printf(Perl_debug_log,
568 "Cleaning named glob AV object:\n "), sv_dump(obj)));
570 SvREFCNT_dec_NN(obj);
572 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
573 DEBUG_D((PerlIO_printf(Perl_debug_log,
574 "Cleaning named glob HV object:\n "), sv_dump(obj)));
576 SvREFCNT_dec_NN(obj);
578 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
579 DEBUG_D((PerlIO_printf(Perl_debug_log,
580 "Cleaning named glob CV object:\n "), sv_dump(obj)));
582 SvREFCNT_dec_NN(obj);
584 SvREFCNT_dec_NN(sv); /* undo the inc above */
587 /* clear any IO slots in a GV which hold objects (except stderr, defout);
588 * called by sv_clean_objs() for each live GV */
591 do_clean_named_io_objs(pTHX_ SV *const sv)
594 assert(SvTYPE(sv) == SVt_PVGV);
595 assert(isGV_with_GP(sv));
596 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
600 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
601 DEBUG_D((PerlIO_printf(Perl_debug_log,
602 "Cleaning named glob IO object:\n "), sv_dump(obj)));
604 SvREFCNT_dec_NN(obj);
606 SvREFCNT_dec_NN(sv); /* undo the inc above */
609 /* Void wrapper to pass to visit() */
611 do_curse(pTHX_ SV * const sv) {
612 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
613 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
619 =for apidoc sv_clean_objs
621 Attempt to destroy all objects not yet freed.
627 Perl_sv_clean_objs(pTHX)
630 PL_in_clean_objs = TRUE;
631 visit(do_clean_objs, SVf_ROK, SVf_ROK);
632 /* Some barnacles may yet remain, clinging to typeglobs.
633 * Run the non-IO destructors first: they may want to output
634 * error messages, close files etc */
635 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
636 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
637 /* And if there are some very tenacious barnacles clinging to arrays,
638 closures, or what have you.... */
639 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
640 olddef = PL_defoutgv;
641 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
642 if (olddef && isGV_with_GP(olddef))
643 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
644 olderr = PL_stderrgv;
645 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
646 if (olderr && isGV_with_GP(olderr))
647 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
648 SvREFCNT_dec(olddef);
649 PL_in_clean_objs = FALSE;
652 /* called by sv_clean_all() for each live SV */
655 do_clean_all(pTHX_ SV *const sv)
657 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
658 /* don't clean pid table and strtab */
661 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
662 SvFLAGS(sv) |= SVf_BREAK;
667 =for apidoc sv_clean_all
669 Decrement the refcnt of each remaining SV, possibly triggering a
670 cleanup. This function may have to be called multiple times to free
671 SVs which are in complex self-referential hierarchies.
677 Perl_sv_clean_all(pTHX)
680 PL_in_clean_all = TRUE;
681 cleaned = visit(do_clean_all, 0,0);
686 ARENASETS: a meta-arena implementation which separates arena-info
687 into struct arena_set, which contains an array of struct
688 arena_descs, each holding info for a single arena. By separating
689 the meta-info from the arena, we recover the 1st slot, formerly
690 borrowed for list management. The arena_set is about the size of an
691 arena, avoiding the needless malloc overhead of a naive linked-list.
693 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
694 memory in the last arena-set (1/2 on average). In trade, we get
695 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
696 smaller types). The recovery of the wasted space allows use of
697 small arenas for large, rare body types, by changing array* fields
698 in body_details_by_type[] below.
701 char *arena; /* the raw storage, allocated aligned */
702 size_t size; /* its size ~4k typ */
703 svtype utype; /* bodytype stored in arena */
708 /* Get the maximum number of elements in set[] such that struct arena_set
709 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
710 therefore likely to be 1 aligned memory page. */
712 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
713 - 2 * sizeof(int)) / sizeof (struct arena_desc))
716 struct arena_set* next;
717 unsigned int set_size; /* ie ARENAS_PER_SET */
718 unsigned int curr; /* index of next available arena-desc */
719 struct arena_desc set[ARENAS_PER_SET];
723 =for apidoc sv_free_arenas
725 Deallocate the memory used by all arenas. Note that all the individual SV
726 heads and bodies within the arenas must already have been freed.
732 Perl_sv_free_arenas(pTHX)
738 /* Free arenas here, but be careful about fake ones. (We assume
739 contiguity of the fake ones with the corresponding real ones.) */
741 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
742 svanext = MUTABLE_SV(SvANY(sva));
743 while (svanext && SvFAKE(svanext))
744 svanext = MUTABLE_SV(SvANY(svanext));
751 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
754 struct arena_set *current = aroot;
757 assert(aroot->set[i].arena);
758 Safefree(aroot->set[i].arena);
766 i = PERL_ARENA_ROOTS_SIZE;
768 PL_body_roots[i] = 0;
775 Here are mid-level routines that manage the allocation of bodies out
776 of the various arenas. There are 5 kinds of arenas:
778 1. SV-head arenas, which are discussed and handled above
779 2. regular body arenas
780 3. arenas for reduced-size bodies
783 Arena types 2 & 3 are chained by body-type off an array of
784 arena-root pointers, which is indexed by svtype. Some of the
785 larger/less used body types are malloced singly, since a large
786 unused block of them is wasteful. Also, several svtypes dont have
787 bodies; the data fits into the sv-head itself. The arena-root
788 pointer thus has a few unused root-pointers (which may be hijacked
789 later for arena types 4,5)
791 3 differs from 2 as an optimization; some body types have several
792 unused fields in the front of the structure (which are kept in-place
793 for consistency). These bodies can be allocated in smaller chunks,
794 because the leading fields arent accessed. Pointers to such bodies
795 are decremented to point at the unused 'ghost' memory, knowing that
796 the pointers are used with offsets to the real memory.
799 =head1 SV-Body Allocation
803 Allocation of SV-bodies is similar to SV-heads, differing as follows;
804 the allocation mechanism is used for many body types, so is somewhat
805 more complicated, it uses arena-sets, and has no need for still-live
808 At the outermost level, (new|del)_X*V macros return bodies of the
809 appropriate type. These macros call either (new|del)_body_type or
810 (new|del)_body_allocated macro pairs, depending on specifics of the
811 type. Most body types use the former pair, the latter pair is used to
812 allocate body types with "ghost fields".
814 "ghost fields" are fields that are unused in certain types, and
815 consequently don't need to actually exist. They are declared because
816 they're part of a "base type", which allows use of functions as
817 methods. The simplest examples are AVs and HVs, 2 aggregate types
818 which don't use the fields which support SCALAR semantics.
820 For these types, the arenas are carved up into appropriately sized
821 chunks, we thus avoid wasted memory for those unaccessed members.
822 When bodies are allocated, we adjust the pointer back in memory by the
823 size of the part not allocated, so it's as if we allocated the full
824 structure. (But things will all go boom if you write to the part that
825 is "not there", because you'll be overwriting the last members of the
826 preceding structure in memory.)
828 We calculate the correction using the STRUCT_OFFSET macro on the first
829 member present. If the allocated structure is smaller (no initial NV
830 actually allocated) then the net effect is to subtract the size of the NV
831 from the pointer, to return a new pointer as if an initial NV were actually
832 allocated. (We were using structures named *_allocated for this, but
833 this turned out to be a subtle bug, because a structure without an NV
834 could have a lower alignment constraint, but the compiler is allowed to
835 optimised accesses based on the alignment constraint of the actual pointer
836 to the full structure, for example, using a single 64 bit load instruction
837 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
839 This is the same trick as was used for NV and IV bodies. Ironically it
840 doesn't need to be used for NV bodies any more, because NV is now at
841 the start of the structure. IV bodies don't need it either, because
842 they are no longer allocated.
844 In turn, the new_body_* allocators call S_new_body(), which invokes
845 new_body_inline macro, which takes a lock, and takes a body off the
846 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
847 necessary to refresh an empty list. Then the lock is released, and
848 the body is returned.
850 Perl_more_bodies allocates a new arena, and carves it up into an array of N
851 bodies, which it strings into a linked list. It looks up arena-size
852 and body-size from the body_details table described below, thus
853 supporting the multiple body-types.
855 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
856 the (new|del)_X*V macros are mapped directly to malloc/free.
858 For each sv-type, struct body_details bodies_by_type[] carries
859 parameters which control these aspects of SV handling:
861 Arena_size determines whether arenas are used for this body type, and if
862 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
863 zero, forcing individual mallocs and frees.
865 Body_size determines how big a body is, and therefore how many fit into
866 each arena. Offset carries the body-pointer adjustment needed for
867 "ghost fields", and is used in *_allocated macros.
869 But its main purpose is to parameterize info needed in
870 Perl_sv_upgrade(). The info here dramatically simplifies the function
871 vs the implementation in 5.8.8, making it table-driven. All fields
872 are used for this, except for arena_size.
874 For the sv-types that have no bodies, arenas are not used, so those
875 PL_body_roots[sv_type] are unused, and can be overloaded. In
876 something of a special case, SVt_NULL is borrowed for HE arenas;
877 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
878 bodies_by_type[SVt_NULL] slot is not used, as the table is not
883 struct body_details {
884 U8 body_size; /* Size to allocate */
885 U8 copy; /* Size of structure to copy (may be shorter) */
887 unsigned int type : 4; /* We have space for a sanity check. */
888 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
889 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
890 unsigned int arena : 1; /* Allocated from an arena */
891 size_t arena_size; /* Size of arena to allocate */
899 /* With -DPURFIY we allocate everything directly, and don't use arenas.
900 This seems a rather elegant way to simplify some of the code below. */
901 #define HASARENA FALSE
903 #define HASARENA TRUE
905 #define NOARENA FALSE
907 /* Size the arenas to exactly fit a given number of bodies. A count
908 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
909 simplifying the default. If count > 0, the arena is sized to fit
910 only that many bodies, allowing arenas to be used for large, rare
911 bodies (XPVFM, XPVIO) without undue waste. The arena size is
912 limited by PERL_ARENA_SIZE, so we can safely oversize the
915 #define FIT_ARENA0(body_size) \
916 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
917 #define FIT_ARENAn(count,body_size) \
918 ( count * body_size <= PERL_ARENA_SIZE) \
919 ? count * body_size \
920 : FIT_ARENA0 (body_size)
921 #define FIT_ARENA(count,body_size) \
923 ? FIT_ARENAn (count, body_size) \
924 : FIT_ARENA0 (body_size)
926 /* Calculate the length to copy. Specifically work out the length less any
927 final padding the compiler needed to add. See the comment in sv_upgrade
928 for why copying the padding proved to be a bug. */
930 #define copy_length(type, last_member) \
931 STRUCT_OFFSET(type, last_member) \
932 + sizeof (((type*)SvANY((const SV *)0))->last_member)
934 static const struct body_details bodies_by_type[] = {
935 /* HEs use this offset for their arena. */
936 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
938 /* IVs are in the head, so the allocation size is 0. */
940 sizeof(IV), /* This is used to copy out the IV body. */
941 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
942 NOARENA /* IVS don't need an arena */, 0
945 { sizeof(NV), sizeof(NV),
946 STRUCT_OFFSET(XPVNV, xnv_u),
947 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
949 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
950 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
951 + STRUCT_OFFSET(XPV, xpv_cur),
952 SVt_PV, FALSE, NONV, HASARENA,
953 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
955 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
956 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
957 + STRUCT_OFFSET(XPV, xpv_cur),
958 SVt_INVLIST, TRUE, NONV, HASARENA,
959 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
961 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
962 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
963 + STRUCT_OFFSET(XPV, xpv_cur),
964 SVt_PVIV, FALSE, NONV, HASARENA,
965 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
967 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
968 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
969 + STRUCT_OFFSET(XPV, xpv_cur),
970 SVt_PVNV, FALSE, HADNV, HASARENA,
971 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
973 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
974 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
979 SVt_REGEXP, TRUE, NONV, HASARENA,
980 FIT_ARENA(0, sizeof(regexp))
983 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
984 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
986 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
987 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
990 copy_length(XPVAV, xav_alloc),
992 SVt_PVAV, TRUE, NONV, HASARENA,
993 FIT_ARENA(0, sizeof(XPVAV)) },
996 copy_length(XPVHV, xhv_max),
998 SVt_PVHV, TRUE, NONV, HASARENA,
999 FIT_ARENA(0, sizeof(XPVHV)) },
1004 SVt_PVCV, TRUE, NONV, HASARENA,
1005 FIT_ARENA(0, sizeof(XPVCV)) },
1010 SVt_PVFM, TRUE, NONV, NOARENA,
1011 FIT_ARENA(20, sizeof(XPVFM)) },
1016 SVt_PVIO, TRUE, NONV, HASARENA,
1017 FIT_ARENA(24, sizeof(XPVIO)) },
1020 #define new_body_allocated(sv_type) \
1021 (void *)((char *)S_new_body(aTHX_ sv_type) \
1022 - bodies_by_type[sv_type].offset)
1024 /* return a thing to the free list */
1026 #define del_body(thing, root) \
1028 void ** const thing_copy = (void **)thing; \
1029 *thing_copy = *root; \
1030 *root = (void*)thing_copy; \
1035 #define new_XNV() safemalloc(sizeof(XPVNV))
1036 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1037 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1039 #define del_XPVGV(p) safefree(p)
1043 #define new_XNV() new_body_allocated(SVt_NV)
1044 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1045 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1047 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1048 &PL_body_roots[SVt_PVGV])
1052 /* no arena for you! */
1054 #define new_NOARENA(details) \
1055 safemalloc((details)->body_size + (details)->offset)
1056 #define new_NOARENAZ(details) \
1057 safecalloc((details)->body_size + (details)->offset, 1)
1060 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1061 const size_t arena_size)
1063 void ** const root = &PL_body_roots[sv_type];
1064 struct arena_desc *adesc;
1065 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1069 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1070 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1073 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1074 static bool done_sanity_check;
1076 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1077 * variables like done_sanity_check. */
1078 if (!done_sanity_check) {
1079 unsigned int i = SVt_LAST;
1081 done_sanity_check = TRUE;
1084 assert (bodies_by_type[i].type == i);
1090 /* may need new arena-set to hold new arena */
1091 if (!aroot || aroot->curr >= aroot->set_size) {
1092 struct arena_set *newroot;
1093 Newxz(newroot, 1, struct arena_set);
1094 newroot->set_size = ARENAS_PER_SET;
1095 newroot->next = aroot;
1097 PL_body_arenas = (void *) newroot;
1098 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1101 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1102 curr = aroot->curr++;
1103 adesc = &(aroot->set[curr]);
1104 assert(!adesc->arena);
1106 Newx(adesc->arena, good_arena_size, char);
1107 adesc->size = good_arena_size;
1108 adesc->utype = sv_type;
1109 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1110 curr, (void*)adesc->arena, (UV)good_arena_size));
1112 start = (char *) adesc->arena;
1114 /* Get the address of the byte after the end of the last body we can fit.
1115 Remember, this is integer division: */
1116 end = start + good_arena_size / body_size * body_size;
1118 /* computed count doesn't reflect the 1st slot reservation */
1119 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1120 DEBUG_m(PerlIO_printf(Perl_debug_log,
1121 "arena %p end %p arena-size %d (from %d) type %d "
1123 (void*)start, (void*)end, (int)good_arena_size,
1124 (int)arena_size, sv_type, (int)body_size,
1125 (int)good_arena_size / (int)body_size));
1127 DEBUG_m(PerlIO_printf(Perl_debug_log,
1128 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1129 (void*)start, (void*)end,
1130 (int)arena_size, sv_type, (int)body_size,
1131 (int)good_arena_size / (int)body_size));
1133 *root = (void *)start;
1136 /* Where the next body would start: */
1137 char * const next = start + body_size;
1140 /* This is the last body: */
1141 assert(next == end);
1143 *(void **)start = 0;
1147 *(void**) start = (void *)next;
1152 /* grab a new thing from the free list, allocating more if necessary.
1153 The inline version is used for speed in hot routines, and the
1154 function using it serves the rest (unless PURIFY).
1156 #define new_body_inline(xpv, sv_type) \
1158 void ** const r3wt = &PL_body_roots[sv_type]; \
1159 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1160 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1161 bodies_by_type[sv_type].body_size,\
1162 bodies_by_type[sv_type].arena_size)); \
1163 *(r3wt) = *(void**)(xpv); \
1169 S_new_body(pTHX_ const svtype sv_type)
1172 new_body_inline(xpv, sv_type);
1178 static const struct body_details fake_rv =
1179 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1182 =for apidoc sv_upgrade
1184 Upgrade an SV to a more complex form. Generally adds a new body type to the
1185 SV, then copies across as much information as possible from the old body.
1186 It croaks if the SV is already in a more complex form than requested. You
1187 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1188 before calling C<sv_upgrade>, and hence does not croak. See also
1195 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1199 const svtype old_type = SvTYPE(sv);
1200 const struct body_details *new_type_details;
1201 const struct body_details *old_type_details
1202 = bodies_by_type + old_type;
1203 SV *referant = NULL;
1205 PERL_ARGS_ASSERT_SV_UPGRADE;
1207 if (old_type == new_type)
1210 /* This clause was purposefully added ahead of the early return above to
1211 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1212 inference by Nick I-S that it would fix other troublesome cases. See
1213 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1215 Given that shared hash key scalars are no longer PVIV, but PV, there is
1216 no longer need to unshare so as to free up the IVX slot for its proper
1217 purpose. So it's safe to move the early return earlier. */
1219 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1220 sv_force_normal_flags(sv, 0);
1223 old_body = SvANY(sv);
1225 /* Copying structures onto other structures that have been neatly zeroed
1226 has a subtle gotcha. Consider XPVMG
1228 +------+------+------+------+------+-------+-------+
1229 | NV | CUR | LEN | IV | MAGIC | STASH |
1230 +------+------+------+------+------+-------+-------+
1231 0 4 8 12 16 20 24 28
1233 where NVs are aligned to 8 bytes, so that sizeof that structure is
1234 actually 32 bytes long, with 4 bytes of padding at the end:
1236 +------+------+------+------+------+-------+-------+------+
1237 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1238 +------+------+------+------+------+-------+-------+------+
1239 0 4 8 12 16 20 24 28 32
1241 so what happens if you allocate memory for this structure:
1243 +------+------+------+------+------+-------+-------+------+------+...
1244 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1245 +------+------+------+------+------+-------+-------+------+------+...
1246 0 4 8 12 16 20 24 28 32 36
1248 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1249 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1250 started out as zero once, but it's quite possible that it isn't. So now,
1251 rather than a nicely zeroed GP, you have it pointing somewhere random.
1254 (In fact, GP ends up pointing at a previous GP structure, because the
1255 principle cause of the padding in XPVMG getting garbage is a copy of
1256 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1257 this happens to be moot because XPVGV has been re-ordered, with GP
1258 no longer after STASH)
1260 So we are careful and work out the size of used parts of all the
1268 referant = SvRV(sv);
1269 old_type_details = &fake_rv;
1270 if (new_type == SVt_NV)
1271 new_type = SVt_PVNV;
1273 if (new_type < SVt_PVIV) {
1274 new_type = (new_type == SVt_NV)
1275 ? SVt_PVNV : SVt_PVIV;
1280 if (new_type < SVt_PVNV) {
1281 new_type = SVt_PVNV;
1285 assert(new_type > SVt_PV);
1286 assert(SVt_IV < SVt_PV);
1287 assert(SVt_NV < SVt_PV);
1294 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1295 there's no way that it can be safely upgraded, because perl.c
1296 expects to Safefree(SvANY(PL_mess_sv)) */
1297 assert(sv != PL_mess_sv);
1298 /* This flag bit is used to mean other things in other scalar types.
1299 Given that it only has meaning inside the pad, it shouldn't be set
1300 on anything that can get upgraded. */
1301 assert(!SvPAD_TYPED(sv));
1304 if (UNLIKELY(old_type_details->cant_upgrade))
1305 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1306 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1309 if (UNLIKELY(old_type > new_type))
1310 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1311 (int)old_type, (int)new_type);
1313 new_type_details = bodies_by_type + new_type;
1315 SvFLAGS(sv) &= ~SVTYPEMASK;
1316 SvFLAGS(sv) |= new_type;
1318 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1319 the return statements above will have triggered. */
1320 assert (new_type != SVt_NULL);
1323 assert(old_type == SVt_NULL);
1324 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1328 assert(old_type == SVt_NULL);
1329 SvANY(sv) = new_XNV();
1334 assert(new_type_details->body_size);
1337 assert(new_type_details->arena);
1338 assert(new_type_details->arena_size);
1339 /* This points to the start of the allocated area. */
1340 new_body_inline(new_body, new_type);
1341 Zero(new_body, new_type_details->body_size, char);
1342 new_body = ((char *)new_body) - new_type_details->offset;
1344 /* We always allocated the full length item with PURIFY. To do this
1345 we fake things so that arena is false for all 16 types.. */
1346 new_body = new_NOARENAZ(new_type_details);
1348 SvANY(sv) = new_body;
1349 if (new_type == SVt_PVAV) {
1353 if (old_type_details->body_size) {
1356 /* It will have been zeroed when the new body was allocated.
1357 Lets not write to it, in case it confuses a write-back
1363 #ifndef NODEFAULT_SHAREKEYS
1364 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1366 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1367 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1370 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1371 The target created by newSVrv also is, and it can have magic.
1372 However, it never has SvPVX set.
1374 if (old_type == SVt_IV) {
1376 } else if (old_type >= SVt_PV) {
1377 assert(SvPVX_const(sv) == 0);
1380 if (old_type >= SVt_PVMG) {
1381 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1382 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1384 sv->sv_u.svu_array = NULL; /* or svu_hash */
1389 /* XXX Is this still needed? Was it ever needed? Surely as there is
1390 no route from NV to PVIV, NOK can never be true */
1391 assert(!SvNOKp(sv));
1404 assert(new_type_details->body_size);
1405 /* We always allocated the full length item with PURIFY. To do this
1406 we fake things so that arena is false for all 16 types.. */
1407 if(new_type_details->arena) {
1408 /* This points to the start of the allocated area. */
1409 new_body_inline(new_body, new_type);
1410 Zero(new_body, new_type_details->body_size, char);
1411 new_body = ((char *)new_body) - new_type_details->offset;
1413 new_body = new_NOARENAZ(new_type_details);
1415 SvANY(sv) = new_body;
1417 if (old_type_details->copy) {
1418 /* There is now the potential for an upgrade from something without
1419 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1420 int offset = old_type_details->offset;
1421 int length = old_type_details->copy;
1423 if (new_type_details->offset > old_type_details->offset) {
1424 const int difference
1425 = new_type_details->offset - old_type_details->offset;
1426 offset += difference;
1427 length -= difference;
1429 assert (length >= 0);
1431 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1435 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1436 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1437 * correct 0.0 for us. Otherwise, if the old body didn't have an
1438 * NV slot, but the new one does, then we need to initialise the
1439 * freshly created NV slot with whatever the correct bit pattern is
1441 if (old_type_details->zero_nv && !new_type_details->zero_nv
1442 && !isGV_with_GP(sv))
1446 if (UNLIKELY(new_type == SVt_PVIO)) {
1447 IO * const io = MUTABLE_IO(sv);
1448 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1451 /* Clear the stashcache because a new IO could overrule a package
1453 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1454 hv_clear(PL_stashcache);
1456 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1457 IoPAGE_LEN(sv) = 60;
1459 if (UNLIKELY(new_type == SVt_REGEXP))
1460 sv->sv_u.svu_rx = (regexp *)new_body;
1461 else if (old_type < SVt_PV) {
1462 /* referant will be NULL unless the old type was SVt_IV emulating
1464 sv->sv_u.svu_rv = referant;
1468 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1469 (unsigned long)new_type);
1472 if (old_type > SVt_IV) {
1476 /* Note that there is an assumption that all bodies of types that
1477 can be upgraded came from arenas. Only the more complex non-
1478 upgradable types are allowed to be directly malloc()ed. */
1479 assert(old_type_details->arena);
1480 del_body((void*)((char*)old_body + old_type_details->offset),
1481 &PL_body_roots[old_type]);
1487 =for apidoc sv_backoff
1489 Remove any string offset. You should normally use the C<SvOOK_off> macro
1496 Perl_sv_backoff(SV *const sv)
1499 const char * const s = SvPVX_const(sv);
1501 PERL_ARGS_ASSERT_SV_BACKOFF;
1504 assert(SvTYPE(sv) != SVt_PVHV);
1505 assert(SvTYPE(sv) != SVt_PVAV);
1507 SvOOK_offset(sv, delta);
1509 SvLEN_set(sv, SvLEN(sv) + delta);
1510 SvPV_set(sv, SvPVX(sv) - delta);
1511 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1512 SvFLAGS(sv) &= ~SVf_OOK;
1519 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1520 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1521 Use the C<SvGROW> wrapper instead.
1526 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1529 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1533 PERL_ARGS_ASSERT_SV_GROW;
1537 if (SvTYPE(sv) < SVt_PV) {
1538 sv_upgrade(sv, SVt_PV);
1539 s = SvPVX_mutable(sv);
1541 else if (SvOOK(sv)) { /* pv is offset? */
1543 s = SvPVX_mutable(sv);
1544 if (newlen > SvLEN(sv))
1545 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1549 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1550 s = SvPVX_mutable(sv);
1553 #ifdef PERL_NEW_COPY_ON_WRITE
1554 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1555 * to store the COW count. So in general, allocate one more byte than
1556 * asked for, to make it likely this byte is always spare: and thus
1557 * make more strings COW-able.
1558 * If the new size is a big power of two, don't bother: we assume the
1559 * caller wanted a nice 2^N sized block and will be annoyed at getting
1565 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1566 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1569 if (newlen > SvLEN(sv)) { /* need more room? */
1570 STRLEN minlen = SvCUR(sv);
1571 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1572 if (newlen < minlen)
1574 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1576 /* Don't round up on the first allocation, as odds are pretty good that
1577 * the initial request is accurate as to what is really needed */
1579 newlen = PERL_STRLEN_ROUNDUP(newlen);
1582 if (SvLEN(sv) && s) {
1583 s = (char*)saferealloc(s, newlen);
1586 s = (char*)safemalloc(newlen);
1587 if (SvPVX_const(sv) && SvCUR(sv)) {
1588 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1592 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1593 /* Do this here, do it once, do it right, and then we will never get
1594 called back into sv_grow() unless there really is some growing
1596 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1598 SvLEN_set(sv, newlen);
1605 =for apidoc sv_setiv
1607 Copies an integer into the given SV, upgrading first if necessary.
1608 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1614 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1616 PERL_ARGS_ASSERT_SV_SETIV;
1618 SV_CHECK_THINKFIRST_COW_DROP(sv);
1619 switch (SvTYPE(sv)) {
1622 sv_upgrade(sv, SVt_IV);
1625 sv_upgrade(sv, SVt_PVIV);
1629 if (!isGV_with_GP(sv))
1636 /* diag_listed_as: Can't coerce %s to %s in %s */
1637 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1641 (void)SvIOK_only(sv); /* validate number */
1647 =for apidoc sv_setiv_mg
1649 Like C<sv_setiv>, but also handles 'set' magic.
1655 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1657 PERL_ARGS_ASSERT_SV_SETIV_MG;
1664 =for apidoc sv_setuv
1666 Copies an unsigned integer into the given SV, upgrading first if necessary.
1667 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1673 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1675 PERL_ARGS_ASSERT_SV_SETUV;
1677 /* With the if statement to ensure that integers are stored as IVs whenever
1679 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1682 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1684 If you wish to remove the following if statement, so that this routine
1685 (and its callers) always return UVs, please benchmark to see what the
1686 effect is. Modern CPUs may be different. Or may not :-)
1688 if (u <= (UV)IV_MAX) {
1689 sv_setiv(sv, (IV)u);
1698 =for apidoc sv_setuv_mg
1700 Like C<sv_setuv>, but also handles 'set' magic.
1706 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1708 PERL_ARGS_ASSERT_SV_SETUV_MG;
1715 =for apidoc sv_setnv
1717 Copies a double into the given SV, upgrading first if necessary.
1718 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1724 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1726 PERL_ARGS_ASSERT_SV_SETNV;
1728 SV_CHECK_THINKFIRST_COW_DROP(sv);
1729 switch (SvTYPE(sv)) {
1732 sv_upgrade(sv, SVt_NV);
1736 sv_upgrade(sv, SVt_PVNV);
1740 if (!isGV_with_GP(sv))
1747 /* diag_listed_as: Can't coerce %s to %s in %s */
1748 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1753 (void)SvNOK_only(sv); /* validate number */
1758 =for apidoc sv_setnv_mg
1760 Like C<sv_setnv>, but also handles 'set' magic.
1766 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1768 PERL_ARGS_ASSERT_SV_SETNV_MG;
1774 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1775 * not incrementable warning display.
1776 * Originally part of S_not_a_number().
1777 * The return value may be != tmpbuf.
1781 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1784 PERL_ARGS_ASSERT_SV_DISPLAY;
1787 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1788 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1791 const char * const limit = tmpbuf + tmpbuf_size - 8;
1792 /* each *s can expand to 4 chars + "...\0",
1793 i.e. need room for 8 chars */
1795 const char *s = SvPVX_const(sv);
1796 const char * const end = s + SvCUR(sv);
1797 for ( ; s < end && d < limit; s++ ) {
1799 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1803 /* Map to ASCII "equivalent" of Latin1 */
1804 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1810 else if (ch == '\r') {
1814 else if (ch == '\f') {
1818 else if (ch == '\\') {
1822 else if (ch == '\0') {
1826 else if (isPRINT_LC(ch))
1845 /* Print an "isn't numeric" warning, using a cleaned-up,
1846 * printable version of the offending string
1850 S_not_a_number(pTHX_ SV *const sv)
1855 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1857 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1860 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1861 /* diag_listed_as: Argument "%s" isn't numeric%s */
1862 "Argument \"%s\" isn't numeric in %s", pv,
1865 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1866 /* diag_listed_as: Argument "%s" isn't numeric%s */
1867 "Argument \"%s\" isn't numeric", pv);
1871 S_not_incrementable(pTHX_ SV *const sv) {
1875 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1877 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1879 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1880 "Argument \"%s\" treated as 0 in increment (++)", pv);
1884 =for apidoc looks_like_number
1886 Test if the content of an SV looks like a number (or is a number).
1887 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1888 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1895 Perl_looks_like_number(pTHX_ SV *const sv)
1900 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1902 if (SvPOK(sv) || SvPOKp(sv)) {
1903 sbegin = SvPV_nomg_const(sv, len);
1906 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1907 return grok_number(sbegin, len, NULL);
1911 S_glob_2number(pTHX_ GV * const gv)
1913 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1915 /* We know that all GVs stringify to something that is not-a-number,
1916 so no need to test that. */
1917 if (ckWARN(WARN_NUMERIC))
1919 SV *const buffer = sv_newmortal();
1920 gv_efullname3(buffer, gv, "*");
1921 not_a_number(buffer);
1923 /* We just want something true to return, so that S_sv_2iuv_common
1924 can tail call us and return true. */
1928 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1929 until proven guilty, assume that things are not that bad... */
1934 As 64 bit platforms often have an NV that doesn't preserve all bits of
1935 an IV (an assumption perl has been based on to date) it becomes necessary
1936 to remove the assumption that the NV always carries enough precision to
1937 recreate the IV whenever needed, and that the NV is the canonical form.
1938 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1939 precision as a side effect of conversion (which would lead to insanity
1940 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1941 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1942 where precision was lost, and IV/UV/NV slots that have a valid conversion
1943 which has lost no precision
1944 2) to ensure that if a numeric conversion to one form is requested that
1945 would lose precision, the precise conversion (or differently
1946 imprecise conversion) is also performed and cached, to prevent
1947 requests for different numeric formats on the same SV causing
1948 lossy conversion chains. (lossless conversion chains are perfectly
1953 SvIOKp is true if the IV slot contains a valid value
1954 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1955 SvNOKp is true if the NV slot contains a valid value
1956 SvNOK is true only if the NV value is accurate
1959 while converting from PV to NV, check to see if converting that NV to an
1960 IV(or UV) would lose accuracy over a direct conversion from PV to
1961 IV(or UV). If it would, cache both conversions, return NV, but mark
1962 SV as IOK NOKp (ie not NOK).
1964 While converting from PV to IV, check to see if converting that IV to an
1965 NV would lose accuracy over a direct conversion from PV to NV. If it
1966 would, cache both conversions, flag similarly.
1968 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1969 correctly because if IV & NV were set NV *always* overruled.
1970 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1971 changes - now IV and NV together means that the two are interchangeable:
1972 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1974 The benefit of this is that operations such as pp_add know that if
1975 SvIOK is true for both left and right operands, then integer addition
1976 can be used instead of floating point (for cases where the result won't
1977 overflow). Before, floating point was always used, which could lead to
1978 loss of precision compared with integer addition.
1980 * making IV and NV equal status should make maths accurate on 64 bit
1982 * may speed up maths somewhat if pp_add and friends start to use
1983 integers when possible instead of fp. (Hopefully the overhead in
1984 looking for SvIOK and checking for overflow will not outweigh the
1985 fp to integer speedup)
1986 * will slow down integer operations (callers of SvIV) on "inaccurate"
1987 values, as the change from SvIOK to SvIOKp will cause a call into
1988 sv_2iv each time rather than a macro access direct to the IV slot
1989 * should speed up number->string conversion on integers as IV is
1990 favoured when IV and NV are equally accurate
1992 ####################################################################
1993 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1994 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1995 On the other hand, SvUOK is true iff UV.
1996 ####################################################################
1998 Your mileage will vary depending your CPU's relative fp to integer
2002 #ifndef NV_PRESERVES_UV
2003 # define IS_NUMBER_UNDERFLOW_IV 1
2004 # define IS_NUMBER_UNDERFLOW_UV 2
2005 # define IS_NUMBER_IV_AND_UV 2
2006 # define IS_NUMBER_OVERFLOW_IV 4
2007 # define IS_NUMBER_OVERFLOW_UV 5
2009 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2011 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2013 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2019 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2020 PERL_UNUSED_CONTEXT;
2022 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2023 if (SvNVX(sv) < (NV)IV_MIN) {
2024 (void)SvIOKp_on(sv);
2026 SvIV_set(sv, IV_MIN);
2027 return IS_NUMBER_UNDERFLOW_IV;
2029 if (SvNVX(sv) > (NV)UV_MAX) {
2030 (void)SvIOKp_on(sv);
2033 SvUV_set(sv, UV_MAX);
2034 return IS_NUMBER_OVERFLOW_UV;
2036 (void)SvIOKp_on(sv);
2038 /* Can't use strtol etc to convert this string. (See truth table in
2040 if (SvNVX(sv) <= (UV)IV_MAX) {
2041 SvIV_set(sv, I_V(SvNVX(sv)));
2042 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2043 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2045 /* Integer is imprecise. NOK, IOKp */
2047 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2050 SvUV_set(sv, U_V(SvNVX(sv)));
2051 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2052 if (SvUVX(sv) == UV_MAX) {
2053 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2054 possibly be preserved by NV. Hence, it must be overflow.
2056 return IS_NUMBER_OVERFLOW_UV;
2058 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2060 /* Integer is imprecise. NOK, IOKp */
2062 return IS_NUMBER_OVERFLOW_IV;
2064 #endif /* !NV_PRESERVES_UV*/
2067 S_sv_2iuv_common(pTHX_ SV *const sv)
2069 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2072 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2073 * without also getting a cached IV/UV from it at the same time
2074 * (ie PV->NV conversion should detect loss of accuracy and cache
2075 * IV or UV at same time to avoid this. */
2076 /* IV-over-UV optimisation - choose to cache IV if possible */
2078 if (SvTYPE(sv) == SVt_NV)
2079 sv_upgrade(sv, SVt_PVNV);
2081 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2082 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2083 certainly cast into the IV range at IV_MAX, whereas the correct
2084 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2086 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2087 if (Perl_isnan(SvNVX(sv))) {
2093 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2094 SvIV_set(sv, I_V(SvNVX(sv)));
2095 if (SvNVX(sv) == (NV) SvIVX(sv)
2096 #ifndef NV_PRESERVES_UV
2097 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2098 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2099 /* Don't flag it as "accurately an integer" if the number
2100 came from a (by definition imprecise) NV operation, and
2101 we're outside the range of NV integer precision */
2105 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2107 /* scalar has trailing garbage, eg "42a" */
2109 DEBUG_c(PerlIO_printf(Perl_debug_log,
2110 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2116 /* IV not precise. No need to convert from PV, as NV
2117 conversion would already have cached IV if it detected
2118 that PV->IV would be better than PV->NV->IV
2119 flags already correct - don't set public IOK. */
2120 DEBUG_c(PerlIO_printf(Perl_debug_log,
2121 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2126 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2127 but the cast (NV)IV_MIN rounds to a the value less (more
2128 negative) than IV_MIN which happens to be equal to SvNVX ??
2129 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2130 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2131 (NV)UVX == NVX are both true, but the values differ. :-(
2132 Hopefully for 2s complement IV_MIN is something like
2133 0x8000000000000000 which will be exact. NWC */
2136 SvUV_set(sv, U_V(SvNVX(sv)));
2138 (SvNVX(sv) == (NV) SvUVX(sv))
2139 #ifndef NV_PRESERVES_UV
2140 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2141 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2142 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2143 /* Don't flag it as "accurately an integer" if the number
2144 came from a (by definition imprecise) NV operation, and
2145 we're outside the range of NV integer precision */
2151 DEBUG_c(PerlIO_printf(Perl_debug_log,
2152 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2158 else if (SvPOKp(sv)) {
2160 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2161 /* We want to avoid a possible problem when we cache an IV/ a UV which
2162 may be later translated to an NV, and the resulting NV is not
2163 the same as the direct translation of the initial string
2164 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2165 be careful to ensure that the value with the .456 is around if the
2166 NV value is requested in the future).
2168 This means that if we cache such an IV/a UV, we need to cache the
2169 NV as well. Moreover, we trade speed for space, and do not
2170 cache the NV if we are sure it's not needed.
2173 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2174 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2175 == IS_NUMBER_IN_UV) {
2176 /* It's definitely an integer, only upgrade to PVIV */
2177 if (SvTYPE(sv) < SVt_PVIV)
2178 sv_upgrade(sv, SVt_PVIV);
2180 } else if (SvTYPE(sv) < SVt_PVNV)
2181 sv_upgrade(sv, SVt_PVNV);
2183 /* If NVs preserve UVs then we only use the UV value if we know that
2184 we aren't going to call atof() below. If NVs don't preserve UVs
2185 then the value returned may have more precision than atof() will
2186 return, even though value isn't perfectly accurate. */
2187 if ((numtype & (IS_NUMBER_IN_UV
2188 #ifdef NV_PRESERVES_UV
2191 )) == IS_NUMBER_IN_UV) {
2192 /* This won't turn off the public IOK flag if it was set above */
2193 (void)SvIOKp_on(sv);
2195 if (!(numtype & IS_NUMBER_NEG)) {
2197 if (value <= (UV)IV_MAX) {
2198 SvIV_set(sv, (IV)value);
2200 /* it didn't overflow, and it was positive. */
2201 SvUV_set(sv, value);
2205 /* 2s complement assumption */
2206 if (value <= (UV)IV_MIN) {
2207 SvIV_set(sv, -(IV)value);
2209 /* Too negative for an IV. This is a double upgrade, but
2210 I'm assuming it will be rare. */
2211 if (SvTYPE(sv) < SVt_PVNV)
2212 sv_upgrade(sv, SVt_PVNV);
2216 SvNV_set(sv, -(NV)value);
2217 SvIV_set(sv, IV_MIN);
2221 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2222 will be in the previous block to set the IV slot, and the next
2223 block to set the NV slot. So no else here. */
2225 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2226 != IS_NUMBER_IN_UV) {
2227 /* It wasn't an (integer that doesn't overflow the UV). */
2228 SvNV_set(sv, Atof(SvPVX_const(sv)));
2230 if (! numtype && ckWARN(WARN_NUMERIC))
2233 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n",
2234 PTR2UV(sv), SvNVX(sv)));
2236 #ifdef NV_PRESERVES_UV
2237 (void)SvIOKp_on(sv);
2239 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2240 if (Perl_isnan(SvNVX(sv))) {
2246 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2247 SvIV_set(sv, I_V(SvNVX(sv)));
2248 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2251 NOOP; /* Integer is imprecise. NOK, IOKp */
2253 /* UV will not work better than IV */
2255 if (SvNVX(sv) > (NV)UV_MAX) {
2257 /* Integer is inaccurate. NOK, IOKp, is UV */
2258 SvUV_set(sv, UV_MAX);
2260 SvUV_set(sv, U_V(SvNVX(sv)));
2261 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2262 NV preservse UV so can do correct comparison. */
2263 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2266 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2271 #else /* NV_PRESERVES_UV */
2272 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2273 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2274 /* The IV/UV slot will have been set from value returned by
2275 grok_number above. The NV slot has just been set using
2278 assert (SvIOKp(sv));
2280 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2281 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2282 /* Small enough to preserve all bits. */
2283 (void)SvIOKp_on(sv);
2285 SvIV_set(sv, I_V(SvNVX(sv)));
2286 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2288 /* Assumption: first non-preserved integer is < IV_MAX,
2289 this NV is in the preserved range, therefore: */
2290 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2292 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2296 0 0 already failed to read UV.
2297 0 1 already failed to read UV.
2298 1 0 you won't get here in this case. IV/UV
2299 slot set, public IOK, Atof() unneeded.
2300 1 1 already read UV.
2301 so there's no point in sv_2iuv_non_preserve() attempting
2302 to use atol, strtol, strtoul etc. */
2304 sv_2iuv_non_preserve (sv, numtype);
2306 sv_2iuv_non_preserve (sv);
2310 #endif /* NV_PRESERVES_UV */
2311 /* It might be more code efficient to go through the entire logic above
2312 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2313 gets complex and potentially buggy, so more programmer efficient
2314 to do it this way, by turning off the public flags: */
2316 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2320 if (isGV_with_GP(sv))
2321 return glob_2number(MUTABLE_GV(sv));
2323 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2325 if (SvTYPE(sv) < SVt_IV)
2326 /* Typically the caller expects that sv_any is not NULL now. */
2327 sv_upgrade(sv, SVt_IV);
2328 /* Return 0 from the caller. */
2335 =for apidoc sv_2iv_flags
2337 Return the integer value of an SV, doing any necessary string
2338 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2339 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2345 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2347 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2349 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2350 && SvTYPE(sv) != SVt_PVFM);
2352 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2358 if (flags & SV_SKIP_OVERLOAD)
2360 tmpstr = AMG_CALLunary(sv, numer_amg);
2361 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2362 return SvIV(tmpstr);
2365 return PTR2IV(SvRV(sv));
2368 if (SvVALID(sv) || isREGEXP(sv)) {
2369 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2370 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2371 In practice they are extremely unlikely to actually get anywhere
2372 accessible by user Perl code - the only way that I'm aware of is when
2373 a constant subroutine which is used as the second argument to index.
2375 Regexps have no SvIVX and SvNVX fields.
2377 assert(isREGEXP(sv) || SvPOKp(sv));
2380 const char * const ptr =
2381 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2383 = grok_number(ptr, SvCUR(sv), &value);
2385 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2386 == IS_NUMBER_IN_UV) {
2387 /* It's definitely an integer */
2388 if (numtype & IS_NUMBER_NEG) {
2389 if (value < (UV)IV_MIN)
2392 if (value < (UV)IV_MAX)
2397 /* Quite wrong but no good choices. */
2398 if ((numtype & IS_NUMBER_INFINITY)) {
2399 return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX;
2400 } else if ((numtype & IS_NUMBER_NAN)) {
2401 return 0; /* So wrong. */
2405 if (ckWARN(WARN_NUMERIC))
2408 return I_V(Atof(ptr));
2412 if (SvTHINKFIRST(sv)) {
2413 #ifdef PERL_OLD_COPY_ON_WRITE
2415 sv_force_normal_flags(sv, 0);
2418 if (SvREADONLY(sv) && !SvOK(sv)) {
2419 if (ckWARN(WARN_UNINITIALIZED))
2426 if (S_sv_2iuv_common(aTHX_ sv))
2430 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2431 PTR2UV(sv),SvIVX(sv)));
2432 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2436 =for apidoc sv_2uv_flags
2438 Return the unsigned integer value of an SV, doing any necessary string
2439 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2440 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2446 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2448 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2450 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2456 if (flags & SV_SKIP_OVERLOAD)
2458 tmpstr = AMG_CALLunary(sv, numer_amg);
2459 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2460 return SvUV(tmpstr);
2463 return PTR2UV(SvRV(sv));
2466 if (SvVALID(sv) || isREGEXP(sv)) {
2467 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2468 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2469 Regexps have no SvIVX and SvNVX fields. */
2470 assert(isREGEXP(sv) || SvPOKp(sv));
2473 const char * const ptr =
2474 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2476 = grok_number(ptr, SvCUR(sv), &value);
2478 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2479 == IS_NUMBER_IN_UV) {
2480 /* It's definitely an integer */
2481 if (!(numtype & IS_NUMBER_NEG))
2485 /* Quite wrong but no good choices. */
2486 if ((numtype & IS_NUMBER_INFINITY)) {
2487 return UV_MAX; /* So wrong. */
2488 } else if ((numtype & IS_NUMBER_NAN)) {
2489 return 0; /* So wrong. */
2493 if (ckWARN(WARN_NUMERIC))
2496 return U_V(Atof(ptr));
2500 if (SvTHINKFIRST(sv)) {
2501 #ifdef PERL_OLD_COPY_ON_WRITE
2503 sv_force_normal_flags(sv, 0);
2506 if (SvREADONLY(sv) && !SvOK(sv)) {
2507 if (ckWARN(WARN_UNINITIALIZED))
2514 if (S_sv_2iuv_common(aTHX_ sv))
2518 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2519 PTR2UV(sv),SvUVX(sv)));
2520 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2524 =for apidoc sv_2nv_flags
2526 Return the num value of an SV, doing any necessary string or integer
2527 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2528 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2534 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2536 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2538 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2539 && SvTYPE(sv) != SVt_PVFM);
2540 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2541 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2542 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2543 Regexps have no SvIVX and SvNVX fields. */
2545 if (flags & SV_GMAGIC)
2549 if (SvPOKp(sv) && !SvIOKp(sv)) {
2550 ptr = SvPVX_const(sv);
2552 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2553 !grok_number(ptr, SvCUR(sv), NULL))
2559 return (NV)SvUVX(sv);
2561 return (NV)SvIVX(sv);
2567 ptr = RX_WRAPPED((REGEXP *)sv);
2570 assert(SvTYPE(sv) >= SVt_PVMG);
2571 /* This falls through to the report_uninit near the end of the
2573 } else if (SvTHINKFIRST(sv)) {
2578 if (flags & SV_SKIP_OVERLOAD)
2580 tmpstr = AMG_CALLunary(sv, numer_amg);
2581 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2582 return SvNV(tmpstr);
2585 return PTR2NV(SvRV(sv));
2587 #ifdef PERL_OLD_COPY_ON_WRITE
2589 sv_force_normal_flags(sv, 0);
2592 if (SvREADONLY(sv) && !SvOK(sv)) {
2593 if (ckWARN(WARN_UNINITIALIZED))
2598 if (SvTYPE(sv) < SVt_NV) {
2599 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2600 sv_upgrade(sv, SVt_NV);
2602 STORE_NUMERIC_LOCAL_SET_STANDARD();
2603 PerlIO_printf(Perl_debug_log,
2604 "0x%"UVxf" num(%" NVgf ")\n",
2605 PTR2UV(sv), SvNVX(sv));
2606 RESTORE_NUMERIC_LOCAL();
2609 else if (SvTYPE(sv) < SVt_PVNV)
2610 sv_upgrade(sv, SVt_PVNV);
2615 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2616 #ifdef NV_PRESERVES_UV
2622 /* Only set the public NV OK flag if this NV preserves the IV */
2623 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2625 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2626 : (SvIVX(sv) == I_V(SvNVX(sv))))
2632 else if (SvPOKp(sv)) {
2634 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2635 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2637 #ifdef NV_PRESERVES_UV
2638 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2639 == IS_NUMBER_IN_UV) {
2640 /* It's definitely an integer */
2641 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2643 if ((numtype & IS_NUMBER_INFINITY)) {
2644 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2645 } else if ((numtype & IS_NUMBER_NAN)) {
2646 SvNV_set(sv, NV_NAN);
2648 SvNV_set(sv, Atof(SvPVX_const(sv)));
2655 SvNV_set(sv, Atof(SvPVX_const(sv)));
2656 /* Only set the public NV OK flag if this NV preserves the value in
2657 the PV at least as well as an IV/UV would.
2658 Not sure how to do this 100% reliably. */
2659 /* if that shift count is out of range then Configure's test is
2660 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2662 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2663 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2664 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2665 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2666 /* Can't use strtol etc to convert this string, so don't try.
2667 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2670 /* value has been set. It may not be precise. */
2671 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2672 /* 2s complement assumption for (UV)IV_MIN */
2673 SvNOK_on(sv); /* Integer is too negative. */
2678 if (numtype & IS_NUMBER_NEG) {
2679 SvIV_set(sv, -(IV)value);
2680 } else if (value <= (UV)IV_MAX) {
2681 SvIV_set(sv, (IV)value);
2683 SvUV_set(sv, value);
2687 if (numtype & IS_NUMBER_NOT_INT) {
2688 /* I believe that even if the original PV had decimals,
2689 they are lost beyond the limit of the FP precision.
2690 However, neither is canonical, so both only get p
2691 flags. NWC, 2000/11/25 */
2692 /* Both already have p flags, so do nothing */
2694 const NV nv = SvNVX(sv);
2695 /* XXX should this spot have NAN_COMPARE_BROKEN, too? */
2696 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2697 if (SvIVX(sv) == I_V(nv)) {
2700 /* It had no "." so it must be integer. */
2704 /* between IV_MAX and NV(UV_MAX).
2705 Could be slightly > UV_MAX */
2707 if (numtype & IS_NUMBER_NOT_INT) {
2708 /* UV and NV both imprecise. */
2710 const UV nv_as_uv = U_V(nv);
2712 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2721 /* It might be more code efficient to go through the entire logic above
2722 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2723 gets complex and potentially buggy, so more programmer efficient
2724 to do it this way, by turning off the public flags: */
2726 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2727 #endif /* NV_PRESERVES_UV */
2730 if (isGV_with_GP(sv)) {
2731 glob_2number(MUTABLE_GV(sv));
2735 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2737 assert (SvTYPE(sv) >= SVt_NV);
2738 /* Typically the caller expects that sv_any is not NULL now. */
2739 /* XXX Ilya implies that this is a bug in callers that assume this
2740 and ideally should be fixed. */
2744 STORE_NUMERIC_LOCAL_SET_STANDARD();
2745 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n",
2746 PTR2UV(sv), SvNVX(sv));
2747 RESTORE_NUMERIC_LOCAL();
2755 Return an SV with the numeric value of the source SV, doing any necessary
2756 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2757 access this function.
2763 Perl_sv_2num(pTHX_ SV *const sv)
2765 PERL_ARGS_ASSERT_SV_2NUM;
2770 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2771 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2772 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2773 return sv_2num(tmpsv);
2775 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2778 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2779 * UV as a string towards the end of buf, and return pointers to start and
2782 * We assume that buf is at least TYPE_CHARS(UV) long.
2786 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2788 char *ptr = buf + TYPE_CHARS(UV);
2789 char * const ebuf = ptr;
2792 PERL_ARGS_ASSERT_UIV_2BUF;
2804 *--ptr = '0' + (char)(uv % 10);
2812 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2813 * infinity or a not-a-number, writes the appropriate strings to the
2814 * buffer, including a zero byte. On success returns the written length,
2815 * excluding the zero byte, on failure (not an infinity, not a nan, or the
2816 * maxlen too small) returns zero. */
2818 S_infnan_2pv(NV nv, char* buffer, size_t maxlen) {
2819 /* XXX this should be an assert */
2820 if (maxlen < 4) /* "Inf\0", "NaN\0" */
2824 /* isnan must be first due to NAN_COMPARE_BROKEN builds, since NAN might
2825 use the broken for NAN >/< ops in the inf check, and then the inf
2826 check returns true for NAN on NAN_COMPARE_BROKEN compilers */
2827 if (Perl_isnan(nv)) {
2831 /* XXX optionally output the payload mantissa bits as
2832 * "(unsigned)" (to match the nan("...") C99 function,
2833 * or maybe as "(0xhhh...)" would make more sense...
2834 * provide a format string so that the user can decide?
2835 * NOTE: would affect the maxlen and assert() logic.*/
2837 else if (Perl_isinf(nv)) {
2839 if (maxlen < 5) /* "-Inf\0" */
2850 assert((s == buffer + 3) || (s == buffer + 4));
2852 return s - buffer - 1; /* -1: excluding the zero byte */
2857 =for apidoc sv_2pv_flags
2859 Returns a pointer to the string value of an SV, and sets *lp to its length.
2860 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2861 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2862 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2868 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2872 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2874 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2875 && SvTYPE(sv) != SVt_PVFM);
2876 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2881 if (flags & SV_SKIP_OVERLOAD)
2883 tmpstr = AMG_CALLunary(sv, string_amg);
2884 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2885 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2887 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2891 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2892 if (flags & SV_CONST_RETURN) {
2893 pv = (char *) SvPVX_const(tmpstr);
2895 pv = (flags & SV_MUTABLE_RETURN)
2896 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2899 *lp = SvCUR(tmpstr);
2901 pv = sv_2pv_flags(tmpstr, lp, flags);
2914 SV *const referent = SvRV(sv);
2918 retval = buffer = savepvn("NULLREF", len);
2919 } else if (SvTYPE(referent) == SVt_REGEXP &&
2920 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2921 amagic_is_enabled(string_amg))) {
2922 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2926 /* If the regex is UTF-8 we want the containing scalar to
2927 have an UTF-8 flag too */
2934 *lp = RX_WRAPLEN(re);
2936 return RX_WRAPPED(re);
2938 const char *const typestr = sv_reftype(referent, 0);
2939 const STRLEN typelen = strlen(typestr);
2940 UV addr = PTR2UV(referent);
2941 const char *stashname = NULL;
2942 STRLEN stashnamelen = 0; /* hush, gcc */
2943 const char *buffer_end;
2945 if (SvOBJECT(referent)) {
2946 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2949 stashname = HEK_KEY(name);
2950 stashnamelen = HEK_LEN(name);
2952 if (HEK_UTF8(name)) {
2958 stashname = "__ANON__";
2961 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2962 + 2 * sizeof(UV) + 2 /* )\0 */;
2964 len = typelen + 3 /* (0x */
2965 + 2 * sizeof(UV) + 2 /* )\0 */;
2968 Newx(buffer, len, char);
2969 buffer_end = retval = buffer + len;
2971 /* Working backwards */
2975 *--retval = PL_hexdigit[addr & 15];
2976 } while (addr >>= 4);
2982 memcpy(retval, typestr, typelen);
2986 retval -= stashnamelen;
2987 memcpy(retval, stashname, stashnamelen);
2989 /* retval may not necessarily have reached the start of the
2991 assert (retval >= buffer);
2993 len = buffer_end - retval - 1; /* -1 for that \0 */
3005 if (flags & SV_MUTABLE_RETURN)
3006 return SvPVX_mutable(sv);
3007 if (flags & SV_CONST_RETURN)
3008 return (char *)SvPVX_const(sv);
3013 /* I'm assuming that if both IV and NV are equally valid then
3014 converting the IV is going to be more efficient */
3015 const U32 isUIOK = SvIsUV(sv);
3016 char buf[TYPE_CHARS(UV)];
3020 if (SvTYPE(sv) < SVt_PVIV)
3021 sv_upgrade(sv, SVt_PVIV);
3022 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3024 /* inlined from sv_setpvn */
3025 s = SvGROW_mutable(sv, len + 1);
3026 Move(ptr, s, len, char);
3031 else if (SvNOK(sv)) {
3032 if (SvTYPE(sv) < SVt_PVNV)
3033 sv_upgrade(sv, SVt_PVNV);
3034 if (SvNVX(sv) == 0.0
3035 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3036 && !Perl_isnan(SvNVX(sv))
3039 s = SvGROW_mutable(sv, 2);
3043 /* The +20 is pure guesswork. Configure test needed. --jhi */
3044 STRLEN size = NV_DIG + 20;
3046 s = SvGROW_mutable(sv, size);
3048 len = S_infnan_2pv(SvNVX(sv), s, size);
3053 /* some Xenix systems wipe out errno here */
3055 #ifndef USE_LOCALE_NUMERIC
3056 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3061 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
3062 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3064 /* If the radix character is UTF-8, and actually is in the
3065 * output, turn on the UTF-8 flag for the scalar */
3066 if (PL_numeric_local
3067 && PL_numeric_radix_sv && SvUTF8(PL_numeric_radix_sv)
3068 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
3072 RESTORE_LC_NUMERIC();
3075 /* We don't call SvPOK_on(), because it may come to
3076 * pass that the locale changes so that the
3077 * stringification we just did is no longer correct. We
3078 * will have to re-stringify every time it is needed */
3085 else if (isGV_with_GP(sv)) {
3086 GV *const gv = MUTABLE_GV(sv);
3087 SV *const buffer = sv_newmortal();
3089 gv_efullname3(buffer, gv, "*");
3091 assert(SvPOK(buffer));
3095 *lp = SvCUR(buffer);
3096 return SvPVX(buffer);
3098 else if (isREGEXP(sv)) {
3099 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
3100 return RX_WRAPPED((REGEXP *)sv);
3105 if (flags & SV_UNDEF_RETURNS_NULL)
3107 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3109 /* Typically the caller expects that sv_any is not NULL now. */
3110 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3111 sv_upgrade(sv, SVt_PV);
3116 const STRLEN len = s - SvPVX_const(sv);
3121 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3122 PTR2UV(sv),SvPVX_const(sv)));
3123 if (flags & SV_CONST_RETURN)
3124 return (char *)SvPVX_const(sv);
3125 if (flags & SV_MUTABLE_RETURN)
3126 return SvPVX_mutable(sv);
3131 =for apidoc sv_copypv
3133 Copies a stringified representation of the source SV into the
3134 destination SV. Automatically performs any necessary mg_get and
3135 coercion of numeric values into strings. Guaranteed to preserve
3136 UTF8 flag even from overloaded objects. Similar in nature to
3137 sv_2pv[_flags] but operates directly on an SV instead of just the
3138 string. Mostly uses sv_2pv_flags to do its work, except when that
3139 would lose the UTF-8'ness of the PV.
3141 =for apidoc sv_copypv_nomg
3143 Like sv_copypv, but doesn't invoke get magic first.
3145 =for apidoc sv_copypv_flags
3147 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3154 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3156 PERL_ARGS_ASSERT_SV_COPYPV;
3158 sv_copypv_flags(dsv, ssv, 0);
3162 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3167 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3169 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3170 sv_setpvn(dsv,s,len);
3178 =for apidoc sv_2pvbyte
3180 Return a pointer to the byte-encoded representation of the SV, and set *lp
3181 to its length. May cause the SV to be downgraded from UTF-8 as a
3184 Usually accessed via the C<SvPVbyte> macro.
3190 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3192 PERL_ARGS_ASSERT_SV_2PVBYTE;
3195 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3196 || isGV_with_GP(sv) || SvROK(sv)) {
3197 SV *sv2 = sv_newmortal();
3198 sv_copypv_nomg(sv2,sv);
3201 sv_utf8_downgrade(sv,0);
3202 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3206 =for apidoc sv_2pvutf8
3208 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3209 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3211 Usually accessed via the C<SvPVutf8> macro.
3217 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3219 PERL_ARGS_ASSERT_SV_2PVUTF8;
3221 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3222 || isGV_with_GP(sv) || SvROK(sv))
3223 sv = sv_mortalcopy(sv);
3226 sv_utf8_upgrade_nomg(sv);
3227 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3232 =for apidoc sv_2bool
3234 This macro is only used by sv_true() or its macro equivalent, and only if
3235 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3236 It calls sv_2bool_flags with the SV_GMAGIC flag.
3238 =for apidoc sv_2bool_flags
3240 This function is only used by sv_true() and friends, and only if
3241 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3242 contain SV_GMAGIC, then it does an mg_get() first.
3249 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3251 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3254 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3260 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3261 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3264 if(SvGMAGICAL(sv)) {
3266 goto restart; /* call sv_2bool */
3268 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3269 else if(!SvOK(sv)) {
3272 else if(SvPOK(sv)) {
3273 svb = SvPVXtrue(sv);
3275 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3276 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3277 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3281 goto restart; /* call sv_2bool_nomg */
3286 return SvRV(sv) != 0;
3290 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3291 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3295 =for apidoc sv_utf8_upgrade
3297 Converts the PV of an SV to its UTF-8-encoded form.
3298 Forces the SV to string form if it is not already.
3299 Will C<mg_get> on C<sv> if appropriate.
3300 Always sets the SvUTF8 flag to avoid future validity checks even
3301 if the whole string is the same in UTF-8 as not.
3302 Returns the number of bytes in the converted string
3304 This is not a general purpose byte encoding to Unicode interface:
3305 use the Encode extension for that.
3307 =for apidoc sv_utf8_upgrade_nomg
3309 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3311 =for apidoc sv_utf8_upgrade_flags
3313 Converts the PV of an SV to its UTF-8-encoded form.
3314 Forces the SV to string form if it is not already.
3315 Always sets the SvUTF8 flag to avoid future validity checks even
3316 if all the bytes are invariant in UTF-8.
3317 If C<flags> has C<SV_GMAGIC> bit set,
3318 will C<mg_get> on C<sv> if appropriate, else not.
3320 If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
3321 will expand when converted to UTF-8, and skips the extra work of checking for
3322 that. Typically this flag is used by a routine that has already parsed the
3323 string and found such characters, and passes this information on so that the
3324 work doesn't have to be repeated.
3326 Returns the number of bytes in the converted string.
3328 This is not a general purpose byte encoding to Unicode interface:
3329 use the Encode extension for that.
3331 =for apidoc sv_utf8_upgrade_flags_grow
3333 Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is
3334 the number of unused bytes the string of 'sv' is guaranteed to have free after
3335 it upon return. This allows the caller to reserve extra space that it intends
3336 to fill, to avoid extra grows.
3338 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3339 are implemented in terms of this function.
3341 Returns the number of bytes in the converted string (not including the spares).
3345 (One might think that the calling routine could pass in the position of the
3346 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3347 have to be found again. But that is not the case, because typically when the
3348 caller is likely to use this flag, it won't be calling this routine unless it
3349 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3350 and just use bytes. But some things that do fit into a byte are variants in
3351 utf8, and the caller may not have been keeping track of these.)
3353 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3354 C<NUL> isn't guaranteed due to having other routines do the work in some input
3355 cases, or if the input is already flagged as being in utf8.
3357 The speed of this could perhaps be improved for many cases if someone wanted to
3358 write a fast function that counts the number of variant characters in a string,
3359 especially if it could return the position of the first one.
3364 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3366 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3368 if (sv == &PL_sv_undef)
3370 if (!SvPOK_nog(sv)) {
3372 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3373 (void) sv_2pv_flags(sv,&len, flags);
3375 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3379 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3384 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3389 S_sv_uncow(aTHX_ sv, 0);
3392 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3393 sv_recode_to_utf8(sv, PL_encoding);
3394 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3398 if (SvCUR(sv) == 0) {
3399 if (extra) SvGROW(sv, extra);
3400 } else { /* Assume Latin-1/EBCDIC */
3401 /* This function could be much more efficient if we
3402 * had a FLAG in SVs to signal if there are any variant
3403 * chars in the PV. Given that there isn't such a flag
3404 * make the loop as fast as possible (although there are certainly ways
3405 * to speed this up, eg. through vectorization) */
3406 U8 * s = (U8 *) SvPVX_const(sv);
3407 U8 * e = (U8 *) SvEND(sv);
3409 STRLEN two_byte_count = 0;
3411 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3413 /* See if really will need to convert to utf8. We mustn't rely on our
3414 * incoming SV being well formed and having a trailing '\0', as certain
3415 * code in pp_formline can send us partially built SVs. */
3419 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3421 t--; /* t already incremented; re-point to first variant */
3426 /* utf8 conversion not needed because all are invariants. Mark as
3427 * UTF-8 even if no variant - saves scanning loop */
3429 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3434 /* Here, the string should be converted to utf8, either because of an
3435 * input flag (two_byte_count = 0), or because a character that
3436 * requires 2 bytes was found (two_byte_count = 1). t points either to
3437 * the beginning of the string (if we didn't examine anything), or to
3438 * the first variant. In either case, everything from s to t - 1 will
3439 * occupy only 1 byte each on output.
3441 * There are two main ways to convert. One is to create a new string
3442 * and go through the input starting from the beginning, appending each
3443 * converted value onto the new string as we go along. It's probably
3444 * best to allocate enough space in the string for the worst possible
3445 * case rather than possibly running out of space and having to
3446 * reallocate and then copy what we've done so far. Since everything
3447 * from s to t - 1 is invariant, the destination can be initialized
3448 * with these using a fast memory copy
3450 * The other way is to figure out exactly how big the string should be
3451 * by parsing the entire input. Then you don't have to make it big
3452 * enough to handle the worst possible case, and more importantly, if
3453 * the string you already have is large enough, you don't have to
3454 * allocate a new string, you can copy the last character in the input
3455 * string to the final position(s) that will be occupied by the
3456 * converted string and go backwards, stopping at t, since everything
3457 * before that is invariant.
3459 * There are advantages and disadvantages to each method.
3461 * In the first method, we can allocate a new string, do the memory
3462 * copy from the s to t - 1, and then proceed through the rest of the
3463 * string byte-by-byte.
3465 * In the second method, we proceed through the rest of the input
3466 * string just calculating how big the converted string will be. Then
3467 * there are two cases:
3468 * 1) if the string has enough extra space to handle the converted
3469 * value. We go backwards through the string, converting until we
3470 * get to the position we are at now, and then stop. If this
3471 * position is far enough along in the string, this method is
3472 * faster than the other method. If the memory copy were the same
3473 * speed as the byte-by-byte loop, that position would be about
3474 * half-way, as at the half-way mark, parsing to the end and back
3475 * is one complete string's parse, the same amount as starting
3476 * over and going all the way through. Actually, it would be
3477 * somewhat less than half-way, as it's faster to just count bytes
3478 * than to also copy, and we don't have the overhead of allocating
3479 * a new string, changing the scalar to use it, and freeing the
3480 * existing one. But if the memory copy is fast, the break-even
3481 * point is somewhere after half way. The counting loop could be
3482 * sped up by vectorization, etc, to move the break-even point
3483 * further towards the beginning.
3484 * 2) if the string doesn't have enough space to handle the converted
3485 * value. A new string will have to be allocated, and one might
3486 * as well, given that, start from the beginning doing the first
3487 * method. We've spent extra time parsing the string and in
3488 * exchange all we've gotten is that we know precisely how big to
3489 * make the new one. Perl is more optimized for time than space,
3490 * so this case is a loser.
3491 * So what I've decided to do is not use the 2nd method unless it is
3492 * guaranteed that a new string won't have to be allocated, assuming
3493 * the worst case. I also decided not to put any more conditions on it
3494 * than this, for now. It seems likely that, since the worst case is
3495 * twice as big as the unknown portion of the string (plus 1), we won't
3496 * be guaranteed enough space, causing us to go to the first method,
3497 * unless the string is short, or the first variant character is near
3498 * the end of it. In either of these cases, it seems best to use the
3499 * 2nd method. The only circumstance I can think of where this would
3500 * be really slower is if the string had once had much more data in it
3501 * than it does now, but there is still a substantial amount in it */
3504 STRLEN invariant_head = t - s;
3505 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3506 if (SvLEN(sv) < size) {
3508 /* Here, have decided to allocate a new string */
3513 Newx(dst, size, U8);
3515 /* If no known invariants at the beginning of the input string,
3516 * set so starts from there. Otherwise, can use memory copy to
3517 * get up to where we are now, and then start from here */
3519 if (invariant_head == 0) {
3522 Copy(s, dst, invariant_head, char);
3523 d = dst + invariant_head;
3527 append_utf8_from_native_byte(*t, &d);
3531 SvPV_free(sv); /* No longer using pre-existing string */
3532 SvPV_set(sv, (char*)dst);
3533 SvCUR_set(sv, d - dst);
3534 SvLEN_set(sv, size);
3537 /* Here, have decided to get the exact size of the string.
3538 * Currently this happens only when we know that there is
3539 * guaranteed enough space to fit the converted string, so
3540 * don't have to worry about growing. If two_byte_count is 0,
3541 * then t points to the first byte of the string which hasn't
3542 * been examined yet. Otherwise two_byte_count is 1, and t
3543 * points to the first byte in the string that will expand to
3544 * two. Depending on this, start examining at t or 1 after t.
3547 U8 *d = t + two_byte_count;
3550 /* Count up the remaining bytes that expand to two */
3553 const U8 chr = *d++;
3554 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3557 /* The string will expand by just the number of bytes that
3558 * occupy two positions. But we are one afterwards because of
3559 * the increment just above. This is the place to put the
3560 * trailing NUL, and to set the length before we decrement */
3562 d += two_byte_count;
3563 SvCUR_set(sv, d - s);
3567 /* Having decremented d, it points to the position to put the
3568 * very last byte of the expanded string. Go backwards through
3569 * the string, copying and expanding as we go, stopping when we
3570 * get to the part that is invariant the rest of the way down */
3574 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3577 *d-- = UTF8_EIGHT_BIT_LO(*e);
3578 *d-- = UTF8_EIGHT_BIT_HI(*e);
3584 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3585 /* Update pos. We do it at the end rather than during
3586 * the upgrade, to avoid slowing down the common case
3587 * (upgrade without pos).
3588 * pos can be stored as either bytes or characters. Since
3589 * this was previously a byte string we can just turn off
3590 * the bytes flag. */
3591 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3593 mg->mg_flags &= ~MGf_BYTES;
3595 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3596 magic_setutf8(sv,mg); /* clear UTF8 cache */
3601 /* Mark as UTF-8 even if no variant - saves scanning loop */
3607 =for apidoc sv_utf8_downgrade
3609 Attempts to convert the PV of an SV from characters to bytes.
3610 If the PV contains a character that cannot fit
3611 in a byte, this conversion will fail;
3612 in this case, either returns false or, if C<fail_ok> is not
3615 This is not a general purpose Unicode to byte encoding interface:
3616 use the Encode extension for that.
3622 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3624 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3626 if (SvPOKp(sv) && SvUTF8(sv)) {
3630 int mg_flags = SV_GMAGIC;
3633 S_sv_uncow(aTHX_ sv, 0);
3635 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3637 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3638 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3639 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3640 SV_GMAGIC|SV_CONST_RETURN);
3641 mg_flags = 0; /* sv_pos_b2u does get magic */
3643 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3644 magic_setutf8(sv,mg); /* clear UTF8 cache */
3647 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3649 if (!utf8_to_bytes(s, &len)) {
3654 Perl_croak(aTHX_ "Wide character in %s",
3657 Perl_croak(aTHX_ "Wide character");
3668 =for apidoc sv_utf8_encode
3670 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3671 flag off so that it looks like octets again.
3677 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3679 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3681 if (SvREADONLY(sv)) {
3682 sv_force_normal_flags(sv, 0);
3684 (void) sv_utf8_upgrade(sv);
3689 =for apidoc sv_utf8_decode
3691 If the PV of the SV is an octet sequence in UTF-8
3692 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3693 so that it looks like a character. If the PV contains only single-byte
3694 characters, the C<SvUTF8> flag stays off.
3695 Scans PV for validity and returns false if the PV is invalid UTF-8.
3701 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3703 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3706 const U8 *start, *c;
3709 /* The octets may have got themselves encoded - get them back as
3712 if (!sv_utf8_downgrade(sv, TRUE))
3715 /* it is actually just a matter of turning the utf8 flag on, but
3716 * we want to make sure everything inside is valid utf8 first.
3718 c = start = (const U8 *) SvPVX_const(sv);
3719 if (!is_utf8_string(c, SvCUR(sv)))
3721 e = (const U8 *) SvEND(sv);
3724 if (!UTF8_IS_INVARIANT(ch)) {
3729 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3730 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3731 after this, clearing pos. Does anything on CPAN
3733 /* adjust pos to the start of a UTF8 char sequence */
3734 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3736 I32 pos = mg->mg_len;
3738 for (c = start + pos; c > start; c--) {
3739 if (UTF8_IS_START(*c))
3742 mg->mg_len = c - start;
3745 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3746 magic_setutf8(sv,mg); /* clear UTF8 cache */
3753 =for apidoc sv_setsv
3755 Copies the contents of the source SV C<ssv> into the destination SV
3756 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3757 function if the source SV needs to be reused. Does not handle 'set' magic on
3758 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3759 performs a copy-by-value, obliterating any previous content of the
3762 You probably want to use one of the assortment of wrappers, such as
3763 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3764 C<SvSetMagicSV_nosteal>.
3766 =for apidoc sv_setsv_flags
3768 Copies the contents of the source SV C<ssv> into the destination SV
3769 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3770 function if the source SV needs to be reused. Does not handle 'set' magic.
3771 Loosely speaking, it performs a copy-by-value, obliterating any previous
3772 content of the destination.
3773 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3774 C<ssv> if appropriate, else not. If the C<flags>
3775 parameter has the C<SV_NOSTEAL> bit set then the
3776 buffers of temps will not be stolen. <sv_setsv>
3777 and C<sv_setsv_nomg> are implemented in terms of this function.
3779 You probably want to use one of the assortment of wrappers, such as
3780 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3781 C<SvSetMagicSV_nosteal>.
3783 This is the primary function for copying scalars, and most other
3784 copy-ish functions and macros use this underneath.
3790 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3792 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3793 HV *old_stash = NULL;
3795 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3797 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3798 const char * const name = GvNAME(sstr);
3799 const STRLEN len = GvNAMELEN(sstr);
3801 if (dtype >= SVt_PV) {
3807 SvUPGRADE(dstr, SVt_PVGV);
3808 (void)SvOK_off(dstr);
3809 isGV_with_GP_on(dstr);
3811 GvSTASH(dstr) = GvSTASH(sstr);
3813 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3814 gv_name_set(MUTABLE_GV(dstr), name, len,
3815 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3816 SvFAKE_on(dstr); /* can coerce to non-glob */
3819 if(GvGP(MUTABLE_GV(sstr))) {
3820 /* If source has method cache entry, clear it */
3822 SvREFCNT_dec(GvCV(sstr));
3823 GvCV_set(sstr, NULL);
3826 /* If source has a real method, then a method is
3829 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3835 /* If dest already had a real method, that's a change as well */
3837 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3838 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3843 /* We don't need to check the name of the destination if it was not a
3844 glob to begin with. */
3845 if(dtype == SVt_PVGV) {
3846 const char * const name = GvNAME((const GV *)dstr);
3849 /* The stash may have been detached from the symbol table, so
3851 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3855 const STRLEN len = GvNAMELEN(dstr);
3856 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3857 || (len == 1 && name[0] == ':')) {
3860 /* Set aside the old stash, so we can reset isa caches on
3862 if((old_stash = GvHV(dstr)))
3863 /* Make sure we do not lose it early. */
3864 SvREFCNT_inc_simple_void_NN(
3865 sv_2mortal((SV *)old_stash)
3870 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3873 gp_free(MUTABLE_GV(dstr));
3874 GvINTRO_off(dstr); /* one-shot flag */
3875 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3876 if (SvTAINTED(sstr))
3878 if (GvIMPORTED(dstr) != GVf_IMPORTED
3879 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3881 GvIMPORTED_on(dstr);
3884 if(mro_changes == 2) {
3885 if (GvAV((const GV *)sstr)) {
3887 SV * const sref = (SV *)GvAV((const GV *)dstr);
3888 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3889 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3890 AV * const ary = newAV();
3891 av_push(ary, mg->mg_obj); /* takes the refcount */
3892 mg->mg_obj = (SV *)ary;
3894 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3896 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3898 mro_isa_changed_in(GvSTASH(dstr));
3900 else if(mro_changes == 3) {
3901 HV * const stash = GvHV(dstr);
3902 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3908 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3909 if (GvIO(dstr) && dtype == SVt_PVGV) {
3910 DEBUG_o(Perl_deb(aTHX_
3911 "glob_assign_glob clearing PL_stashcache\n"));
3912 /* It's a cache. It will rebuild itself quite happily.
3913 It's a lot of effort to work out exactly which key (or keys)
3914 might be invalidated by the creation of the this file handle.
3916 hv_clear(PL_stashcache);
3922 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3924 SV * const sref = SvRV(sstr);
3926 const int intro = GvINTRO(dstr);
3929 const U32 stype = SvTYPE(sref);
3931 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3934 GvINTRO_off(dstr); /* one-shot flag */
3935 GvLINE(dstr) = CopLINE(PL_curcop);
3936 GvEGV(dstr) = MUTABLE_GV(dstr);
3941 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3942 import_flag = GVf_IMPORTED_CV;
3945 location = (SV **) &GvHV(dstr);
3946 import_flag = GVf_IMPORTED_HV;
3949 location = (SV **) &GvAV(dstr);
3950 import_flag = GVf_IMPORTED_AV;
3953 location = (SV **) &GvIOp(dstr);
3956 location = (SV **) &GvFORM(dstr);
3959 location = &GvSV(dstr);
3960 import_flag = GVf_IMPORTED_SV;
3963 if (stype == SVt_PVCV) {
3964 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3965 if (GvCVGEN(dstr)) {
3966 SvREFCNT_dec(GvCV(dstr));
3967 GvCV_set(dstr, NULL);
3968 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3971 /* SAVEt_GVSLOT takes more room on the savestack and has more
3972 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3973 leave_scope needs access to the GV so it can reset method
3974 caches. We must use SAVEt_GVSLOT whenever the type is
3975 SVt_PVCV, even if the stash is anonymous, as the stash may
3976 gain a name somehow before leave_scope. */
3977 if (stype == SVt_PVCV) {
3978 /* There is no save_pushptrptrptr. Creating it for this
3979 one call site would be overkill. So inline the ss add
3983 SS_ADD_PTR(location);
3984 SS_ADD_PTR(SvREFCNT_inc(*location));
3985 SS_ADD_UV(SAVEt_GVSLOT);
3988 else SAVEGENERICSV(*location);
3991 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3992 CV* const cv = MUTABLE_CV(*location);
3994 if (!GvCVGEN((const GV *)dstr) &&
3995 (CvROOT(cv) || CvXSUB(cv)) &&
3996 /* redundant check that avoids creating the extra SV
3997 most of the time: */
3998 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
4000 SV * const new_const_sv =
4001 CvCONST((const CV *)sref)
4002 ? cv_const_sv((const CV *)sref)
4004 report_redefined_cv(
4005 sv_2mortal(Perl_newSVpvf(aTHX_
4008 HvNAME_HEK(GvSTASH((const GV *)dstr))
4010 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
4013 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4017 cv_ckproto_len_flags(cv, (const GV *)dstr,
4018 SvPOK(sref) ? CvPROTO(sref) : NULL,
4019 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4020 SvPOK(sref) ? SvUTF8(sref) : 0);
4022 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4023 GvASSUMECV_on(dstr);
4024 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4025 if (intro && GvREFCNT(dstr) > 1) {
4026 /* temporary remove extra savestack's ref */
4028 gv_method_changed(dstr);
4031 else gv_method_changed(dstr);
4034 *location = SvREFCNT_inc_simple_NN(sref);
4035 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4036 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4037 GvFLAGS(dstr) |= import_flag;
4039 if (import_flag == GVf_IMPORTED_SV) {
4042 SS_ADD_PTR(gp_ref(GvGP(dstr)));
4043 SS_ADD_UV(SAVEt_GP_ALIASED_SV
4044 | cBOOL(GvALIASED_SV(dstr)) << 8);
4047 /* Turn off the flag if sref is not referenced elsewhere,
4048 even by weak refs. (SvRMAGICAL is a pessimistic check for
4050 if (SvREFCNT(sref) <= 2 && !SvRMAGICAL(sref))
4051 GvALIASED_SV_off(dstr);
4053 GvALIASED_SV_on(dstr);
4055 if (stype == SVt_PVHV) {
4056 const char * const name = GvNAME((GV*)dstr);
4057 const STRLEN len = GvNAMELEN(dstr);
4060 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4061 || (len == 1 && name[0] == ':')
4063 && (!dref || HvENAME_get(dref))
4066 (HV *)sref, (HV *)dref,
4072 stype == SVt_PVAV && sref != dref
4073 && strEQ(GvNAME((GV*)dstr), "ISA")
4074 /* The stash may have been detached from the symbol table, so
4075 check its name before doing anything. */
4076 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4079 MAGIC * const omg = dref && SvSMAGICAL(dref)
4080 ? mg_find(dref, PERL_MAGIC_isa)
4082 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4083 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4084 AV * const ary = newAV();
4085 av_push(ary, mg->mg_obj); /* takes the refcount */
4086 mg->mg_obj = (SV *)ary;
4089 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4090 SV **svp = AvARRAY((AV *)omg->mg_obj);
4091 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4095 SvREFCNT_inc_simple_NN(*svp++)
4101 SvREFCNT_inc_simple_NN(omg->mg_obj)
4105 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4110 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4112 mg = mg_find(sref, PERL_MAGIC_isa);
4114 /* Since the *ISA assignment could have affected more than
4115 one stash, don't call mro_isa_changed_in directly, but let
4116 magic_clearisa do it for us, as it already has the logic for
4117 dealing with globs vs arrays of globs. */
4119 Perl_magic_clearisa(aTHX_ NULL, mg);
4121 else if (stype == SVt_PVIO) {
4122 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
4123 /* It's a cache. It will rebuild itself quite happily.
4124 It's a lot of effort to work out exactly which key (or keys)
4125 might be invalidated by the creation of the this file handle.
4127 hv_clear(PL_stashcache);
4131 if (!intro) SvREFCNT_dec(dref);
4132 if (SvTAINTED(sstr))
4140 #ifdef PERL_DEBUG_READONLY_COW
4141 # include <sys/mman.h>
4143 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4144 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4148 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4150 struct perl_memory_debug_header * const header =
4151 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4152 const MEM_SIZE len = header->size;
4153 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4154 # ifdef PERL_TRACK_MEMPOOL
4155 if (!header->readonly) header->readonly = 1;
4157 if (mprotect(header, len, PROT_READ))
4158 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4159 header, len, errno);
4163 S_sv_buf_to_rw(pTHX_ SV *sv)
4165 struct perl_memory_debug_header * const header =
4166 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4167 const MEM_SIZE len = header->size;
4168 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4169 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4170 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4171 header, len, errno);
4172 # ifdef PERL_TRACK_MEMPOOL
4173 header->readonly = 0;
4178 # define sv_buf_to_ro(sv) NOOP
4179 # define sv_buf_to_rw(sv) NOOP
4183 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4189 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4194 if (SvIS_FREED(dstr)) {
4195 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4196 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4198 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4200 sstr = &PL_sv_undef;
4201 if (SvIS_FREED(sstr)) {
4202 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4203 (void*)sstr, (void*)dstr);
4205 stype = SvTYPE(sstr);
4206 dtype = SvTYPE(dstr);
4208 /* There's a lot of redundancy below but we're going for speed here */
4213 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4214 (void)SvOK_off(dstr);
4222 sv_upgrade(dstr, SVt_IV);
4226 sv_upgrade(dstr, SVt_PVIV);
4230 goto end_of_first_switch;
4232 (void)SvIOK_only(dstr);
4233 SvIV_set(dstr, SvIVX(sstr));
4236 /* SvTAINTED can only be true if the SV has taint magic, which in
4237 turn means that the SV type is PVMG (or greater). This is the
4238 case statement for SVt_IV, so this cannot be true (whatever gcov
4240 assert(!SvTAINTED(sstr));
4245 if (dtype < SVt_PV && dtype != SVt_IV)
4246 sv_upgrade(dstr, SVt_IV);
4254 sv_upgrade(dstr, SVt_NV);
4258 sv_upgrade(dstr, SVt_PVNV);
4262 goto end_of_first_switch;
4264 SvNV_set(dstr, SvNVX(sstr));
4265 (void)SvNOK_only(dstr);
4266 /* SvTAINTED can only be true if the SV has taint magic, which in
4267 turn means that the SV type is PVMG (or greater). This is the
4268 case statement for SVt_NV, so this cannot be true (whatever gcov
4270 assert(!SvTAINTED(sstr));
4277 sv_upgrade(dstr, SVt_PV);
4280 if (dtype < SVt_PVIV)
4281 sv_upgrade(dstr, SVt_PVIV);
4284 if (dtype < SVt_PVNV)
4285 sv_upgrade(dstr, SVt_PVNV);
4289 const char * const type = sv_reftype(sstr,0);
4291 /* diag_listed_as: Bizarre copy of %s */
4292 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4294 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4296 NOT_REACHED; /* NOTREACHED */
4300 if (dtype < SVt_REGEXP)
4302 if (dtype >= SVt_PV) {
4308 sv_upgrade(dstr, SVt_REGEXP);
4316 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4318 if (SvTYPE(sstr) != stype)
4319 stype = SvTYPE(sstr);
4321 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4322 glob_assign_glob(dstr, sstr, dtype);
4325 if (stype == SVt_PVLV)
4327 if (isREGEXP(sstr)) goto upgregexp;
4328 SvUPGRADE(dstr, SVt_PVNV);
4331 SvUPGRADE(dstr, (svtype)stype);
4333 end_of_first_switch:
4335 /* dstr may have been upgraded. */
4336 dtype = SvTYPE(dstr);
4337 sflags = SvFLAGS(sstr);
4339 if (dtype == SVt_PVCV) {
4340 /* Assigning to a subroutine sets the prototype. */
4343 const char *const ptr = SvPV_const(sstr, len);
4345 SvGROW(dstr, len + 1);
4346 Copy(ptr, SvPVX(dstr), len + 1, char);
4347 SvCUR_set(dstr, len);
4349 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4350 CvAUTOLOAD_off(dstr);
4355 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4356 const char * const type = sv_reftype(dstr,0);
4358 /* diag_listed_as: Cannot copy to %s */
4359 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4361 Perl_croak(aTHX_ "Cannot copy to %s", type);
4362 } else if (sflags & SVf_ROK) {
4363 if (isGV_with_GP(dstr)
4364 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4367 if (GvIMPORTED(dstr) != GVf_IMPORTED
4368 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4370 GvIMPORTED_on(dstr);
4375 glob_assign_glob(dstr, sstr, dtype);
4379 if (dtype >= SVt_PV) {
4380 if (isGV_with_GP(dstr)) {
4381 glob_assign_ref(dstr, sstr);
4384 if (SvPVX_const(dstr)) {
4390 (void)SvOK_off(dstr);
4391 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4392 SvFLAGS(dstr) |= sflags & SVf_ROK;
4393 assert(!(sflags & SVp_NOK));
4394 assert(!(sflags & SVp_IOK));
4395 assert(!(sflags & SVf_NOK));
4396 assert(!(sflags & SVf_IOK));
4398 else if (isGV_with_GP(dstr)) {
4399 if (!(sflags & SVf_OK)) {
4400 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4401 "Undefined value assigned to typeglob");
4404 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4405 if (dstr != (const SV *)gv) {
4406 const char * const name = GvNAME((const GV *)dstr);
4407 const STRLEN len = GvNAMELEN(dstr);
4408 HV *old_stash = NULL;
4409 bool reset_isa = FALSE;
4410 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4411 || (len == 1 && name[0] == ':')) {
4412 /* Set aside the old stash, so we can reset isa caches
4413 on its subclasses. */
4414 if((old_stash = GvHV(dstr))) {
4415 /* Make sure we do not lose it early. */
4416 SvREFCNT_inc_simple_void_NN(
4417 sv_2mortal((SV *)old_stash)
4424 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4425 gp_free(MUTABLE_GV(dstr));
4427 GvGP_set(dstr, gp_ref(GvGP(gv)));
4430 HV * const stash = GvHV(dstr);
4432 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4442 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4443 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4444 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4446 else if (sflags & SVp_POK) {
4447 const STRLEN cur = SvCUR(sstr);
4448 const STRLEN len = SvLEN(sstr);
4451 * We have three basic ways to copy the string:
4457 * Which we choose is based on various factors. The following
4458 * things are listed in order of speed, fastest to slowest:
4460 * - Copying a short string
4461 * - Copy-on-write bookkeeping
4463 * - Copying a long string
4465 * We swipe the string (steal the string buffer) if the SV on the
4466 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4467 * big win on long strings. It should be a win on short strings if
4468 * SvPVX_const(dstr) has to be allocated. If not, it should not
4469 * slow things down, as SvPVX_const(sstr) would have been freed
4472 * We also steal the buffer from a PADTMP (operator target) if it
4473 * is ‘long enough’. For short strings, a swipe does not help
4474 * here, as it causes more malloc calls the next time the target
4475 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4476 * be allocated it is still not worth swiping PADTMPs for short
4477 * strings, as the savings here are small.
4479 * If the rhs is already flagged as a copy-on-write string and COW
4480 * is possible here, we use copy-on-write and make both SVs share
4481 * the string buffer.
4483 * If the rhs is not flagged as copy-on-write, then we see whether
4484 * it is worth upgrading it to such. If the lhs already has a buf-
4485 * fer big enough and the string is short, we skip it and fall back
4486 * to method 3, since memcpy is faster for short strings than the
4487 * later bookkeeping overhead that copy-on-write entails.
4489 * If there is no buffer on the left, or the buffer is too small,
4490 * then we use copy-on-write.
4493 /* Whichever path we take through the next code, we want this true,
4494 and doing it now facilitates the COW check. */
4495 (void)SvPOK_only(dstr);
4499 /* slated for free anyway (and not COW)? */
4500 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4501 /* or a swipable TARG */
4502 || ((sflags & (SVs_PADTMP|SVf_READONLY|SVf_IsCOW))
4504 /* whose buffer is worth stealing */
4505 && CHECK_COWBUF_THRESHOLD(cur,len)
4508 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4509 (!(flags & SV_NOSTEAL)) &&
4510 /* and we're allowed to steal temps */
4511 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4512 len) /* and really is a string */
4513 { /* Passes the swipe test. */
4514 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4516 SvPV_set(dstr, SvPVX_mutable(sstr));
4517 SvLEN_set(dstr, SvLEN(sstr));
4518 SvCUR_set(dstr, SvCUR(sstr));
4521 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4522 SvPV_set(sstr, NULL);
4527 else if (flags & SV_COW_SHARED_HASH_KEYS
4529 #ifdef PERL_OLD_COPY_ON_WRITE
4530 ( sflags & SVf_IsCOW
4531 || ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4532 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4533 && SvTYPE(sstr) >= SVt_PVIV && len
4536 #elif defined(PERL_NEW_COPY_ON_WRITE)
4539 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4540 /* If this is a regular (non-hek) COW, only so
4541 many COW "copies" are possible. */
4542 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4543 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4544 && !(SvFLAGS(dstr) & SVf_BREAK)
4545 && CHECK_COW_THRESHOLD(cur,len) && cur+1 < len
4546 && (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4550 && !(SvFLAGS(dstr) & SVf_BREAK)
4553 /* Either it's a shared hash key, or it's suitable for
4556 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4561 if (!(sflags & SVf_IsCOW)) {
4563 # ifdef PERL_OLD_COPY_ON_WRITE
4564 /* Make the source SV into a loop of 1.
4565 (about to become 2) */
4566 SV_COW_NEXT_SV_SET(sstr, sstr);
4568 CowREFCNT(sstr) = 0;
4572 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4578 # ifdef PERL_OLD_COPY_ON_WRITE
4579 assert (SvTYPE(dstr) >= SVt_PVIV);
4580 /* SvIsCOW_normal */
4581 /* splice us in between source and next-after-source. */
4582 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4583 SV_COW_NEXT_SV_SET(sstr, dstr);
4585 if (sflags & SVf_IsCOW) {
4590 SvPV_set(dstr, SvPVX_mutable(sstr));
4595 /* SvIsCOW_shared_hash */
4596 DEBUG_C(PerlIO_printf(Perl_debug_log,