5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
105 #define MIN(a,b) ((a) < (b) ? (a) : (b))
109 #define MAX(a,b) ((a) > (b) ? (a) : (b))
112 /* this is a chain of data about sub patterns we are processing that
113 need to be handled separately/specially in study_chunk. Its so
114 we can simulate recursion without losing state. */
116 typedef struct scan_frame {
117 regnode *last_regnode; /* last node to process in this frame */
118 regnode *next_regnode; /* next node to process when last is reached */
119 U32 prev_recursed_depth;
120 I32 stopparen; /* what stopparen do we use */
121 U32 is_top_frame; /* what flags do we use? */
123 struct scan_frame *this_prev_frame; /* this previous frame */
124 struct scan_frame *prev_frame; /* previous frame */
125 struct scan_frame *next_frame; /* next frame */
128 /* Certain characters are output as a sequence with the first being a
130 #define isBACKSLASHED_PUNCT(c) \
131 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
134 struct RExC_state_t {
135 U32 flags; /* RXf_* are we folding, multilining? */
136 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
137 char *precomp; /* uncompiled string. */
138 char *precomp_end; /* pointer to end of uncompiled string. */
139 REGEXP *rx_sv; /* The SV that is the regexp. */
140 regexp *rx; /* perl core regexp structure */
141 regexp_internal *rxi; /* internal data for regexp object
143 char *start; /* Start of input for compile */
144 char *end; /* End of input for compile */
145 char *parse; /* Input-scan pointer. */
146 char *adjusted_start; /* 'start', adjusted. See code use */
147 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
148 SSize_t whilem_seen; /* number of WHILEM in this expr */
149 regnode *emit_start; /* Start of emitted-code area */
150 regnode *emit_bound; /* First regnode outside of the
152 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
153 implies compiling, so don't emit */
154 regnode_ssc emit_dummy; /* placeholder for emit to point to;
155 large enough for the largest
156 non-EXACTish node, so can use it as
158 I32 naughty; /* How bad is this pattern? */
159 I32 sawback; /* Did we see \1, ...? */
161 SSize_t size; /* Code size. */
162 I32 npar; /* Capture buffer count, (OPEN) plus
163 one. ("par" 0 is the whole
165 I32 nestroot; /* root parens we are in - used by
169 regnode **open_parens; /* pointers to open parens */
170 regnode **close_parens; /* pointers to close parens */
171 regnode *end_op; /* END node in program */
172 I32 utf8; /* whether the pattern is utf8 or not */
173 I32 orig_utf8; /* whether the pattern was originally in utf8 */
174 /* XXX use this for future optimisation of case
175 * where pattern must be upgraded to utf8. */
176 I32 uni_semantics; /* If a d charset modifier should use unicode
177 rules, even if the pattern is not in
179 HV *paren_names; /* Paren names */
181 regnode **recurse; /* Recurse regops */
182 I32 recurse_count; /* Number of recurse regops we have generated */
183 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
185 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
189 I32 override_recoding;
191 I32 recode_x_to_native;
193 I32 in_multi_char_class;
194 struct reg_code_block *code_blocks; /* positions of literal (?{})
196 int num_code_blocks; /* size of code_blocks[] */
197 int code_index; /* next code_blocks[] slot */
198 SSize_t maxlen; /* mininum possible number of chars in string to match */
199 scan_frame *frame_head;
200 scan_frame *frame_last;
203 #ifdef ADD_TO_REGEXEC
204 char *starttry; /* -Dr: where regtry was called. */
205 #define RExC_starttry (pRExC_state->starttry)
207 SV *runtime_code_qr; /* qr with the runtime code blocks */
209 const char *lastparse;
211 AV *paren_name_list; /* idx -> name */
212 U32 study_chunk_recursed_count;
215 #define RExC_lastparse (pRExC_state->lastparse)
216 #define RExC_lastnum (pRExC_state->lastnum)
217 #define RExC_paren_name_list (pRExC_state->paren_name_list)
218 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
219 #define RExC_mysv (pRExC_state->mysv1)
220 #define RExC_mysv1 (pRExC_state->mysv1)
221 #define RExC_mysv2 (pRExC_state->mysv2)
224 bool seen_unfolded_sharp_s;
229 #define RExC_flags (pRExC_state->flags)
230 #define RExC_pm_flags (pRExC_state->pm_flags)
231 #define RExC_precomp (pRExC_state->precomp)
232 #define RExC_precomp_adj (pRExC_state->precomp_adj)
233 #define RExC_adjusted_start (pRExC_state->adjusted_start)
234 #define RExC_precomp_end (pRExC_state->precomp_end)
235 #define RExC_rx_sv (pRExC_state->rx_sv)
236 #define RExC_rx (pRExC_state->rx)
237 #define RExC_rxi (pRExC_state->rxi)
238 #define RExC_start (pRExC_state->start)
239 #define RExC_end (pRExC_state->end)
240 #define RExC_parse (pRExC_state->parse)
241 #define RExC_whilem_seen (pRExC_state->whilem_seen)
243 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
244 * EXACTF node, hence was parsed under /di rules. If later in the parse,
245 * something forces the pattern into using /ui rules, the sharp s should be
246 * folded into the sequence 'ss', which takes up more space than previously
247 * calculated. This means that the sizing pass needs to be restarted. (The
248 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
249 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
250 * so there is no need to resize [perl #125990]. */
251 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
253 #ifdef RE_TRACK_PATTERN_OFFSETS
254 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
257 #define RExC_emit (pRExC_state->emit)
258 #define RExC_emit_dummy (pRExC_state->emit_dummy)
259 #define RExC_emit_start (pRExC_state->emit_start)
260 #define RExC_emit_bound (pRExC_state->emit_bound)
261 #define RExC_sawback (pRExC_state->sawback)
262 #define RExC_seen (pRExC_state->seen)
263 #define RExC_size (pRExC_state->size)
264 #define RExC_maxlen (pRExC_state->maxlen)
265 #define RExC_npar (pRExC_state->npar)
266 #define RExC_nestroot (pRExC_state->nestroot)
267 #define RExC_extralen (pRExC_state->extralen)
268 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
269 #define RExC_utf8 (pRExC_state->utf8)
270 #define RExC_uni_semantics (pRExC_state->uni_semantics)
271 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
272 #define RExC_open_parens (pRExC_state->open_parens)
273 #define RExC_close_parens (pRExC_state->close_parens)
274 #define RExC_end_op (pRExC_state->end_op)
275 #define RExC_paren_names (pRExC_state->paren_names)
276 #define RExC_recurse (pRExC_state->recurse)
277 #define RExC_recurse_count (pRExC_state->recurse_count)
278 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
279 #define RExC_study_chunk_recursed_bytes \
280 (pRExC_state->study_chunk_recursed_bytes)
281 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
282 #define RExC_contains_locale (pRExC_state->contains_locale)
283 #define RExC_contains_i (pRExC_state->contains_i)
284 #define RExC_override_recoding (pRExC_state->override_recoding)
286 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
288 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
289 #define RExC_frame_head (pRExC_state->frame_head)
290 #define RExC_frame_last (pRExC_state->frame_last)
291 #define RExC_frame_count (pRExC_state->frame_count)
292 #define RExC_strict (pRExC_state->strict)
293 #define RExC_study_started (pRExC_state->study_started)
294 #define RExC_warn_text (pRExC_state->warn_text)
296 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
297 * a flag to disable back-off on the fixed/floating substrings - if it's
298 * a high complexity pattern we assume the benefit of avoiding a full match
299 * is worth the cost of checking for the substrings even if they rarely help.
301 #define RExC_naughty (pRExC_state->naughty)
302 #define TOO_NAUGHTY (10)
303 #define MARK_NAUGHTY(add) \
304 if (RExC_naughty < TOO_NAUGHTY) \
305 RExC_naughty += (add)
306 #define MARK_NAUGHTY_EXP(exp, add) \
307 if (RExC_naughty < TOO_NAUGHTY) \
308 RExC_naughty += RExC_naughty / (exp) + (add)
310 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
311 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
312 ((*s) == '{' && regcurly(s)))
315 * Flags to be passed up and down.
317 #define WORST 0 /* Worst case. */
318 #define HASWIDTH 0x01 /* Known to match non-null strings. */
320 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
321 * character. (There needs to be a case: in the switch statement in regexec.c
322 * for any node marked SIMPLE.) Note that this is not the same thing as
325 #define SPSTART 0x04 /* Starts with * or + */
326 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
327 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
328 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
329 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
330 calcuate sizes as UTF-8 */
332 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
334 /* whether trie related optimizations are enabled */
335 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
336 #define TRIE_STUDY_OPT
337 #define FULL_TRIE_STUDY
343 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
344 #define PBITVAL(paren) (1 << ((paren) & 7))
345 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
346 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
347 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
349 #define REQUIRE_UTF8(flagp) STMT_START { \
352 *flagp = RESTART_PASS1|NEED_UTF8; \
357 /* Change from /d into /u rules, and restart the parse if we've already seen
358 * something whose size would increase as a result, by setting *flagp and
359 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
360 * we've change to /u during the parse. */
361 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
363 if (DEPENDS_SEMANTICS) { \
365 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
366 RExC_uni_semantics = 1; \
367 if (RExC_seen_unfolded_sharp_s) { \
368 *flagp |= RESTART_PASS1; \
369 return restart_retval; \
374 /* This converts the named class defined in regcomp.h to its equivalent class
375 * number defined in handy.h. */
376 #define namedclass_to_classnum(class) ((int) ((class) / 2))
377 #define classnum_to_namedclass(classnum) ((classnum) * 2)
379 #define _invlist_union_complement_2nd(a, b, output) \
380 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
381 #define _invlist_intersection_complement_2nd(a, b, output) \
382 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
384 /* About scan_data_t.
386 During optimisation we recurse through the regexp program performing
387 various inplace (keyhole style) optimisations. In addition study_chunk
388 and scan_commit populate this data structure with information about
389 what strings MUST appear in the pattern. We look for the longest
390 string that must appear at a fixed location, and we look for the
391 longest string that may appear at a floating location. So for instance
396 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
397 strings (because they follow a .* construct). study_chunk will identify
398 both FOO and BAR as being the longest fixed and floating strings respectively.
400 The strings can be composites, for instance
404 will result in a composite fixed substring 'foo'.
406 For each string some basic information is maintained:
408 - offset or min_offset
409 This is the position the string must appear at, or not before.
410 It also implicitly (when combined with minlenp) tells us how many
411 characters must match before the string we are searching for.
412 Likewise when combined with minlenp and the length of the string it
413 tells us how many characters must appear after the string we have
417 Only used for floating strings. This is the rightmost point that
418 the string can appear at. If set to SSize_t_MAX it indicates that the
419 string can occur infinitely far to the right.
422 A pointer to the minimum number of characters of the pattern that the
423 string was found inside. This is important as in the case of positive
424 lookahead or positive lookbehind we can have multiple patterns
429 The minimum length of the pattern overall is 3, the minimum length
430 of the lookahead part is 3, but the minimum length of the part that
431 will actually match is 1. So 'FOO's minimum length is 3, but the
432 minimum length for the F is 1. This is important as the minimum length
433 is used to determine offsets in front of and behind the string being
434 looked for. Since strings can be composites this is the length of the
435 pattern at the time it was committed with a scan_commit. Note that
436 the length is calculated by study_chunk, so that the minimum lengths
437 are not known until the full pattern has been compiled, thus the
438 pointer to the value.
442 In the case of lookbehind the string being searched for can be
443 offset past the start point of the final matching string.
444 If this value was just blithely removed from the min_offset it would
445 invalidate some of the calculations for how many chars must match
446 before or after (as they are derived from min_offset and minlen and
447 the length of the string being searched for).
448 When the final pattern is compiled and the data is moved from the
449 scan_data_t structure into the regexp structure the information
450 about lookbehind is factored in, with the information that would
451 have been lost precalculated in the end_shift field for the
454 The fields pos_min and pos_delta are used to store the minimum offset
455 and the delta to the maximum offset at the current point in the pattern.
459 typedef struct scan_data_t {
460 /*I32 len_min; unused */
461 /*I32 len_delta; unused */
465 SSize_t last_end; /* min value, <0 unless valid. */
466 SSize_t last_start_min;
467 SSize_t last_start_max;
468 SV **longest; /* Either &l_fixed, or &l_float. */
469 SV *longest_fixed; /* longest fixed string found in pattern */
470 SSize_t offset_fixed; /* offset where it starts */
471 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
472 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
473 SV *longest_float; /* longest floating string found in pattern */
474 SSize_t offset_float_min; /* earliest point in string it can appear */
475 SSize_t offset_float_max; /* latest point in string it can appear */
476 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
477 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
480 SSize_t *last_closep;
481 regnode_ssc *start_class;
485 * Forward declarations for pregcomp()'s friends.
488 static const scan_data_t zero_scan_data =
489 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
491 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
492 #define SF_BEFORE_SEOL 0x0001
493 #define SF_BEFORE_MEOL 0x0002
494 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
495 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
497 #define SF_FIX_SHIFT_EOL (+2)
498 #define SF_FL_SHIFT_EOL (+4)
500 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
501 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
503 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
504 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
505 #define SF_IS_INF 0x0040
506 #define SF_HAS_PAR 0x0080
507 #define SF_IN_PAR 0x0100
508 #define SF_HAS_EVAL 0x0200
511 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
512 * longest substring in the pattern. When it is not set the optimiser keeps
513 * track of position, but does not keep track of the actual strings seen,
515 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
518 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
519 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
520 * turned off because of the alternation (BRANCH). */
521 #define SCF_DO_SUBSTR 0x0400
523 #define SCF_DO_STCLASS_AND 0x0800
524 #define SCF_DO_STCLASS_OR 0x1000
525 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
526 #define SCF_WHILEM_VISITED_POS 0x2000
528 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
529 #define SCF_SEEN_ACCEPT 0x8000
530 #define SCF_TRIE_DOING_RESTUDY 0x10000
531 #define SCF_IN_DEFINE 0x20000
536 #define UTF cBOOL(RExC_utf8)
538 /* The enums for all these are ordered so things work out correctly */
539 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
540 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
541 == REGEX_DEPENDS_CHARSET)
542 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
543 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
544 >= REGEX_UNICODE_CHARSET)
545 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
546 == REGEX_ASCII_RESTRICTED_CHARSET)
547 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
548 >= REGEX_ASCII_RESTRICTED_CHARSET)
549 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
550 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
552 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
554 /* For programs that want to be strictly Unicode compatible by dying if any
555 * attempt is made to match a non-Unicode code point against a Unicode
557 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
559 #define OOB_NAMEDCLASS -1
561 /* There is no code point that is out-of-bounds, so this is problematic. But
562 * its only current use is to initialize a variable that is always set before
564 #define OOB_UNICODE 0xDEADBEEF
566 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
567 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
570 /* length of regex to show in messages that don't mark a position within */
571 #define RegexLengthToShowInErrorMessages 127
574 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
575 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
576 * op/pragma/warn/regcomp.
578 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
579 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
581 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
582 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
584 /* The code in this file in places uses one level of recursion with parsing
585 * rebased to an alternate string constructed by us in memory. This can take
586 * the form of something that is completely different from the input, or
587 * something that uses the input as part of the alternate. In the first case,
588 * there should be no possibility of an error, as we are in complete control of
589 * the alternate string. But in the second case we don't control the input
590 * portion, so there may be errors in that. Here's an example:
592 * is handled specially because \x{df} folds to a sequence of more than one
593 * character, 'ss'. What is done is to create and parse an alternate string,
594 * which looks like this:
595 * /(?:\x{DF}|[abc\x{DF}def])/ui
596 * where it uses the input unchanged in the middle of something it constructs,
597 * which is a branch for the DF outside the character class, and clustering
598 * parens around the whole thing. (It knows enough to skip the DF inside the
599 * class while in this substitute parse.) 'abc' and 'def' may have errors that
600 * need to be reported. The general situation looks like this:
603 * Input: ----------------------------------------------------
604 * Constructed: ---------------------------------------------------
607 * The input string sI..eI is the input pattern. The string sC..EC is the
608 * constructed substitute parse string. The portions sC..tC and eC..EC are
609 * constructed by us. The portion tC..eC is an exact duplicate of the input
610 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
611 * while parsing, we find an error at xC. We want to display a message showing
612 * the real input string. Thus we need to find the point xI in it which
613 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
614 * been constructed by us, and so shouldn't have errors. We get:
616 * xI = sI + (tI - sI) + (xC - tC)
618 * and, the offset into sI is:
620 * (xI - sI) = (tI - sI) + (xC - tC)
622 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
623 * and we save tC as RExC_adjusted_start.
625 * During normal processing of the input pattern, everything points to that,
626 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
629 #define tI_sI RExC_precomp_adj
630 #define tC RExC_adjusted_start
631 #define sC RExC_precomp
632 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
633 #define xI(xC) (sC + xI_offset(xC))
634 #define eC RExC_precomp_end
636 #define REPORT_LOCATION_ARGS(xC) \
638 (xI(xC) > eC) /* Don't run off end */ \
639 ? eC - sC /* Length before the <--HERE */ \
641 sC), /* The input pattern printed up to the <--HERE */ \
643 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
644 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
646 /* Used to point after bad bytes for an error message, but avoid skipping
647 * past a nul byte. */
648 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
651 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
652 * arg. Show regex, up to a maximum length. If it's too long, chop and add
655 #define _FAIL(code) STMT_START { \
656 const char *ellipses = ""; \
657 IV len = RExC_precomp_end - RExC_precomp; \
660 SAVEFREESV(RExC_rx_sv); \
661 if (len > RegexLengthToShowInErrorMessages) { \
662 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
663 len = RegexLengthToShowInErrorMessages - 10; \
669 #define FAIL(msg) _FAIL( \
670 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
671 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
673 #define FAIL2(msg,arg) _FAIL( \
674 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
675 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
678 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
680 #define Simple_vFAIL(m) STMT_START { \
681 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
682 m, REPORT_LOCATION_ARGS(RExC_parse)); \
686 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
688 #define vFAIL(m) STMT_START { \
690 SAVEFREESV(RExC_rx_sv); \
695 * Like Simple_vFAIL(), but accepts two arguments.
697 #define Simple_vFAIL2(m,a1) STMT_START { \
698 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
699 REPORT_LOCATION_ARGS(RExC_parse)); \
703 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
705 #define vFAIL2(m,a1) STMT_START { \
707 SAVEFREESV(RExC_rx_sv); \
708 Simple_vFAIL2(m, a1); \
713 * Like Simple_vFAIL(), but accepts three arguments.
715 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
716 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
717 REPORT_LOCATION_ARGS(RExC_parse)); \
721 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
723 #define vFAIL3(m,a1,a2) STMT_START { \
725 SAVEFREESV(RExC_rx_sv); \
726 Simple_vFAIL3(m, a1, a2); \
730 * Like Simple_vFAIL(), but accepts four arguments.
732 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
733 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
734 REPORT_LOCATION_ARGS(RExC_parse)); \
737 #define vFAIL4(m,a1,a2,a3) STMT_START { \
739 SAVEFREESV(RExC_rx_sv); \
740 Simple_vFAIL4(m, a1, a2, a3); \
743 /* A specialized version of vFAIL2 that works with UTF8f */
744 #define vFAIL2utf8f(m, a1) STMT_START { \
746 SAVEFREESV(RExC_rx_sv); \
747 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
748 REPORT_LOCATION_ARGS(RExC_parse)); \
751 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
753 SAVEFREESV(RExC_rx_sv); \
754 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
755 REPORT_LOCATION_ARGS(RExC_parse)); \
758 /* These have asserts in them because of [perl #122671] Many warnings in
759 * regcomp.c can occur twice. If they get output in pass1 and later in that
760 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
761 * would get output again. So they should be output in pass2, and these
762 * asserts make sure new warnings follow that paradigm. */
764 /* m is not necessarily a "literal string", in this macro */
765 #define reg_warn_non_literal_string(loc, m) STMT_START { \
766 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
767 "%s" REPORT_LOCATION, \
768 m, REPORT_LOCATION_ARGS(loc)); \
771 #define ckWARNreg(loc,m) STMT_START { \
772 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
774 REPORT_LOCATION_ARGS(loc)); \
777 #define vWARN(loc, m) STMT_START { \
778 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
780 REPORT_LOCATION_ARGS(loc)); \
783 #define vWARN_dep(loc, m) STMT_START { \
784 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
786 REPORT_LOCATION_ARGS(loc)); \
789 #define ckWARNdep(loc,m) STMT_START { \
790 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
792 REPORT_LOCATION_ARGS(loc)); \
795 #define ckWARNregdep(loc,m) STMT_START { \
796 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
799 REPORT_LOCATION_ARGS(loc)); \
802 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
803 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
805 a1, REPORT_LOCATION_ARGS(loc)); \
808 #define ckWARN2reg(loc, m, a1) STMT_START { \
809 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
811 a1, REPORT_LOCATION_ARGS(loc)); \
814 #define vWARN3(loc, m, a1, a2) STMT_START { \
815 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
817 a1, a2, REPORT_LOCATION_ARGS(loc)); \
820 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
821 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
824 REPORT_LOCATION_ARGS(loc)); \
827 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
828 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
831 REPORT_LOCATION_ARGS(loc)); \
834 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
835 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
838 REPORT_LOCATION_ARGS(loc)); \
841 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
842 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
845 REPORT_LOCATION_ARGS(loc)); \
848 /* Macros for recording node offsets. 20001227 mjd@plover.com
849 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
850 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
851 * Element 0 holds the number n.
852 * Position is 1 indexed.
854 #ifndef RE_TRACK_PATTERN_OFFSETS
855 #define Set_Node_Offset_To_R(node,byte)
856 #define Set_Node_Offset(node,byte)
857 #define Set_Cur_Node_Offset
858 #define Set_Node_Length_To_R(node,len)
859 #define Set_Node_Length(node,len)
860 #define Set_Node_Cur_Length(node,start)
861 #define Node_Offset(n)
862 #define Node_Length(n)
863 #define Set_Node_Offset_Length(node,offset,len)
864 #define ProgLen(ri) ri->u.proglen
865 #define SetProgLen(ri,x) ri->u.proglen = x
867 #define ProgLen(ri) ri->u.offsets[0]
868 #define SetProgLen(ri,x) ri->u.offsets[0] = x
869 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
871 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
872 __LINE__, (int)(node), (int)(byte))); \
874 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
877 RExC_offsets[2*(node)-1] = (byte); \
882 #define Set_Node_Offset(node,byte) \
883 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
884 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
886 #define Set_Node_Length_To_R(node,len) STMT_START { \
888 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
889 __LINE__, (int)(node), (int)(len))); \
891 Perl_croak(aTHX_ "value of node is %d in Length macro", \
894 RExC_offsets[2*(node)] = (len); \
899 #define Set_Node_Length(node,len) \
900 Set_Node_Length_To_R((node)-RExC_emit_start, len)
901 #define Set_Node_Cur_Length(node, start) \
902 Set_Node_Length(node, RExC_parse - start)
904 /* Get offsets and lengths */
905 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
906 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
908 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
909 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
910 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
914 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
915 #define EXPERIMENTAL_INPLACESCAN
916 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
920 Perl_re_printf(pTHX_ const char *fmt, ...)
924 PerlIO *f= Perl_debug_log;
925 PERL_ARGS_ASSERT_RE_PRINTF;
927 result = PerlIO_vprintf(f, fmt, ap);
933 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
937 PerlIO *f= Perl_debug_log;
938 PERL_ARGS_ASSERT_RE_INDENTF;
940 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
941 result = PerlIO_vprintf(f, fmt, ap);
945 #endif /* DEBUGGING */
947 #define DEBUG_RExC_seen() \
948 DEBUG_OPTIMISE_MORE_r({ \
949 Perl_re_printf( aTHX_ "RExC_seen: "); \
951 if (RExC_seen & REG_ZERO_LEN_SEEN) \
952 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
954 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
955 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
957 if (RExC_seen & REG_GPOS_SEEN) \
958 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
960 if (RExC_seen & REG_RECURSE_SEEN) \
961 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
963 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
964 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
966 if (RExC_seen & REG_VERBARG_SEEN) \
967 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
969 if (RExC_seen & REG_CUTGROUP_SEEN) \
970 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
972 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
973 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
975 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
976 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
978 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
979 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
981 Perl_re_printf( aTHX_ "\n"); \
984 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
985 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
987 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
989 Perl_re_printf( aTHX_ "%s", open_str); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
991 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
992 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
993 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
994 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
995 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
996 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
997 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
998 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
999 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
1000 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
1001 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
1002 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
1003 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
1004 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
1005 Perl_re_printf( aTHX_ "%s", close_str); \
1009 #define DEBUG_STUDYDATA(str,data,depth) \
1010 DEBUG_OPTIMISE_MORE_r(if(data){ \
1011 Perl_re_indentf( aTHX_ "" str "Pos:%"IVdf"/%"IVdf \
1012 " Flags: 0x%"UVXf, \
1014 (IV)((data)->pos_min), \
1015 (IV)((data)->pos_delta), \
1016 (UV)((data)->flags) \
1018 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1019 Perl_re_printf( aTHX_ \
1020 " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
1021 (IV)((data)->whilem_c), \
1022 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1023 is_inf ? "INF " : "" \
1025 if ((data)->last_found) \
1026 Perl_re_printf( aTHX_ \
1027 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
1028 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
1029 SvPVX_const((data)->last_found), \
1030 (IV)((data)->last_end), \
1031 (IV)((data)->last_start_min), \
1032 (IV)((data)->last_start_max), \
1033 ((data)->longest && \
1034 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1035 SvPVX_const((data)->longest_fixed), \
1036 (IV)((data)->offset_fixed), \
1037 ((data)->longest && \
1038 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1039 SvPVX_const((data)->longest_float), \
1040 (IV)((data)->offset_float_min), \
1041 (IV)((data)->offset_float_max) \
1043 Perl_re_printf( aTHX_ "\n"); \
1047 /* =========================================================
1048 * BEGIN edit_distance stuff.
1050 * This calculates how many single character changes of any type are needed to
1051 * transform a string into another one. It is taken from version 3.1 of
1053 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1056 /* Our unsorted dictionary linked list. */
1057 /* Note we use UVs, not chars. */
1062 struct dictionary* next;
1064 typedef struct dictionary item;
1067 PERL_STATIC_INLINE item*
1068 push(UV key,item* curr)
1071 Newxz(head, 1, item);
1079 PERL_STATIC_INLINE item*
1080 find(item* head, UV key)
1082 item* iterator = head;
1084 if (iterator->key == key){
1087 iterator = iterator->next;
1093 PERL_STATIC_INLINE item*
1094 uniquePush(item* head,UV key)
1096 item* iterator = head;
1099 if (iterator->key == key) {
1102 iterator = iterator->next;
1105 return push(key,head);
1108 PERL_STATIC_INLINE void
1109 dict_free(item* head)
1111 item* iterator = head;
1114 item* temp = iterator;
1115 iterator = iterator->next;
1122 /* End of Dictionary Stuff */
1124 /* All calculations/work are done here */
1126 S_edit_distance(const UV* src,
1128 const STRLEN x, /* length of src[] */
1129 const STRLEN y, /* length of tgt[] */
1130 const SSize_t maxDistance
1134 UV swapCount,swapScore,targetCharCount,i,j;
1136 UV score_ceil = x + y;
1138 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1140 /* intialize matrix start values */
1141 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1142 scores[0] = score_ceil;
1143 scores[1 * (y + 2) + 0] = score_ceil;
1144 scores[0 * (y + 2) + 1] = score_ceil;
1145 scores[1 * (y + 2) + 1] = 0;
1146 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1151 for (i=1;i<=x;i++) {
1153 head = uniquePush(head,src[i]);
1154 scores[(i+1) * (y + 2) + 1] = i;
1155 scores[(i+1) * (y + 2) + 0] = score_ceil;
1158 for (j=1;j<=y;j++) {
1161 head = uniquePush(head,tgt[j]);
1162 scores[1 * (y + 2) + (j + 1)] = j;
1163 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1166 targetCharCount = find(head,tgt[j-1])->value;
1167 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1169 if (src[i-1] != tgt[j-1]){
1170 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1174 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1178 find(head,src[i-1])->value = i;
1182 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1185 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1189 /* END of edit_distance() stuff
1190 * ========================================================= */
1192 /* is c a control character for which we have a mnemonic? */
1193 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1196 S_cntrl_to_mnemonic(const U8 c)
1198 /* Returns the mnemonic string that represents character 'c', if one
1199 * exists; NULL otherwise. The only ones that exist for the purposes of
1200 * this routine are a few control characters */
1203 case '\a': return "\\a";
1204 case '\b': return "\\b";
1205 case ESC_NATIVE: return "\\e";
1206 case '\f': return "\\f";
1207 case '\n': return "\\n";
1208 case '\r': return "\\r";
1209 case '\t': return "\\t";
1215 /* Mark that we cannot extend a found fixed substring at this point.
1216 Update the longest found anchored substring and the longest found
1217 floating substrings if needed. */
1220 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1221 SSize_t *minlenp, int is_inf)
1223 const STRLEN l = CHR_SVLEN(data->last_found);
1224 const STRLEN old_l = CHR_SVLEN(*data->longest);
1225 GET_RE_DEBUG_FLAGS_DECL;
1227 PERL_ARGS_ASSERT_SCAN_COMMIT;
1229 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1230 SvSetMagicSV(*data->longest, data->last_found);
1231 if (*data->longest == data->longest_fixed) {
1232 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1233 if (data->flags & SF_BEFORE_EOL)
1235 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1237 data->flags &= ~SF_FIX_BEFORE_EOL;
1238 data->minlen_fixed=minlenp;
1239 data->lookbehind_fixed=0;
1241 else { /* *data->longest == data->longest_float */
1242 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1243 data->offset_float_max = (l
1244 ? data->last_start_max
1245 : (data->pos_delta > SSize_t_MAX - data->pos_min
1247 : data->pos_min + data->pos_delta));
1249 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1250 data->offset_float_max = SSize_t_MAX;
1251 if (data->flags & SF_BEFORE_EOL)
1253 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1255 data->flags &= ~SF_FL_BEFORE_EOL;
1256 data->minlen_float=minlenp;
1257 data->lookbehind_float=0;
1260 SvCUR_set(data->last_found, 0);
1262 SV * const sv = data->last_found;
1263 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1264 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1269 data->last_end = -1;
1270 data->flags &= ~SF_BEFORE_EOL;
1271 DEBUG_STUDYDATA("commit: ",data,0);
1274 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1275 * list that describes which code points it matches */
1278 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1280 /* Set the SSC 'ssc' to match an empty string or any code point */
1282 PERL_ARGS_ASSERT_SSC_ANYTHING;
1284 assert(is_ANYOF_SYNTHETIC(ssc));
1286 /* mortalize so won't leak */
1287 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1288 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1292 S_ssc_is_anything(const regnode_ssc *ssc)
1294 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1295 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1296 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1297 * in any way, so there's no point in using it */
1302 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1304 assert(is_ANYOF_SYNTHETIC(ssc));
1306 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1310 /* See if the list consists solely of the range 0 - Infinity */
1311 invlist_iterinit(ssc->invlist);
1312 ret = invlist_iternext(ssc->invlist, &start, &end)
1316 invlist_iterfinish(ssc->invlist);
1322 /* If e.g., both \w and \W are set, matches everything */
1323 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1325 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1326 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1336 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1338 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1339 * string, any code point, or any posix class under locale */
1341 PERL_ARGS_ASSERT_SSC_INIT;
1343 Zero(ssc, 1, regnode_ssc);
1344 set_ANYOF_SYNTHETIC(ssc);
1345 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1348 /* If any portion of the regex is to operate under locale rules that aren't
1349 * fully known at compile time, initialization includes it. The reason
1350 * this isn't done for all regexes is that the optimizer was written under
1351 * the assumption that locale was all-or-nothing. Given the complexity and
1352 * lack of documentation in the optimizer, and that there are inadequate
1353 * test cases for locale, many parts of it may not work properly, it is
1354 * safest to avoid locale unless necessary. */
1355 if (RExC_contains_locale) {
1356 ANYOF_POSIXL_SETALL(ssc);
1359 ANYOF_POSIXL_ZERO(ssc);
1364 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1365 const regnode_ssc *ssc)
1367 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1368 * to the list of code points matched, and locale posix classes; hence does
1369 * not check its flags) */
1374 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1376 assert(is_ANYOF_SYNTHETIC(ssc));
1378 invlist_iterinit(ssc->invlist);
1379 ret = invlist_iternext(ssc->invlist, &start, &end)
1383 invlist_iterfinish(ssc->invlist);
1389 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1397 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1398 const regnode_charclass* const node)
1400 /* Returns a mortal inversion list defining which code points are matched
1401 * by 'node', which is of type ANYOF. Handles complementing the result if
1402 * appropriate. If some code points aren't knowable at this time, the
1403 * returned list must, and will, contain every code point that is a
1407 SV* only_utf8_locale_invlist = NULL;
1409 const U32 n = ARG(node);
1410 bool new_node_has_latin1 = FALSE;
1412 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1414 /* Look at the data structure created by S_set_ANYOF_arg() */
1415 if (n != ANYOF_ONLY_HAS_BITMAP) {
1416 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1417 AV * const av = MUTABLE_AV(SvRV(rv));
1418 SV **const ary = AvARRAY(av);
1419 assert(RExC_rxi->data->what[n] == 's');
1421 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1422 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1424 else if (ary[0] && ary[0] != &PL_sv_undef) {
1426 /* Here, no compile-time swash, and there are things that won't be
1427 * known until runtime -- we have to assume it could be anything */
1428 invlist = sv_2mortal(_new_invlist(1));
1429 return _add_range_to_invlist(invlist, 0, UV_MAX);
1431 else if (ary[3] && ary[3] != &PL_sv_undef) {
1433 /* Here no compile-time swash, and no run-time only data. Use the
1434 * node's inversion list */
1435 invlist = sv_2mortal(invlist_clone(ary[3]));
1438 /* Get the code points valid only under UTF-8 locales */
1439 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1440 && ary[2] && ary[2] != &PL_sv_undef)
1442 only_utf8_locale_invlist = ary[2];
1447 invlist = sv_2mortal(_new_invlist(0));
1450 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1451 * code points, and an inversion list for the others, but if there are code
1452 * points that should match only conditionally on the target string being
1453 * UTF-8, those are placed in the inversion list, and not the bitmap.
1454 * Since there are circumstances under which they could match, they are
1455 * included in the SSC. But if the ANYOF node is to be inverted, we have
1456 * to exclude them here, so that when we invert below, the end result
1457 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1458 * have to do this here before we add the unconditionally matched code
1460 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1461 _invlist_intersection_complement_2nd(invlist,
1466 /* Add in the points from the bit map */
1467 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1468 if (ANYOF_BITMAP_TEST(node, i)) {
1469 unsigned int start = i++;
1471 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1474 invlist = _add_range_to_invlist(invlist, start, i-1);
1475 new_node_has_latin1 = TRUE;
1479 /* If this can match all upper Latin1 code points, have to add them
1480 * as well. But don't add them if inverting, as when that gets done below,
1481 * it would exclude all these characters, including the ones it shouldn't
1482 * that were added just above */
1483 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1484 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1486 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1489 /* Similarly for these */
1490 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1491 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1494 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1495 _invlist_invert(invlist);
1497 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1499 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1500 * locale. We can skip this if there are no 0-255 at all. */
1501 _invlist_union(invlist, PL_Latin1, &invlist);
1504 /* Similarly add the UTF-8 locale possible matches. These have to be
1505 * deferred until after the non-UTF-8 locale ones are taken care of just
1506 * above, or it leads to wrong results under ANYOF_INVERT */
1507 if (only_utf8_locale_invlist) {
1508 _invlist_union_maybe_complement_2nd(invlist,
1509 only_utf8_locale_invlist,
1510 ANYOF_FLAGS(node) & ANYOF_INVERT,
1517 /* These two functions currently do the exact same thing */
1518 #define ssc_init_zero ssc_init
1520 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1521 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1523 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1524 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1525 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1528 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1529 const regnode_charclass *and_with)
1531 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1532 * another SSC or a regular ANYOF class. Can create false positives. */
1537 PERL_ARGS_ASSERT_SSC_AND;
1539 assert(is_ANYOF_SYNTHETIC(ssc));
1541 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1542 * the code point inversion list and just the relevant flags */
1543 if (is_ANYOF_SYNTHETIC(and_with)) {
1544 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1545 anded_flags = ANYOF_FLAGS(and_with);
1547 /* XXX This is a kludge around what appears to be deficiencies in the
1548 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1549 * there are paths through the optimizer where it doesn't get weeded
1550 * out when it should. And if we don't make some extra provision for
1551 * it like the code just below, it doesn't get added when it should.
1552 * This solution is to add it only when AND'ing, which is here, and
1553 * only when what is being AND'ed is the pristine, original node
1554 * matching anything. Thus it is like adding it to ssc_anything() but
1555 * only when the result is to be AND'ed. Probably the same solution
1556 * could be adopted for the same problem we have with /l matching,
1557 * which is solved differently in S_ssc_init(), and that would lead to
1558 * fewer false positives than that solution has. But if this solution
1559 * creates bugs, the consequences are only that a warning isn't raised
1560 * that should be; while the consequences for having /l bugs is
1561 * incorrect matches */
1562 if (ssc_is_anything((regnode_ssc *)and_with)) {
1563 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1567 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1568 if (OP(and_with) == ANYOFD) {
1569 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1572 anded_flags = ANYOF_FLAGS(and_with)
1573 &( ANYOF_COMMON_FLAGS
1574 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1575 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1576 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1578 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1583 ANYOF_FLAGS(ssc) &= anded_flags;
1585 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1586 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1587 * 'and_with' may be inverted. When not inverted, we have the situation of
1589 * (C1 | P1) & (C2 | P2)
1590 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1591 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1592 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1593 * <= ((C1 & C2) | P1 | P2)
1594 * Alternatively, the last few steps could be:
1595 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1596 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1597 * <= (C1 | C2 | (P1 & P2))
1598 * We favor the second approach if either P1 or P2 is non-empty. This is
1599 * because these components are a barrier to doing optimizations, as what
1600 * they match cannot be known until the moment of matching as they are
1601 * dependent on the current locale, 'AND"ing them likely will reduce or
1603 * But we can do better if we know that C1,P1 are in their initial state (a
1604 * frequent occurrence), each matching everything:
1605 * (<everything>) & (C2 | P2) = C2 | P2
1606 * Similarly, if C2,P2 are in their initial state (again a frequent
1607 * occurrence), the result is a no-op
1608 * (C1 | P1) & (<everything>) = C1 | P1
1611 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1612 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1613 * <= (C1 & ~C2) | (P1 & ~P2)
1616 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1617 && ! is_ANYOF_SYNTHETIC(and_with))
1621 ssc_intersection(ssc,
1623 FALSE /* Has already been inverted */
1626 /* If either P1 or P2 is empty, the intersection will be also; can skip
1628 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1629 ANYOF_POSIXL_ZERO(ssc);
1631 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1633 /* Note that the Posix class component P from 'and_with' actually
1635 * P = Pa | Pb | ... | Pn
1636 * where each component is one posix class, such as in [\w\s].
1638 * ~P = ~(Pa | Pb | ... | Pn)
1639 * = ~Pa & ~Pb & ... & ~Pn
1640 * <= ~Pa | ~Pb | ... | ~Pn
1641 * The last is something we can easily calculate, but unfortunately
1642 * is likely to have many false positives. We could do better
1643 * in some (but certainly not all) instances if two classes in
1644 * P have known relationships. For example
1645 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1647 * :lower: & :print: = :lower:
1648 * And similarly for classes that must be disjoint. For example,
1649 * since \s and \w can have no elements in common based on rules in
1650 * the POSIX standard,
1651 * \w & ^\S = nothing
1652 * Unfortunately, some vendor locales do not meet the Posix
1653 * standard, in particular almost everything by Microsoft.
1654 * The loop below just changes e.g., \w into \W and vice versa */
1656 regnode_charclass_posixl temp;
1657 int add = 1; /* To calculate the index of the complement */
1659 ANYOF_POSIXL_ZERO(&temp);
1660 for (i = 0; i < ANYOF_MAX; i++) {
1662 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1663 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1665 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1666 ANYOF_POSIXL_SET(&temp, i + add);
1668 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1670 ANYOF_POSIXL_AND(&temp, ssc);
1672 } /* else ssc already has no posixes */
1673 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1674 in its initial state */
1675 else if (! is_ANYOF_SYNTHETIC(and_with)
1676 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1678 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1679 * copy it over 'ssc' */
1680 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1681 if (is_ANYOF_SYNTHETIC(and_with)) {
1682 StructCopy(and_with, ssc, regnode_ssc);
1685 ssc->invlist = anded_cp_list;
1686 ANYOF_POSIXL_ZERO(ssc);
1687 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1688 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1692 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1693 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1695 /* One or the other of P1, P2 is non-empty. */
1696 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1697 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1699 ssc_union(ssc, anded_cp_list, FALSE);
1701 else { /* P1 = P2 = empty */
1702 ssc_intersection(ssc, anded_cp_list, FALSE);
1708 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1709 const regnode_charclass *or_with)
1711 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1712 * another SSC or a regular ANYOF class. Can create false positives if
1713 * 'or_with' is to be inverted. */
1718 PERL_ARGS_ASSERT_SSC_OR;
1720 assert(is_ANYOF_SYNTHETIC(ssc));
1722 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1723 * the code point inversion list and just the relevant flags */
1724 if (is_ANYOF_SYNTHETIC(or_with)) {
1725 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1726 ored_flags = ANYOF_FLAGS(or_with);
1729 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1730 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1731 if (OP(or_with) != ANYOFD) {
1733 |= ANYOF_FLAGS(or_with)
1734 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1735 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1736 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1738 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1743 ANYOF_FLAGS(ssc) |= ored_flags;
1745 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1746 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1747 * 'or_with' may be inverted. When not inverted, we have the simple
1748 * situation of computing:
1749 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1750 * If P1|P2 yields a situation with both a class and its complement are
1751 * set, like having both \w and \W, this matches all code points, and we
1752 * can delete these from the P component of the ssc going forward. XXX We
1753 * might be able to delete all the P components, but I (khw) am not certain
1754 * about this, and it is better to be safe.
1757 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1758 * <= (C1 | P1) | ~C2
1759 * <= (C1 | ~C2) | P1
1760 * (which results in actually simpler code than the non-inverted case)
1763 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1764 && ! is_ANYOF_SYNTHETIC(or_with))
1766 /* We ignore P2, leaving P1 going forward */
1767 } /* else Not inverted */
1768 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1769 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1770 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1772 for (i = 0; i < ANYOF_MAX; i += 2) {
1773 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1775 ssc_match_all_cp(ssc);
1776 ANYOF_POSIXL_CLEAR(ssc, i);
1777 ANYOF_POSIXL_CLEAR(ssc, i+1);
1785 FALSE /* Already has been inverted */
1789 PERL_STATIC_INLINE void
1790 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1792 PERL_ARGS_ASSERT_SSC_UNION;
1794 assert(is_ANYOF_SYNTHETIC(ssc));
1796 _invlist_union_maybe_complement_2nd(ssc->invlist,
1802 PERL_STATIC_INLINE void
1803 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1805 const bool invert2nd)
1807 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1809 assert(is_ANYOF_SYNTHETIC(ssc));
1811 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1817 PERL_STATIC_INLINE void
1818 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1820 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1822 assert(is_ANYOF_SYNTHETIC(ssc));
1824 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1827 PERL_STATIC_INLINE void
1828 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1830 /* AND just the single code point 'cp' into the SSC 'ssc' */
1832 SV* cp_list = _new_invlist(2);
1834 PERL_ARGS_ASSERT_SSC_CP_AND;
1836 assert(is_ANYOF_SYNTHETIC(ssc));
1838 cp_list = add_cp_to_invlist(cp_list, cp);
1839 ssc_intersection(ssc, cp_list,
1840 FALSE /* Not inverted */
1842 SvREFCNT_dec_NN(cp_list);
1845 PERL_STATIC_INLINE void
1846 S_ssc_clear_locale(regnode_ssc *ssc)
1848 /* Set the SSC 'ssc' to not match any locale things */
1849 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1851 assert(is_ANYOF_SYNTHETIC(ssc));
1853 ANYOF_POSIXL_ZERO(ssc);
1854 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1857 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1860 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1862 /* The synthetic start class is used to hopefully quickly winnow down
1863 * places where a pattern could start a match in the target string. If it
1864 * doesn't really narrow things down that much, there isn't much point to
1865 * having the overhead of using it. This function uses some very crude
1866 * heuristics to decide if to use the ssc or not.
1868 * It returns TRUE if 'ssc' rules out more than half what it considers to
1869 * be the "likely" possible matches, but of course it doesn't know what the
1870 * actual things being matched are going to be; these are only guesses
1872 * For /l matches, it assumes that the only likely matches are going to be
1873 * in the 0-255 range, uniformly distributed, so half of that is 127
1874 * For /a and /d matches, it assumes that the likely matches will be just
1875 * the ASCII range, so half of that is 63
1876 * For /u and there isn't anything matching above the Latin1 range, it
1877 * assumes that that is the only range likely to be matched, and uses
1878 * half that as the cut-off: 127. If anything matches above Latin1,
1879 * it assumes that all of Unicode could match (uniformly), except for
1880 * non-Unicode code points and things in the General Category "Other"
1881 * (unassigned, private use, surrogates, controls and formats). This
1882 * is a much large number. */
1884 U32 count = 0; /* Running total of number of code points matched by
1886 UV start, end; /* Start and end points of current range in inversion
1888 const U32 max_code_points = (LOC)
1890 : (( ! UNI_SEMANTICS
1891 || invlist_highest(ssc->invlist) < 256)
1894 const U32 max_match = max_code_points / 2;
1896 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1898 invlist_iterinit(ssc->invlist);
1899 while (invlist_iternext(ssc->invlist, &start, &end)) {
1900 if (start >= max_code_points) {
1903 end = MIN(end, max_code_points - 1);
1904 count += end - start + 1;
1905 if (count >= max_match) {
1906 invlist_iterfinish(ssc->invlist);
1916 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1918 /* The inversion list in the SSC is marked mortal; now we need a more
1919 * permanent copy, which is stored the same way that is done in a regular
1920 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1923 SV* invlist = invlist_clone(ssc->invlist);
1925 PERL_ARGS_ASSERT_SSC_FINALIZE;
1927 assert(is_ANYOF_SYNTHETIC(ssc));
1929 /* The code in this file assumes that all but these flags aren't relevant
1930 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1931 * by the time we reach here */
1932 assert(! (ANYOF_FLAGS(ssc)
1933 & ~( ANYOF_COMMON_FLAGS
1934 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1935 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1937 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1939 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1940 NULL, NULL, NULL, FALSE);
1942 /* Make sure is clone-safe */
1943 ssc->invlist = NULL;
1945 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1946 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1949 if (RExC_contains_locale) {
1953 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1956 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1957 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1958 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1959 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1960 ? (TRIE_LIST_CUR( idx ) - 1) \
1966 dump_trie(trie,widecharmap,revcharmap)
1967 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1968 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1970 These routines dump out a trie in a somewhat readable format.
1971 The _interim_ variants are used for debugging the interim
1972 tables that are used to generate the final compressed
1973 representation which is what dump_trie expects.
1975 Part of the reason for their existence is to provide a form
1976 of documentation as to how the different representations function.
1981 Dumps the final compressed table form of the trie to Perl_debug_log.
1982 Used for debugging make_trie().
1986 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1987 AV *revcharmap, U32 depth)
1990 SV *sv=sv_newmortal();
1991 int colwidth= widecharmap ? 6 : 4;
1993 GET_RE_DEBUG_FLAGS_DECL;
1995 PERL_ARGS_ASSERT_DUMP_TRIE;
1997 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1998 depth+1, "Match","Base","Ofs" );
2000 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2001 SV ** const tmp = av_fetch( revcharmap, state, 0);
2003 Perl_re_printf( aTHX_ "%*s",
2005 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2006 PL_colors[0], PL_colors[1],
2007 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2008 PERL_PV_ESCAPE_FIRSTCHAR
2013 Perl_re_printf( aTHX_ "\n");
2014 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2016 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2017 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2018 Perl_re_printf( aTHX_ "\n");
2020 for( state = 1 ; state < trie->statecount ; state++ ) {
2021 const U32 base = trie->states[ state ].trans.base;
2023 Perl_re_indentf( aTHX_ "#%4"UVXf"|", depth+1, (UV)state);
2025 if ( trie->states[ state ].wordnum ) {
2026 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2028 Perl_re_printf( aTHX_ "%6s", "" );
2031 Perl_re_printf( aTHX_ " @%4"UVXf" ", (UV)base );
2036 while( ( base + ofs < trie->uniquecharcount ) ||
2037 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2038 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2042 Perl_re_printf( aTHX_ "+%2"UVXf"[ ", (UV)ofs);
2044 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2045 if ( ( base + ofs >= trie->uniquecharcount )
2046 && ( base + ofs - trie->uniquecharcount
2048 && trie->trans[ base + ofs
2049 - trie->uniquecharcount ].check == state )
2051 Perl_re_printf( aTHX_ "%*"UVXf, colwidth,
2052 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2055 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2059 Perl_re_printf( aTHX_ "]");
2062 Perl_re_printf( aTHX_ "\n" );
2064 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2066 for (word=1; word <= trie->wordcount; word++) {
2067 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2068 (int)word, (int)(trie->wordinfo[word].prev),
2069 (int)(trie->wordinfo[word].len));
2071 Perl_re_printf( aTHX_ "\n" );
2074 Dumps a fully constructed but uncompressed trie in list form.
2075 List tries normally only are used for construction when the number of
2076 possible chars (trie->uniquecharcount) is very high.
2077 Used for debugging make_trie().
2080 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2081 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2085 SV *sv=sv_newmortal();
2086 int colwidth= widecharmap ? 6 : 4;
2087 GET_RE_DEBUG_FLAGS_DECL;
2089 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2091 /* print out the table precompression. */
2092 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2094 Perl_re_indentf( aTHX_ "%s",
2095 depth+1, "------:-----+-----------------\n" );
2097 for( state=1 ; state < next_alloc ; state ++ ) {
2100 Perl_re_indentf( aTHX_ " %4"UVXf" :",
2101 depth+1, (UV)state );
2102 if ( ! trie->states[ state ].wordnum ) {
2103 Perl_re_printf( aTHX_ "%5s| ","");
2105 Perl_re_printf( aTHX_ "W%4x| ",
2106 trie->states[ state ].wordnum
2109 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2110 SV ** const tmp = av_fetch( revcharmap,
2111 TRIE_LIST_ITEM(state,charid).forid, 0);
2113 Perl_re_printf( aTHX_ "%*s:%3X=%4"UVXf" | ",
2115 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2117 PL_colors[0], PL_colors[1],
2118 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2119 | PERL_PV_ESCAPE_FIRSTCHAR
2121 TRIE_LIST_ITEM(state,charid).forid,
2122 (UV)TRIE_LIST_ITEM(state,charid).newstate
2125 Perl_re_printf( aTHX_ "\n%*s| ",
2126 (int)((depth * 2) + 14), "");
2129 Perl_re_printf( aTHX_ "\n");
2134 Dumps a fully constructed but uncompressed trie in table form.
2135 This is the normal DFA style state transition table, with a few
2136 twists to facilitate compression later.
2137 Used for debugging make_trie().
2140 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2141 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2146 SV *sv=sv_newmortal();
2147 int colwidth= widecharmap ? 6 : 4;
2148 GET_RE_DEBUG_FLAGS_DECL;
2150 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2153 print out the table precompression so that we can do a visual check
2154 that they are identical.
2157 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2159 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2160 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2162 Perl_re_printf( aTHX_ "%*s",
2164 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2165 PL_colors[0], PL_colors[1],
2166 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2167 PERL_PV_ESCAPE_FIRSTCHAR
2173 Perl_re_printf( aTHX_ "\n");
2174 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2176 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2177 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2180 Perl_re_printf( aTHX_ "\n" );
2182 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2184 Perl_re_indentf( aTHX_ "%4"UVXf" : ",
2186 (UV)TRIE_NODENUM( state ) );
2188 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2189 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2191 Perl_re_printf( aTHX_ "%*"UVXf, colwidth, v );
2193 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2195 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2196 Perl_re_printf( aTHX_ " (%4"UVXf")\n",
2197 (UV)trie->trans[ state ].check );
2199 Perl_re_printf( aTHX_ " (%4"UVXf") W%4X\n",
2200 (UV)trie->trans[ state ].check,
2201 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2209 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2210 startbranch: the first branch in the whole branch sequence
2211 first : start branch of sequence of branch-exact nodes.
2212 May be the same as startbranch
2213 last : Thing following the last branch.
2214 May be the same as tail.
2215 tail : item following the branch sequence
2216 count : words in the sequence
2217 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2218 depth : indent depth
2220 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2222 A trie is an N'ary tree where the branches are determined by digital
2223 decomposition of the key. IE, at the root node you look up the 1st character and
2224 follow that branch repeat until you find the end of the branches. Nodes can be
2225 marked as "accepting" meaning they represent a complete word. Eg:
2229 would convert into the following structure. Numbers represent states, letters
2230 following numbers represent valid transitions on the letter from that state, if
2231 the number is in square brackets it represents an accepting state, otherwise it
2232 will be in parenthesis.
2234 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2238 (1) +-i->(6)-+-s->[7]
2240 +-s->(3)-+-h->(4)-+-e->[5]
2242 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2244 This shows that when matching against the string 'hers' we will begin at state 1
2245 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2246 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2247 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2248 single traverse. We store a mapping from accepting to state to which word was
2249 matched, and then when we have multiple possibilities we try to complete the
2250 rest of the regex in the order in which they occurred in the alternation.
2252 The only prior NFA like behaviour that would be changed by the TRIE support is
2253 the silent ignoring of duplicate alternations which are of the form:
2255 / (DUPE|DUPE) X? (?{ ... }) Y /x
2257 Thus EVAL blocks following a trie may be called a different number of times with
2258 and without the optimisation. With the optimisations dupes will be silently
2259 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2260 the following demonstrates:
2262 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2264 which prints out 'word' three times, but
2266 'words'=~/(word|word|word)(?{ print $1 })S/
2268 which doesnt print it out at all. This is due to other optimisations kicking in.
2270 Example of what happens on a structural level:
2272 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2274 1: CURLYM[1] {1,32767}(18)
2285 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2286 and should turn into:
2288 1: CURLYM[1] {1,32767}(18)
2290 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2298 Cases where tail != last would be like /(?foo|bar)baz/:
2308 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2309 and would end up looking like:
2312 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2319 d = uvchr_to_utf8_flags(d, uv, 0);
2321 is the recommended Unicode-aware way of saying
2326 #define TRIE_STORE_REVCHAR(val) \
2329 SV *zlopp = newSV(UTF8_MAXBYTES); \
2330 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2331 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2332 SvCUR_set(zlopp, kapow - flrbbbbb); \
2335 av_push(revcharmap, zlopp); \
2337 char ooooff = (char)val; \
2338 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2342 /* This gets the next character from the input, folding it if not already
2344 #define TRIE_READ_CHAR STMT_START { \
2347 /* if it is UTF then it is either already folded, or does not need \
2349 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2351 else if (folder == PL_fold_latin1) { \
2352 /* This folder implies Unicode rules, which in the range expressible \
2353 * by not UTF is the lower case, with the two exceptions, one of \
2354 * which should have been taken care of before calling this */ \
2355 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2356 uvc = toLOWER_L1(*uc); \
2357 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2360 /* raw data, will be folded later if needed */ \
2368 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2369 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2370 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2371 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2373 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2374 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2375 TRIE_LIST_CUR( state )++; \
2378 #define TRIE_LIST_NEW(state) STMT_START { \
2379 Newxz( trie->states[ state ].trans.list, \
2380 4, reg_trie_trans_le ); \
2381 TRIE_LIST_CUR( state ) = 1; \
2382 TRIE_LIST_LEN( state ) = 4; \
2385 #define TRIE_HANDLE_WORD(state) STMT_START { \
2386 U16 dupe= trie->states[ state ].wordnum; \
2387 regnode * const noper_next = regnext( noper ); \
2390 /* store the word for dumping */ \
2392 if (OP(noper) != NOTHING) \
2393 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2395 tmp = newSVpvn_utf8( "", 0, UTF ); \
2396 av_push( trie_words, tmp ); \
2400 trie->wordinfo[curword].prev = 0; \
2401 trie->wordinfo[curword].len = wordlen; \
2402 trie->wordinfo[curword].accept = state; \
2404 if ( noper_next < tail ) { \
2406 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2408 trie->jump[curword] = (U16)(noper_next - convert); \
2410 jumper = noper_next; \
2412 nextbranch= regnext(cur); \
2416 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2417 /* chain, so that when the bits of chain are later */\
2418 /* linked together, the dups appear in the chain */\
2419 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2420 trie->wordinfo[dupe].prev = curword; \
2422 /* we haven't inserted this word yet. */ \
2423 trie->states[ state ].wordnum = curword; \
2428 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2429 ( ( base + charid >= ucharcount \
2430 && base + charid < ubound \
2431 && state == trie->trans[ base - ucharcount + charid ].check \
2432 && trie->trans[ base - ucharcount + charid ].next ) \
2433 ? trie->trans[ base - ucharcount + charid ].next \
2434 : ( state==1 ? special : 0 ) \
2438 #define MADE_JUMP_TRIE 2
2439 #define MADE_EXACT_TRIE 4
2442 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2443 regnode *first, regnode *last, regnode *tail,
2444 U32 word_count, U32 flags, U32 depth)
2446 /* first pass, loop through and scan words */
2447 reg_trie_data *trie;
2448 HV *widecharmap = NULL;
2449 AV *revcharmap = newAV();
2455 regnode *jumper = NULL;
2456 regnode *nextbranch = NULL;
2457 regnode *convert = NULL;
2458 U32 *prev_states; /* temp array mapping each state to previous one */
2459 /* we just use folder as a flag in utf8 */
2460 const U8 * folder = NULL;
2463 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2464 AV *trie_words = NULL;
2465 /* along with revcharmap, this only used during construction but both are
2466 * useful during debugging so we store them in the struct when debugging.
2469 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2470 STRLEN trie_charcount=0;
2472 SV *re_trie_maxbuff;
2473 GET_RE_DEBUG_FLAGS_DECL;
2475 PERL_ARGS_ASSERT_MAKE_TRIE;
2477 PERL_UNUSED_ARG(depth);
2481 case EXACT: case EXACTL: break;
2485 case EXACTFLU8: folder = PL_fold_latin1; break;
2486 case EXACTF: folder = PL_fold; break;
2487 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2490 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2492 trie->startstate = 1;
2493 trie->wordcount = word_count;
2494 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2495 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2496 if (flags == EXACT || flags == EXACTL)
2497 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2498 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2499 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2502 trie_words = newAV();
2505 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2506 assert(re_trie_maxbuff);
2507 if (!SvIOK(re_trie_maxbuff)) {
2508 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2510 DEBUG_TRIE_COMPILE_r({
2511 Perl_re_indentf( aTHX_
2512 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2514 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2515 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2518 /* Find the node we are going to overwrite */
2519 if ( first == startbranch && OP( last ) != BRANCH ) {
2520 /* whole branch chain */
2523 /* branch sub-chain */
2524 convert = NEXTOPER( first );
2527 /* -- First loop and Setup --
2529 We first traverse the branches and scan each word to determine if it
2530 contains widechars, and how many unique chars there are, this is
2531 important as we have to build a table with at least as many columns as we
2534 We use an array of integers to represent the character codes 0..255
2535 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2536 the native representation of the character value as the key and IV's for
2539 *TODO* If we keep track of how many times each character is used we can
2540 remap the columns so that the table compression later on is more
2541 efficient in terms of memory by ensuring the most common value is in the
2542 middle and the least common are on the outside. IMO this would be better
2543 than a most to least common mapping as theres a decent chance the most
2544 common letter will share a node with the least common, meaning the node
2545 will not be compressible. With a middle is most common approach the worst
2546 case is when we have the least common nodes twice.
2550 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2551 regnode *noper = NEXTOPER( cur );
2555 U32 wordlen = 0; /* required init */
2556 STRLEN minchars = 0;
2557 STRLEN maxchars = 0;
2558 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2561 if (OP(noper) == NOTHING) {
2562 regnode *noper_next= regnext(noper);
2563 if (noper_next < tail)
2567 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2568 uc= (U8*)STRING(noper);
2569 e= uc + STR_LEN(noper);
2576 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2577 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2578 regardless of encoding */
2579 if (OP( noper ) == EXACTFU_SS) {
2580 /* false positives are ok, so just set this */
2581 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2584 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2586 TRIE_CHARCOUNT(trie)++;
2589 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2590 * is in effect. Under /i, this character can match itself, or
2591 * anything that folds to it. If not under /i, it can match just
2592 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2593 * all fold to k, and all are single characters. But some folds
2594 * expand to more than one character, so for example LATIN SMALL
2595 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2596 * the string beginning at 'uc' is 'ffi', it could be matched by
2597 * three characters, or just by the one ligature character. (It
2598 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2599 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2600 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2601 * match.) The trie needs to know the minimum and maximum number
2602 * of characters that could match so that it can use size alone to
2603 * quickly reject many match attempts. The max is simple: it is
2604 * the number of folded characters in this branch (since a fold is
2605 * never shorter than what folds to it. */
2609 /* And the min is equal to the max if not under /i (indicated by
2610 * 'folder' being NULL), or there are no multi-character folds. If
2611 * there is a multi-character fold, the min is incremented just
2612 * once, for the character that folds to the sequence. Each
2613 * character in the sequence needs to be added to the list below of
2614 * characters in the trie, but we count only the first towards the
2615 * min number of characters needed. This is done through the
2616 * variable 'foldlen', which is returned by the macros that look
2617 * for these sequences as the number of bytes the sequence
2618 * occupies. Each time through the loop, we decrement 'foldlen' by
2619 * how many bytes the current char occupies. Only when it reaches
2620 * 0 do we increment 'minchars' or look for another multi-character
2622 if (folder == NULL) {
2625 else if (foldlen > 0) {
2626 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2631 /* See if *uc is the beginning of a multi-character fold. If
2632 * so, we decrement the length remaining to look at, to account
2633 * for the current character this iteration. (We can use 'uc'
2634 * instead of the fold returned by TRIE_READ_CHAR because for
2635 * non-UTF, the latin1_safe macro is smart enough to account
2636 * for all the unfolded characters, and because for UTF, the
2637 * string will already have been folded earlier in the
2638 * compilation process */
2640 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2641 foldlen -= UTF8SKIP(uc);
2644 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2649 /* The current character (and any potential folds) should be added
2650 * to the possible matching characters for this position in this
2654 U8 folded= folder[ (U8) uvc ];
2655 if ( !trie->charmap[ folded ] ) {
2656 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2657 TRIE_STORE_REVCHAR( folded );
2660 if ( !trie->charmap[ uvc ] ) {
2661 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2662 TRIE_STORE_REVCHAR( uvc );
2665 /* store the codepoint in the bitmap, and its folded
2667 TRIE_BITMAP_SET(trie, uvc);
2669 /* store the folded codepoint */
2670 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2673 /* store first byte of utf8 representation of
2674 variant codepoints */
2675 if (! UVCHR_IS_INVARIANT(uvc)) {
2676 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2679 set_bit = 0; /* We've done our bit :-) */
2683 /* XXX We could come up with the list of code points that fold
2684 * to this using PL_utf8_foldclosures, except not for
2685 * multi-char folds, as there may be multiple combinations
2686 * there that could work, which needs to wait until runtime to
2687 * resolve (The comment about LIGATURE FFI above is such an
2692 widecharmap = newHV();
2694 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2697 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2699 if ( !SvTRUE( *svpp ) ) {
2700 sv_setiv( *svpp, ++trie->uniquecharcount );
2701 TRIE_STORE_REVCHAR(uvc);
2704 } /* end loop through characters in this branch of the trie */
2706 /* We take the min and max for this branch and combine to find the min
2707 * and max for all branches processed so far */
2708 if( cur == first ) {
2709 trie->minlen = minchars;
2710 trie->maxlen = maxchars;
2711 } else if (minchars < trie->minlen) {
2712 trie->minlen = minchars;
2713 } else if (maxchars > trie->maxlen) {
2714 trie->maxlen = maxchars;
2716 } /* end first pass */
2717 DEBUG_TRIE_COMPILE_r(
2718 Perl_re_indentf( aTHX_
2719 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2721 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2722 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2723 (int)trie->minlen, (int)trie->maxlen )
2727 We now know what we are dealing with in terms of unique chars and
2728 string sizes so we can calculate how much memory a naive
2729 representation using a flat table will take. If it's over a reasonable
2730 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2731 conservative but potentially much slower representation using an array
2734 At the end we convert both representations into the same compressed
2735 form that will be used in regexec.c for matching with. The latter
2736 is a form that cannot be used to construct with but has memory
2737 properties similar to the list form and access properties similar
2738 to the table form making it both suitable for fast searches and
2739 small enough that its feasable to store for the duration of a program.
2741 See the comment in the code where the compressed table is produced
2742 inplace from the flat tabe representation for an explanation of how
2743 the compression works.
2748 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2751 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2752 > SvIV(re_trie_maxbuff) )
2755 Second Pass -- Array Of Lists Representation
2757 Each state will be represented by a list of charid:state records
2758 (reg_trie_trans_le) the first such element holds the CUR and LEN
2759 points of the allocated array. (See defines above).
2761 We build the initial structure using the lists, and then convert
2762 it into the compressed table form which allows faster lookups
2763 (but cant be modified once converted).
2766 STRLEN transcount = 1;
2768 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2771 trie->states = (reg_trie_state *)
2772 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2773 sizeof(reg_trie_state) );
2777 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2779 regnode *noper = NEXTOPER( cur );
2780 U32 state = 1; /* required init */
2781 U16 charid = 0; /* sanity init */
2782 U32 wordlen = 0; /* required init */
2784 if (OP(noper) == NOTHING) {
2785 regnode *noper_next= regnext(noper);
2786 if (noper_next < tail)
2790 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2791 const U8 *uc= (U8*)STRING(noper);
2792 const U8 *e= uc + STR_LEN(noper);
2794 for ( ; uc < e ; uc += len ) {
2799 charid = trie->charmap[ uvc ];
2801 SV** const svpp = hv_fetch( widecharmap,
2808 charid=(U16)SvIV( *svpp );
2811 /* charid is now 0 if we dont know the char read, or
2812 * nonzero if we do */
2819 if ( !trie->states[ state ].trans.list ) {
2820 TRIE_LIST_NEW( state );
2823 check <= TRIE_LIST_USED( state );
2826 if ( TRIE_LIST_ITEM( state, check ).forid
2829 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2834 newstate = next_alloc++;
2835 prev_states[newstate] = state;
2836 TRIE_LIST_PUSH( state, charid, newstate );
2841 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2845 TRIE_HANDLE_WORD(state);
2847 } /* end second pass */
2849 /* next alloc is the NEXT state to be allocated */
2850 trie->statecount = next_alloc;
2851 trie->states = (reg_trie_state *)
2852 PerlMemShared_realloc( trie->states,
2854 * sizeof(reg_trie_state) );
2856 /* and now dump it out before we compress it */
2857 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2858 revcharmap, next_alloc,
2862 trie->trans = (reg_trie_trans *)
2863 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2870 for( state=1 ; state < next_alloc ; state ++ ) {
2874 DEBUG_TRIE_COMPILE_MORE_r(
2875 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2879 if (trie->states[state].trans.list) {
2880 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2884 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2885 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2886 if ( forid < minid ) {
2888 } else if ( forid > maxid ) {
2892 if ( transcount < tp + maxid - minid + 1) {
2894 trie->trans = (reg_trie_trans *)
2895 PerlMemShared_realloc( trie->trans,
2897 * sizeof(reg_trie_trans) );
2898 Zero( trie->trans + (transcount / 2),
2902 base = trie->uniquecharcount + tp - minid;
2903 if ( maxid == minid ) {
2905 for ( ; zp < tp ; zp++ ) {
2906 if ( ! trie->trans[ zp ].next ) {
2907 base = trie->uniquecharcount + zp - minid;
2908 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2910 trie->trans[ zp ].check = state;
2916 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2918 trie->trans[ tp ].check = state;
2923 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2924 const U32 tid = base
2925 - trie->uniquecharcount
2926 + TRIE_LIST_ITEM( state, idx ).forid;
2927 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2929 trie->trans[ tid ].check = state;
2931 tp += ( maxid - minid + 1 );
2933 Safefree(trie->states[ state ].trans.list);
2936 DEBUG_TRIE_COMPILE_MORE_r(
2937 Perl_re_printf( aTHX_ " base: %d\n",base);
2940 trie->states[ state ].trans.base=base;
2942 trie->lasttrans = tp + 1;
2946 Second Pass -- Flat Table Representation.
2948 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2949 each. We know that we will need Charcount+1 trans at most to store
2950 the data (one row per char at worst case) So we preallocate both
2951 structures assuming worst case.
2953 We then construct the trie using only the .next slots of the entry
2956 We use the .check field of the first entry of the node temporarily
2957 to make compression both faster and easier by keeping track of how
2958 many non zero fields are in the node.
2960 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2963 There are two terms at use here: state as a TRIE_NODEIDX() which is
2964 a number representing the first entry of the node, and state as a
2965 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2966 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2967 if there are 2 entrys per node. eg:
2975 The table is internally in the right hand, idx form. However as we
2976 also have to deal with the states array which is indexed by nodenum
2977 we have to use TRIE_NODENUM() to convert.
2980 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2983 trie->trans = (reg_trie_trans *)
2984 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2985 * trie->uniquecharcount + 1,
2986 sizeof(reg_trie_trans) );
2987 trie->states = (reg_trie_state *)
2988 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2989 sizeof(reg_trie_state) );
2990 next_alloc = trie->uniquecharcount + 1;
2993 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2995 regnode *noper = NEXTOPER( cur );
2997 U32 state = 1; /* required init */
2999 U16 charid = 0; /* sanity init */
3000 U32 accept_state = 0; /* sanity init */
3002 U32 wordlen = 0; /* required init */
3004 if (OP(noper) == NOTHING) {
3005 regnode *noper_next= regnext(noper);
3006 if (noper_next < tail)
3010 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3011 const U8 *uc= (U8*)STRING(noper);
3012 const U8 *e= uc + STR_LEN(noper);
3014 for ( ; uc < e ; uc += len ) {
3019 charid = trie->charmap[ uvc ];
3021 SV* const * const svpp = hv_fetch( widecharmap,
3025 charid = svpp ? (U16)SvIV(*svpp) : 0;
3029 if ( !trie->trans[ state + charid ].next ) {
3030 trie->trans[ state + charid ].next = next_alloc;
3031 trie->trans[ state ].check++;
3032 prev_states[TRIE_NODENUM(next_alloc)]
3033 = TRIE_NODENUM(state);
3034 next_alloc += trie->uniquecharcount;
3036 state = trie->trans[ state + charid ].next;
3038 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
3040 /* charid is now 0 if we dont know the char read, or
3041 * nonzero if we do */
3044 accept_state = TRIE_NODENUM( state );
3045 TRIE_HANDLE_WORD(accept_state);
3047 } /* end second pass */
3049 /* and now dump it out before we compress it */
3050 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3052 next_alloc, depth+1));
3056 * Inplace compress the table.*
3058 For sparse data sets the table constructed by the trie algorithm will
3059 be mostly 0/FAIL transitions or to put it another way mostly empty.
3060 (Note that leaf nodes will not contain any transitions.)
3062 This algorithm compresses the tables by eliminating most such
3063 transitions, at the cost of a modest bit of extra work during lookup:
3065 - Each states[] entry contains a .base field which indicates the
3066 index in the state[] array wheres its transition data is stored.
3068 - If .base is 0 there are no valid transitions from that node.
3070 - If .base is nonzero then charid is added to it to find an entry in
3073 -If trans[states[state].base+charid].check!=state then the
3074 transition is taken to be a 0/Fail transition. Thus if there are fail
3075 transitions at the front of the node then the .base offset will point
3076 somewhere inside the previous nodes data (or maybe even into a node
3077 even earlier), but the .check field determines if the transition is
3081 The following process inplace converts the table to the compressed
3082 table: We first do not compress the root node 1,and mark all its
3083 .check pointers as 1 and set its .base pointer as 1 as well. This
3084 allows us to do a DFA construction from the compressed table later,
3085 and ensures that any .base pointers we calculate later are greater
3088 - We set 'pos' to indicate the first entry of the second node.
3090 - We then iterate over the columns of the node, finding the first and
3091 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3092 and set the .check pointers accordingly, and advance pos
3093 appropriately and repreat for the next node. Note that when we copy
3094 the next pointers we have to convert them from the original
3095 NODEIDX form to NODENUM form as the former is not valid post
3098 - If a node has no transitions used we mark its base as 0 and do not
3099 advance the pos pointer.
3101 - If a node only has one transition we use a second pointer into the
3102 structure to fill in allocated fail transitions from other states.
3103 This pointer is independent of the main pointer and scans forward
3104 looking for null transitions that are allocated to a state. When it
3105 finds one it writes the single transition into the "hole". If the
3106 pointer doesnt find one the single transition is appended as normal.
3108 - Once compressed we can Renew/realloc the structures to release the
3111 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3112 specifically Fig 3.47 and the associated pseudocode.
3116 const U32 laststate = TRIE_NODENUM( next_alloc );
3119 trie->statecount = laststate;
3121 for ( state = 1 ; state < laststate ; state++ ) {
3123 const U32 stateidx = TRIE_NODEIDX( state );
3124 const U32 o_used = trie->trans[ stateidx ].check;
3125 U32 used = trie->trans[ stateidx ].check;
3126 trie->trans[ stateidx ].check = 0;
3129 used && charid < trie->uniquecharcount;
3132 if ( flag || trie->trans[ stateidx + charid ].next ) {
3133 if ( trie->trans[ stateidx + charid ].next ) {
3135 for ( ; zp < pos ; zp++ ) {
3136 if ( ! trie->trans[ zp ].next ) {
3140 trie->states[ state ].trans.base
3142 + trie->uniquecharcount
3144 trie->trans[ zp ].next
3145 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3147 trie->trans[ zp ].check = state;
3148 if ( ++zp > pos ) pos = zp;
3155 trie->states[ state ].trans.base
3156 = pos + trie->uniquecharcount - charid ;
3158 trie->trans[ pos ].next
3159 = SAFE_TRIE_NODENUM(
3160 trie->trans[ stateidx + charid ].next );
3161 trie->trans[ pos ].check = state;
3166 trie->lasttrans = pos + 1;
3167 trie->states = (reg_trie_state *)
3168 PerlMemShared_realloc( trie->states, laststate
3169 * sizeof(reg_trie_state) );
3170 DEBUG_TRIE_COMPILE_MORE_r(
3171 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
3173 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3177 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3180 } /* end table compress */
3182 DEBUG_TRIE_COMPILE_MORE_r(
3183 Perl_re_indentf( aTHX_ "Statecount:%"UVxf" Lasttrans:%"UVxf"\n",
3185 (UV)trie->statecount,
3186 (UV)trie->lasttrans)
3188 /* resize the trans array to remove unused space */
3189 trie->trans = (reg_trie_trans *)
3190 PerlMemShared_realloc( trie->trans, trie->lasttrans
3191 * sizeof(reg_trie_trans) );
3193 { /* Modify the program and insert the new TRIE node */
3194 U8 nodetype =(U8)(flags & 0xFF);
3198 regnode *optimize = NULL;
3199 #ifdef RE_TRACK_PATTERN_OFFSETS
3202 U32 mjd_nodelen = 0;
3203 #endif /* RE_TRACK_PATTERN_OFFSETS */
3204 #endif /* DEBUGGING */
3206 This means we convert either the first branch or the first Exact,
3207 depending on whether the thing following (in 'last') is a branch
3208 or not and whther first is the startbranch (ie is it a sub part of
3209 the alternation or is it the whole thing.)
3210 Assuming its a sub part we convert the EXACT otherwise we convert
3211 the whole branch sequence, including the first.
3213 /* Find the node we are going to overwrite */
3214 if ( first != startbranch || OP( last ) == BRANCH ) {
3215 /* branch sub-chain */
3216 NEXT_OFF( first ) = (U16)(last - first);
3217 #ifdef RE_TRACK_PATTERN_OFFSETS
3219 mjd_offset= Node_Offset((convert));
3220 mjd_nodelen= Node_Length((convert));
3223 /* whole branch chain */
3225 #ifdef RE_TRACK_PATTERN_OFFSETS
3228 const regnode *nop = NEXTOPER( convert );
3229 mjd_offset= Node_Offset((nop));
3230 mjd_nodelen= Node_Length((nop));
3234 Perl_re_indentf( aTHX_ "MJD offset:%"UVuf" MJD length:%"UVuf"\n",
3236 (UV)mjd_offset, (UV)mjd_nodelen)
3239 /* But first we check to see if there is a common prefix we can
3240 split out as an EXACT and put in front of the TRIE node. */
3241 trie->startstate= 1;
3242 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3244 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3248 const U32 base = trie->states[ state ].trans.base;
3250 if ( trie->states[state].wordnum )
3253 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3254 if ( ( base + ofs >= trie->uniquecharcount ) &&
3255 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3256 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3258 if ( ++count > 1 ) {
3259 SV **tmp = av_fetch( revcharmap, ofs, 0);
3260 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
3261 if ( state == 1 ) break;
3263 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3265 Perl_re_indentf( aTHX_ "New Start State=%"UVuf" Class: [",
3269 SV ** const tmp = av_fetch( revcharmap, idx, 0);
3270 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3272 TRIE_BITMAP_SET(trie,*ch);
3274 TRIE_BITMAP_SET(trie, folder[ *ch ]);
3276 Perl_re_printf( aTHX_ "%s", (char*)ch)
3280 TRIE_BITMAP_SET(trie,*ch);
3282 TRIE_BITMAP_SET(trie,folder[ *ch ]);
3283 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3289 SV **tmp = av_fetch( revcharmap, idx, 0);
3291 char *ch = SvPV( *tmp, len );
3293 SV *sv=sv_newmortal();
3294 Perl_re_indentf( aTHX_ "Prefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
3297 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3298 PL_colors[0], PL_colors[1],
3299 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3300 PERL_PV_ESCAPE_FIRSTCHAR
3305 OP( convert ) = nodetype;
3306 str=STRING(convert);
3309 STR_LEN(convert) += len;
3315 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3320 trie->prefixlen = (state-1);
3322 regnode *n = convert+NODE_SZ_STR(convert);
3323 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3324 trie->startstate = state;
3325 trie->minlen -= (state - 1);
3326 trie->maxlen -= (state - 1);
3328 /* At least the UNICOS C compiler choked on this
3329 * being argument to DEBUG_r(), so let's just have
3332 #ifdef PERL_EXT_RE_BUILD
3338 regnode *fix = convert;
3339 U32 word = trie->wordcount;
3341 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3342 while( ++fix < n ) {
3343 Set_Node_Offset_Length(fix, 0, 0);
3346 SV ** const tmp = av_fetch( trie_words, word, 0 );
3348 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3349 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3351 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3359 NEXT_OFF(convert) = (U16)(tail - convert);
3360 DEBUG_r(optimize= n);
3366 if ( trie->maxlen ) {
3367 NEXT_OFF( convert ) = (U16)(tail - convert);
3368 ARG_SET( convert, data_slot );
3369 /* Store the offset to the first unabsorbed branch in
3370 jump[0], which is otherwise unused by the jump logic.
3371 We use this when dumping a trie and during optimisation. */
3373 trie->jump[0] = (U16)(nextbranch - convert);
3375 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3376 * and there is a bitmap
3377 * and the first "jump target" node we found leaves enough room
3378 * then convert the TRIE node into a TRIEC node, with the bitmap
3379 * embedded inline in the opcode - this is hypothetically faster.
3381 if ( !trie->states[trie->startstate].wordnum
3383 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3385 OP( convert ) = TRIEC;
3386 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3387 PerlMemShared_free(trie->bitmap);
3390 OP( convert ) = TRIE;
3392 /* store the type in the flags */
3393 convert->flags = nodetype;
3397 + regarglen[ OP( convert ) ];
3399 /* XXX We really should free up the resource in trie now,
3400 as we won't use them - (which resources?) dmq */
3402 /* needed for dumping*/
3403 DEBUG_r(if (optimize) {
3404 regnode *opt = convert;
3406 while ( ++opt < optimize) {
3407 Set_Node_Offset_Length(opt,0,0);
3410 Try to clean up some of the debris left after the
3413 while( optimize < jumper ) {
3414 mjd_nodelen += Node_Length((optimize));
3415 OP( optimize ) = OPTIMIZED;
3416 Set_Node_Offset_Length(optimize,0,0);
3419 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3421 } /* end node insert */
3423 /* Finish populating the prev field of the wordinfo array. Walk back
3424 * from each accept state until we find another accept state, and if
3425 * so, point the first word's .prev field at the second word. If the
3426 * second already has a .prev field set, stop now. This will be the
3427 * case either if we've already processed that word's accept state,
3428 * or that state had multiple words, and the overspill words were
3429 * already linked up earlier.
3436 for (word=1; word <= trie->wordcount; word++) {
3438 if (trie->wordinfo[word].prev)
3440 state = trie->wordinfo[word].accept;
3442 state = prev_states[state];
3445 prev = trie->states[state].wordnum;
3449 trie->wordinfo[word].prev = prev;
3451 Safefree(prev_states);
3455 /* and now dump out the compressed format */
3456 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3458 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3460 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3461 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3463 SvREFCNT_dec_NN(revcharmap);
3467 : trie->startstate>1
3473 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3475 /* The Trie is constructed and compressed now so we can build a fail array if
3478 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3480 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3484 We find the fail state for each state in the trie, this state is the longest
3485 proper suffix of the current state's 'word' that is also a proper prefix of
3486 another word in our trie. State 1 represents the word '' and is thus the
3487 default fail state. This allows the DFA not to have to restart after its
3488 tried and failed a word at a given point, it simply continues as though it
3489 had been matching the other word in the first place.
3491 'abcdgu'=~/abcdefg|cdgu/
3492 When we get to 'd' we are still matching the first word, we would encounter
3493 'g' which would fail, which would bring us to the state representing 'd' in
3494 the second word where we would try 'g' and succeed, proceeding to match
3497 /* add a fail transition */
3498 const U32 trie_offset = ARG(source);
3499 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3501 const U32 ucharcount = trie->uniquecharcount;
3502 const U32 numstates = trie->statecount;
3503 const U32 ubound = trie->lasttrans + ucharcount;
3507 U32 base = trie->states[ 1 ].trans.base;
3510 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3512 GET_RE_DEBUG_FLAGS_DECL;
3514 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3515 PERL_UNUSED_CONTEXT;
3517 PERL_UNUSED_ARG(depth);
3520 if ( OP(source) == TRIE ) {
3521 struct regnode_1 *op = (struct regnode_1 *)
3522 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3523 StructCopy(source,op,struct regnode_1);
3524 stclass = (regnode *)op;
3526 struct regnode_charclass *op = (struct regnode_charclass *)
3527 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3528 StructCopy(source,op,struct regnode_charclass);
3529 stclass = (regnode *)op;
3531 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3533 ARG_SET( stclass, data_slot );
3534 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3535 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3536 aho->trie=trie_offset;
3537 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3538 Copy( trie->states, aho->states, numstates, reg_trie_state );
3539 Newxz( q, numstates, U32);
3540 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3543 /* initialize fail[0..1] to be 1 so that we always have
3544 a valid final fail state */
3545 fail[ 0 ] = fail[ 1 ] = 1;
3547 for ( charid = 0; charid < ucharcount ; charid++ ) {
3548 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3550 q[ q_write ] = newstate;
3551 /* set to point at the root */
3552 fail[ q[ q_write++ ] ]=1;
3555 while ( q_read < q_write) {
3556 const U32 cur = q[ q_read++ % numstates ];
3557 base = trie->states[ cur ].trans.base;
3559 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3560 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3562 U32 fail_state = cur;
3565 fail_state = fail[ fail_state ];
3566 fail_base = aho->states[ fail_state ].trans.base;
3567 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3569 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3570 fail[ ch_state ] = fail_state;
3571 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3573 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3575 q[ q_write++ % numstates] = ch_state;
3579 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3580 when we fail in state 1, this allows us to use the
3581 charclass scan to find a valid start char. This is based on the principle
3582 that theres a good chance the string being searched contains lots of stuff
3583 that cant be a start char.
3585 fail[ 0 ] = fail[ 1 ] = 0;
3586 DEBUG_TRIE_COMPILE_r({
3587 Perl_re_indentf( aTHX_ "Stclass Failtable (%"UVuf" states): 0",
3588 depth, (UV)numstates
3590 for( q_read=1; q_read<numstates; q_read++ ) {
3591 Perl_re_printf( aTHX_ ", %"UVuf, (UV)fail[q_read]);
3593 Perl_re_printf( aTHX_ "\n");
3596 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3601 #define DEBUG_PEEP(str,scan,depth) \
3602 DEBUG_OPTIMISE_r({if (scan){ \
3603 regnode *Next = regnext(scan); \
3604 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3605 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3606 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3607 Next ? (REG_NODE_NUM(Next)) : 0 );\
3608 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3609 Perl_re_printf( aTHX_ "\n"); \
3612 /* The below joins as many adjacent EXACTish nodes as possible into a single
3613 * one. The regop may be changed if the node(s) contain certain sequences that
3614 * require special handling. The joining is only done if:
3615 * 1) there is room in the current conglomerated node to entirely contain the
3617 * 2) they are the exact same node type
3619 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3620 * these get optimized out
3622 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3623 * as possible, even if that means splitting an existing node so that its first
3624 * part is moved to the preceeding node. This would maximise the efficiency of
3625 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3626 * EXACTFish nodes into portions that don't change under folding vs those that
3627 * do. Those portions that don't change may be the only things in the pattern that
3628 * could be used to find fixed and floating strings.
3630 * If a node is to match under /i (folded), the number of characters it matches
3631 * can be different than its character length if it contains a multi-character
3632 * fold. *min_subtract is set to the total delta number of characters of the
3635 * And *unfolded_multi_char is set to indicate whether or not the node contains
3636 * an unfolded multi-char fold. This happens when whether the fold is valid or
3637 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3638 * SMALL LETTER SHARP S, as only if the target string being matched against
3639 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3640 * folding rules depend on the locale in force at runtime. (Multi-char folds
3641 * whose components are all above the Latin1 range are not run-time locale
3642 * dependent, and have already been folded by the time this function is
3645 * This is as good a place as any to discuss the design of handling these
3646 * multi-character fold sequences. It's been wrong in Perl for a very long
3647 * time. There are three code points in Unicode whose multi-character folds
3648 * were long ago discovered to mess things up. The previous designs for
3649 * dealing with these involved assigning a special node for them. This
3650 * approach doesn't always work, as evidenced by this example:
3651 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3652 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3653 * would match just the \xDF, it won't be able to handle the case where a
3654 * successful match would have to cross the node's boundary. The new approach
3655 * that hopefully generally solves the problem generates an EXACTFU_SS node
3656 * that is "sss" in this case.
3658 * It turns out that there are problems with all multi-character folds, and not
3659 * just these three. Now the code is general, for all such cases. The
3660 * approach taken is:
3661 * 1) This routine examines each EXACTFish node that could contain multi-
3662 * character folded sequences. Since a single character can fold into
3663 * such a sequence, the minimum match length for this node is less than
3664 * the number of characters in the node. This routine returns in
3665 * *min_subtract how many characters to subtract from the the actual
3666 * length of the string to get a real minimum match length; it is 0 if
3667 * there are no multi-char foldeds. This delta is used by the caller to
3668 * adjust the min length of the match, and the delta between min and max,
3669 * so that the optimizer doesn't reject these possibilities based on size
3671 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3672 * is used for an EXACTFU node that contains at least one "ss" sequence in
3673 * it. For non-UTF-8 patterns and strings, this is the only case where
3674 * there is a possible fold length change. That means that a regular
3675 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3676 * with length changes, and so can be processed faster. regexec.c takes
3677 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3678 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3679 * known until runtime). This saves effort in regex matching. However,
3680 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3681 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3682 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3683 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3684 * possibilities for the non-UTF8 patterns are quite simple, except for
3685 * the sharp s. All the ones that don't involve a UTF-8 target string are
3686 * members of a fold-pair, and arrays are set up for all of them so that
3687 * the other member of the pair can be found quickly. Code elsewhere in
3688 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3689 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3690 * described in the next item.
3691 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3692 * validity of the fold won't be known until runtime, and so must remain
3693 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3694 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3695 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3696 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3697 * The reason this is a problem is that the optimizer part of regexec.c
3698 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3699 * that a character in the pattern corresponds to at most a single
3700 * character in the target string. (And I do mean character, and not byte
3701 * here, unlike other parts of the documentation that have never been
3702 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3703 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3704 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3705 * nodes, violate the assumption, and they are the only instances where it
3706 * is violated. I'm reluctant to try to change the assumption, as the
3707 * code involved is impenetrable to me (khw), so instead the code here
3708 * punts. This routine examines EXACTFL nodes, and (when the pattern
3709 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3710 * boolean indicating whether or not the node contains such a fold. When
3711 * it is true, the caller sets a flag that later causes the optimizer in
3712 * this file to not set values for the floating and fixed string lengths,
3713 * and thus avoids the optimizer code in regexec.c that makes the invalid
3714 * assumption. Thus, there is no optimization based on string lengths for
3715 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3716 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3717 * assumption is wrong only in these cases is that all other non-UTF-8
3718 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3719 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3720 * EXACTF nodes because we don't know at compile time if it actually
3721 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3722 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3723 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3724 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3725 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3726 * string would require the pattern to be forced into UTF-8, the overhead
3727 * of which we want to avoid. Similarly the unfolded multi-char folds in
3728 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3731 * Similarly, the code that generates tries doesn't currently handle
3732 * not-already-folded multi-char folds, and it looks like a pain to change
3733 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3734 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3735 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3736 * using /iaa matching will be doing so almost entirely with ASCII
3737 * strings, so this should rarely be encountered in practice */
3739 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3740 if (PL_regkind[OP(scan)] == EXACT) \
3741 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3744 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3745 UV *min_subtract, bool *unfolded_multi_char,
3746 U32 flags,regnode *val, U32 depth)
3748 /* Merge several consecutive EXACTish nodes into one. */
3749 regnode *n = regnext(scan);
3751 regnode *next = scan + NODE_SZ_STR(scan);
3755 regnode *stop = scan;
3756 GET_RE_DEBUG_FLAGS_DECL;
3758 PERL_UNUSED_ARG(depth);
3761 PERL_ARGS_ASSERT_JOIN_EXACT;
3762 #ifndef EXPERIMENTAL_INPLACESCAN
3763 PERL_UNUSED_ARG(flags);
3764 PERL_UNUSED_ARG(val);
3766 DEBUG_PEEP("join",scan,depth);
3768 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3769 * EXACT ones that are mergeable to the current one. */
3771 && (PL_regkind[OP(n)] == NOTHING
3772 || (stringok && OP(n) == OP(scan)))
3774 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3777 if (OP(n) == TAIL || n > next)
3779 if (PL_regkind[OP(n)] == NOTHING) {
3780 DEBUG_PEEP("skip:",n,depth);
3781 NEXT_OFF(scan) += NEXT_OFF(n);
3782 next = n + NODE_STEP_REGNODE;
3789 else if (stringok) {
3790 const unsigned int oldl = STR_LEN(scan);
3791 regnode * const nnext = regnext(n);
3793 /* XXX I (khw) kind of doubt that this works on platforms (should
3794 * Perl ever run on one) where U8_MAX is above 255 because of lots
3795 * of other assumptions */
3796 /* Don't join if the sum can't fit into a single node */
3797 if (oldl + STR_LEN(n) > U8_MAX)
3800 DEBUG_PEEP("merg",n,depth);
3803 NEXT_OFF(scan) += NEXT_OFF(n);
3804 STR_LEN(scan) += STR_LEN(n);
3805 next = n + NODE_SZ_STR(n);
3806 /* Now we can overwrite *n : */
3807 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3815 #ifdef EXPERIMENTAL_INPLACESCAN
3816 if (flags && !NEXT_OFF(n)) {
3817 DEBUG_PEEP("atch", val, depth);
3818 if (reg_off_by_arg[OP(n)]) {
3819 ARG_SET(n, val - n);
3822 NEXT_OFF(n) = val - n;
3830 *unfolded_multi_char = FALSE;
3832 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3833 * can now analyze for sequences of problematic code points. (Prior to
3834 * this final joining, sequences could have been split over boundaries, and
3835 * hence missed). The sequences only happen in folding, hence for any
3836 * non-EXACT EXACTish node */
3837 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3838 U8* s0 = (U8*) STRING(scan);
3840 U8* s_end = s0 + STR_LEN(scan);
3842 int total_count_delta = 0; /* Total delta number of characters that
3843 multi-char folds expand to */
3845 /* One pass is made over the node's string looking for all the
3846 * possibilities. To avoid some tests in the loop, there are two main
3847 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3852 if (OP(scan) == EXACTFL) {
3855 /* An EXACTFL node would already have been changed to another
3856 * node type unless there is at least one character in it that
3857 * is problematic; likely a character whose fold definition
3858 * won't be known until runtime, and so has yet to be folded.
3859 * For all but the UTF-8 locale, folds are 1-1 in length, but
3860 * to handle the UTF-8 case, we need to create a temporary
3861 * folded copy using UTF-8 locale rules in order to analyze it.
3862 * This is because our macros that look to see if a sequence is
3863 * a multi-char fold assume everything is folded (otherwise the
3864 * tests in those macros would be too complicated and slow).
3865 * Note that here, the non-problematic folds will have already
3866 * been done, so we can just copy such characters. We actually
3867 * don't completely fold the EXACTFL string. We skip the
3868 * unfolded multi-char folds, as that would just create work
3869 * below to figure out the size they already are */
3871 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3874 STRLEN s_len = UTF8SKIP(s);
3875 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3876 Copy(s, d, s_len, U8);
3879 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3880 *unfolded_multi_char = TRUE;
3881 Copy(s, d, s_len, U8);
3884 else if (isASCII(*s)) {
3885 *(d++) = toFOLD(*s);
3889 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3895 /* Point the remainder of the routine to look at our temporary
3899 } /* End of creating folded copy of EXACTFL string */
3901 /* Examine the string for a multi-character fold sequence. UTF-8
3902 * patterns have all characters pre-folded by the time this code is
3904 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3905 length sequence we are looking for is 2 */
3907 int count = 0; /* How many characters in a multi-char fold */
3908 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3909 if (! len) { /* Not a multi-char fold: get next char */
3914 /* Nodes with 'ss' require special handling, except for
3915 * EXACTFA-ish for which there is no multi-char fold to this */
3916 if (len == 2 && *s == 's' && *(s+1) == 's'
3917 && OP(scan) != EXACTFA
3918 && OP(scan) != EXACTFA_NO_TRIE)
3921 if (OP(scan) != EXACTFL) {
3922 OP(scan) = EXACTFU_SS;
3926 else { /* Here is a generic multi-char fold. */
3927 U8* multi_end = s + len;
3929 /* Count how many characters are in it. In the case of
3930 * /aa, no folds which contain ASCII code points are
3931 * allowed, so check for those, and skip if found. */
3932 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3933 count = utf8_length(s, multi_end);
3937 while (s < multi_end) {
3940 goto next_iteration;
3950 /* The delta is how long the sequence is minus 1 (1 is how long
3951 * the character that folds to the sequence is) */
3952 total_count_delta += count - 1;
3956 /* We created a temporary folded copy of the string in EXACTFL
3957 * nodes. Therefore we need to be sure it doesn't go below zero,
3958 * as the real string could be shorter */
3959 if (OP(scan) == EXACTFL) {
3960 int total_chars = utf8_length((U8*) STRING(scan),
3961 (U8*) STRING(scan) + STR_LEN(scan));
3962 if (total_count_delta > total_chars) {
3963 total_count_delta = total_chars;
3967 *min_subtract += total_count_delta;
3970 else if (OP(scan) == EXACTFA) {
3972 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3973 * fold to the ASCII range (and there are no existing ones in the
3974 * upper latin1 range). But, as outlined in the comments preceding
3975 * this function, we need to flag any occurrences of the sharp s.
3976 * This character forbids trie formation (because of added
3978 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3979 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3980 || UNICODE_DOT_DOT_VERSION > 0)
3982 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3983 OP(scan) = EXACTFA_NO_TRIE;
3984 *unfolded_multi_char = TRUE;
3992 /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char