4 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was
14 * our Mr. Bilbo's first cousin on the mother's side (her mother being the
15 * youngest of the Old Took's daughters); and Mr. Drogo was his second
16 * cousin. So Mr. Frodo is his first *and* second cousin, once removed
17 * either way, as the saying is, if you follow me.' --the Gaffer
19 * [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"]
22 /* This file contains the functions that create, manipulate and optimize
23 * the OP structures that hold a compiled perl program.
25 * Note that during the build of miniperl, a temporary copy of this file
26 * is made, called opmini.c.
28 * A Perl program is compiled into a tree of OP nodes. Each op contains:
29 * * structural OP pointers to its children and siblings (op_sibling,
30 * op_first etc) that define the tree structure;
31 * * execution order OP pointers (op_next, plus sometimes op_other,
32 * op_lastop etc) that define the execution sequence plus variants;
33 * * a pointer to the C "pp" function that would execute the op;
34 * * any data specific to that op.
35 * For example, an OP_CONST op points to the pp_const() function and to an
36 * SV containing the constant value. When pp_const() is executed, its job
37 * is to push that SV onto the stack.
39 * OPs are mainly created by the newFOO() functions, which are mainly
40 * called from the parser (in perly.y) as the code is parsed. For example
41 * the Perl code $a + $b * $c would cause the equivalent of the following
42 * to be called (oversimplifying a bit):
44 * newBINOP(OP_ADD, flags,
46 * newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c))
49 * As the parser reduces low-level rules, it creates little op subtrees;
50 * as higher-level rules are resolved, these subtrees get joined together
51 * as branches on a bigger subtree, until eventually a top-level rule like
52 * a subroutine definition is reduced, at which point there is one large
55 * The execution order pointers (op_next) are generated as the subtrees
56 * are joined together. Consider this sub-expression: A*B + C/D: at the
57 * point when it's just been parsed, the op tree looks like:
65 * with the intended execution order being:
67 * [PREV] => A => B => [*] => C => D => [/] => [+] => [NEXT]
69 * At this point all the nodes' op_next pointers will have been set,
71 * * we don't know what the [NEXT] node will be yet;
72 * * we don't know what the [PREV] node will be yet, but when it gets
73 * created and needs its op_next set, it needs to be set to point to
74 * A, which is non-obvious.
75 * To handle both those cases, we temporarily set the top node's
76 * op_next to point to the first node to be executed in this subtree (A in
77 * this case). This means that initially a subtree's op_next chain,
78 * starting from the top node, will visit each node in execution sequence
79 * then point back at the top node.
80 * When we embed this subtree in a larger tree, its top op_next is used
81 * to get the start node, then is set to point to its new neighbour.
82 * For example the two separate [*],A,B and [/],C,D subtrees would
84 * [*] => A; A => B; B => [*]
86 * [/] => C; C => D; D => [/]
87 * When these two subtrees were joined together to make the [+] subtree,
88 * [+]'s op_next was set to [*]'s op_next, i.e. A; then [*]'s op_next was
89 * set to point to [/]'s op_next, i.e. C.
91 * This op_next linking is done by the LINKLIST() macro and its underlying
92 * op_linklist() function. Given a top-level op, if its op_next is
93 * non-null, it's already been linked, so leave it. Otherwise link it with
94 * its children as described above, possibly recursively if any of the
95 * children have a null op_next.
97 * In summary: given a subtree, its top-level node's op_next will either
99 * NULL: the subtree hasn't been LINKLIST()ed yet;
100 * fake: points to the start op for this subtree;
101 * real: once the subtree has been embedded into a larger tree
106 Here's an older description from Larry.
108 Perl's compiler is essentially a 3-pass compiler with interleaved phases:
112 An execution-order pass
114 The bottom-up pass is represented by all the "newOP" routines and
115 the ck_ routines. The bottom-upness is actually driven by yacc.
116 So at the point that a ck_ routine fires, we have no idea what the
117 context is, either upward in the syntax tree, or either forward or
118 backward in the execution order. (The bottom-up parser builds that
119 part of the execution order it knows about, but if you follow the "next"
120 links around, you'll find it's actually a closed loop through the
123 Whenever the bottom-up parser gets to a node that supplies context to
124 its components, it invokes that portion of the top-down pass that applies
125 to that part of the subtree (and marks the top node as processed, so
126 if a node further up supplies context, it doesn't have to take the
127 plunge again). As a particular subcase of this, as the new node is
128 built, it takes all the closed execution loops of its subcomponents
129 and links them into a new closed loop for the higher level node. But
130 it's still not the real execution order.
132 The actual execution order is not known till we get a grammar reduction
133 to a top-level unit like a subroutine or file that will be called by
134 "name" rather than via a "next" pointer. At that point, we can call
135 into peep() to do that code's portion of the 3rd pass. It has to be
136 recursive, but it's recursive on basic blocks, not on tree nodes.
139 /* To implement user lexical pragmas, there needs to be a way at run time to
140 get the compile time state of %^H for that block. Storing %^H in every
141 block (or even COP) would be very expensive, so a different approach is
142 taken. The (running) state of %^H is serialised into a tree of HE-like
143 structs. Stores into %^H are chained onto the current leaf as a struct
144 refcounted_he * with the key and the value. Deletes from %^H are saved
145 with a value of PL_sv_placeholder. The state of %^H at any point can be
146 turned back into a regular HV by walking back up the tree from that point's
147 leaf, ignoring any key you've already seen (placeholder or not), storing
148 the rest into the HV structure, then removing the placeholders. Hence
149 memory is only used to store the %^H deltas from the enclosing COP, rather
150 than the entire %^H on each COP.
152 To cause actions on %^H to write out the serialisation records, it has
153 magic type 'H'. This magic (itself) does nothing, but its presence causes
154 the values to gain magic type 'h', which has entries for set and clear.
155 C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store
156 record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS>
157 saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that
158 it will be correctly restored when any inner compiling scope is exited.
164 #include "keywords.h"
167 #include "invlist_inline.h"
169 #define CALL_PEEP(o) PL_peepp(aTHX_ o)
170 #define CALL_RPEEP(o) PL_rpeepp(aTHX_ o)
171 #define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o)
173 static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar";
175 /* remove any leading "empty" ops from the op_next chain whose first
176 * node's address is stored in op_p. Store the updated address of the
177 * first node in op_p.
181 S_prune_chain_head(OP** op_p)
184 && ( (*op_p)->op_type == OP_NULL
185 || (*op_p)->op_type == OP_SCOPE
186 || (*op_p)->op_type == OP_SCALAR
187 || (*op_p)->op_type == OP_LINESEQ)
189 *op_p = (*op_p)->op_next;
193 /* See the explanatory comments above struct opslab in op.h. */
195 #ifdef PERL_DEBUG_READONLY_OPS
196 # define PERL_SLAB_SIZE 128
197 # define PERL_MAX_SLAB_SIZE 4096
198 # include <sys/mman.h>
201 #ifndef PERL_SLAB_SIZE
202 # define PERL_SLAB_SIZE 64
204 #ifndef PERL_MAX_SLAB_SIZE
205 # define PERL_MAX_SLAB_SIZE 2048
208 /* rounds up to nearest pointer */
209 #define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *))
212 (assert(((char *)(p) - (char *)(o)) % sizeof(I32**) == 0), \
213 ((size_t)((I32 **)(p) - (I32**)(o))))
215 /* requires double parens and aTHX_ */
216 #define DEBUG_S_warn(args) \
218 PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \
221 /* opslot_size includes the size of the slot header, and an op can't be smaller than BASEOP */
222 #define OPSLOT_SIZE_BASE (SIZE_TO_PSIZE(sizeof(OPSLOT)))
224 /* the number of bytes to allocate for a slab with sz * sizeof(I32 **) space for op */
225 #define OpSLABSizeBytes(sz) \
226 ((sz) * sizeof(I32 *) + STRUCT_OFFSET(OPSLAB, opslab_slots))
228 /* malloc a new op slab (suitable for attaching to PL_compcv).
229 * sz is in units of pointers from the beginning of opslab_opslots */
232 S_new_slab(pTHX_ OPSLAB *head, size_t sz)
235 size_t sz_bytes = OpSLABSizeBytes(sz);
237 /* opslot_offset is only U16 */
238 assert(sz < U16_MAX);
239 /* room for at least one op */
240 assert(sz >= OPSLOT_SIZE_BASE);
242 #ifdef PERL_DEBUG_READONLY_OPS
243 slab = (OPSLAB *) mmap(0, sz_bytes,
244 PROT_READ|PROT_WRITE,
245 MAP_ANON|MAP_PRIVATE, -1, 0);
246 DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n",
247 (unsigned long) sz, slab));
248 if (slab == MAP_FAILED) {
249 perror("mmap failed");
253 slab = (OPSLAB *)PerlMemShared_malloc(sz_bytes);
254 Zero(slab, sz_bytes, char);
256 slab->opslab_size = (U16)sz;
259 /* The context is unused in non-Windows */
262 slab->opslab_free_space = sz;
263 slab->opslab_head = head ? head : slab;
264 DEBUG_S_warn((aTHX_ "allocated new op slab sz 0x%x, %p, head slab %p",
265 (unsigned int)slab->opslab_size, (void*)slab,
266 (void*)(slab->opslab_head)));
270 #define OPSLOT_SIZE_TO_INDEX(sz) ((sz) - OPSLOT_SIZE_BASE)
272 #define link_freed_op(slab, o) S_link_freed_op(aTHX_ slab, o)
274 S_link_freed_op(pTHX_ OPSLAB *slab, OP *o) {
275 U16 sz = OpSLOT(o)->opslot_size;
276 U16 index = OPSLOT_SIZE_TO_INDEX(sz);
278 assert(sz >= OPSLOT_SIZE_BASE);
279 /* make sure the array is large enough to include ops this large */
280 if (!slab->opslab_freed) {
281 /* we don't have a free list array yet, make a new one */
282 slab->opslab_freed_size = index+1;
283 slab->opslab_freed = (OP**)PerlMemShared_calloc((slab->opslab_freed_size), sizeof(OP*));
285 if (!slab->opslab_freed)
288 else if (index >= slab->opslab_freed_size) {
289 /* It's probably not worth doing exponential expansion here, the number of op sizes
292 /* We already have a list that isn't large enough, expand it */
293 size_t newsize = index+1;
294 OP **p = (OP **)PerlMemShared_realloc(slab->opslab_freed, newsize * sizeof(OP*));
299 Zero(p+slab->opslab_freed_size, newsize - slab->opslab_freed_size, OP *);
301 slab->opslab_freed = p;
302 slab->opslab_freed_size = newsize;
305 o->op_next = slab->opslab_freed[index];
306 slab->opslab_freed[index] = o;
309 /* Returns a sz-sized block of memory (suitable for holding an op) from
310 * a free slot in the chain of op slabs attached to PL_compcv.
311 * Allocates a new slab if necessary.
312 * if PL_compcv isn't compiling, malloc() instead.
316 Perl_Slab_Alloc(pTHX_ size_t sz)
318 OPSLAB *head_slab; /* first slab in the chain */
322 size_t sz_in_p; /* size in pointer units, including the OPSLOT header */
324 /* We only allocate ops from the slab during subroutine compilation.
325 We find the slab via PL_compcv, hence that must be non-NULL. It could
326 also be pointing to a subroutine which is now fully set up (CvROOT()
327 pointing to the top of the optree for that sub), or a subroutine
328 which isn't using the slab allocator. If our sanity checks aren't met,
329 don't use a slab, but allocate the OP directly from the heap. */
330 if (!PL_compcv || CvROOT(PL_compcv)
331 || (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv)))
333 o = (OP*)PerlMemShared_calloc(1, sz);
337 /* While the subroutine is under construction, the slabs are accessed via
338 CvSTART(), to avoid needing to expand PVCV by one pointer for something
339 unneeded at runtime. Once a subroutine is constructed, the slabs are
340 accessed via CvROOT(). So if CvSTART() is NULL, no slab has been
341 allocated yet. See the commit message for 8be227ab5eaa23f2 for more
343 if (!CvSTART(PL_compcv)) {
345 (OP *)(head_slab = S_new_slab(aTHX_ NULL, PERL_SLAB_SIZE));
346 CvSLABBED_on(PL_compcv);
347 head_slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */
349 else ++(head_slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt;
351 sz_in_p = SIZE_TO_PSIZE(sz + OPSLOT_HEADER);
353 /* The head slab for each CV maintains a free list of OPs. In particular, constant folding
354 will free up OPs, so it makes sense to re-use them where possible. A
355 freed up slot is used in preference to a new allocation. */
356 if (head_slab->opslab_freed &&
357 OPSLOT_SIZE_TO_INDEX(sz_in_p) < head_slab->opslab_freed_size) {
360 /* look for a large enough size with any freed ops */
361 for (base_index = OPSLOT_SIZE_TO_INDEX(sz_in_p);
362 base_index < head_slab->opslab_freed_size && !head_slab->opslab_freed[base_index];
366 if (base_index < head_slab->opslab_freed_size) {
367 /* found a freed op */
368 o = head_slab->opslab_freed[base_index];
370 DEBUG_S_warn((aTHX_ "realloced op at %p, slab %p, head slab %p",
371 (void *)o, (void *)OpMySLAB(o), (void *)head_slab));
372 head_slab->opslab_freed[base_index] = o->op_next;
379 #define INIT_OPSLOT(s) \
380 slot->opslot_offset = DIFF(&slab2->opslab_slots, slot) ; \
381 slot->opslot_size = s; \
382 slab2->opslab_free_space -= s; \
383 o = &slot->opslot_op; \
386 /* The partially-filled slab is next in the chain. */
387 slab2 = head_slab->opslab_next ? head_slab->opslab_next : head_slab;
388 if (slab2->opslab_free_space < sz_in_p) {
389 /* Remaining space is too small. */
390 /* If we can fit a BASEOP, add it to the free chain, so as not
392 if (slab2->opslab_free_space >= OPSLOT_SIZE_BASE) {
393 slot = &slab2->opslab_slots;
394 INIT_OPSLOT(slab2->opslab_free_space);
395 o->op_type = OP_FREED;
396 DEBUG_S_warn((aTHX_ "linked unused op space at %p, slab %p, head slab %p",
397 (void *)o, (void *)slab2, (void *)head_slab));
398 link_freed_op(head_slab, o);
401 /* Create a new slab. Make this one twice as big. */
402 slab2 = S_new_slab(aTHX_ head_slab,
403 slab2->opslab_size > PERL_MAX_SLAB_SIZE / 2
405 : slab2->opslab_size * 2);
406 slab2->opslab_next = head_slab->opslab_next;
407 head_slab->opslab_next = slab2;
409 assert(slab2->opslab_size >= sz_in_p);
411 /* Create a new op slot */
412 slot = OpSLOToff(slab2, slab2->opslab_free_space - sz_in_p);
413 assert(slot >= &slab2->opslab_slots);
414 INIT_OPSLOT(sz_in_p);
415 DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p, head slab %p",
416 (void*)o, (void*)slab2, (void*)head_slab));
419 /* moresib == 0, op_sibling == 0 implies a solitary unattached op */
420 assert(!o->op_moresib);
421 assert(!o->op_sibparent);
428 #ifdef PERL_DEBUG_READONLY_OPS
430 Perl_Slab_to_ro(pTHX_ OPSLAB *slab)
432 PERL_ARGS_ASSERT_SLAB_TO_RO;
434 if (slab->opslab_readonly) return;
435 slab->opslab_readonly = 1;
436 for (; slab; slab = slab->opslab_next) {
437 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n",
438 (unsigned long) slab->opslab_size, (void *)slab));*/
439 if (mprotect(slab, OpSLABSizeBytes(slab->opslab_size), PROT_READ))
440 Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", (void *)slab,
441 (unsigned long)slab->opslab_size, errno);
446 Perl_Slab_to_rw(pTHX_ OPSLAB *const slab)
450 PERL_ARGS_ASSERT_SLAB_TO_RW;
452 if (!slab->opslab_readonly) return;
454 for (; slab2; slab2 = slab2->opslab_next) {
455 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n",
456 (unsigned long) size, (void *)slab2));*/
457 if (mprotect((void *)slab2, OpSLABSizeBytes(slab2->opslab_size),
458 PROT_READ|PROT_WRITE)) {
459 Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", (void *)slab,
460 (unsigned long)slab2->opslab_size, errno);
463 slab->opslab_readonly = 0;
467 # define Slab_to_rw(op) NOOP
470 /* This cannot possibly be right, but it was copied from the old slab
471 allocator, to which it was originally added, without explanation, in
474 # define PerlMemShared PerlMem
477 /* make freed ops die if they're inadvertently executed */
482 DIE(aTHX_ "panic: freed op 0x%p called\n", PL_op);
487 /* Return the block of memory used by an op to the free list of
488 * the OP slab associated with that op.
492 Perl_Slab_Free(pTHX_ void *op)
494 OP * const o = (OP *)op;
497 PERL_ARGS_ASSERT_SLAB_FREE;
500 o->op_ppaddr = S_pp_freed;
503 if (!o->op_slabbed) {
505 PerlMemShared_free(op);
510 /* If this op is already freed, our refcount will get screwy. */
511 assert(o->op_type != OP_FREED);
512 o->op_type = OP_FREED;
513 link_freed_op(slab, o);
514 DEBUG_S_warn((aTHX_ "freeing op at %p, slab %p, head slab %p",
515 (void*)o, (void *)OpMySLAB(o), (void*)slab));
516 OpslabREFCNT_dec_padok(slab);
520 Perl_opslab_free_nopad(pTHX_ OPSLAB *slab)
522 const bool havepad = !!PL_comppad;
523 PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD;
526 PAD_SAVE_SETNULLPAD();
532 /* Free a chain of OP slabs. Should only be called after all ops contained
533 * in it have been freed. At this point, its reference count should be 1,
534 * because OpslabREFCNT_dec() skips doing rc-- when it detects that rc == 1,
535 * and just directly calls opslab_free().
536 * (Note that the reference count which PL_compcv held on the slab should
537 * have been removed once compilation of the sub was complete).
543 Perl_opslab_free(pTHX_ OPSLAB *slab)
546 PERL_ARGS_ASSERT_OPSLAB_FREE;
548 DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab));
549 assert(slab->opslab_refcnt == 1);
550 PerlMemShared_free(slab->opslab_freed);
552 slab2 = slab->opslab_next;
554 slab->opslab_refcnt = ~(size_t)0;
556 #ifdef PERL_DEBUG_READONLY_OPS
557 DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n",
559 if (munmap(slab, OpSLABSizeBytes(slab->opslab_size))) {
560 perror("munmap failed");
564 PerlMemShared_free(slab);
570 /* like opslab_free(), but first calls op_free() on any ops in the slab
571 * not marked as OP_FREED
575 Perl_opslab_force_free(pTHX_ OPSLAB *slab)
579 size_t savestack_count = 0;
581 PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE;
584 OPSLOT *slot = OpSLOToff(slab2, slab2->opslab_free_space);
585 OPSLOT *end = OpSLOToff(slab2, slab2->opslab_size);
587 slot = (OPSLOT*) ((I32**)slot + slot->opslot_size) )
589 if (slot->opslot_op.op_type != OP_FREED
590 && !(slot->opslot_op.op_savefree
596 assert(slot->opslot_op.op_slabbed);
597 op_free(&slot->opslot_op);
598 if (slab->opslab_refcnt == 1) goto free;
601 } while ((slab2 = slab2->opslab_next));
602 /* > 1 because the CV still holds a reference count. */
603 if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */
605 assert(savestack_count == slab->opslab_refcnt-1);
607 /* Remove the CV’s reference count. */
608 slab->opslab_refcnt--;
615 #ifdef PERL_DEBUG_READONLY_OPS
617 Perl_op_refcnt_inc(pTHX_ OP *o)
620 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
621 if (slab && slab->opslab_readonly) {
634 Perl_op_refcnt_dec(pTHX_ OP *o)
637 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
639 PERL_ARGS_ASSERT_OP_REFCNT_DEC;
641 if (slab && slab->opslab_readonly) {
643 result = --o->op_targ;
646 result = --o->op_targ;
652 * In the following definition, the ", (OP*)0" is just to make the compiler
653 * think the expression is of the right type: croak actually does a Siglongjmp.
655 #define CHECKOP(type,o) \
656 ((PL_op_mask && PL_op_mask[type]) \
657 ? ( op_free((OP*)o), \
658 Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \
660 : PL_check[type](aTHX_ (OP*)o))
662 #define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2)
664 #define OpTYPE_set(o,type) \
666 o->op_type = (OPCODE)type; \
667 o->op_ppaddr = PL_ppaddr[type]; \
671 S_no_fh_allowed(pTHX_ OP *o)
673 PERL_ARGS_ASSERT_NO_FH_ALLOWED;
675 yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function",
681 S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags)
683 PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV;
684 yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags);
689 S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags)
691 PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV;
693 yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags);
698 S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid)
700 PERL_ARGS_ASSERT_BAD_TYPE_PV;
702 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)",
703 (int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0);
707 S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t)
709 SV * const namesv = cv_name((CV *)gv, NULL, 0);
710 PERL_ARGS_ASSERT_BAD_TYPE_GV;
712 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %" SVf " must be %s (not %s)",
713 (int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv));
717 S_no_bareword_allowed(pTHX_ OP *o)
719 PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED;
721 qerror(Perl_mess(aTHX_
722 "Bareword \"%" SVf "\" not allowed while \"strict subs\" in use",
724 o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */
727 /* "register" allocation */
730 Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags)
733 const bool is_our = (PL_parser->in_my == KEY_our);
735 PERL_ARGS_ASSERT_ALLOCMY;
737 if (flags & ~SVf_UTF8)
738 Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf,
741 /* complain about "my $<special_var>" etc etc */
745 || ( (flags & SVf_UTF8)
746 && isIDFIRST_utf8_safe((U8 *)name+1, name + len))
747 || (name[1] == '_' && len > 2)))
749 const char * const type =
750 PL_parser->in_my == KEY_sigvar ? "subroutine signature" :
751 PL_parser->in_my == KEY_state ? "\"state\"" : "\"my\"";
753 if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1]))
755 && (!isPRINT(name[1]) || memCHRs("\t\n\r\f", name[1]))) {
756 /* diag_listed_as: Can't use global %s in %s */
757 yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in %s",
758 name[0], toCTRL(name[1]),
759 (int)(len - 2), name + 2,
762 yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in %s",
764 type), flags & SVf_UTF8);
768 /* allocate a spare slot and store the name in that slot */
770 off = pad_add_name_pvn(name, len,
771 (is_our ? padadd_OUR :
772 PL_parser->in_my == KEY_state ? padadd_STATE : 0),
773 PL_parser->in_my_stash,
775 /* $_ is always in main::, even with our */
776 ? (PL_curstash && !memEQs(name,len,"$_")
782 /* anon sub prototypes contains state vars should always be cloned,
783 * otherwise the state var would be shared between anon subs */
785 if (PL_parser->in_my == KEY_state && CvANON(PL_compcv))
786 CvCLONE_on(PL_compcv);
792 =for apidoc_section $optree_manipulation
794 =for apidoc alloccopstash
796 Available only under threaded builds, this function allocates an entry in
797 C<PL_stashpad> for the stash passed to it.
804 Perl_alloccopstash(pTHX_ HV *hv)
806 PADOFFSET off = 0, o = 1;
807 bool found_slot = FALSE;
809 PERL_ARGS_ASSERT_ALLOCCOPSTASH;
811 if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix;
813 for (; o < PL_stashpadmax; ++o) {
814 if (PL_stashpad[o] == hv) return PL_stashpadix = o;
815 if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV)
816 found_slot = TRUE, off = o;
819 Renew(PL_stashpad, PL_stashpadmax + 10, HV *);
820 Zero(PL_stashpad + PL_stashpadmax, 10, HV *);
821 off = PL_stashpadmax;
822 PL_stashpadmax += 10;
825 PL_stashpad[PL_stashpadix = off] = hv;
830 /* free the body of an op without examining its contents.
831 * Always use this rather than FreeOp directly */
834 S_op_destroy(pTHX_ OP *o)
844 Free an op and its children. Only use this when an op is no longer linked
851 Perl_op_free(pTHX_ OP *o)
856 bool went_up = FALSE; /* whether we reached the current node by
857 following the parent pointer from a child, and
858 so have already seen this node */
860 if (!o || o->op_type == OP_FREED)
863 if (o->op_private & OPpREFCOUNTED) {
864 /* if base of tree is refcounted, just decrement */
865 switch (o->op_type) {
875 refcnt = OpREFCNT_dec(o);
878 /* Need to find and remove any pattern match ops from
879 * the list we maintain for reset(). */
880 find_and_forget_pmops(o);
893 /* free child ops before ourself, (then free ourself "on the
896 if (!went_up && o->op_flags & OPf_KIDS) {
897 next_op = cUNOPo->op_first;
901 /* find the next node to visit, *then* free the current node
902 * (can't rely on o->op_* fields being valid after o has been
905 /* The next node to visit will be either the sibling, or the
906 * parent if no siblings left, or NULL if we've worked our way
907 * back up to the top node in the tree */
908 next_op = (o == top_op) ? NULL : o->op_sibparent;
909 went_up = cBOOL(!OpHAS_SIBLING(o)); /* parents are already visited */
911 /* Now process the current node */
913 /* Though ops may be freed twice, freeing the op after its slab is a
915 assert(!o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0);
916 /* During the forced freeing of ops after compilation failure, kidops
917 may be freed before their parents. */
918 if (!o || o->op_type == OP_FREED)
923 /* an op should only ever acquire op_private flags that we know about.
924 * If this fails, you may need to fix something in regen/op_private.
925 * Don't bother testing if:
926 * * the op_ppaddr doesn't match the op; someone may have
927 * overridden the op and be doing strange things with it;
928 * * we've errored, as op flags are often left in an
929 * inconsistent state then. Note that an error when
930 * compiling the main program leaves PL_parser NULL, so
931 * we can't spot faults in the main code, only
932 * evaled/required code */
934 if ( o->op_ppaddr == PL_ppaddr[type]
936 && !PL_parser->error_count)
938 assert(!(o->op_private & ~PL_op_private_valid[type]));
943 /* Call the op_free hook if it has been set. Do it now so that it's called
944 * at the right time for refcounted ops, but still before all of the kids
949 type = (OPCODE)o->op_targ;
952 Slab_to_rw(OpSLAB(o));
954 /* COP* is not cleared by op_clear() so that we may track line
955 * numbers etc even after null() */
956 if (type == OP_NEXTSTATE || type == OP_DBSTATE) {
968 /* S_op_clear_gv(): free a GV attached to an OP */
972 void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp)
974 void S_op_clear_gv(pTHX_ OP *o, SV**svp)
978 GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV
979 || o->op_type == OP_MULTIDEREF)
982 ? ((GV*)PAD_SVl(*ixp)) : NULL;
984 ? (GV*)(*svp) : NULL;
986 /* It's possible during global destruction that the GV is freed
987 before the optree. Whilst the SvREFCNT_inc is happy to bump from
988 0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0
989 will trigger an assertion failure, because the entry to sv_clear
990 checks that the scalar is not already freed. A check of for
991 !SvIS_FREED(gv) turns out to be invalid, because during global
992 destruction the reference count can be forced down to zero
993 (with SVf_BREAK set). In which case raising to 1 and then
994 dropping to 0 triggers cleanup before it should happen. I
995 *think* that this might actually be a general, systematic,
996 weakness of the whole idea of SVf_BREAK, in that code *is*
997 allowed to raise and lower references during global destruction,
998 so any *valid* code that happens to do this during global
999 destruction might well trigger premature cleanup. */
1000 bool still_valid = gv && SvREFCNT(gv);
1003 SvREFCNT_inc_simple_void(gv);
1006 pad_swipe(*ixp, TRUE);
1014 int try_downgrade = SvREFCNT(gv) == 2;
1015 SvREFCNT_dec_NN(gv);
1017 gv_try_downgrade(gv);
1023 Perl_op_clear(pTHX_ OP *o)
1027 PERL_ARGS_ASSERT_OP_CLEAR;
1029 switch (o->op_type) {
1030 case OP_NULL: /* Was holding old type, if any. */
1033 case OP_ENTEREVAL: /* Was holding hints. */
1034 case OP_ARGDEFELEM: /* Was holding signature index. */
1038 if (!(o->op_flags & OPf_REF) || !OP_IS_STAT(o->op_type))
1045 S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix));
1047 S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv));
1050 case OP_METHOD_REDIR:
1051 case OP_METHOD_REDIR_SUPER:
1053 if (cMETHOPx(o)->op_rclass_targ) {
1054 pad_swipe(cMETHOPx(o)->op_rclass_targ, 1);
1055 cMETHOPx(o)->op_rclass_targ = 0;
1058 SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv);
1059 cMETHOPx(o)->op_rclass_sv = NULL;
1062 case OP_METHOD_NAMED:
1063 case OP_METHOD_SUPER:
1064 SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv);
1065 cMETHOPx(o)->op_u.op_meth_sv = NULL;
1068 pad_swipe(o->op_targ, 1);
1075 SvREFCNT_dec(cSVOPo->op_sv);
1076 cSVOPo->op_sv = NULL;
1079 Even if op_clear does a pad_free for the target of the op,
1080 pad_free doesn't actually remove the sv that exists in the pad;
1081 instead it lives on. This results in that it could be reused as
1082 a target later on when the pad was reallocated.
1085 pad_swipe(o->op_targ,1);
1095 if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS))
1100 if ( (o->op_type == OP_TRANS || o->op_type == OP_TRANSR)
1101 && (o->op_private & OPpTRANS_USE_SVOP))
1104 if (cPADOPo->op_padix > 0) {
1105 pad_swipe(cPADOPo->op_padix, TRUE);
1106 cPADOPo->op_padix = 0;
1109 SvREFCNT_dec(cSVOPo->op_sv);
1110 cSVOPo->op_sv = NULL;
1114 PerlMemShared_free(cPVOPo->op_pv);
1115 cPVOPo->op_pv = NULL;
1119 op_free(cPMOPo->op_pmreplrootu.op_pmreplroot);
1123 if ( (o->op_private & OPpSPLIT_ASSIGN) /* @array = split */
1124 && !(o->op_flags & OPf_STACKED)) /* @{expr} = split */
1126 if (o->op_private & OPpSPLIT_LEX)
1127 pad_free(cPMOPo->op_pmreplrootu.op_pmtargetoff);
1130 pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE);
1132 SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv));
1139 if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE))
1140 op_free(cPMOPo->op_code_list);
1141 cPMOPo->op_code_list = NULL;
1142 forget_pmop(cPMOPo);
1143 cPMOPo->op_pmreplrootu.op_pmreplroot = NULL;
1144 /* we use the same protection as the "SAFE" version of the PM_ macros
1145 * here since sv_clean_all might release some PMOPs
1146 * after PL_regex_padav has been cleared
1147 * and the clearing of PL_regex_padav needs to
1148 * happen before sv_clean_all
1151 if(PL_regex_pad) { /* We could be in destruction */
1152 const IV offset = (cPMOPo)->op_pmoffset;
1153 ReREFCNT_dec(PM_GETRE(cPMOPo));
1154 PL_regex_pad[offset] = &PL_sv_undef;
1155 sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset,
1159 ReREFCNT_dec(PM_GETRE(cPMOPo));
1160 PM_SETRE(cPMOPo, NULL);
1166 PerlMemShared_free(cUNOP_AUXo->op_aux);
1169 case OP_MULTICONCAT:
1171 UNOP_AUX_item *aux = cUNOP_AUXo->op_aux;
1172 /* aux[PERL_MULTICONCAT_IX_PLAIN_PV] and/or
1173 * aux[PERL_MULTICONCAT_IX_UTF8_PV] point to plain and/or
1174 * utf8 shared strings */
1175 char *p1 = aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv;
1176 char *p2 = aux[PERL_MULTICONCAT_IX_UTF8_PV].pv;
1178 PerlMemShared_free(p1);
1180 PerlMemShared_free(p2);
1181 PerlMemShared_free(aux);
1187 UNOP_AUX_item *items = cUNOP_AUXo->op_aux;
1188 UV actions = items->uv;
1190 bool is_hash = FALSE;
1193 switch (actions & MDEREF_ACTION_MASK) {
1196 actions = (++items)->uv;
1199 case MDEREF_HV_padhv_helem:
1202 case MDEREF_AV_padav_aelem:
1203 pad_free((++items)->pad_offset);
1206 case MDEREF_HV_gvhv_helem:
1209 case MDEREF_AV_gvav_aelem:
1211 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1213 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1217 case MDEREF_HV_gvsv_vivify_rv2hv_helem:
1220 case MDEREF_AV_gvsv_vivify_rv2av_aelem:
1222 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1224 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1226 goto do_vivify_rv2xv_elem;
1228 case MDEREF_HV_padsv_vivify_rv2hv_helem:
1231 case MDEREF_AV_padsv_vivify_rv2av_aelem:
1232 pad_free((++items)->pad_offset);
1233 goto do_vivify_rv2xv_elem;
1235 case MDEREF_HV_pop_rv2hv_helem:
1236 case MDEREF_HV_vivify_rv2hv_helem:
1239 do_vivify_rv2xv_elem:
1240 case MDEREF_AV_pop_rv2av_aelem:
1241 case MDEREF_AV_vivify_rv2av_aelem:
1243 switch (actions & MDEREF_INDEX_MASK) {
1244 case MDEREF_INDEX_none:
1247 case MDEREF_INDEX_const:
1251 pad_swipe((++items)->pad_offset, 1);
1253 SvREFCNT_dec((++items)->sv);
1259 case MDEREF_INDEX_padsv:
1260 pad_free((++items)->pad_offset);
1262 case MDEREF_INDEX_gvsv:
1264 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1266 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1271 if (actions & MDEREF_FLAG_last)
1284 actions >>= MDEREF_SHIFT;
1287 /* start of malloc is at op_aux[-1], where the length is
1289 PerlMemShared_free(cUNOP_AUXo->op_aux - 1);
1294 if (o->op_targ > 0) {
1295 pad_free(o->op_targ);
1301 S_cop_free(pTHX_ COP* cop)
1303 PERL_ARGS_ASSERT_COP_FREE;
1306 if (! specialWARN(cop->cop_warnings))
1307 PerlMemShared_free(cop->cop_warnings);
1308 cophh_free(CopHINTHASH_get(cop));
1309 if (PL_curcop == cop)
1314 S_forget_pmop(pTHX_ PMOP *const o)
1316 HV * const pmstash = PmopSTASH(o);
1318 PERL_ARGS_ASSERT_FORGET_PMOP;
1320 if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) {
1321 MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab);
1323 PMOP **const array = (PMOP**) mg->mg_ptr;
1324 U32 count = mg->mg_len / sizeof(PMOP**);
1328 if (array[i] == o) {
1329 /* Found it. Move the entry at the end to overwrite it. */
1330 array[i] = array[--count];
1331 mg->mg_len = count * sizeof(PMOP**);
1332 /* Could realloc smaller at this point always, but probably
1333 not worth it. Probably worth free()ing if we're the
1336 Safefree(mg->mg_ptr);
1350 S_find_and_forget_pmops(pTHX_ OP *o)
1354 PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS;
1357 switch (o->op_type) {
1362 forget_pmop((PMOP*)o);
1365 if (o->op_flags & OPf_KIDS) {
1366 o = cUNOPo->op_first;
1372 return; /* at top; no parents/siblings to try */
1373 if (OpHAS_SIBLING(o)) {
1374 o = o->op_sibparent; /* process next sibling */
1377 o = o->op_sibparent; /*try parent's next sibling */
1386 Neutralizes an op when it is no longer needed, but is still linked to from
1393 Perl_op_null(pTHX_ OP *o)
1396 PERL_ARGS_ASSERT_OP_NULL;
1398 if (o->op_type == OP_NULL)
1401 o->op_targ = o->op_type;
1402 OpTYPE_set(o, OP_NULL);
1406 Perl_op_refcnt_lock(pTHX)
1407 PERL_TSA_ACQUIRE(PL_op_mutex)
1409 PERL_UNUSED_CONTEXT;
1414 Perl_op_refcnt_unlock(pTHX)
1415 PERL_TSA_RELEASE(PL_op_mutex)
1417 PERL_UNUSED_CONTEXT;
1423 =for apidoc op_sibling_splice
1425 A general function for editing the structure of an existing chain of
1426 op_sibling nodes. By analogy with the perl-level C<splice()> function, allows
1427 you to delete zero or more sequential nodes, replacing them with zero or
1428 more different nodes. Performs the necessary op_first/op_last
1429 housekeeping on the parent node and op_sibling manipulation on the
1430 children. The last deleted node will be marked as the last node by
1431 updating the op_sibling/op_sibparent or op_moresib field as appropriate.
1433 Note that op_next is not manipulated, and nodes are not freed; that is the
1434 responsibility of the caller. It also won't create a new list op for an
1435 empty list etc; use higher-level functions like op_append_elem() for that.
1437 C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if
1438 the splicing doesn't affect the first or last op in the chain.
1440 C<start> is the node preceding the first node to be spliced. Node(s)
1441 following it will be deleted, and ops will be inserted after it. If it is
1442 C<NULL>, the first node onwards is deleted, and nodes are inserted at the
1445 C<del_count> is the number of nodes to delete. If zero, no nodes are deleted.
1446 If -1 or greater than or equal to the number of remaining kids, all
1447 remaining kids are deleted.
1449 C<insert> is the first of a chain of nodes to be inserted in place of the nodes.
1450 If C<NULL>, no nodes are inserted.
1452 The head of the chain of deleted ops is returned, or C<NULL> if no ops were
1457 action before after returns
1458 ------ ----- ----- -------
1461 splice(P, A, 2, X-Y-Z) | | B-C
1465 splice(P, NULL, 1, X-Y) | | A
1469 splice(P, NULL, 3, NULL) | | A-B-C
1473 splice(P, B, 0, X-Y) | | NULL
1477 For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>,
1478 see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>.
1484 Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert)
1488 OP *last_del = NULL;
1489 OP *last_ins = NULL;
1492 first = OpSIBLING(start);
1496 first = cLISTOPx(parent)->op_first;
1498 assert(del_count >= -1);
1500 if (del_count && first) {
1502 while (--del_count && OpHAS_SIBLING(last_del))
1503 last_del = OpSIBLING(last_del);
1504 rest = OpSIBLING(last_del);
1505 OpLASTSIB_set(last_del, NULL);
1512 while (OpHAS_SIBLING(last_ins))
1513 last_ins = OpSIBLING(last_ins);
1514 OpMAYBESIB_set(last_ins, rest, NULL);
1520 OpMAYBESIB_set(start, insert, NULL);
1524 cLISTOPx(parent)->op_first = insert;
1526 parent->op_flags |= OPf_KIDS;
1528 parent->op_flags &= ~OPf_KIDS;
1532 /* update op_last etc */
1539 /* ought to use OP_CLASS(parent) here, but that can't handle
1540 * ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't
1542 type = parent->op_type;
1543 if (type == OP_CUSTOM) {
1545 type = XopENTRYCUSTOM(parent, xop_class);
1548 if (type == OP_NULL)
1549 type = parent->op_targ;
1550 type = PL_opargs[type] & OA_CLASS_MASK;
1553 lastop = last_ins ? last_ins : start ? start : NULL;
1554 if ( type == OA_BINOP
1555 || type == OA_LISTOP
1559 cLISTOPx(parent)->op_last = lastop;
1562 OpLASTSIB_set(lastop, parent);
1564 return last_del ? first : NULL;
1567 Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent");
1571 =for apidoc op_parent
1573 Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise.
1579 Perl_op_parent(OP *o)
1581 PERL_ARGS_ASSERT_OP_PARENT;
1582 while (OpHAS_SIBLING(o))
1584 return o->op_sibparent;
1587 /* replace the sibling following start with a new UNOP, which becomes
1588 * the parent of the original sibling; e.g.
1590 * op_sibling_newUNOP(P, A, unop-args...)
1598 * where U is the new UNOP.
1600 * parent and start args are the same as for op_sibling_splice();
1601 * type and flags args are as newUNOP().
1603 * Returns the new UNOP.
1607 S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags)
1611 kid = op_sibling_splice(parent, start, 1, NULL);
1612 newop = newUNOP(type, flags, kid);
1613 op_sibling_splice(parent, start, 0, newop);
1618 /* lowest-level newLOGOP-style function - just allocates and populates
1619 * the struct. Higher-level stuff should be done by S_new_logop() /
1620 * newLOGOP(). This function exists mainly to avoid op_first assignment
1621 * being spread throughout this file.
1625 Perl_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other)
1629 NewOp(1101, logop, 1, LOGOP);
1630 OpTYPE_set(logop, type);
1631 logop->op_first = first;
1632 logop->op_other = other;
1634 logop->op_flags = OPf_KIDS;
1635 while (kid && OpHAS_SIBLING(kid))
1636 kid = OpSIBLING(kid);
1638 OpLASTSIB_set(kid, (OP*)logop);
1643 /* Contextualizers */
1646 =for apidoc op_contextualize
1648 Applies a syntactic context to an op tree representing an expression.
1649 C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_ARRAY>,
1650 or C<G_VOID> to specify the context to apply. The modified op tree
1657 Perl_op_contextualize(pTHX_ OP *o, I32 context)
1659 PERL_ARGS_ASSERT_OP_CONTEXTUALIZE;
1661 case G_SCALAR: return scalar(o);
1662 case G_ARRAY: return list(o);
1663 case G_VOID: return scalarvoid(o);
1665 Perl_croak(aTHX_ "panic: op_contextualize bad context %ld",
1672 =for apidoc op_linklist
1673 This function is the implementation of the L</LINKLIST> macro. It should
1674 not be called directly.
1681 Perl_op_linklist(pTHX_ OP *o)
1688 PERL_ARGS_ASSERT_OP_LINKLIST;
1691 /* Descend down the tree looking for any unprocessed subtrees to
1694 if (o->op_flags & OPf_KIDS) {
1695 o = cUNOPo->op_first;
1698 o->op_next = o; /* leaf node; link to self initially */
1701 /* if we're at the top level, there either weren't any children
1702 * to process, or we've worked our way back to the top. */
1706 /* o is now processed. Next, process any sibling subtrees */
1708 if (OpHAS_SIBLING(o)) {
1713 /* Done all the subtrees at this level. Go back up a level and
1714 * link the parent in with all its (processed) children.
1717 o = o->op_sibparent;
1718 assert(!o->op_next);
1719 prevp = &(o->op_next);
1720 kid = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL;
1722 *prevp = kid->op_next;
1723 prevp = &(kid->op_next);
1724 kid = OpSIBLING(kid);
1732 S_scalarkids(pTHX_ OP *o)
1734 if (o && o->op_flags & OPf_KIDS) {
1736 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
1743 S_scalarboolean(pTHX_ OP *o)
1745 PERL_ARGS_ASSERT_SCALARBOOLEAN;
1747 if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST &&
1748 !(cBINOPo->op_first->op_flags & OPf_SPECIAL)) ||
1749 (o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN &&
1750 cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST &&
1751 !(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) {
1752 if (ckWARN(WARN_SYNTAX)) {
1753 const line_t oldline = CopLINE(PL_curcop);
1755 if (PL_parser && PL_parser->copline != NOLINE) {
1756 /* This ensures that warnings are reported at the first line
1757 of the conditional, not the last. */
1758 CopLINE_set(PL_curcop, PL_parser->copline);
1760 Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be ==");
1761 CopLINE_set(PL_curcop, oldline);
1768 S_op_varname_subscript(pTHX_ const OP *o, int subscript_type)
1771 assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV ||
1772 o->op_type == OP_PADHV || o->op_type == OP_RV2HV);
1774 const char funny = o->op_type == OP_PADAV
1775 || o->op_type == OP_RV2AV ? '@' : '%';
1776 if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) {
1778 if (cUNOPo->op_first->op_type != OP_GV
1779 || !(gv = cGVOPx_gv(cUNOPo->op_first)))
1781 return varname(gv, funny, 0, NULL, 0, subscript_type);
1784 varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type);
1789 S_op_varname(pTHX_ const OP *o)
1791 return S_op_varname_subscript(aTHX_ o, 1);
1795 S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv)
1796 { /* or not so pretty :-) */
1797 if (o->op_type == OP_CONST) {
1799 if (SvPOK(*retsv)) {
1801 *retsv = sv_newmortal();
1802 pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL,
1803 PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT);
1805 else if (!SvOK(*retsv))
1808 else *retpv = "...";
1812 S_scalar_slice_warning(pTHX_ const OP *o)
1815 const bool h = o->op_type == OP_HSLICE
1816 || (o->op_type == OP_NULL && o->op_targ == OP_HSLICE);
1822 SV *keysv = NULL; /* just to silence compiler warnings */
1823 const char *key = NULL;
1825 if (!(o->op_private & OPpSLICEWARNING))
1827 if (PL_parser && PL_parser->error_count)
1828 /* This warning can be nonsensical when there is a syntax error. */
1831 kid = cLISTOPo->op_first;
1832 kid = OpSIBLING(kid); /* get past pushmark */
1833 /* weed out false positives: any ops that can return lists */
1834 switch (kid->op_type) {
1860 /* Don't warn if we have a nulled list either. */
1861 if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST)
1864 assert(OpSIBLING(kid));
1865 name = S_op_varname(aTHX_ OpSIBLING(kid));
1866 if (!name) /* XS module fiddling with the op tree */
1868 S_op_pretty(aTHX_ kid, &keysv, &key);
1869 assert(SvPOK(name));
1870 sv_chop(name,SvPVX(name)+1);
1872 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1873 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1874 "Scalar value @%" SVf "%c%s%c better written as $%" SVf
1876 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
1877 lbrack, key, rbrack);
1879 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1880 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1881 "Scalar value @%" SVf "%c%" SVf "%c better written as $%"
1883 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
1884 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
1889 /* apply scalar context to the o subtree */
1892 Perl_scalar(pTHX_ OP *o)
1897 OP *next_kid = NULL; /* what op (if any) to process next */
1900 /* assumes no premature commitment */
1901 if (!o || (PL_parser && PL_parser->error_count)
1902 || (o->op_flags & OPf_WANT)
1903 || o->op_type == OP_RETURN)
1908 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR;
1910 switch (o->op_type) {
1912 scalar(cBINOPo->op_first);
1913 /* convert what initially looked like a list repeat into a
1914 * scalar repeat, e.g. $s = (1) x $n
1916 if (o->op_private & OPpREPEAT_DOLIST) {
1917 kid = cLISTOPx(cUNOPo->op_first)->op_first;
1918 assert(kid->op_type == OP_PUSHMARK);
1919 if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) {
1920 op_null(cLISTOPx(cUNOPo->op_first)->op_first);
1921 o->op_private &=~ OPpREPEAT_DOLIST;
1929 /* impose scalar context on everything except the condition */
1930 next_kid = OpSIBLING(cUNOPo->op_first);
1934 if (o->op_flags & OPf_KIDS)
1935 next_kid = cUNOPo->op_first; /* do all kids */
1938 /* the children of these ops are usually a list of statements,
1939 * except the leaves, whose first child is a corresponding enter
1944 kid = cLISTOPo->op_first;
1948 kid = cLISTOPo->op_first;
1950 kid = OpSIBLING(kid);
1953 OP *sib = OpSIBLING(kid);
1954 /* Apply void context to all kids except the last, which
1955 * is scalar (ignoring a trailing ex-nextstate in determining
1956 * if it's the last kid). E.g.
1957 * $scalar = do { void; void; scalar }
1958 * Except that 'when's are always scalar, e.g.
1959 * $scalar = do { given(..) {
1960 * when (..) { scalar }
1961 * when (..) { scalar }
1966 || ( !OpHAS_SIBLING(sib)
1967 && sib->op_type == OP_NULL
1968 && ( sib->op_targ == OP_NEXTSTATE
1969 || sib->op_targ == OP_DBSTATE )
1973 /* tail call optimise calling scalar() on the last kid */
1977 else if (kid->op_type == OP_LEAVEWHEN)
1983 NOT_REACHED; /* NOTREACHED */
1987 Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context");
1993 /* Warn about scalar context */
1994 const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '[';
1995 const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']';
1998 const char *key = NULL;
2000 /* This warning can be nonsensical when there is a syntax error. */
2001 if (PL_parser && PL_parser->error_count)
2004 if (!ckWARN(WARN_SYNTAX)) break;
2006 kid = cLISTOPo->op_first;
2007 kid = OpSIBLING(kid); /* get past pushmark */
2008 assert(OpSIBLING(kid));
2009 name = S_op_varname(aTHX_ OpSIBLING(kid));
2010 if (!name) /* XS module fiddling with the op tree */
2012 S_op_pretty(aTHX_ kid, &keysv, &key);
2013 assert(SvPOK(name));
2014 sv_chop(name,SvPVX(name)+1);
2016 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
2017 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
2018 "%%%" SVf "%c%s%c in scalar context better written "
2019 "as $%" SVf "%c%s%c",
2020 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
2021 lbrack, key, rbrack);
2023 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
2024 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
2025 "%%%" SVf "%c%" SVf "%c in scalar context better "
2026 "written as $%" SVf "%c%" SVf "%c",
2027 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
2028 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
2032 /* If next_kid is set, someone in the code above wanted us to process
2033 * that kid and all its remaining siblings. Otherwise, work our way
2034 * back up the tree */
2038 return top_op; /* at top; no parents/siblings to try */
2039 if (OpHAS_SIBLING(o))
2040 next_kid = o->op_sibparent;
2042 o = o->op_sibparent; /*try parent's next sibling */
2043 switch (o->op_type) {
2049 /* should really restore PL_curcop to its old value, but
2050 * setting it to PL_compiling is better than do nothing */
2051 PL_curcop = &PL_compiling;
2060 /* apply void context to the optree arg */
2063 Perl_scalarvoid(pTHX_ OP *arg)
2069 PERL_ARGS_ASSERT_SCALARVOID;
2073 SV *useless_sv = NULL;
2074 const char* useless = NULL;
2075 OP * next_kid = NULL;
2077 if (o->op_type == OP_NEXTSTATE
2078 || o->op_type == OP_DBSTATE
2079 || (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE
2080 || o->op_targ == OP_DBSTATE)))
2081 PL_curcop = (COP*)o; /* for warning below */
2083 /* assumes no premature commitment */
2084 want = o->op_flags & OPf_WANT;
2085 if ((want && want != OPf_WANT_SCALAR)
2086 || (PL_parser && PL_parser->error_count)
2087 || o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN)
2092 if ((o->op_private & OPpTARGET_MY)
2093 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2095 /* newASSIGNOP has already applied scalar context, which we
2096 leave, as if this op is inside SASSIGN. */
2100 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
2102 switch (o->op_type) {
2104 if (!(PL_opargs[o->op_type] & OA_FOLDCONST))
2108 if (o->op_flags & OPf_STACKED)
2110 if (o->op_type == OP_REPEAT)
2111 scalar(cBINOPo->op_first);
2114 if ((o->op_flags & OPf_STACKED) &&
2115 !(o->op_private & OPpCONCAT_NESTED))
2119 if (o->op_private == 4)
2154 case OP_GETSOCKNAME:
2155 case OP_GETPEERNAME:
2160 case OP_GETPRIORITY:
2185 useless = OP_DESC(o);
2195 case OP_AELEMFAST_LEX:
2199 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)))
2200 /* Otherwise it's "Useless use of grep iterator" */
2201 useless = OP_DESC(o);
2205 if (!(o->op_private & OPpSPLIT_ASSIGN))
2206 useless = OP_DESC(o);
2210 kid = cUNOPo->op_first;
2211 if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST &&
2212 kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) {
2215 useless = "negative pattern binding (!~)";
2219 if (cPMOPo->op_pmflags & PMf_NONDESTRUCT)
2220 useless = "non-destructive substitution (s///r)";
2224 useless = "non-destructive transliteration (tr///r)";
2231 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) &&
2232 (!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE))
2233 useless = "a variable";
2238 if (cSVOPo->op_private & OPpCONST_STRICT)
2239 no_bareword_allowed(o);
2241 if (ckWARN(WARN_VOID)) {
2243 /* don't warn on optimised away booleans, eg
2244 * use constant Foo, 5; Foo || print; */
2245 if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT)
2247 /* the constants 0 and 1 are permitted as they are
2248 conventionally used as dummies in constructs like
2249 1 while some_condition_with_side_effects; */
2250 else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0))
2252 else if (SvPOK(sv)) {
2253 SV * const dsv = newSVpvs("");
2255 = Perl_newSVpvf(aTHX_
2257 pv_pretty(dsv, SvPVX_const(sv),
2258 SvCUR(sv), 32, NULL, NULL,
2260 | PERL_PV_ESCAPE_NOCLEAR
2261 | PERL_PV_ESCAPE_UNI_DETECT));
2262 SvREFCNT_dec_NN(dsv);
2264 else if (SvOK(sv)) {
2265 useless_sv = Perl_newSVpvf(aTHX_ "a constant (%" SVf ")", SVfARG(sv));
2268 useless = "a constant (undef)";
2271 op_null(o); /* don't execute or even remember it */
2275 OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */
2279 OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */
2283 OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */
2287 OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */
2292 UNOP *refgen, *rv2cv;
2295 if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2)
2298 rv2gv = ((BINOP *)o)->op_last;
2299 if (!rv2gv || rv2gv->op_type != OP_RV2GV)
2302 refgen = (UNOP *)((BINOP *)o)->op_first;
2304 if (!refgen || (refgen->op_type != OP_REFGEN
2305 && refgen->op_type != OP_SREFGEN))
2308 exlist = (LISTOP *)refgen->op_first;
2309 if (!exlist || exlist->op_type != OP_NULL
2310 || exlist->op_targ != OP_LIST)
2313 if (exlist->op_first->op_type != OP_PUSHMARK
2314 && exlist->op_first != exlist->op_last)
2317 rv2cv = (UNOP*)exlist->op_last;
2319 if (rv2cv->op_type != OP_RV2CV)
2322 assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0);
2323 assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0);
2324 assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0);
2326 o->op_private |= OPpASSIGN_CV_TO_GV;
2327 rv2gv->op_private |= OPpDONT_INIT_GV;
2328 rv2cv->op_private |= OPpMAY_RETURN_CONSTANT;
2340 kid = cLOGOPo->op_first;
2341 if (kid->op_type == OP_NOT
2342 && (kid->op_flags & OPf_KIDS)) {
2343 if (o->op_type == OP_AND) {
2344 OpTYPE_set(o, OP_OR);
2346 OpTYPE_set(o, OP_AND);
2356 next_kid = OpSIBLING(cUNOPo->op_first);
2360 if (o->op_flags & OPf_STACKED)
2367 if (!(o->op_flags & OPf_KIDS))
2378 next_kid = cLISTOPo->op_first;
2381 /* If the first kid after pushmark is something that the padrange
2382 optimisation would reject, then null the list and the pushmark.
2384 if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK
2385 && ( !(kid = OpSIBLING(kid))
2386 || ( kid->op_type != OP_PADSV
2387 && kid->op_type != OP_PADAV
2388 && kid->op_type != OP_PADHV)
2389 || kid->op_private & ~OPpLVAL_INTRO
2390 || !(kid = OpSIBLING(kid))
2391 || ( kid->op_type != OP_PADSV
2392 && kid->op_type != OP_PADAV
2393 && kid->op_type != OP_PADHV)
2394 || kid->op_private & ~OPpLVAL_INTRO)
2396 op_null(cUNOPo->op_first); /* NULL the pushmark */
2397 op_null(o); /* NULL the list */
2409 /* mortalise it, in case warnings are fatal. */
2410 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2411 "Useless use of %" SVf " in void context",
2412 SVfARG(sv_2mortal(useless_sv)));
2415 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2416 "Useless use of %s in void context",
2421 /* if a kid hasn't been nominated to process, continue with the
2422 * next sibling, or if no siblings left, go back to the parent's
2423 * siblings and so on
2427 return arg; /* at top; no parents/siblings to try */
2428 if (OpHAS_SIBLING(o))
2429 next_kid = o->op_sibparent;
2431 o = o->op_sibparent; /*try parent's next sibling */
2441 S_listkids(pTHX_ OP *o)
2443 if (o && o->op_flags & OPf_KIDS) {
2445 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2452 /* apply list context to the o subtree */
2455 Perl_list(pTHX_ OP *o)
2460 OP *next_kid = NULL; /* what op (if any) to process next */
2464 /* assumes no premature commitment */
2465 if (!o || (o->op_flags & OPf_WANT)
2466 || (PL_parser && PL_parser->error_count)
2467 || o->op_type == OP_RETURN)
2472 if ((o->op_private & OPpTARGET_MY)
2473 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2475 goto do_next; /* As if inside SASSIGN */
2478 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST;
2480 switch (o->op_type) {
2482 if (o->op_private & OPpREPEAT_DOLIST
2483 && !(o->op_flags & OPf_STACKED))
2485 list(cBINOPo->op_first);
2486 kid = cBINOPo->op_last;
2487 /* optimise away (.....) x 1 */
2488 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)
2489 && SvIVX(kSVOP_sv) == 1)
2491 op_null(o); /* repeat */
2492 op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */
2494 op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL));
2502 /* impose list context on everything except the condition */
2503 next_kid = OpSIBLING(cUNOPo->op_first);
2507 if (!(o->op_flags & OPf_KIDS))
2509 /* possibly flatten 1..10 into a constant array */
2510 if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) {
2511 list(cBINOPo->op_first);
2512 gen_constant_list(o);
2515 next_kid = cUNOPo->op_first; /* do all kids */
2519 if (cLISTOPo->op_first->op_type == OP_PUSHMARK) {
2520 op_null(cUNOPo->op_first); /* NULL the pushmark */
2521 op_null(o); /* NULL the list */
2523 if (o->op_flags & OPf_KIDS)
2524 next_kid = cUNOPo->op_first; /* do all kids */
2527 /* the children of these ops are usually a list of statements,
2528 * except the leaves, whose first child is a corresponding enter
2532 kid = cLISTOPo->op_first;
2536 kid = cLISTOPo->op_first;
2538 kid = OpSIBLING(kid);
2541 OP *sib = OpSIBLING(kid);
2542 /* Apply void context to all kids except the last, which
2544 * @a = do { void; void; list }
2545 * Except that 'when's are always list context, e.g.
2546 * @a = do { given(..) {
2547 * when (..) { list }
2548 * when (..) { list }
2553 /* tail call optimise calling list() on the last kid */
2557 else if (kid->op_type == OP_LEAVEWHEN)
2563 NOT_REACHED; /* NOTREACHED */
2568 /* If next_kid is set, someone in the code above wanted us to process
2569 * that kid and all its remaining siblings. Otherwise, work our way
2570 * back up the tree */
2574 return top_op; /* at top; no parents/siblings to try */
2575 if (OpHAS_SIBLING(o))
2576 next_kid = o->op_sibparent;
2578 o = o->op_sibparent; /*try parent's next sibling */
2579 switch (o->op_type) {
2585 /* should really restore PL_curcop to its old value, but
2586 * setting it to PL_compiling is better than do nothing */
2587 PL_curcop = &PL_compiling;
2599 S_scalarseq(pTHX_ OP *o)
2602 const OPCODE type = o->op_type;
2604 if (type == OP_LINESEQ || type == OP_SCOPE ||
2605 type == OP_LEAVE || type == OP_LEAVETRY)
2608 for (kid = cLISTOPo->op_first; kid; kid = sib) {
2609 if ((sib = OpSIBLING(kid))
2610 && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL
2611 || ( sib->op_targ != OP_NEXTSTATE
2612 && sib->op_targ != OP_DBSTATE )))
2617 PL_curcop = &PL_compiling;
2619 o->op_flags &= ~OPf_PARENS;
2620 if (PL_hints & HINT_BLOCK_SCOPE)
2621 o->op_flags |= OPf_PARENS;
2624 o = newOP(OP_STUB, 0);
2629 S_modkids(pTHX_ OP *o, I32 type)
2631 if (o && o->op_flags & OPf_KIDS) {
2633 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2634 op_lvalue(kid, type);
2640 /* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid
2641 * const fields. Also, convert CONST keys to HEK-in-SVs.
2642 * rop is the op that retrieves the hash;
2643 * key_op is the first key
2644 * real if false, only check (and possibly croak); don't update op
2648 S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op, int real)
2654 /* find the padsv corresponding to $lex->{} or @{$lex}{} */
2656 if (rop->op_first->op_type == OP_PADSV)
2657 /* @$hash{qw(keys here)} */
2658 rop = (UNOP*)rop->op_first;
2660 /* @{$hash}{qw(keys here)} */
2661 if (rop->op_first->op_type == OP_SCOPE
2662 && cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV)
2664 rop = (UNOP*)cLISTOPx(rop->op_first)->op_last;
2671 lexname = NULL; /* just to silence compiler warnings */
2672 fields = NULL; /* just to silence compiler warnings */
2676 && (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ),
2677 SvPAD_TYPED(lexname))
2678 && (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE))
2679 && isGV(*fields) && GvHV(*fields);
2681 for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) {
2683 if (key_op->op_type != OP_CONST)
2685 svp = cSVOPx_svp(key_op);
2687 /* make sure it's not a bareword under strict subs */
2688 if (key_op->op_private & OPpCONST_BARE &&
2689 key_op->op_private & OPpCONST_STRICT)
2691 no_bareword_allowed((OP*)key_op);
2694 /* Make the CONST have a shared SV */
2695 if ( !SvIsCOW_shared_hash(sv = *svp)
2696 && SvTYPE(sv) < SVt_PVMG
2702 const char * const key = SvPV_const(sv, *(STRLEN*)&keylen);
2703 SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0);
2704 SvREFCNT_dec_NN(sv);
2709 && !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0))
2711 Perl_croak(aTHX_ "No such class field \"%" SVf "\" "
2712 "in variable %" PNf " of type %" HEKf,
2713 SVfARG(*svp), PNfARG(lexname),
2714 HEKfARG(HvNAME_HEK(PadnameTYPE(lexname))));
2719 /* info returned by S_sprintf_is_multiconcatable() */
2721 struct sprintf_ismc_info {
2722 SSize_t nargs; /* num of args to sprintf (not including the format) */
2723 char *start; /* start of raw format string */
2724 char *end; /* bytes after end of raw format string */
2725 STRLEN total_len; /* total length (in bytes) of format string, not
2726 including '%s' and half of '%%' */
2727 STRLEN variant; /* number of bytes by which total_len_p would grow
2728 if upgraded to utf8 */
2729 bool utf8; /* whether the format is utf8 */
2733 /* is the OP_SPRINTF o suitable for converting into a multiconcat op?
2734 * i.e. its format argument is a const string with only '%s' and '%%'
2735 * formats, and the number of args is known, e.g.
2736 * sprintf "a=%s f=%s", $a[0], scalar(f());
2738 * sprintf "i=%d a=%s f=%s", $i, @a, f();
2740 * If successful, the sprintf_ismc_info struct pointed to by info will be
2745 S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info)
2747 OP *pm, *constop, *kid;
2750 SSize_t nargs, nformats;
2751 STRLEN cur, total_len, variant;
2754 /* if sprintf's behaviour changes, die here so that someone
2755 * can decide whether to enhance this function or skip optimising
2756 * under those new circumstances */
2757 assert(!(o->op_flags & OPf_STACKED));
2758 assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX));
2759 assert(!(o->op_private & ~OPpARG4_MASK));
2761 pm = cUNOPo->op_first;
2762 if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */
2764 constop = OpSIBLING(pm);
2765 if (!constop || constop->op_type != OP_CONST)
2767 sv = cSVOPx_sv(constop);
2768 if (SvMAGICAL(sv) || !SvPOK(sv))
2774 /* Scan format for %% and %s and work out how many %s there are.
2775 * Abandon if other format types are found.
2782 for (p = s; p < e; p++) {
2785 if (!UTF8_IS_INVARIANT(*p))
2791 return FALSE; /* lone % at end gives "Invalid conversion" */
2800 if (!nformats || nformats > PERL_MULTICONCAT_MAXARG)
2803 utf8 = cBOOL(SvUTF8(sv));
2807 /* scan args; they must all be in scalar cxt */
2810 kid = OpSIBLING(constop);
2813 if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR)
2816 kid = OpSIBLING(kid);
2819 if (nargs != nformats)
2820 return FALSE; /* e.g. sprintf("%s%s", $a); */
2823 info->nargs = nargs;
2826 info->total_len = total_len;
2827 info->variant = variant;
2835 /* S_maybe_multiconcat():
2837 * given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly
2838 * convert it (and its children) into an OP_MULTICONCAT. See the code
2839 * comments just before pp_multiconcat() for the full details of what
2840 * OP_MULTICONCAT supports.
2842 * Basically we're looking for an optree with a chain of OP_CONCATS down
2843 * the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or
2844 * OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g.
2852 * STRINGIFY -- PADSV[$x]
2855 * ex-PUSHMARK -- CONCAT/S
2857 * CONCAT/S -- PADSV[$d]
2859 * CONCAT -- CONST["-"]
2861 * PADSV[$a] -- PADSV[$b]
2863 * Note that at this stage the OP_SASSIGN may have already been optimised
2864 * away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT.
2868 S_maybe_multiconcat(pTHX_ OP *o)
2870 OP *lastkidop; /* the right-most of any kids unshifted onto o */
2871 OP *topop; /* the top-most op in the concat tree (often equals o,
2872 unless there are assign/stringify ops above it */
2873 OP *parentop; /* the parent op of topop (or itself if no parent) */
2874 OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */
2875 OP *targetop; /* the op corresponding to target=... or target.=... */
2876 OP *stringop; /* the OP_STRINGIFY op, if any */
2877 OP *nextop; /* used for recreating the op_next chain without consts */
2878 OP *kid; /* general-purpose op pointer */
2880 UNOP_AUX_item *lenp;
2881 char *const_str, *p;
2882 struct sprintf_ismc_info sprintf_info;
2884 /* store info about each arg in args[];
2885 * toparg is the highest used slot; argp is a general
2886 * pointer to args[] slots */
2888 void *p; /* initially points to const sv (or null for op);
2889 later, set to SvPV(constsv), with ... */
2890 STRLEN len; /* ... len set to SvPV(..., len) */
2891 } *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1];
2895 SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */
2898 bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op;
2899 the last-processed arg will the LHS of one,
2900 as args are processed in reverse order */
2901 U8 stacked_last = 0; /* whether the last seen concat op was STACKED */
2902 STRLEN total_len = 0; /* sum of the lengths of the const segments */
2903 U8 flags = 0; /* what will become the op_flags and ... */
2904 U8 private_flags = 0; /* ... op_private of the multiconcat op */
2905 bool is_sprintf = FALSE; /* we're optimising an sprintf */
2906 bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */
2907 bool prev_was_const = FALSE; /* previous arg was a const */
2909 /* -----------------------------------------------------------------
2912 * Examine the optree non-destructively to determine whether it's
2913 * suitable to be converted into an OP_MULTICONCAT. Accumulate
2914 * information about the optree in args[].
2924 assert( o->op_type == OP_SASSIGN
2925 || o->op_type == OP_CONCAT
2926 || o->op_type == OP_SPRINTF
2927 || o->op_type == OP_STRINGIFY);
2929 Zero(&sprintf_info, 1, struct sprintf_ismc_info);
2931 /* first see if, at the top of the tree, there is an assign,
2932 * append and/or stringify */
2934 if (topop->op_type == OP_SASSIGN) {
2936 if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN])
2938 if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
2940 assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */
2943 topop = cBINOPo->op_first;
2944 targetop = OpSIBLING(topop);
2945 if (!targetop) /* probably some sort of syntax error */
2948 /* don't optimise away assign in 'local $foo = ....' */
2949 if ( (targetop->op_private & OPpLVAL_INTRO)
2950 /* these are the common ops which do 'local', but
2952 && ( targetop->op_type == OP_GVSV
2953 || targetop->op_type == OP_RV2SV
2954 || targetop->op_type == OP_AELEM
2955 || targetop->op_type == OP_HELEM
2960 else if ( topop->op_type == OP_CONCAT
2961 && (topop->op_flags & OPf_STACKED)
2962 && (!(topop->op_private & OPpCONCAT_NESTED))
2967 /* OPpTARGET_MY shouldn't be able to be set here. If it is,
2968 * decide what to do about it */
2969 assert(!(o->op_private & OPpTARGET_MY));
2971 /* barf on unknown flags */
2972 assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY)));
2973 private_flags |= OPpMULTICONCAT_APPEND;
2974 targetop = cBINOPo->op_first;
2976 topop = OpSIBLING(targetop);
2978 /* $x .= <FOO> gets optimised to rcatline instead */
2979 if (topop->op_type == OP_READLINE)
2984 /* Can targetop (the LHS) if it's a padsv, be optimised
2985 * away and use OPpTARGET_MY instead?
2987 if ( (targetop->op_type == OP_PADSV)
2988 && !(targetop->op_private & OPpDEREF)
2989 && !(targetop->op_private & OPpPAD_STATE)
2990 /* we don't support 'my $x .= ...' */
2991 && ( o->op_type == OP_SASSIGN
2992 || !(targetop->op_private & OPpLVAL_INTRO))
2997 if (topop->op_type == OP_STRINGIFY) {
2998 if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY])
3002 /* barf on unknown flags */
3003 assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY)));
3005 if ((topop->op_private & OPpTARGET_MY)) {
3006 if (o->op_type == OP_SASSIGN)
3007 return; /* can't have two assigns */
3011 private_flags |= OPpMULTICONCAT_STRINGIFY;
3013 topop = cBINOPx(topop)->op_first;
3014 assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK));
3015 topop = OpSIBLING(topop);
3018 if (topop->op_type == OP_SPRINTF) {
3019 if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF])
3021 if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) {
3022 nargs = sprintf_info.nargs;
3023 total_len = sprintf_info.total_len;
3024 variant = sprintf_info.variant;
3025 utf8 = sprintf_info.utf8;
3027 private_flags |= OPpMULTICONCAT_FAKE;
3029 /* we have an sprintf op rather than a concat optree.
3030 * Skip most of the code below which is associated with
3031 * processing that optree. We also skip phase 2, determining
3032 * whether its cost effective to optimise, since for sprintf,
3033 * multiconcat is *always* faster */
3036 /* note that even if the sprintf itself isn't multiconcatable,
3037 * the expression as a whole may be, e.g. in
3038 * $x .= sprintf("%d",...)
3039 * the sprintf op will be left as-is, but the concat/S op may
3040 * be upgraded to multiconcat
3043 else if (topop->op_type == OP_CONCAT) {
3044 if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT])
3047 if ((topop->op_private & OPpTARGET_MY)) {
3048 if (o->op_type == OP_SASSIGN || targmyop)
3049 return; /* can't have two assigns */
3054 /* Is it safe to convert a sassign/stringify/concat op into
3056 assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP);
3057 assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP);
3058 assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP);
3059 assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP);
3060 STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last)
3061 == STRUCT_OFFSET(UNOP_AUX, op_aux));
3062 STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last)
3063 == STRUCT_OFFSET(UNOP_AUX, op_aux));
3065 /* Now scan the down the tree looking for a series of
3066 * CONCAT/OPf_STACKED ops on the LHS (with the last one not
3067 * stacked). For example this tree:
3072 * CONCAT/STACKED -- EXPR5
3074 * CONCAT/STACKED -- EXPR4
3080 * corresponds to an expression like
3082 * (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5)
3084 * Record info about each EXPR in args[]: in particular, whether it is
3085 * a stringifiable OP_CONST and if so what the const sv is.
3087 * The reason why the last concat can't be STACKED is the difference
3090 * ((($a .= $a) .= $a) .= $a) .= $a
3093 * $a . $a . $a . $a . $a
3095 * The main difference between the optrees for those two constructs
3096 * is the presence of the last STACKED. As well as modifying $a,
3097 * the former sees the changed $a between each concat, so if $s is
3098 * initially 'a', the first returns 'a' x 16, while the latter returns
3099 * 'a' x 5. And pp_multiconcat can't handle that kind of thing.
3109 if ( kid->op_type == OP_CONCAT
3113 k1 = cUNOPx(kid)->op_first;
3115 /* shouldn't happen except maybe after compile err? */
3119 /* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */
3120 if (kid->op_private & OPpTARGET_MY)
3123 stacked_last = (kid->op_flags & OPf_STACKED);
3135 if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2
3136 || (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2)
3138 /* At least two spare slots are needed to decompose both
3139 * concat args. If there are no slots left, continue to
3140 * examine the rest of the optree, but don't push new values
3141 * on args[]. If the optree as a whole is legal for conversion
3142 * (in particular that the last concat isn't STACKED), then
3143 * the first PERL_MULTICONCAT_MAXARG elements of the optree
3144 * can be converted into an OP_MULTICONCAT now, with the first
3145 * child of that op being the remainder of the optree -
3146 * which may itself later be converted to a multiconcat op
3150 /* the last arg is the rest of the optree */
3155 else if ( argop->op_type == OP_CONST
3156 && ((sv = cSVOPx_sv(argop)))
3157 /* defer stringification until runtime of 'constant'
3158 * things that might stringify variantly, e.g. the radix
3159 * point of NVs, or overloaded RVs */
3160 && (SvPOK(sv) || SvIOK(sv))
3161 && (!SvGMAGICAL(sv))
3163 if (argop->op_private & OPpCONST_STRICT)
3164 no_bareword_allowed(argop);
3166 utf8 |= cBOOL(SvUTF8(sv));
3169 /* this const may be demoted back to a plain arg later;
3170 * make sure we have enough arg slots left */
3172 prev_was_const = !prev_was_const;
3177 prev_was_const = FALSE;
3187 return; /* we don't support ((A.=B).=C)...) */
3189 /* look for two adjacent consts and don't fold them together:
3192 * $o->concat("a")->concat("b")
3195 * (but $o .= "a" . "b" should still fold)
3198 bool seen_nonconst = FALSE;
3199 for (argp = toparg; argp >= args; argp--) {
3200 if (argp->p == NULL) {
3201 seen_nonconst = TRUE;
3207 /* both previous and current arg were constants;
3208 * leave the current OP_CONST as-is */
3216 /* -----------------------------------------------------------------
3219 * At this point we have determined that the optree *can* be converted
3220 * into a multiconcat. Having gathered all the evidence, we now decide
3221 * whether it *should*.
3225 /* we need at least one concat action, e.g.:
3231 * otherwise we could be doing something like $x = "foo", which
3232 * if treated as a concat, would fail to COW.
3234 if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2)
3237 /* Benchmarking seems to indicate that we gain if:
3238 * * we optimise at least two actions into a single multiconcat
3239 * (e.g concat+concat, sassign+concat);
3240 * * or if we can eliminate at least 1 OP_CONST;
3241 * * or if we can eliminate a padsv via OPpTARGET_MY
3245 /* eliminated at least one OP_CONST */
3247 /* eliminated an OP_SASSIGN */
3248 || o->op_type == OP_SASSIGN
3249 /* eliminated an OP_PADSV */
3250 || (!targmyop && is_targable)
3252 /* definitely a net gain to optimise */
3255 /* ... if not, what else? */
3257 /* special-case '$lex1 = expr . $lex1' (where expr isn't lex1):
3258 * multiconcat is faster (due to not creating a temporary copy of
3259 * $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is
3265 && topop->op_type == OP_CONCAT
3267 PADOFFSET t = targmyop->op_targ;
3268 OP *k1 = cBINOPx(topop)->op_first;
3269 OP *k2 = cBINOPx(topop)->op_last;
3270 if ( k2->op_type == OP_PADSV
3272 && ( k1->op_type != OP_PADSV
3273 || k1->op_targ != t)
3278 /* need at least two concats */
3279 if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3)
3284 /* -----------------------------------------------------------------
3287 * At this point the optree has been verified as ok to be optimised
3288 * into an OP_MULTICONCAT. Now start changing things.
3293 /* stringify all const args and determine utf8ness */
3296 for (argp = args; argp <= toparg; argp++) {
3297 SV *sv = (SV*)argp->p;
3299 continue; /* not a const op */
3300 if (utf8 && !SvUTF8(sv))
3301 sv_utf8_upgrade_nomg(sv);
3302 argp->p = SvPV_nomg(sv, argp->len);
3303 total_len += argp->len;
3305 /* see if any strings would grow if converted to utf8 */
3307 variant += variant_under_utf8_count((U8 *) argp->p,
3308 (U8 *) argp->p + argp->len);
3312 /* create and populate aux struct */
3316 aux = (UNOP_AUX_item*)PerlMemShared_malloc(
3317 sizeof(UNOP_AUX_item)
3319 PERL_MULTICONCAT_HEADER_SIZE
3320 + ((nargs + 1) * (variant ? 2 : 1))
3323 const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1);
3325 /* Extract all the non-const expressions from the concat tree then
3326 * dispose of the old tree, e.g. convert the tree from this:
3330 * STRINGIFY -- TARGET
3332 * ex-PUSHMARK -- CONCAT
3347 * ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET
3349 * except that if EXPRi is an OP_CONST, it's discarded.
3351 * During the conversion process, EXPR ops are stripped from the tree
3352 * and unshifted onto o. Finally, any of o's remaining original
3353 * childen are discarded and o is converted into an OP_MULTICONCAT.
3355 * In this middle of this, o may contain both: unshifted args on the
3356 * left, and some remaining original args on the right. lastkidop
3357 * is set to point to the right-most unshifted arg to delineate
3358 * between the two sets.
3363 /* create a copy of the format with the %'s removed, and record
3364 * the sizes of the const string segments in the aux struct */
3366 lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
3368 p = sprintf_info.start;
3371 for (; p < sprintf_info.end; p++) {
3375 (lenp++)->ssize = q - oldq;
3382 lenp->ssize = q - oldq;
3383 assert((STRLEN)(q - const_str) == total_len);
3385 /* Attach all the args (i.e. the kids of the sprintf) to o (which
3386 * may or may not be topop) The pushmark and const ops need to be
3387 * kept in case they're an op_next entry point.
3389 lastkidop = cLISTOPx(topop)->op_last;
3390 kid = cUNOPx(topop)->op_first; /* pushmark */
3392 op_null(OpSIBLING(kid)); /* const */
3394 kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */
3395 op_sibling_splice(o, NULL, 0, kid); /* and attach to o */
3396 lastkidop->op_next = o;
3401 lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
3405 /* Concatenate all const strings into const_str.
3406 * Note that args[] contains the RHS args in reverse order, so
3407 * we scan args[] from top to bottom to get constant strings
3410 for (argp = toparg; argp >= args; argp--) {
3412 /* not a const op */
3413 (++lenp)->ssize = -1;
3415 STRLEN l = argp->len;
3416 Copy(argp->p, p, l, char);
3418 if (lenp->ssize == -1)
3429 for (argp = args; argp <= toparg; argp++) {
3430 /* only keep non-const args, except keep the first-in-next-chain
3431 * arg no matter what it is (but nulled if OP_CONST), because it
3432 * may be the entry point to this subtree from the previous
3435 bool last = (argp == toparg);
3438 /* set prev to the sibling *before* the arg to be cut out,
3439 * e.g. when cutting EXPR:
3444 * prev= CONCAT -- EXPR
3447 if (argp == args && kid->op_type != OP_CONCAT) {
3448 /* in e.g. '$x .= f(1)' there's no RHS concat tree
3449 * so the expression to be cut isn't kid->op_last but
3452 /* find the op before kid */
3454 o2 = cUNOPx(parentop)->op_first;
3455 while (o2 && o2 != kid) {
3463 else if (kid == o && lastkidop)
3464 prev = last ? lastkidop : OpSIBLING(lastkidop);
3466 prev = last ? NULL : cUNOPx(kid)->op_first;
3468 if (!argp->p || last) {
3470 OP *aop = op_sibling_splice(kid, prev, 1, NULL);
3471 /* and unshift to front of o */
3472 op_sibling_splice(o, NULL, 0, aop);
3473 /* record the right-most op added to o: later we will
3474 * free anything to the right of it */
3477 aop->op_next = nextop;
3480 /* null the const at start of op_next chain */
3484 nextop = prev->op_next;
3487 /* the last two arguments are both attached to the same concat op */
3488 if (argp < toparg - 1)
3493 /* Populate the aux struct */
3495 aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs;
3496 aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str;
3497 aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len;
3498 aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str;
3499 aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len;
3501 /* if variant > 0, calculate a variant const string and lengths where
3502 * the utf8 version of the string will take 'variant' more bytes than
3506 char *p = const_str;
3507 STRLEN ulen = total_len + variant;
3508 UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS;
3509 UNOP_AUX_item *ulens = lens + (nargs + 1);
3510 char *up = (char*)PerlMemShared_malloc(ulen);
3513 aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up;
3514 aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen;
3516 for (n = 0; n < (nargs + 1); n++) {
3518 char * orig_up = up;
3519 for (i = (lens++)->ssize; i > 0; i--) {
3521 append_utf8_from_native_byte(c, (U8**)&up);
3523 (ulens++)->ssize = (i < 0) ? i : up - orig_up;
3528 /* if there was a top(ish)-level OP_STRINGIFY, we need to keep
3529 * that op's first child - an ex-PUSHMARK - because the op_next of
3530 * the previous op may point to it (i.e. it's the entry point for
3535 ? op_sibling_splice(o, lastkidop, 1, NULL)
3536 : op_sibling_splice(stringop, NULL, 1, NULL);
3537 assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK));
3538 op_sibling_splice(o, NULL, 0, pmop);
3545 * target .= A.B.C...
3551 if (o->op_type == OP_SASSIGN) {
3552 /* Move the target subtree from being the last of o's children
3553 * to being the last of o's preserved children.
3554 * Note the difference between 'target = ...' and 'target .= ...':
3555 * for the former, target is executed last; for the latter,
3558 kid = OpSIBLING(lastkidop);
3559 op_sibling_splice(o, kid, 1, NULL); /* cut target op */
3560 op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */
3561 lastkidop->op_next = kid->op_next;
3562 lastkidop = targetop;
3565 /* Move the target subtree from being the first of o's
3566 * original children to being the first of *all* o's children.
3569 op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */
3570 op_sibling_splice(o, NULL, 0, targetop); /* and paste*/
3573 /* if the RHS of .= doesn't contain a concat (e.g.
3574 * $x .= "foo"), it gets missed by the "strip ops from the
3575 * tree and add to o" loop earlier */
3576 assert(topop->op_type != OP_CONCAT);
3578 /* in e.g. $x .= "$y", move the $y expression
3579 * from being a child of OP_STRINGIFY to being the
3580 * second child of the OP_CONCAT
3582 assert(cUNOPx(stringop)->op_first == topop);
3583 op_sibling_splice(stringop, NULL, 1, NULL);
3584 op_sibling_splice(o, cUNOPo->op_first, 0, topop);
3586 assert(topop == OpSIBLING(cBINOPo->op_first));
3595 * my $lex = A.B.C...
3598 * The original padsv op is kept but nulled in case it's the
3599 * entry point for the optree (which it will be for
3602 private_flags |= OPpTARGET_MY;
3603 private_flags |= (targetop->op_private & OPpLVAL_INTRO);
3604 o->op_targ = targetop->op_targ;
3605 targetop->op_targ = 0;
3609 flags |= OPf_STACKED;
3611 else if (targmyop) {
3612 private_flags |= OPpTARGET_MY;
3613 if (o != targmyop) {
3614 o->op_targ = targmyop->op_targ;
3615 targmyop->op_targ = 0;
3619 /* detach the emaciated husk of the sprintf/concat optree and free it */
3621 kid = op_sibling_splice(o, lastkidop, 1, NULL);
3627 /* and convert o into a multiconcat */
3629 o->op_flags = (flags|OPf_KIDS|stacked_last
3630 |(o->op_flags & (OPf_WANT|OPf_PARENS)));
3631 o->op_private = private_flags;
3632 o->op_type = OP_MULTICONCAT;
3633 o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT];
3634 cUNOP_AUXo->op_aux = aux;
3638 /* do all the final processing on an optree (e.g. running the peephole
3639 * optimiser on it), then attach it to cv (if cv is non-null)
3643 S_process_optree(pTHX_ CV *cv, OP *optree, OP* start)
3647 /* XXX for some reason, evals, require and main optrees are
3648 * never attached to their CV; instead they just hang off
3649 * PL_main_root + PL_main_start or PL_eval_root + PL_eval_start
3650 * and get manually freed when appropriate */
3652 startp = &CvSTART(cv);
3654 startp = PL_in_eval? &PL_eval_start : &PL_main_start;
3657 optree->op_private |= OPpREFCOUNTED;
3658 OpREFCNT_set(optree, 1);
3659 optimize_optree(optree);
3661 finalize_optree(optree);
3662 S_prune_chain_head(startp);
3665 /* now that optimizer has done its work, adjust pad values */
3666 pad_tidy(optree->op_type == OP_LEAVEWRITE ? padtidy_FORMAT
3667 : CvCLONE(cv) ? padtidy_SUBCLONE : padtidy_SUB);
3673 =for apidoc optimize_optree
3675 This function applies some optimisations to the optree in top-down order.
3676 It is called before the peephole optimizer, which processes ops in
3677 execution order. Note that finalize_optree() also does a top-down scan,
3678 but is called *after* the peephole optimizer.
3684 Perl_optimize_optree(pTHX_ OP* o)
3686 PERL_ARGS_ASSERT_OPTIMIZE_OPTREE;
3689 SAVEVPTR(PL_curcop);
3697 /* helper for optimize_optree() which optimises one op then recurses
3698 * to optimise any children.
3702 S_optimize_op(pTHX_ OP* o)
3706 PERL_ARGS_ASSERT_OPTIMIZE_OP;
3709 OP * next_kid = NULL;
3711 assert(o->op_type != OP_FREED);
3713 switch (o->op_type) {
3716 PL_curcop = ((COP*)o); /* for warnings */
3724 S_maybe_multiconcat(aTHX_ o);
3728 if (cPMOPo->op_pmreplrootu.op_pmreplroot) {
3729 /* we can't assume that op_pmreplroot->op_sibparent == o
3730 * and that it is thus possible to walk back up the tree
3731 * past op_pmreplroot. So, although we try to avoid
3732 * recursing through op trees, do it here. After all,
3733 * there are unlikely to be many nested s///e's within
3734 * the replacement part of a s///e.
3736 optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
3744 if (o->op_flags & OPf_KIDS)
3745 next_kid = cUNOPo->op_first;
3747 /* if a kid hasn't been nominated to process, continue with the
3748 * next sibling, or if no siblings left, go back to the parent's
3749 * siblings and so on
3753 return; /* at top; no parents/siblings to try */
3754 if (OpHAS_SIBLING(o))
3755 next_kid = o->op_sibparent;
3757 o = o->op_sibparent; /*try parent's next sibling */
3760 /* this label not yet used. Goto here if any code above sets
3770 =for apidoc finalize_optree
3772 This function finalizes the optree. Should be called directly after
3773 the complete optree is built. It does some additional
3774 checking which can't be done in the normal C<ck_>xxx functions and makes
3775 the tree thread-safe.
3780 Perl_finalize_optree(pTHX_ OP* o)
3782 PERL_ARGS_ASSERT_FINALIZE_OPTREE;
3785 SAVEVPTR(PL_curcop);
3793 /* Relocate sv to the pad for thread safety.
3794 * Despite being a "constant", the SV is written to,
3795 * for reference counts, sv_upgrade() etc. */
3796 PERL_STATIC_INLINE void
3797 S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp)
3800 PERL_ARGS_ASSERT_OP_RELOCATE_SV;
3802 ix = pad_alloc(OP_CONST, SVf_READONLY);
3803 SvREFCNT_dec(PAD_SVl(ix));
3804 PAD_SETSV(ix, *svp);
3805 /* XXX I don't know how this isn't readonly already. */
3806 if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix));
3813 =for apidoc traverse_op_tree
3815 Return the next op in a depth-first traversal of the op tree,
3816 returning NULL when the traversal is complete.
3818 The initial call must supply the root of the tree as both top and o.
3820 For now it's static, but it may be exposed to the API in the future.
3826 S_traverse_op_tree(pTHX_ OP *top, OP *o) {
3829 PERL_ARGS_ASSERT_TRAVERSE_OP_TREE;
3831 if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) {
3832 return cUNOPo->op_first;
3834 else if ((sib = OpSIBLING(o))) {
3838 OP *parent = o->op_sibparent;
3839 assert(!(o->op_moresib));
3840 while (parent && parent != top) {
3841 OP *sib = OpSIBLING(parent);
3844 parent = parent->op_sibparent;
3852 S_finalize_op(pTHX_ OP* o)
3855 PERL_ARGS_ASSERT_FINALIZE_OP;
3858 assert(o->op_type != OP_FREED);
3860 switch (o->op_type) {
3863 PL_curcop = ((COP*)o); /* for warnings */
3866 if (OpHAS_SIBLING(o)) {
3867 OP *sib = OpSIBLING(o);
3868 if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE)
3869 && ckWARN(WARN_EXEC)
3870 && OpHAS_SIBLING(sib))
3872 const OPCODE type = OpSIBLING(sib)->op_type;
3873 if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) {
3874 const line_t oldline = CopLINE(PL_curcop);
3875 CopLINE_set(PL_curcop, CopLINE((COP*)sib));
3876 Perl_warner(aTHX_ packWARN(WARN_EXEC),
3877 "Statement unlikely to be reached");
3878 Perl_warner(aTHX_ packWARN(WARN_EXEC),
3879 "\t(Maybe you meant system() when you said exec()?)\n");
3880 CopLINE_set(PL_curcop, oldline);
3887 if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) {
3888 GV * const gv = cGVOPo_gv;
3889 if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) {
3890 /* XXX could check prototype here instead of just carping */
3891 SV * const sv = sv_newmortal();
3892 gv_efullname3(sv, gv, NULL);
3893 Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
3894 "%" SVf "() called too early to check prototype",
3901 if (cSVOPo->op_private & OPpCONST_STRICT)
3902 no_bareword_allowed(o);
3906 op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
3911 /* Relocate all the METHOP's SVs to the pad for thread safety. */
3912 case OP_METHOD_NAMED:
3913 case OP_METHOD_SUPER:
3914 case OP_METHOD_REDIR:
3915 case OP_METHOD_REDIR_SUPER:
3916 op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ);
3925 if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST)
3928 rop = (UNOP*)((BINOP*)o)->op_first;
3933 S_scalar_slice_warning(aTHX_ o);
3937 kid = OpSIBLING(cLISTOPo->op_first);
3938 if (/* I bet there's always a pushmark... */
3939 OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST)
3940 && OP_TYPE_ISNT_NN(kid, OP_CONST))
3945 key_op = (SVOP*)(kid->op_type == OP_CONST
3947 : OpSIBLING(kLISTOP->op_first));
3949 rop = (UNOP*)((LISTOP*)o)->op_last;
3952 if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV)
3954 S_check_hash_fields_and_hekify(aTHX_ rop, key_op, 1);
3958 if (o->op_targ != OP_HSLICE && o->op_targ != OP_ASLICE)
3962 S_scalar_slice_warning(aTHX_ o);
3966 if (cPMOPo->op_pmreplrootu.op_pmreplroot)
3967 finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
3975 if (o->op_flags & OPf_KIDS) {
3978 /* check that op_last points to the last sibling, and that
3979 * the last op_sibling/op_sibparent field points back to the
3980 * parent, and that the only ops with KIDS are those which are
3981 * entitled to them */
3982 U32 type = o->op_type;
3986 if (type == OP_NULL) {
3988 /* ck_glob creates a null UNOP with ex-type GLOB
3989 * (which is a list op. So pretend it wasn't a listop */
3990 if (type == OP_GLOB)
3993 family = PL_opargs[type] & OA_CLASS_MASK;
3995 has_last = ( family == OA_BINOP
3996 || family == OA_LISTOP
3997 || family == OA_PMOP
3998 || family == OA_LOOP
4000 assert( has_last /* has op_first and op_last, or ...
4001 ... has (or may have) op_first: */
4002 || family == OA_UNOP
4003 || family == OA_UNOP_AUX
4004 || family == OA_LOGOP
4005 || family == OA_BASEOP_OR_UNOP
4006 || family == OA_FILESTATOP
4007 || family == OA_LOOPEXOP
4008 || family == OA_METHOP
4009 || type == OP_CUSTOM
4010 || type == OP_NULL /* new_logop does this */
4013 for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) {
4014 if (!OpHAS_SIBLING(kid)) {
4016 assert(kid == cLISTOPo->op_last);
4017 assert(kid->op_sibparent == o);
4022 } while (( o = traverse_op_tree(top, o)) != NULL);
4026 S_mark_padname_lvalue(pTHX_ PADNAME *pn)
4029 PadnameLVALUE_on(pn);
4030 while (PadnameOUTER(pn) && PARENT_PAD_INDEX(pn)) {
4032 /* RT #127786: cv can be NULL due to an eval within the DB package
4033 * called from an anon sub - anon subs don't have CvOUTSIDE() set
4034 * unless they contain an eval, but calling eval within DB
4035 * pretends the eval was done in the caller's scope.
4039 assert(CvPADLIST(cv));
4041 PadlistNAMESARRAY(CvPADLIST(cv))[PARENT_PAD_INDEX(pn)];
4042 assert(PadnameLEN(pn));
4043 PadnameLVALUE_on(pn);
4048 S_vivifies(const OPCODE type)
4051 case OP_RV2AV: case OP_ASLICE:
4052 case OP_RV2HV: case OP_KVASLICE:
4053 case OP_RV2SV: case OP_HSLICE:
4054 case OP_AELEMFAST: case OP_KVHSLICE:
4063 /* apply lvalue reference (aliasing) context to the optree o.
4066 * o would be the list ($x,$y) and type would be OP_AASSIGN.
4067 * It may descend and apply this to children too, for example in
4068 * \( $cond ? $x, $y) = (...)
4072 S_lvref(pTHX_ OP *o, I32 type)
4078 switch (o->op_type) {
4080 o = OpSIBLING(cUNOPo->op_first);
4087 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
4088 o->op_flags |= OPf_STACKED;
4089 if (o->op_flags & OPf_PARENS) {
4090 if (o->op_private & OPpLVAL_INTRO) {
4091 yyerror(Perl_form(aTHX_ "Can't modify reference to "
4092 "localized parenthesized array in list assignment"));
4096 OpTYPE_set(o, OP_LVAVREF);
4097 o->op_private &= OPpLVAL_INTRO|OPpPAD_STATE;
4098 o->op_flags |= OPf_MOD|OPf_REF;
4101 o->op_private |= OPpLVREF_AV;
4105 kid = cUNOPo->op_first;
4106 if (kid->op_type == OP_NULL)
4107 kid = cUNOPx(OpSIBLING(kUNOP->op_first))
4109 o->op_private = OPpLVREF_CV;
4110 if (kid->op_type == OP_GV)
4111 o->op_flags |= OPf_STACKED;
4112 else if (kid->op_type == OP_PADCV) {
4113 o->op_targ = kid->op_targ;
4115 op_free(cUNOPo->op_first);
4116 cUNOPo->op_first = NULL;
4117 o->op_flags &=~ OPf_KIDS;
4123 if (o->op_flags & OPf_PARENS) {
4125 yyerror(Perl_form(aTHX_ "Can't modify reference to "
4126 "parenthesized hash in list assignment"));
4129 o->op_private |= OPpLVREF_HV;
4133 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
4134 o->op_flags |= OPf_STACKED;
4138 if (o->op_flags & OPf_PARENS) goto parenhash;
4139 o->op_private |= OPpLVREF_HV;
4142 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
4146 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
4147 if (o->op_flags & OPf_PARENS) goto slurpy;
4148 o->op_private |= OPpLVREF_AV;
4153 o->op_private |= OPpLVREF_ELEM;
4154 o->op_flags |= OPf_STACKED;
4159 OpTYPE_set(o, OP_LVREFSLICE);
4160 o->op_private &= OPpLVAL_INTRO;
4164 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
4166 else if (!(o->op_flags & OPf_KIDS))
4169 /* the code formerly only recursed into the first child of
4170 * a non ex-list OP_NULL. if we ever encounter such a null op with
4171 * more than one child, need to decide whether its ok to process
4172 * *all* its kids or not */
4173 assert(o->op_targ == OP_LIST
4174 || !(OpHAS_SIBLING(cBINOPo->op_first)));
4177 o = cLISTOPo->op_first;
4181 if (o->op_flags & OPf_PARENS)
4186 /* diag_listed_as: Can't modify reference to %s in %s assignment */
4187 yyerror(Perl_form(aTHX_ "Can't modify reference to %s in %s",
4188 o->op_type == OP_NULL && o->op_flags & OPf_SPECIAL
4195 OpTYPE_set(o, OP_LVREF);
4197 OPpLVAL_INTRO|OPpLVREF_ELEM|OPpLVREF_TYPE|OPpPAD_STATE;
4198 if (type == OP_ENTERLOOP)
4199 o->op_private |= OPpLVREF_ITER;
4204 return; /* at top; no parents/siblings to try */
4205 if (OpHAS_SIBLING(o)) {
4206 o = o->op_sibparent;
4209 o = o->op_sibparent; /*try parent's next sibling */
4215 PERL_STATIC_INLINE bool
4216 S_potential_mod_type(I32 type)
4218 /* Types that only potentially result in modification. */
4219 return type == OP_GREPSTART || type == OP_ENTERSUB
4220 || type == OP_REFGEN || type == OP_LEAVESUBLV;
4225 =for apidoc op_lvalue
4227 Propagate lvalue ("modifiable") context to an op and its children.
4228 C<type> represents the context type, roughly based on the type of op that
4229 would do the modifying, although C<local()> is represented by C<OP_NULL>,
4230 because it has no op type of its own (it is signalled by a flag on
4233 This function detects things that can't be modified, such as C<$x+1>, and
4234 generates errors for them. For example, C<$x+1 = 2> would cause it to be
4235 called with an op of type C<OP_ADD> and a C<type> argument of C<OP_SASSIGN>.
4237 It also flags things that need to behave specially in an lvalue context,
4238 such as C<$$x = 5> which might have to vivify a reference in C<$x>.
4242 Perl_op_lvalue_flags() is a non-API lower-level interface to
4243 op_lvalue(). The flags param has these bits:
4244 OP_LVALUE_NO_CROAK: return rather than croaking on error
4249 Perl_op_lvalue_flags(pTHX_ OP *o, I32 type, U32 flags)
4253 if (!o || (PL_parser && PL_parser->error_count))
4258 /* -1 = error on localize, 0 = ignore localize, 1 = ok to localize */
4260 OP *next_kid = NULL;
4262 if ((o->op_private & OPpTARGET_MY)
4263 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
4268 /* elements of a list might be in void context because the list is
4269 in scalar context or because they are attribute sub calls */
4270 if ((o->op_flags & OPf_WANT) == OPf_WANT_VOID)
4273 if (type == OP_PRTF || type == OP_SPRINTF) type = OP_ENTERSUB;
4275 switch (o->op_type) {
4281 if ((o->op_flags & OPf_PARENS))
4286 if ((type == OP_UNDEF || type == OP_REFGEN || type == OP_LOCK) &&
4287 !(o->op_flags & OPf_STACKED)) {
4288 OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
4289 assert(cUNOPo->op_first->op_type == OP_NULL);
4290 op_null(((LISTOP*)cUNOPo->op_first)->op_first);/* disable pushmark */
4293 else { /* lvalue subroutine call */
4294 o->op_private |= OPpLVAL_INTRO;
4295 PL_modcount = RETURN_UNLIMITED_NUMBER;
4296 if (S_potential_mod_type(type)) {
4297 o->op_private |= OPpENTERSUB_INARGS;
4300 else { /* Compile-time error message: */
4301 OP *kid = cUNOPo->op_first;
4306 if (kid->op_type != OP_PUSHMARK) {
4307 if (kid->op_type != OP_NULL || kid->op_targ != OP_LIST)
4309 "panic: unexpected lvalue entersub "
4310 "args: type/targ %ld:%" UVuf,
4311 (long)kid->op_type, (UV)kid->op_targ);
4312 kid = kLISTOP->op_first;
4314 while (OpHAS_SIBLING(kid))
4315 kid = OpSIBLING(kid);
4316 if (!(kid->op_type == OP_NULL && kid->op_targ == OP_RV2CV)) {
4317 break; /* Postpone until runtime */
4320 kid = kUNOP->op_first;
4321 if (kid->op_type == OP_NULL && kid->op_targ == OP_RV2SV)
4322 kid = kUNOP->op_first;
4323 if (kid->op_type == OP_NULL)
4325 "Unexpected constant lvalue entersub "
4326 "entry via type/targ %ld:%" UVuf,
4327 (long)kid->op_type, (UV)kid->op_targ);
4328 if (kid->op_type != OP_GV) {
4335 : SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV
4336 ? MUTABLE_CV(SvRV(gv))
4342 if (flags & OP_LVALUE_NO_CROAK)
4345 namesv = cv_name(cv, NULL, 0);
4346 yyerror_pv(Perl_form(aTHX_ "Can't modify non-lvalue "
4347 "subroutine call of &%" SVf " in %s",
4348 SVfARG(namesv), PL_op_desc[type]),
4356 if (flags & OP_LVALUE_NO_CROAK) return NULL;
4357 /* grep, foreach, subcalls, refgen */
4358 if (S_potential_mod_type(type))
4360 yyerror(Perl_form(aTHX_ "Can't modify %s in %s",
4361 (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)
4364 type ? PL_op_desc[type] : "local"));
4377 case OP_RIGHT_SHIFT:
4386 if (!(o->op_flags & OPf_STACKED))
4392 if (o->op_flags & OPf_STACKED) {
4396 if (!(o->op_private & OPpREPEAT_DOLIST))
4399 const I32 mods = PL_modcount;
4400 /* we recurse rather than iterate here because we need to
4401 * calculate and use the delta applied to PL_modcount by the
4402 * first child. So in something like
4403 * ($x, ($y) x 3) = split;
4404 * split knows that 4 elements are wanted
4406 modkids(cBINOPo->op_first, type);
4407 if (type != OP_AASSIGN)
4409 kid = cBINOPo->op_last;
4410 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)) {
4411 const IV iv = SvIV(kSVOP_sv);
4412 if (PL_modcount != RETURN_UNLIMITED_NUMBER)
4414 mods + (PL_modcount - mods) * (iv < 0 ? 0 : iv);
4417 PL_modcount = RETURN_UNLIMITED_NUMBER;
4423 next_kid = OpSIBLING(cUNOPo->op_first);
4428 if (type == OP_REFGEN && o->op_flags & OPf_PARENS) {
4429 PL_modcount = RETURN_UNLIMITED_NUMBER;
4430 /* Treat \(@foo) like ordinary list, but still mark it as modi-
4431 fiable since some contexts need to know. */
4432 o->op_flags |= OPf_MOD;
4437 if (scalar_mod_type(o, type))
4439 ref(cUNOPo->op_first, o->op_type);
4446 /* Do not apply the lvsub flag for rv2[ah]v in scalar context. */
4447 if (type == OP_LEAVESUBLV && (
4448 (o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
4449 || (o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
4451 o->op_private |= OPpMAYBE_LVSUB;
4455 PL_modcount = RETURN_UNLIMITED_NUMBER;
4461 if (type == OP_LEAVESUBLV)
4462 o->op_private |= OPpMAYBE_LVSUB;
4466 if (type == OP_LEAVESUBLV
4467 && (o->op_private & OPpAVHVSWITCH_MASK) + OP_EACH == OP_KEYS)
4468 o->op_private |= OPpMAYBE_LVSUB;
4472 PL_hints |= HINT_BLOCK_SCOPE;
4473 if (type == OP_LEAVESUBLV)
4474 o->op_private |= OPpMAYBE_LVSUB;
4479 ref(cUNOPo->op_first, o->op_type);
4483 PL_hints |= HINT_BLOCK_SCOPE;
4493 case OP_AELEMFAST_LEX:
4500 PL_modcount = RETURN_UNLIMITED_NUMBER;
4501 if (type == OP_REFGEN && o->op_flags & OPf_PARENS)
4503 /* Treat \(@foo) like ordinary list, but still mark it as modi-
4504 fiable since some contexts need to know. */
4505 o->op_flags |= OPf_MOD;
4508 if (scalar_mod_type(o, type))
4510 if ((o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
4511 && type == OP_LEAVESUBLV)
4512 o->op_private |= OPpMAYBE_LVSUB;
4516 if (!type) /* local() */
4517 Perl_croak(aTHX_ "Can't localize lexical variable %" PNf,
4518 PNfARG(PAD_COMPNAME(o->op_targ)));
4519 if (!(o->op_private & OPpLVAL_INTRO)
4520 || ( type != OP_SASSIGN && type != OP_AASSIGN
4521 && PadnameIsSTATE(PAD_COMPNAME_SV(o->op_targ)) ))
4522 S_mark_padname_lvalue(aTHX_ PAD_COMPNAME_SV(o->op_targ));
4530 if (type != OP_LEAVESUBLV && !scalar_mod_type(NULL, type))
4534 if (o->op_private == 4) /* don't allow 4 arg substr as lvalue */
4540 if (type == OP_LEAVESUBLV)
4541 o->op_private |= OPpMAYBE_LVSUB;
4542 if (o->op_flags & OPf_KIDS && OpHAS_SIBLING(cBINOPo->op_first)) {
4543 /* we recurse rather than iterate here because the child
4544 * needs to be processed with a different 'type' parameter */
4546 /* substr and vec */
4547 /* If this op is in merely potential (non-fatal) modifiable
4548 context, then apply OP_ENTERSUB context to
4549 the kid op (to avoid croaking). Other-
4550 wise pass this op’s own type so the correct op is mentioned
4551 in error messages. */
4552 op_lvalue(OpSIBLING(cBINOPo->op_first),
4553 S_potential_mod_type(type)
4561 ref(cBINOPo->op_first, o->op_type);
4562 if (type == OP_ENTERSUB &&
4563 !(o->op_private & (OPpLVAL_INTRO | OPpDEREF)))
4564 o->op_private |= OPpLVAL_DEFER;
4565 if (type == OP_LEAVESUBLV)
4566 o->op_private |= OPpMAYBE_LVSUB;
4573 o->op_private |= OPpLVALUE;
4579 if (o->op_flags & OPf_KIDS)
4580 next_kid = cLISTOPo->op_last;
4585 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
4587 else if (!(o->op_flags & OPf_KIDS))
4590 if (o->op_targ != OP_LIST) {
4591 OP *sib = OpSIBLING(cLISTOPo->op_first);
4592 /* OP_TRANS and OP_TRANSR with argument have a weird optree
4599 * compared with things like OP_MATCH which have the argument
4605 * so handle specially to correctly get "Can't modify" croaks etc
4608 if (sib && (sib->op_type == OP_TRANS || sib->op_type == OP_TRANSR))
4610 /* this should trigger a "Can't modify transliteration" err */
4611 op_lvalue(sib, type);
4613 next_kid = cBINOPo->op_first;
4614 /* we assume OP_NULLs which aren't ex-list have no more than 2
4615 * children. If this assumption is wrong, increase the scan
4617 assert( !OpHAS_SIBLING(next_kid)
4618 || !OpHAS_SIBLING(OpSIBLING(next_kid)));
4624 next_kid = cLISTOPo->op_first;
4632 if (type == OP_LEAVESUBLV
4633 || !S_vivifies(cLOGOPo->op_first->op_type))
4634 next_kid = cLOGOPo->op_first;
4635 else if (type == OP_LEAVESUBLV
4636 || !S_vivifies(OpSIBLING(cLOGOPo->op_first)->op_type))
4637 next_kid = OpSIBLING(cLOGOPo->op_first);
4641 if (type == OP_NULL) { /* local */
4643 if (!FEATURE_MYREF_IS_ENABLED)
4644 Perl_croak(aTHX_ "The experimental declared_refs "
4645 "feature is not enabled");
4646 Perl_ck_warner_d(aTHX_
4647 packWARN(WARN_EXPERIMENTAL__DECLARED_REFS),
4648 "Declaring references is experimental");
4649 next_kid = cUNOPo->op_first;
4652 if (type != OP_AASSIGN && type != OP_SASSIGN
4653 && type != OP_ENTERLOOP)
4655 /* Don’t bother applying lvalue context to the ex-list. */
4656 kid = cUNOPx(cUNOPo->op_first)->op_first;
4657 assert (!OpHAS_SIBLING(kid));
4660 if (type == OP_NULL) /* local */
4662 if (type != OP_AASSIGN) goto nomod;
4663 kid = cUNOPo->op_first;
4666 const U8 ec = PL_parser ? PL_parser->error_count : 0;
4667 S_lvref(aTHX_ kid, type);
4668 if (!PL_parser || PL_parser->error_count == ec) {
4669 if (!FEATURE_REFALIASING_IS_ENABLED)
4671 "Experimental aliasing via reference not enabled");
4672 Perl_ck_warner_d(aTHX_
4673 packWARN(WARN_EXPERIMENTAL__REFALIASING),
4674 "Aliasing via reference is experimental");
4677 if (o->op_type == OP_REFGEN)
4678 op_null(cUNOPx(cUNOPo->op_first)->op_first); /* pushmark */