3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* The cache element 0 is the Unicode offset;
34 * the cache element 1 is the byte offset of the element 0;
35 * the cache element 2 is the Unicode length of the substring;
36 * the cache element 3 is the byte length of the substring;
37 * The checking of the substring side would be good
38 * but substr() has enough code paths to make my head spin;
39 * if adding more checks watch out for the following tests:
40 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
41 * lib/utf8.t lib/Unicode/Collate/t/index.t
44 #define ASSERT_UTF8_CACHE(cache) \
45 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); } } STMT_END
47 #define ASSERT_UTF8_CACHE(cache) NOOP
50 #ifdef PERL_OLD_COPY_ON_WRITE
51 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
52 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
53 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
57 /* ============================================================================
59 =head1 Allocation and deallocation of SVs.
61 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
62 sv, av, hv...) contains type and reference count information, and for
63 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
64 contains fields specific to each type. Some types store all they need
65 in the head, so don't have a body.
67 In all but the most memory-paranoid configuations (ex: PURIFY), heads
68 and bodies are allocated out of arenas, which by default are
69 approximately 4K chunks of memory parcelled up into N heads or bodies.
70 Sv-bodies are allocated by their sv-type, guaranteeing size
71 consistency needed to allocate safely from arrays.
73 For SV-heads, the first slot in each arena is reserved, and holds a
74 link to the next arena, some flags, and a note of the number of slots.
75 Snaked through each arena chain is a linked list of free items; when
76 this becomes empty, an extra arena is allocated and divided up into N
77 items which are threaded into the free list.
79 SV-bodies are similar, but they use arena-sets by default, which
80 separate the link and info from the arena itself, and reclaim the 1st
81 slot in the arena. SV-bodies are further described later.
83 The following global variables are associated with arenas:
85 PL_sv_arenaroot pointer to list of SV arenas
86 PL_sv_root pointer to list of free SV structures
88 PL_body_arenas head of linked-list of body arenas
89 PL_body_roots[] array of pointers to list of free bodies of svtype
90 arrays are indexed by the svtype needed
92 A few special SV heads are not allocated from an arena, but are
93 instead directly created in the interpreter structure, eg PL_sv_undef.
94 The size of arenas can be changed from the default by setting
95 PERL_ARENA_SIZE appropriately at compile time.
97 The SV arena serves the secondary purpose of allowing still-live SVs
98 to be located and destroyed during final cleanup.
100 At the lowest level, the macros new_SV() and del_SV() grab and free
101 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
102 to return the SV to the free list with error checking.) new_SV() calls
103 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
104 SVs in the free list have their SvTYPE field set to all ones.
106 At the time of very final cleanup, sv_free_arenas() is called from
107 perl_destruct() to physically free all the arenas allocated since the
108 start of the interpreter.
110 Manipulation of any of the PL_*root pointers is protected by enclosing
111 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
112 if threads are enabled.
114 The function visit() scans the SV arenas list, and calls a specified
115 function for each SV it finds which is still live - ie which has an SvTYPE
116 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
117 following functions (specified as [function that calls visit()] / [function
118 called by visit() for each SV]):
120 sv_report_used() / do_report_used()
121 dump all remaining SVs (debugging aid)
123 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
124 Attempt to free all objects pointed to by RVs,
125 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
126 try to do the same for all objects indirectly
127 referenced by typeglobs too. Called once from
128 perl_destruct(), prior to calling sv_clean_all()
131 sv_clean_all() / do_clean_all()
132 SvREFCNT_dec(sv) each remaining SV, possibly
133 triggering an sv_free(). It also sets the
134 SVf_BREAK flag on the SV to indicate that the
135 refcnt has been artificially lowered, and thus
136 stopping sv_free() from giving spurious warnings
137 about SVs which unexpectedly have a refcnt
138 of zero. called repeatedly from perl_destruct()
139 until there are no SVs left.
141 =head2 Arena allocator API Summary
143 Private API to rest of sv.c
147 new_XIV(), del_XIV(),
148 new_XNV(), del_XNV(),
153 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
157 ============================================================================ */
160 * "A time to plant, and a time to uproot what was planted..."
164 * nice_chunk and nice_chunk size need to be set
165 * and queried under the protection of sv_mutex
168 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
174 new_chunk = (void *)(chunk);
175 new_chunk_size = (chunk_size);
176 if (new_chunk_size > PL_nice_chunk_size) {
177 Safefree(PL_nice_chunk);
178 PL_nice_chunk = (char *) new_chunk;
179 PL_nice_chunk_size = new_chunk_size;
186 #ifdef DEBUG_LEAKING_SCALARS
187 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
189 # define FREE_SV_DEBUG_FILE(sv)
193 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
194 /* Whilst I'd love to do this, it seems that things like to check on
196 # define POSION_SV_HEAD(sv) Poison(sv, 1, struct STRUCT_SV)
198 # define POSION_SV_HEAD(sv) Poison(&SvANY(sv), 1, void *), \
199 Poison(&SvREFCNT(sv), 1, U32)
201 # define SvARENA_CHAIN(sv) SvANY(sv)
202 # define POSION_SV_HEAD(sv)
205 #define plant_SV(p) \
207 FREE_SV_DEBUG_FILE(p); \
209 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
210 SvFLAGS(p) = SVTYPEMASK; \
215 /* sv_mutex must be held while calling uproot_SV() */
216 #define uproot_SV(p) \
219 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
224 /* make some more SVs by adding another arena */
226 /* sv_mutex must be held while calling more_sv() */
234 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
235 PL_nice_chunk = NULL;
236 PL_nice_chunk_size = 0;
239 char *chunk; /* must use New here to match call to */
240 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
241 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
247 /* new_SV(): return a new, empty SV head */
249 #ifdef DEBUG_LEAKING_SCALARS
250 /* provide a real function for a debugger to play with */
260 sv = S_more_sv(aTHX);
265 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
266 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
267 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
268 sv->sv_debug_inpad = 0;
269 sv->sv_debug_cloned = 0;
270 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
274 # define new_SV(p) (p)=S_new_SV(aTHX)
283 (p) = S_more_sv(aTHX); \
292 /* del_SV(): return an empty SV head to the free list */
307 S_del_sv(pTHX_ SV *p)
313 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
314 const SV * const sv = sva + 1;
315 const SV * const svend = &sva[SvREFCNT(sva)];
316 if (p >= sv && p < svend) {
322 if (ckWARN_d(WARN_INTERNAL))
323 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
324 "Attempt to free non-arena SV: 0x%"UVxf
325 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
332 #else /* ! DEBUGGING */
334 #define del_SV(p) plant_SV(p)
336 #endif /* DEBUGGING */
340 =head1 SV Manipulation Functions
342 =for apidoc sv_add_arena
344 Given a chunk of memory, link it to the head of the list of arenas,
345 and split it into a list of free SVs.
351 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
354 SV* const sva = (SV*)ptr;
358 /* The first SV in an arena isn't an SV. */
359 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
360 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
361 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
363 PL_sv_arenaroot = sva;
364 PL_sv_root = sva + 1;
366 svend = &sva[SvREFCNT(sva) - 1];
369 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
373 /* Must always set typemask because it's awlays checked in on cleanup
374 when the arenas are walked looking for objects. */
375 SvFLAGS(sv) = SVTYPEMASK;
378 SvARENA_CHAIN(sv) = 0;
382 SvFLAGS(sv) = SVTYPEMASK;
385 /* visit(): call the named function for each non-free SV in the arenas
386 * whose flags field matches the flags/mask args. */
389 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
395 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
396 register const SV * const svend = &sva[SvREFCNT(sva)];
398 for (sv = sva + 1; sv < svend; ++sv) {
399 if (SvTYPE(sv) != SVTYPEMASK
400 && (sv->sv_flags & mask) == flags
413 /* called by sv_report_used() for each live SV */
416 do_report_used(pTHX_ SV *sv)
418 if (SvTYPE(sv) != SVTYPEMASK) {
419 PerlIO_printf(Perl_debug_log, "****\n");
426 =for apidoc sv_report_used
428 Dump the contents of all SVs not yet freed. (Debugging aid).
434 Perl_sv_report_used(pTHX)
437 visit(do_report_used, 0, 0);
443 /* called by sv_clean_objs() for each live SV */
446 do_clean_objs(pTHX_ SV *ref)
450 SV * const target = SvRV(ref);
451 if (SvOBJECT(target)) {
452 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
453 if (SvWEAKREF(ref)) {
454 sv_del_backref(target, ref);
460 SvREFCNT_dec(target);
465 /* XXX Might want to check arrays, etc. */
468 /* called by sv_clean_objs() for each live SV */
470 #ifndef DISABLE_DESTRUCTOR_KLUDGE
472 do_clean_named_objs(pTHX_ SV *sv)
475 if (SvTYPE(sv) == SVt_PVGV && GvGP(sv)) {
477 #ifdef PERL_DONT_CREATE_GVSV
480 SvOBJECT(GvSV(sv))) ||
481 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
482 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
483 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
484 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
486 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
487 SvFLAGS(sv) |= SVf_BREAK;
495 =for apidoc sv_clean_objs
497 Attempt to destroy all objects not yet freed
503 Perl_sv_clean_objs(pTHX)
506 PL_in_clean_objs = TRUE;
507 visit(do_clean_objs, SVf_ROK, SVf_ROK);
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
509 /* some barnacles may yet remain, clinging to typeglobs */
510 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
512 PL_in_clean_objs = FALSE;
515 /* called by sv_clean_all() for each live SV */
518 do_clean_all(pTHX_ SV *sv)
521 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
522 SvFLAGS(sv) |= SVf_BREAK;
523 if (PL_comppad == (AV*)sv) {
531 =for apidoc sv_clean_all
533 Decrement the refcnt of each remaining SV, possibly triggering a
534 cleanup. This function may have to be called multiple times to free
535 SVs which are in complex self-referential hierarchies.
541 Perl_sv_clean_all(pTHX)
545 PL_in_clean_all = TRUE;
546 cleaned = visit(do_clean_all, 0,0);
547 PL_in_clean_all = FALSE;
552 ARENASETS: a meta-arena implementation which separates arena-info
553 into struct arena_set, which contains an array of struct
554 arena_descs, each holding info for a single arena. By separating
555 the meta-info from the arena, we recover the 1st slot, formerly
556 borrowed for list management. The arena_set is about the size of an
557 arena, avoiding the needless malloc overhead of a naive linked-list
559 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
560 memory in the last arena-set (1/2 on average). In trade, we get
561 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
562 smaller types). The recovery of the wasted space allows use of
563 small arenas for large, rare body types,
566 char *arena; /* the raw storage, allocated aligned */
567 size_t size; /* its size ~4k typ */
568 int unit_type; /* useful for arena audits */
569 /* info for sv-heads (eventually)
576 /* Get the maximum number of elements in set[] such that struct arena_set
577 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
578 therefore likely to be 1 aligned memory page. */
580 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
581 - 2 * sizeof(int)) / sizeof (struct arena_desc))
584 struct arena_set* next;
585 int set_size; /* ie ARENAS_PER_SET */
586 int curr; /* index of next available arena-desc */
587 struct arena_desc set[ARENAS_PER_SET];
593 S_free_arena(pTHX_ void **root) {
595 void ** const next = *(void **)root;
603 =for apidoc sv_free_arenas
605 Deallocate the memory used by all arenas. Note that all the individual SV
606 heads and bodies within the arenas must already have been freed.
611 Perl_sv_free_arenas(pTHX)
618 /* Free arenas here, but be careful about fake ones. (We assume
619 contiguity of the fake ones with the corresponding real ones.) */
621 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
622 svanext = (SV*) SvANY(sva);
623 while (svanext && SvFAKE(svanext))
624 svanext = (SV*) SvANY(svanext);
632 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
634 for (; aroot; aroot = next) {
635 const int max = aroot->curr;
636 for (i=0; i<max; i++) {
637 assert(aroot->set[i].arena);
638 Safefree(aroot->set[i].arena);
645 S_free_arena(aTHX_ (void**) PL_body_arenas);
649 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
650 PL_body_roots[i] = 0;
652 Safefree(PL_nice_chunk);
653 PL_nice_chunk = NULL;
654 PL_nice_chunk_size = 0;
660 Here are mid-level routines that manage the allocation of bodies out
661 of the various arenas. There are 5 kinds of arenas:
663 1. SV-head arenas, which are discussed and handled above
664 2. regular body arenas
665 3. arenas for reduced-size bodies
667 5. pte arenas (thread related)
669 Arena types 2 & 3 are chained by body-type off an array of
670 arena-root pointers, which is indexed by svtype. Some of the
671 larger/less used body types are malloced singly, since a large
672 unused block of them is wasteful. Also, several svtypes dont have
673 bodies; the data fits into the sv-head itself. The arena-root
674 pointer thus has a few unused root-pointers (which may be hijacked
675 later for arena types 4,5)
677 3 differs from 2 as an optimization; some body types have several
678 unused fields in the front of the structure (which are kept in-place
679 for consistency). These bodies can be allocated in smaller chunks,
680 because the leading fields arent accessed. Pointers to such bodies
681 are decremented to point at the unused 'ghost' memory, knowing that
682 the pointers are used with offsets to the real memory.
684 HE, HEK arenas are managed separately, with separate code, but may
685 be merge-able later..
687 PTE arenas are not sv-bodies, but they share these mid-level
688 mechanics, so are considered here. The new mid-level mechanics rely
689 on the sv_type of the body being allocated, so we just reserve one
690 of the unused body-slots for PTEs, then use it in those (2) PTE
691 contexts below (line ~10k)
694 /* get_arena(size): when ARENASETS is enabled, this creates
695 custom-sized arenas, otherwize it uses PERL_ARENA_SIZE, as
697 TBD: export properly for hv.c: S_more_he().
700 Perl_get_arena(pTHX_ int arena_size)
705 /* allocate and attach arena */
706 Newx(arp, arena_size, char);
707 arp->next = PL_body_arenas;
708 PL_body_arenas = arp;
712 struct arena_desc* adesc;
713 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
716 /* shouldnt need this
717 if (!arena_size) arena_size = PERL_ARENA_SIZE;
720 /* may need new arena-set to hold new arena */
721 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
722 Newxz(newroot, 1, struct arena_set);
723 newroot->set_size = ARENAS_PER_SET;
724 newroot->next = *aroot;
726 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", *aroot));
729 /* ok, now have arena-set with at least 1 empty/available arena-desc */
730 curr = (*aroot)->curr++;
731 adesc = &((*aroot)->set[curr]);
732 assert(!adesc->arena);
734 Newxz(adesc->arena, arena_size, char);
735 adesc->size = arena_size;
736 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
737 curr, adesc->arena, arena_size));
744 /* return a thing to the free list */
746 #define del_body(thing, root) \
748 void ** const thing_copy = (void **)thing;\
750 *thing_copy = *root; \
751 *root = (void*)thing_copy; \
757 =head1 SV-Body Allocation
759 Allocation of SV-bodies is similar to SV-heads, differing as follows;
760 the allocation mechanism is used for many body types, so is somewhat
761 more complicated, it uses arena-sets, and has no need for still-live
764 At the outermost level, (new|del)_X*V macros return bodies of the
765 appropriate type. These macros call either (new|del)_body_type or
766 (new|del)_body_allocated macro pairs, depending on specifics of the
767 type. Most body types use the former pair, the latter pair is used to
768 allocate body types with "ghost fields".
770 "ghost fields" are fields that are unused in certain types, and
771 consequently dont need to actually exist. They are declared because
772 they're part of a "base type", which allows use of functions as
773 methods. The simplest examples are AVs and HVs, 2 aggregate types
774 which don't use the fields which support SCALAR semantics.
776 For these types, the arenas are carved up into *_allocated size
777 chunks, we thus avoid wasted memory for those unaccessed members.
778 When bodies are allocated, we adjust the pointer back in memory by the
779 size of the bit not allocated, so it's as if we allocated the full
780 structure. (But things will all go boom if you write to the part that
781 is "not there", because you'll be overwriting the last members of the
782 preceding structure in memory.)
784 We calculate the correction using the STRUCT_OFFSET macro. For
785 example, if xpv_allocated is the same structure as XPV then the two
786 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
787 structure is smaller (no initial NV actually allocated) then the net
788 effect is to subtract the size of the NV from the pointer, to return a
789 new pointer as if an initial NV were actually allocated.
791 This is the same trick as was used for NV and IV bodies. Ironically it
792 doesn't need to be used for NV bodies any more, because NV is now at
793 the start of the structure. IV bodies don't need it either, because
794 they are no longer allocated.
796 In turn, the new_body_* allocators call S_new_body(), which invokes
797 new_body_inline macro, which takes a lock, and takes a body off the
798 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
799 necessary to refresh an empty list. Then the lock is released, and
800 the body is returned.
802 S_more_bodies calls get_arena(), and carves it up into an array of N
803 bodies, which it strings into a linked list. It looks up arena-size
804 and body-size from the body_details table described below, thus
805 supporting the multiple body-types.
807 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
808 the (new|del)_X*V macros are mapped directly to malloc/free.
814 For each sv-type, struct body_details bodies_by_type[] carries
815 parameters which control these aspects of SV handling:
817 Arena_size determines whether arenas are used for this body type, and if
818 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
819 zero, forcing individual mallocs and frees.
821 Body_size determines how big a body is, and therefore how many fit into
822 each arena. Offset carries the body-pointer adjustment needed for
823 *_allocated body types, and is used in *_allocated macros.
825 But its main purpose is to parameterize info needed in
826 Perl_sv_upgrade(). The info here dramatically simplifies the function
827 vs the implementation in 5.8.7, making it table-driven. All fields
828 are used for this, except for arena_size.
830 For the sv-types that have no bodies, arenas are not used, so those
831 PL_body_roots[sv_type] are unused, and can be overloaded. In
832 something of a special case, SVt_NULL is borrowed for HE arenas;
833 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
834 bodies_by_type[SVt_NULL] slot is not used, as the table is not
837 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
838 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
839 they can just use the same allocation semantics. At first, PTEs were
840 also overloaded to a non-body sv-type, but this yielded hard-to-find
841 malloc bugs, so was simplified by claiming a new slot. This choice
842 has no consequence at this time.
846 struct body_details {
847 U8 body_size; /* Size to allocate */
848 U8 copy; /* Size of structure to copy (may be shorter) */
850 unsigned int type : 4; /* We have space for a sanity check. */
851 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
852 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
853 unsigned int arena : 1; /* Allocated from an arena */
854 size_t arena_size; /* Size of arena to allocate */
862 /* With -DPURFIY we allocate everything directly, and don't use arenas.
863 This seems a rather elegant way to simplify some of the code below. */
864 #define HASARENA FALSE
866 #define HASARENA TRUE
868 #define NOARENA FALSE
870 /* Size the arenas to exactly fit a given number of bodies. A count
871 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
872 simplifying the default. If count > 0, the arena is sized to fit
873 only that many bodies, allowing arenas to be used for large, rare
874 bodies (XPVFM, XPVIO) without undue waste. The arena size is
875 limited by PERL_ARENA_SIZE, so we can safely oversize the
878 #define FIT_ARENA(count, body_size) \
879 (!count || count * body_size > PERL_ARENA_SIZE) \
880 ? (int)(PERL_ARENA_SIZE / body_size) * body_size : count * body_size
882 /* A macro to work out the offset needed to subtract from a pointer to (say)
889 to make its members accessible via a pointer to (say)
899 #define relative_STRUCT_OFFSET(longer, shorter, member) \
900 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
902 /* Calculate the length to copy. Specifically work out the length less any
903 final padding the compiler needed to add. See the comment in sv_upgrade
904 for why copying the padding proved to be a bug. */
906 #define copy_length(type, last_member) \
907 STRUCT_OFFSET(type, last_member) \
908 + sizeof (((type*)SvANY((SV*)0))->last_member)
910 static const struct body_details bodies_by_type[] = {
911 { sizeof(HE), 0, 0, SVt_NULL,
912 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
914 /* IVs are in the head, so the allocation size is 0.
915 However, the slot is overloaded for PTEs. */
916 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
917 sizeof(IV), /* This is used to copy out the IV body. */
918 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
919 NOARENA /* IVS don't need an arena */,
920 /* But PTEs need to know the size of their arena */
921 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
924 /* 8 bytes on most ILP32 with IEEE doubles */
925 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
926 FIT_ARENA(0, sizeof(NV)) },
928 /* RVs are in the head now. */
929 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
931 /* 8 bytes on most ILP32 with IEEE doubles */
932 { sizeof(xpv_allocated),
933 copy_length(XPV, xpv_len)
934 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
935 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
936 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
939 { sizeof(xpviv_allocated),
940 copy_length(XPVIV, xiv_u)
941 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
942 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
943 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
946 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
947 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
950 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
951 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
954 { sizeof(XPVBM), sizeof(XPVBM), 0, SVt_PVBM, TRUE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVBM)) },
958 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
959 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
962 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
963 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
965 { sizeof(xpvav_allocated),
966 copy_length(XPVAV, xmg_stash)
967 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
968 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
969 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
971 { sizeof(xpvhv_allocated),
972 copy_length(XPVHV, xmg_stash)
973 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
974 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
975 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
978 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
979 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
980 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
982 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
983 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
984 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
986 /* XPVIO is 84 bytes, fits 48x */
987 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
988 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
991 #define new_body_type(sv_type) \
992 (void *)((char *)S_new_body(aTHX_ sv_type))
994 #define del_body_type(p, sv_type) \
995 del_body(p, &PL_body_roots[sv_type])
998 #define new_body_allocated(sv_type) \
999 (void *)((char *)S_new_body(aTHX_ sv_type) \
1000 - bodies_by_type[sv_type].offset)
1002 #define del_body_allocated(p, sv_type) \
1003 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1006 #define my_safemalloc(s) (void*)safemalloc(s)
1007 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1008 #define my_safefree(p) safefree((char*)p)
1012 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1013 #define del_XNV(p) my_safefree(p)
1015 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1016 #define del_XPVNV(p) my_safefree(p)
1018 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1019 #define del_XPVAV(p) my_safefree(p)
1021 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1022 #define del_XPVHV(p) my_safefree(p)
1024 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1025 #define del_XPVMG(p) my_safefree(p)
1027 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1028 #define del_XPVGV(p) my_safefree(p)
1032 #define new_XNV() new_body_type(SVt_NV)
1033 #define del_XNV(p) del_body_type(p, SVt_NV)
1035 #define new_XPVNV() new_body_type(SVt_PVNV)
1036 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1038 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1039 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1041 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1042 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1044 #define new_XPVMG() new_body_type(SVt_PVMG)
1045 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1047 #define new_XPVGV() new_body_type(SVt_PVGV)
1048 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1052 /* no arena for you! */
1054 #define new_NOARENA(details) \
1055 my_safemalloc((details)->body_size + (details)->offset)
1056 #define new_NOARENAZ(details) \
1057 my_safecalloc((details)->body_size + (details)->offset)
1060 static bool done_sanity_check;
1064 S_more_bodies (pTHX_ svtype sv_type)
1067 void ** const root = &PL_body_roots[sv_type];
1068 const struct body_details * const bdp = &bodies_by_type[sv_type];
1069 const size_t body_size = bdp->body_size;
1073 assert(bdp->arena_size);
1076 if (!done_sanity_check) {
1079 done_sanity_check = TRUE;
1082 assert (bodies_by_type[i].type == i);
1086 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1088 end = start + bdp->arena_size - body_size;
1091 /* The initial slot is used to link the arenas together, so it isn't to be
1092 linked into the list of ready-to-use bodies. */
1095 /* computed count doesnt reflect the 1st slot reservation */
1096 DEBUG_m(PerlIO_printf(Perl_debug_log,
1097 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1098 start, end, bdp->arena_size, sv_type, body_size,
1099 bdp->arena_size / body_size));
1102 *root = (void *)start;
1104 while (start < end) {
1105 char * const next = start + body_size;
1106 *(void**) start = (void *)next;
1109 *(void **)start = 0;
1114 /* grab a new thing from the free list, allocating more if necessary.
1115 The inline version is used for speed in hot routines, and the
1116 function using it serves the rest (unless PURIFY).
1118 #define new_body_inline(xpv, sv_type) \
1120 void ** const r3wt = &PL_body_roots[sv_type]; \
1122 xpv = *((void **)(r3wt)) \
1123 ? *((void **)(r3wt)) : S_more_bodies(aTHX_ sv_type); \
1124 *(r3wt) = *(void**)(xpv); \
1131 S_new_body(pTHX_ svtype sv_type)
1135 new_body_inline(xpv, sv_type);
1142 =for apidoc sv_upgrade
1144 Upgrade an SV to a more complex form. Generally adds a new body type to the
1145 SV, then copies across as much information as possible from the old body.
1146 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1152 Perl_sv_upgrade(pTHX_ register SV *sv, U32 new_type)
1157 const U32 old_type = SvTYPE(sv);
1158 const struct body_details *new_type_details;
1159 const struct body_details *const old_type_details
1160 = bodies_by_type + old_type;
1162 if (new_type != SVt_PV && SvIsCOW(sv)) {
1163 sv_force_normal_flags(sv, 0);
1166 if (old_type == new_type)
1169 if (old_type > new_type)
1170 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1171 (int)old_type, (int)new_type);
1174 old_body = SvANY(sv);
1176 /* Copying structures onto other structures that have been neatly zeroed
1177 has a subtle gotcha. Consider XPVMG
1179 +------+------+------+------+------+-------+-------+
1180 | NV | CUR | LEN | IV | MAGIC | STASH |
1181 +------+------+------+------+------+-------+-------+
1182 0 4 8 12 16 20 24 28
1184 where NVs are aligned to 8 bytes, so that sizeof that structure is
1185 actually 32 bytes long, with 4 bytes of padding at the end:
1187 +------+------+------+------+------+-------+-------+------+
1188 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1189 +------+------+------+------+------+-------+-------+------+
1190 0 4 8 12 16 20 24 28 32
1192 so what happens if you allocate memory for this structure:
1194 +------+------+------+------+------+-------+-------+------+------+...
1195 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1196 +------+------+------+------+------+-------+-------+------+------+...
1197 0 4 8 12 16 20 24 28 32 36
1199 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1200 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1201 started out as zero once, but it's quite possible that it isn't. So now,
1202 rather than a nicely zeroed GP, you have it pointing somewhere random.
1205 (In fact, GP ends up pointing at a previous GP structure, because the
1206 principle cause of the padding in XPVMG getting garbage is a copy of
1207 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1209 So we are careful and work out the size of used parts of all the
1216 if (new_type < SVt_PVIV) {
1217 new_type = (new_type == SVt_NV)
1218 ? SVt_PVNV : SVt_PVIV;
1222 if (new_type < SVt_PVNV) {
1223 new_type = SVt_PVNV;
1229 assert(new_type > SVt_PV);
1230 assert(SVt_IV < SVt_PV);
1231 assert(SVt_NV < SVt_PV);
1238 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1239 there's no way that it can be safely upgraded, because perl.c
1240 expects to Safefree(SvANY(PL_mess_sv)) */
1241 assert(sv != PL_mess_sv);
1242 /* This flag bit is used to mean other things in other scalar types.
1243 Given that it only has meaning inside the pad, it shouldn't be set
1244 on anything that can get upgraded. */
1245 assert(!SvPAD_TYPED(sv));
1248 if (old_type_details->cant_upgrade)
1249 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1250 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1252 new_type_details = bodies_by_type + new_type;
1254 SvFLAGS(sv) &= ~SVTYPEMASK;
1255 SvFLAGS(sv) |= new_type;
1257 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1258 the return statements above will have triggered. */
1259 assert (new_type != SVt_NULL);
1262 assert(old_type == SVt_NULL);
1263 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1267 assert(old_type == SVt_NULL);
1268 SvANY(sv) = new_XNV();
1272 assert(old_type == SVt_NULL);
1273 SvANY(sv) = &sv->sv_u.svu_rv;
1278 assert(new_type_details->body_size);
1281 assert(new_type_details->arena);
1282 assert(new_type_details->arena_size);
1283 /* This points to the start of the allocated area. */
1284 new_body_inline(new_body, new_type);
1285 Zero(new_body, new_type_details->body_size, char);
1286 new_body = ((char *)new_body) - new_type_details->offset;
1288 /* We always allocated the full length item with PURIFY. To do this
1289 we fake things so that arena is false for all 16 types.. */
1290 new_body = new_NOARENAZ(new_type_details);
1292 SvANY(sv) = new_body;
1293 if (new_type == SVt_PVAV) {
1299 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1300 The target created by newSVrv also is, and it can have magic.
1301 However, it never has SvPVX set.
1303 if (old_type >= SVt_RV) {
1304 assert(SvPVX_const(sv) == 0);
1307 /* Could put this in the else clause below, as PVMG must have SvPVX
1308 0 already (the assertion above) */
1311 if (old_type >= SVt_PVMG) {
1312 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1313 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1319 /* XXX Is this still needed? Was it ever needed? Surely as there is
1320 no route from NV to PVIV, NOK can never be true */
1321 assert(!SvNOKp(sv));
1333 assert(new_type_details->body_size);
1334 /* We always allocated the full length item with PURIFY. To do this
1335 we fake things so that arena is false for all 16 types.. */
1336 if(new_type_details->arena) {
1337 /* This points to the start of the allocated area. */
1338 new_body_inline(new_body, new_type);
1339 Zero(new_body, new_type_details->body_size, char);
1340 new_body = ((char *)new_body) - new_type_details->offset;
1342 new_body = new_NOARENAZ(new_type_details);
1344 SvANY(sv) = new_body;
1346 if (old_type_details->copy) {
1347 Copy((char *)old_body + old_type_details->offset,
1348 (char *)new_body + old_type_details->offset,
1349 old_type_details->copy, char);
1352 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1353 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1354 * correct 0.0 for us. Otherwise, if the old body didn't have an
1355 * NV slot, but the new one does, then we need to initialise the
1356 * freshly created NV slot with whatever the correct bit pattern is
1358 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1362 if (new_type == SVt_PVIO)
1363 IoPAGE_LEN(sv) = 60;
1364 if (old_type < SVt_RV)
1368 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1369 (unsigned long)new_type);
1372 if (old_type_details->arena) {
1373 /* If there was an old body, then we need to free it.
1374 Note that there is an assumption that all bodies of types that
1375 can be upgraded came from arenas. Only the more complex non-
1376 upgradable types are allowed to be directly malloc()ed. */
1378 my_safefree(old_body);
1380 del_body((void*)((char*)old_body + old_type_details->offset),
1381 &PL_body_roots[old_type]);
1387 =for apidoc sv_backoff
1389 Remove any string offset. You should normally use the C<SvOOK_off> macro
1396 Perl_sv_backoff(pTHX_ register SV *sv)
1398 PERL_UNUSED_CONTEXT;
1400 assert(SvTYPE(sv) != SVt_PVHV);
1401 assert(SvTYPE(sv) != SVt_PVAV);
1403 const char * const s = SvPVX_const(sv);
1404 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1405 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1407 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1409 SvFLAGS(sv) &= ~SVf_OOK;
1416 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1417 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1418 Use the C<SvGROW> wrapper instead.
1424 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1428 #ifdef HAS_64K_LIMIT
1429 if (newlen >= 0x10000) {
1430 PerlIO_printf(Perl_debug_log,
1431 "Allocation too large: %"UVxf"\n", (UV)newlen);
1434 #endif /* HAS_64K_LIMIT */
1437 if (SvTYPE(sv) < SVt_PV) {
1438 sv_upgrade(sv, SVt_PV);
1439 s = SvPVX_mutable(sv);
1441 else if (SvOOK(sv)) { /* pv is offset? */
1443 s = SvPVX_mutable(sv);
1444 if (newlen > SvLEN(sv))
1445 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1446 #ifdef HAS_64K_LIMIT
1447 if (newlen >= 0x10000)
1452 s = SvPVX_mutable(sv);
1454 if (newlen > SvLEN(sv)) { /* need more room? */
1455 newlen = PERL_STRLEN_ROUNDUP(newlen);
1456 if (SvLEN(sv) && s) {
1458 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1464 s = saferealloc(s, newlen);
1467 s = safemalloc(newlen);
1468 if (SvPVX_const(sv) && SvCUR(sv)) {
1469 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1473 SvLEN_set(sv, newlen);
1479 =for apidoc sv_setiv
1481 Copies an integer into the given SV, upgrading first if necessary.
1482 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1488 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1491 SV_CHECK_THINKFIRST_COW_DROP(sv);
1492 switch (SvTYPE(sv)) {
1494 sv_upgrade(sv, SVt_IV);
1497 sv_upgrade(sv, SVt_PVNV);
1501 sv_upgrade(sv, SVt_PVIV);
1510 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1513 (void)SvIOK_only(sv); /* validate number */
1519 =for apidoc sv_setiv_mg
1521 Like C<sv_setiv>, but also handles 'set' magic.
1527 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1534 =for apidoc sv_setuv
1536 Copies an unsigned integer into the given SV, upgrading first if necessary.
1537 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1543 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1545 /* With these two if statements:
1546 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1549 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1551 If you wish to remove them, please benchmark to see what the effect is
1553 if (u <= (UV)IV_MAX) {
1554 sv_setiv(sv, (IV)u);
1563 =for apidoc sv_setuv_mg
1565 Like C<sv_setuv>, but also handles 'set' magic.
1571 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1580 =for apidoc sv_setnv
1582 Copies a double into the given SV, upgrading first if necessary.
1583 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1589 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1592 SV_CHECK_THINKFIRST_COW_DROP(sv);
1593 switch (SvTYPE(sv)) {
1596 sv_upgrade(sv, SVt_NV);
1601 sv_upgrade(sv, SVt_PVNV);
1610 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1614 (void)SvNOK_only(sv); /* validate number */
1619 =for apidoc sv_setnv_mg
1621 Like C<sv_setnv>, but also handles 'set' magic.
1627 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1633 /* Print an "isn't numeric" warning, using a cleaned-up,
1634 * printable version of the offending string
1638 S_not_a_number(pTHX_ SV *sv)
1646 dsv = sv_2mortal(newSVpvs(""));
1647 pv = sv_uni_display(dsv, sv, 10, 0);
1650 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1651 /* each *s can expand to 4 chars + "...\0",
1652 i.e. need room for 8 chars */
1654 const char *s = SvPVX_const(sv);
1655 const char * const end = s + SvCUR(sv);
1656 for ( ; s < end && d < limit; s++ ) {
1658 if (ch & 128 && !isPRINT_LC(ch)) {
1667 else if (ch == '\r') {
1671 else if (ch == '\f') {
1675 else if (ch == '\\') {
1679 else if (ch == '\0') {
1683 else if (isPRINT_LC(ch))
1700 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1701 "Argument \"%s\" isn't numeric in %s", pv,
1704 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1705 "Argument \"%s\" isn't numeric", pv);
1709 =for apidoc looks_like_number
1711 Test if the content of an SV looks like a number (or is a number).
1712 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1713 non-numeric warning), even if your atof() doesn't grok them.
1719 Perl_looks_like_number(pTHX_ SV *sv)
1721 register const char *sbegin;
1725 sbegin = SvPVX_const(sv);
1728 else if (SvPOKp(sv))
1729 sbegin = SvPV_const(sv, len);
1731 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1732 return grok_number(sbegin, len, NULL);
1736 S_glob_2inpuv(pTHX_ GV *gv, STRLEN *len, bool want_number)
1738 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1739 SV *const buffer = sv_newmortal();
1741 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1744 gv_efullname3(buffer, gv, "*");
1745 SvFLAGS(gv) |= wasfake;
1748 /* We know that all GVs stringify to something that is not-a-number,
1749 so no need to test that. */
1750 if (ckWARN(WARN_NUMERIC))
1751 not_a_number(buffer);
1752 /* We just want something true to return, so that S_sv_2iuv_common
1753 can tail call us and return true. */
1756 return SvPV(buffer, *len);
1760 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1761 until proven guilty, assume that things are not that bad... */
1766 As 64 bit platforms often have an NV that doesn't preserve all bits of
1767 an IV (an assumption perl has been based on to date) it becomes necessary
1768 to remove the assumption that the NV always carries enough precision to
1769 recreate the IV whenever needed, and that the NV is the canonical form.
1770 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1771 precision as a side effect of conversion (which would lead to insanity
1772 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1773 1) to distinguish between IV/UV/NV slots that have cached a valid
1774 conversion where precision was lost and IV/UV/NV slots that have a
1775 valid conversion which has lost no precision
1776 2) to ensure that if a numeric conversion to one form is requested that
1777 would lose precision, the precise conversion (or differently
1778 imprecise conversion) is also performed and cached, to prevent
1779 requests for different numeric formats on the same SV causing
1780 lossy conversion chains. (lossless conversion chains are perfectly
1785 SvIOKp is true if the IV slot contains a valid value
1786 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1787 SvNOKp is true if the NV slot contains a valid value
1788 SvNOK is true only if the NV value is accurate
1791 while converting from PV to NV, check to see if converting that NV to an
1792 IV(or UV) would lose accuracy over a direct conversion from PV to
1793 IV(or UV). If it would, cache both conversions, return NV, but mark
1794 SV as IOK NOKp (ie not NOK).
1796 While converting from PV to IV, check to see if converting that IV to an
1797 NV would lose accuracy over a direct conversion from PV to NV. If it
1798 would, cache both conversions, flag similarly.
1800 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1801 correctly because if IV & NV were set NV *always* overruled.
1802 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1803 changes - now IV and NV together means that the two are interchangeable:
1804 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1806 The benefit of this is that operations such as pp_add know that if
1807 SvIOK is true for both left and right operands, then integer addition
1808 can be used instead of floating point (for cases where the result won't
1809 overflow). Before, floating point was always used, which could lead to
1810 loss of precision compared with integer addition.
1812 * making IV and NV equal status should make maths accurate on 64 bit
1814 * may speed up maths somewhat if pp_add and friends start to use
1815 integers when possible instead of fp. (Hopefully the overhead in
1816 looking for SvIOK and checking for overflow will not outweigh the
1817 fp to integer speedup)
1818 * will slow down integer operations (callers of SvIV) on "inaccurate"
1819 values, as the change from SvIOK to SvIOKp will cause a call into
1820 sv_2iv each time rather than a macro access direct to the IV slot
1821 * should speed up number->string conversion on integers as IV is
1822 favoured when IV and NV are equally accurate
1824 ####################################################################
1825 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1826 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1827 On the other hand, SvUOK is true iff UV.
1828 ####################################################################
1830 Your mileage will vary depending your CPU's relative fp to integer
1834 #ifndef NV_PRESERVES_UV
1835 # define IS_NUMBER_UNDERFLOW_IV 1
1836 # define IS_NUMBER_UNDERFLOW_UV 2
1837 # define IS_NUMBER_IV_AND_UV 2
1838 # define IS_NUMBER_OVERFLOW_IV 4
1839 # define IS_NUMBER_OVERFLOW_UV 5
1841 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1843 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1845 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1848 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1849 if (SvNVX(sv) < (NV)IV_MIN) {
1850 (void)SvIOKp_on(sv);
1852 SvIV_set(sv, IV_MIN);
1853 return IS_NUMBER_UNDERFLOW_IV;
1855 if (SvNVX(sv) > (NV)UV_MAX) {
1856 (void)SvIOKp_on(sv);
1859 SvUV_set(sv, UV_MAX);
1860 return IS_NUMBER_OVERFLOW_UV;
1862 (void)SvIOKp_on(sv);
1864 /* Can't use strtol etc to convert this string. (See truth table in
1866 if (SvNVX(sv) <= (UV)IV_MAX) {
1867 SvIV_set(sv, I_V(SvNVX(sv)));
1868 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1869 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1871 /* Integer is imprecise. NOK, IOKp */
1873 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1876 SvUV_set(sv, U_V(SvNVX(sv)));
1877 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1878 if (SvUVX(sv) == UV_MAX) {
1879 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1880 possibly be preserved by NV. Hence, it must be overflow.
1882 return IS_NUMBER_OVERFLOW_UV;
1884 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1886 /* Integer is imprecise. NOK, IOKp */
1888 return IS_NUMBER_OVERFLOW_IV;
1890 #endif /* !NV_PRESERVES_UV*/
1893 S_sv_2iuv_common(pTHX_ SV *sv) {
1896 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1897 * without also getting a cached IV/UV from it at the same time
1898 * (ie PV->NV conversion should detect loss of accuracy and cache
1899 * IV or UV at same time to avoid this. */
1900 /* IV-over-UV optimisation - choose to cache IV if possible */
1902 if (SvTYPE(sv) == SVt_NV)
1903 sv_upgrade(sv, SVt_PVNV);
1905 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1906 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1907 certainly cast into the IV range at IV_MAX, whereas the correct
1908 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1910 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1911 SvIV_set(sv, I_V(SvNVX(sv)));
1912 if (SvNVX(sv) == (NV) SvIVX(sv)
1913 #ifndef NV_PRESERVES_UV
1914 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1915 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1916 /* Don't flag it as "accurately an integer" if the number
1917 came from a (by definition imprecise) NV operation, and
1918 we're outside the range of NV integer precision */
1921 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1922 DEBUG_c(PerlIO_printf(Perl_debug_log,
1923 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1929 /* IV not precise. No need to convert from PV, as NV
1930 conversion would already have cached IV if it detected
1931 that PV->IV would be better than PV->NV->IV
1932 flags already correct - don't set public IOK. */
1933 DEBUG_c(PerlIO_printf(Perl_debug_log,
1934 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1939 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1940 but the cast (NV)IV_MIN rounds to a the value less (more
1941 negative) than IV_MIN which happens to be equal to SvNVX ??
1942 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1943 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1944 (NV)UVX == NVX are both true, but the values differ. :-(
1945 Hopefully for 2s complement IV_MIN is something like
1946 0x8000000000000000 which will be exact. NWC */
1949 SvUV_set(sv, U_V(SvNVX(sv)));
1951 (SvNVX(sv) == (NV) SvUVX(sv))
1952 #ifndef NV_PRESERVES_UV
1953 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1954 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1955 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1956 /* Don't flag it as "accurately an integer" if the number
1957 came from a (by definition imprecise) NV operation, and
1958 we're outside the range of NV integer precision */
1963 DEBUG_c(PerlIO_printf(Perl_debug_log,
1964 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1970 else if (SvPOKp(sv) && SvLEN(sv)) {
1972 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1973 /* We want to avoid a possible problem when we cache an IV/ a UV which
1974 may be later translated to an NV, and the resulting NV is not
1975 the same as the direct translation of the initial string
1976 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1977 be careful to ensure that the value with the .456 is around if the
1978 NV value is requested in the future).
1980 This means that if we cache such an IV/a UV, we need to cache the
1981 NV as well. Moreover, we trade speed for space, and do not
1982 cache the NV if we are sure it's not needed.
1985 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1986 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1987 == IS_NUMBER_IN_UV) {
1988 /* It's definitely an integer, only upgrade to PVIV */
1989 if (SvTYPE(sv) < SVt_PVIV)
1990 sv_upgrade(sv, SVt_PVIV);
1992 } else if (SvTYPE(sv) < SVt_PVNV)
1993 sv_upgrade(sv, SVt_PVNV);
1995 /* If NVs preserve UVs then we only use the UV value if we know that
1996 we aren't going to call atof() below. If NVs don't preserve UVs
1997 then the value returned may have more precision than atof() will
1998 return, even though value isn't perfectly accurate. */
1999 if ((numtype & (IS_NUMBER_IN_UV
2000 #ifdef NV_PRESERVES_UV
2003 )) == IS_NUMBER_IN_UV) {
2004 /* This won't turn off the public IOK flag if it was set above */
2005 (void)SvIOKp_on(sv);
2007 if (!(numtype & IS_NUMBER_NEG)) {
2009 if (value <= (UV)IV_MAX) {
2010 SvIV_set(sv, (IV)value);
2012 /* it didn't overflow, and it was positive. */
2013 SvUV_set(sv, value);
2017 /* 2s complement assumption */
2018 if (value <= (UV)IV_MIN) {
2019 SvIV_set(sv, -(IV)value);
2021 /* Too negative for an IV. This is a double upgrade, but
2022 I'm assuming it will be rare. */
2023 if (SvTYPE(sv) < SVt_PVNV)
2024 sv_upgrade(sv, SVt_PVNV);
2028 SvNV_set(sv, -(NV)value);
2029 SvIV_set(sv, IV_MIN);
2033 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2034 will be in the previous block to set the IV slot, and the next
2035 block to set the NV slot. So no else here. */
2037 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2038 != IS_NUMBER_IN_UV) {
2039 /* It wasn't an (integer that doesn't overflow the UV). */
2040 SvNV_set(sv, Atof(SvPVX_const(sv)));
2042 if (! numtype && ckWARN(WARN_NUMERIC))
2045 #if defined(USE_LONG_DOUBLE)
2046 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2047 PTR2UV(sv), SvNVX(sv)));
2049 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2050 PTR2UV(sv), SvNVX(sv)));
2053 #ifdef NV_PRESERVES_UV
2054 (void)SvIOKp_on(sv);
2056 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2057 SvIV_set(sv, I_V(SvNVX(sv)));
2058 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2061 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp */
2063 /* UV will not work better than IV */
2065 if (SvNVX(sv) > (NV)UV_MAX) {
2067 /* Integer is inaccurate. NOK, IOKp, is UV */
2068 SvUV_set(sv, UV_MAX);
2070 SvUV_set(sv, U_V(SvNVX(sv)));
2071 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2072 NV preservse UV so can do correct comparison. */
2073 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2076 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp, is UV */
2081 #else /* NV_PRESERVES_UV */
2082 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2083 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2084 /* The IV/UV slot will have been set from value returned by
2085 grok_number above. The NV slot has just been set using
2088 assert (SvIOKp(sv));
2090 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2091 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2092 /* Small enough to preserve all bits. */
2093 (void)SvIOKp_on(sv);
2095 SvIV_set(sv, I_V(SvNVX(sv)));
2096 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2098 /* Assumption: first non-preserved integer is < IV_MAX,
2099 this NV is in the preserved range, therefore: */
2100 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2102 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2106 0 0 already failed to read UV.
2107 0 1 already failed to read UV.
2108 1 0 you won't get here in this case. IV/UV
2109 slot set, public IOK, Atof() unneeded.
2110 1 1 already read UV.
2111 so there's no point in sv_2iuv_non_preserve() attempting
2112 to use atol, strtol, strtoul etc. */
2113 sv_2iuv_non_preserve (sv, numtype);
2116 #endif /* NV_PRESERVES_UV */
2120 if (((SvFLAGS(sv) & (SVp_POK|SVp_SCREAM)) == SVp_SCREAM)
2121 && (SvTYPE(sv) == SVt_PVGV || SvTYPE(sv) == SVt_PVLV)) {
2122 return PTR2IV(glob_2inpuv((GV *)sv, NULL, TRUE));
2124 if (SvTYPE(sv) == SVt_PVGV)
2127 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2128 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2131 if (SvTYPE(sv) < SVt_IV)
2132 /* Typically the caller expects that sv_any is not NULL now. */
2133 sv_upgrade(sv, SVt_IV);
2134 /* Return 0 from the caller. */
2141 =for apidoc sv_2iv_flags
2143 Return the integer value of an SV, doing any necessary string
2144 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2145 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2151 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2156 if (SvGMAGICAL(sv)) {
2157 if (flags & SV_GMAGIC)
2162 return I_V(SvNVX(sv));
2164 if (SvPOKp(sv) && SvLEN(sv)) {
2167 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2169 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2170 == IS_NUMBER_IN_UV) {
2171 /* It's definitely an integer */
2172 if (numtype & IS_NUMBER_NEG) {
2173 if (value < (UV)IV_MIN)
2176 if (value < (UV)IV_MAX)
2181 if (ckWARN(WARN_NUMERIC))
2184 return I_V(Atof(SvPVX_const(sv)));
2189 assert(SvTYPE(sv) >= SVt_PVMG);
2190 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2191 } else if (SvTHINKFIRST(sv)) {
2195 SV * const tmpstr=AMG_CALLun(sv,numer);
2196 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2197 return SvIV(tmpstr);
2200 return PTR2IV(SvRV(sv));
2203 sv_force_normal_flags(sv, 0);
2205 if (SvREADONLY(sv) && !SvOK(sv)) {
2206 if (ckWARN(WARN_UNINITIALIZED))
2212 if (S_sv_2iuv_common(aTHX_ sv))
2215 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2216 PTR2UV(sv),SvIVX(sv)));
2217 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2221 =for apidoc sv_2uv_flags
2223 Return the unsigned integer value of an SV, doing any necessary string
2224 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2225 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2231 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2236 if (SvGMAGICAL(sv)) {
2237 if (flags & SV_GMAGIC)
2242 return U_V(SvNVX(sv));
2243 if (SvPOKp(sv) && SvLEN(sv)) {
2246 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2248 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2249 == IS_NUMBER_IN_UV) {
2250 /* It's definitely an integer */
2251 if (!(numtype & IS_NUMBER_NEG))
2255 if (ckWARN(WARN_NUMERIC))
2258 return U_V(Atof(SvPVX_const(sv)));
2263 assert(SvTYPE(sv) >= SVt_PVMG);
2264 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2265 } else if (SvTHINKFIRST(sv)) {
2269 SV *const tmpstr = AMG_CALLun(sv,numer);
2270 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2271 return SvUV(tmpstr);
2274 return PTR2UV(SvRV(sv));
2277 sv_force_normal_flags(sv, 0);
2279 if (SvREADONLY(sv) && !SvOK(sv)) {
2280 if (ckWARN(WARN_UNINITIALIZED))
2286 if (S_sv_2iuv_common(aTHX_ sv))
2290 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2291 PTR2UV(sv),SvUVX(sv)));
2292 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2298 Return the num value of an SV, doing any necessary string or integer
2299 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2306 Perl_sv_2nv(pTHX_ register SV *sv)
2311 if (SvGMAGICAL(sv)) {
2315 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2316 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2317 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2319 return Atof(SvPVX_const(sv));
2323 return (NV)SvUVX(sv);
2325 return (NV)SvIVX(sv);
2330 assert(SvTYPE(sv) >= SVt_PVMG);
2331 /* This falls through to the report_uninit near the end of the
2333 } else if (SvTHINKFIRST(sv)) {
2337 SV *const tmpstr = AMG_CALLun(sv,numer);
2338 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2339 return SvNV(tmpstr);
2342 return PTR2NV(SvRV(sv));
2345 sv_force_normal_flags(sv, 0);
2347 if (SvREADONLY(sv) && !SvOK(sv)) {
2348 if (ckWARN(WARN_UNINITIALIZED))
2353 if (SvTYPE(sv) < SVt_NV) {
2354 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2355 sv_upgrade(sv, SVt_NV);
2356 #ifdef USE_LONG_DOUBLE
2358 STORE_NUMERIC_LOCAL_SET_STANDARD();
2359 PerlIO_printf(Perl_debug_log,
2360 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2361 PTR2UV(sv), SvNVX(sv));
2362 RESTORE_NUMERIC_LOCAL();
2366 STORE_NUMERIC_LOCAL_SET_STANDARD();
2367 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2368 PTR2UV(sv), SvNVX(sv));
2369 RESTORE_NUMERIC_LOCAL();
2373 else if (SvTYPE(sv) < SVt_PVNV)
2374 sv_upgrade(sv, SVt_PVNV);
2379 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2380 #ifdef NV_PRESERVES_UV
2383 /* Only set the public NV OK flag if this NV preserves the IV */
2384 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2385 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2386 : (SvIVX(sv) == I_V(SvNVX(sv))))
2392 else if (SvPOKp(sv) && SvLEN(sv)) {
2394 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2395 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2397 #ifdef NV_PRESERVES_UV
2398 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2399 == IS_NUMBER_IN_UV) {
2400 /* It's definitely an integer */
2401 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2403 SvNV_set(sv, Atof(SvPVX_const(sv)));
2406 SvNV_set(sv, Atof(SvPVX_const(sv)));
2407 /* Only set the public NV OK flag if this NV preserves the value in
2408 the PV at least as well as an IV/UV would.
2409 Not sure how to do this 100% reliably. */
2410 /* if that shift count is out of range then Configure's test is
2411 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2413 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2414 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2415 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2416 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2417 /* Can't use strtol etc to convert this string, so don't try.
2418 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2421 /* value has been set. It may not be precise. */
2422 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2423 /* 2s complement assumption for (UV)IV_MIN */
2424 SvNOK_on(sv); /* Integer is too negative. */
2429 if (numtype & IS_NUMBER_NEG) {
2430 SvIV_set(sv, -(IV)value);
2431 } else if (value <= (UV)IV_MAX) {
2432 SvIV_set(sv, (IV)value);
2434 SvUV_set(sv, value);
2438 if (numtype & IS_NUMBER_NOT_INT) {
2439 /* I believe that even if the original PV had decimals,
2440 they are lost beyond the limit of the FP precision.
2441 However, neither is canonical, so both only get p
2442 flags. NWC, 2000/11/25 */
2443 /* Both already have p flags, so do nothing */
2445 const NV nv = SvNVX(sv);
2446 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2447 if (SvIVX(sv) == I_V(nv)) {
2450 /* It had no "." so it must be integer. */
2454 /* between IV_MAX and NV(UV_MAX).
2455 Could be slightly > UV_MAX */
2457 if (numtype & IS_NUMBER_NOT_INT) {
2458 /* UV and NV both imprecise. */
2460 const UV nv_as_uv = U_V(nv);
2462 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2471 #endif /* NV_PRESERVES_UV */
2474 if (((SvFLAGS(sv) & (SVp_POK|SVp_SCREAM)) == SVp_SCREAM)
2475 && (SvTYPE(sv) == SVt_PVGV || SvTYPE(sv) == SVt_PVLV)) {
2476 glob_2inpuv((GV *)sv, NULL, TRUE);
2480 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2482 assert (SvTYPE(sv) >= SVt_NV);
2483 /* Typically the caller expects that sv_any is not NULL now. */
2484 /* XXX Ilya implies that this is a bug in callers that assume this
2485 and ideally should be fixed. */
2488 #if defined(USE_LONG_DOUBLE)
2490 STORE_NUMERIC_LOCAL_SET_STANDARD();
2491 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2492 PTR2UV(sv), SvNVX(sv));
2493 RESTORE_NUMERIC_LOCAL();
2497 STORE_NUMERIC_LOCAL_SET_STANDARD();
2498 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2499 PTR2UV(sv), SvNVX(sv));
2500 RESTORE_NUMERIC_LOCAL();
2506 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2507 * UV as a string towards the end of buf, and return pointers to start and
2510 * We assume that buf is at least TYPE_CHARS(UV) long.
2514 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2516 char *ptr = buf + TYPE_CHARS(UV);
2517 char * const ebuf = ptr;
2530 *--ptr = '0' + (char)(uv % 10);
2538 /* stringify_regexp(): private routine for use by sv_2pv_flags(): converts
2539 * a regexp to its stringified form.
2543 S_stringify_regexp(pTHX_ SV *sv, MAGIC *mg, STRLEN *lp) {
2545 const regexp * const re = (regexp *)mg->mg_obj;
2548 const char *fptr = "msix";
2553 bool need_newline = 0;
2554 U16 reganch = (U16)((re->reganch & PMf_COMPILETIME) >> 12);
2556 while((ch = *fptr++)) {
2558 reflags[left++] = ch;
2561 reflags[right--] = ch;
2566 reflags[left] = '-';
2570 mg->mg_len = re->prelen + 4 + left;
2572 * If /x was used, we have to worry about a regex ending with a
2573 * comment later being embedded within another regex. If so, we don't
2574 * want this regex's "commentization" to leak out to the right part of
2575 * the enclosing regex, we must cap it with a newline.
2577 * So, if /x was used, we scan backwards from the end of the regex. If
2578 * we find a '#' before we find a newline, we need to add a newline
2579 * ourself. If we find a '\n' first (or if we don't find '#' or '\n'),
2580 * we don't need to add anything. -jfriedl
2582 if (PMf_EXTENDED & re->reganch) {
2583 const char *endptr = re->precomp + re->prelen;
2584 while (endptr >= re->precomp) {
2585 const char c = *(endptr--);
2587 break; /* don't need another */
2589 /* we end while in a comment, so we need a newline */
2590 mg->mg_len++; /* save space for it */
2591 need_newline = 1; /* note to add it */
2597 Newx(mg->mg_ptr, mg->mg_len + 1 + left, char);
2598 mg->mg_ptr[0] = '(';
2599 mg->mg_ptr[1] = '?';
2600 Copy(reflags, mg->mg_ptr+2, left, char);
2601 *(mg->mg_ptr+left+2) = ':';
2602 Copy(re->precomp, mg->mg_ptr+3+left, re->prelen, char);
2604 mg->mg_ptr[mg->mg_len - 2] = '\n';
2605 mg->mg_ptr[mg->mg_len - 1] = ')';
2606 mg->mg_ptr[mg->mg_len] = 0;
2608 PL_reginterp_cnt += re->program[0].next_off;
2610 if (re->reganch & ROPT_UTF8)
2620 =for apidoc sv_2pv_flags
2622 Returns a pointer to the string value of an SV, and sets *lp to its length.
2623 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2625 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2626 usually end up here too.
2632 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2642 if (SvGMAGICAL(sv)) {
2643 if (flags & SV_GMAGIC)
2648 if (flags & SV_MUTABLE_RETURN)
2649 return SvPVX_mutable(sv);
2650 if (flags & SV_CONST_RETURN)
2651 return (char *)SvPVX_const(sv);
2654 if (SvIOKp(sv) || SvNOKp(sv)) {
2655 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2659 len = SvIsUV(sv) ? my_sprintf(tbuf,"%"UVuf, (UV)SvUVX(sv))
2660 : my_sprintf(tbuf,"%"IVdf, (IV)SvIVX(sv));
2662 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2669 #ifdef FIXNEGATIVEZERO
2670 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2676 SvUPGRADE(sv, SVt_PV);
2679 s = SvGROW_mutable(sv, len + 1);
2682 return memcpy(s, tbuf, len + 1);
2688 assert(SvTYPE(sv) >= SVt_PVMG);
2689 /* This falls through to the report_uninit near the end of the
2691 } else if (SvTHINKFIRST(sv)) {
2695 SV *const tmpstr = AMG_CALLun(sv,string);
2696 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2698 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2702 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2703 if (flags & SV_CONST_RETURN) {
2704 pv = (char *) SvPVX_const(tmpstr);
2706 pv = (flags & SV_MUTABLE_RETURN)
2707 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2710 *lp = SvCUR(tmpstr);
2712 pv = sv_2pv_flags(tmpstr, lp, flags);
2724 const SV *const referent = (SV*)SvRV(sv);
2727 tsv = sv_2mortal(newSVpvs("NULLREF"));
2728 } else if (SvTYPE(referent) == SVt_PVMG
2729 && ((SvFLAGS(referent) &
2730 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2731 == (SVs_OBJECT|SVs_SMG))
2732 && (mg = mg_find(referent, PERL_MAGIC_qr))) {
2733 return stringify_regexp(sv, mg, lp);
2735 const char *const typestr = sv_reftype(referent, 0);
2737 tsv = sv_newmortal();
2738 if (SvOBJECT(referent)) {
2739 const char *const name = HvNAME_get(SvSTASH(referent));
2740 Perl_sv_setpvf(aTHX_ tsv, "%s=%s(0x%"UVxf")",
2741 name ? name : "__ANON__" , typestr,
2745 Perl_sv_setpvf(aTHX_ tsv, "%s(0x%"UVxf")", typestr,
2753 if (SvREADONLY(sv) && !SvOK(sv)) {
2754 if (ckWARN(WARN_UNINITIALIZED))
2761 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2762 /* I'm assuming that if both IV and NV are equally valid then
2763 converting the IV is going to be more efficient */
2764 const U32 isIOK = SvIOK(sv);
2765 const U32 isUIOK = SvIsUV(sv);
2766 char buf[TYPE_CHARS(UV)];
2769 if (SvTYPE(sv) < SVt_PVIV)
2770 sv_upgrade(sv, SVt_PVIV);
2771 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2772 /* inlined from sv_setpvn */
2773 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2774 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2775 SvCUR_set(sv, ebuf - ptr);
2785 else if (SvNOKp(sv)) {
2786 const int olderrno = errno;
2787 if (SvTYPE(sv) < SVt_PVNV)
2788 sv_upgrade(sv, SVt_PVNV);
2789 /* The +20 is pure guesswork. Configure test needed. --jhi */
2790 s = SvGROW_mutable(sv, NV_DIG + 20);
2791 /* some Xenix systems wipe out errno here */
2793 if (SvNVX(sv) == 0.0)
2794 (void)strcpy(s,"0");
2798 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2801 #ifdef FIXNEGATIVEZERO
2802 if (*s == '-' && s[1] == '0' && !s[2])
2812 if (((SvFLAGS(sv) & (SVp_POK|SVp_SCREAM)) == SVp_SCREAM)
2813 && (SvTYPE(sv) == SVt_PVGV || SvTYPE(sv) == SVt_PVLV)) {
2814 return glob_2inpuv((GV *)sv, lp, FALSE);
2817 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2821 if (SvTYPE(sv) < SVt_PV)
2822 /* Typically the caller expects that sv_any is not NULL now. */
2823 sv_upgrade(sv, SVt_PV);
2827 const STRLEN len = s - SvPVX_const(sv);
2833 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2834 PTR2UV(sv),SvPVX_const(sv)));
2835 if (flags & SV_CONST_RETURN)
2836 return (char *)SvPVX_const(sv);
2837 if (flags & SV_MUTABLE_RETURN)
2838 return SvPVX_mutable(sv);
2843 =for apidoc sv_copypv
2845 Copies a stringified representation of the source SV into the
2846 destination SV. Automatically performs any necessary mg_get and
2847 coercion of numeric values into strings. Guaranteed to preserve
2848 UTF-8 flag even from overloaded objects. Similar in nature to
2849 sv_2pv[_flags] but operates directly on an SV instead of just the
2850 string. Mostly uses sv_2pv_flags to do its work, except when that
2851 would lose the UTF-8'ness of the PV.
2857 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2860 const char * const s = SvPV_const(ssv,len);
2861 sv_setpvn(dsv,s,len);
2869 =for apidoc sv_2pvbyte
2871 Return a pointer to the byte-encoded representation of the SV, and set *lp
2872 to its length. May cause the SV to be downgraded from UTF-8 as a
2875 Usually accessed via the C<SvPVbyte> macro.
2881 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2883 sv_utf8_downgrade(sv,0);
2884 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2888 =for apidoc sv_2pvutf8
2890 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2891 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2893 Usually accessed via the C<SvPVutf8> macro.
2899 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2901 sv_utf8_upgrade(sv);
2902 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2907 =for apidoc sv_2bool
2909 This function is only called on magical items, and is only used by
2910 sv_true() or its macro equivalent.
2916 Perl_sv_2bool(pTHX_ register SV *sv)
2925 SV * const tmpsv = AMG_CALLun(sv,bool_);
2926 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2927 return (bool)SvTRUE(tmpsv);
2929 return SvRV(sv) != 0;
2932 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2934 (*sv->sv_u.svu_pv > '0' ||
2935 Xpvtmp->xpv_cur > 1 ||
2936 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2943 return SvIVX(sv) != 0;
2946 return SvNVX(sv) != 0.0;
2948 if ((SvFLAGS(sv) & SVp_SCREAM)
2949 && (SvTYPE(sv) == (SVt_PVGV) || SvTYPE(sv) == (SVt_PVLV)))
2959 =for apidoc sv_utf8_upgrade
2961 Converts the PV of an SV to its UTF-8-encoded form.
2962 Forces the SV to string form if it is not already.
2963 Always sets the SvUTF8 flag to avoid future validity checks even
2964 if all the bytes have hibit clear.
2966 This is not as a general purpose byte encoding to Unicode interface:
2967 use the Encode extension for that.
2969 =for apidoc sv_utf8_upgrade_flags
2971 Converts the PV of an SV to its UTF-8-encoded form.
2972 Forces the SV to string form if it is not already.
2973 Always sets the SvUTF8 flag to avoid future validity checks even
2974 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2975 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2976 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2978 This is not as a general purpose byte encoding to Unicode interface:
2979 use the Encode extension for that.
2985 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2988 if (sv == &PL_sv_undef)
2992 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2993 (void) sv_2pv_flags(sv,&len, flags);
2997 (void) SvPV_force(sv,len);
3006 sv_force_normal_flags(sv, 0);
3009 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
3010 sv_recode_to_utf8(sv, PL_encoding);
3011 else { /* Assume Latin-1/EBCDIC */
3012 /* This function could be much more efficient if we
3013 * had a FLAG in SVs to signal if there are any hibit
3014 * chars in the PV. Given that there isn't such a flag
3015 * make the loop as fast as possible. */
3016 const U8 * const s = (U8 *) SvPVX_const(sv);
3017 const U8 * const e = (U8 *) SvEND(sv);
3022 /* Check for hi bit */
3023 if (!NATIVE_IS_INVARIANT(ch)) {
3024 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3025 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3027 SvPV_free(sv); /* No longer using what was there before. */
3028 SvPV_set(sv, (char*)recoded);
3029 SvCUR_set(sv, len - 1);
3030 SvLEN_set(sv, len); /* No longer know the real size. */
3034 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3041 =for apidoc sv_utf8_downgrade
3043 Attempts to convert the PV of an SV from characters to bytes.
3044 If the PV contains a character beyond byte, this conversion will fail;
3045 in this case, either returns false or, if C<fail_ok> is not
3048 This is not as a general purpose Unicode to byte encoding interface:
3049 use the Encode extension for that.
3055 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3058 if (SvPOKp(sv) && SvUTF8(sv)) {
3064 sv_force_normal_flags(sv, 0);
3066 s = (U8 *) SvPV(sv, len);
3067 if (!utf8_to_bytes(s, &len)) {
3072 Perl_croak(aTHX_ "Wide character in %s",
3075 Perl_croak(aTHX_ "Wide character");
3086 =for apidoc sv_utf8_encode
3088 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3089 flag off so that it looks like octets again.
3095 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3097 (void) sv_utf8_upgrade(sv);
3099 sv_force_normal_flags(sv, 0);
3101 if (SvREADONLY(sv)) {
3102 Perl_croak(aTHX_ PL_no_modify);
3108 =for apidoc sv_utf8_decode
3110 If the PV of the SV is an octet sequence in UTF-8
3111 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3112 so that it looks like a character. If the PV contains only single-byte
3113 characters, the C<SvUTF8> flag stays being off.
3114 Scans PV for validity and returns false if the PV is invalid UTF-8.
3120 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3126 /* The octets may have got themselves encoded - get them back as
3129 if (!sv_utf8_downgrade(sv, TRUE))
3132 /* it is actually just a matter of turning the utf8 flag on, but
3133 * we want to make sure everything inside is valid utf8 first.
3135 c = (const U8 *) SvPVX_const(sv);
3136 if (!is_utf8_string(c, SvCUR(sv)+1))
3138 e = (const U8 *) SvEND(sv);
3141 if (!UTF8_IS_INVARIANT(ch)) {
3151 =for apidoc sv_setsv
3153 Copies the contents of the source SV C<ssv> into the destination SV
3154 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3155 function if the source SV needs to be reused. Does not handle 'set' magic.
3156 Loosely speaking, it performs a copy-by-value, obliterating any previous
3157 content of the destination.
3159 You probably want to use one of the assortment of wrappers, such as
3160 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3161 C<SvSetMagicSV_nosteal>.
3163 =for apidoc sv_setsv_flags
3165 Copies the contents of the source SV C<ssv> into the destination SV
3166 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3167 function if the source SV needs to be reused. Does not handle 'set' magic.
3168 Loosely speaking, it performs a copy-by-value, obliterating any previous
3169 content of the destination.
3170 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3171 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3172 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3173 and C<sv_setsv_nomg> are implemented in terms of this function.
3175 You probably want to use one of the assortment of wrappers, such as
3176 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3177 C<SvSetMagicSV_nosteal>.
3179 This is the primary function for copying scalars, and most other
3180 copy-ish functions and macros use this underneath.
3186 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3188 if (dtype != SVt_PVGV) {
3189 const char * const name = GvNAME(sstr);
3190 const STRLEN len = GvNAMELEN(sstr);
3191 /* don't upgrade SVt_PVLV: it can hold a glob */
3192 if (dtype != SVt_PVLV)
3193 sv_upgrade(dstr, SVt_PVGV);
3194 GvSTASH(dstr) = GvSTASH(sstr);
3196 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3197 GvNAME(dstr) = savepvn(name, len);
3198 GvNAMELEN(dstr) = len;
3199 SvFAKE_on(dstr); /* can coerce to non-glob */
3202 #ifdef GV_UNIQUE_CHECK
3203 if (GvUNIQUE((GV*)dstr)) {
3204 Perl_croak(aTHX_ PL_no_modify);
3208 (void)SvOK_off(dstr);
3210 GvINTRO_off(dstr); /* one-shot flag */
3212 GvGP(dstr) = gp_ref(GvGP(sstr));
3213 if (SvTAINTED(sstr))
3215 if (GvIMPORTED(dstr) != GVf_IMPORTED
3216 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3218 GvIMPORTED_on(dstr);
3225 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3226 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3228 const int intro = GvINTRO(dstr);
3231 const U32 stype = SvTYPE(sref);
3234 #ifdef GV_UNIQUE_CHECK
3235 if (GvUNIQUE((GV*)dstr)) {
3236 Perl_croak(aTHX_ PL_no_modify);
3241 GvINTRO_off(dstr); /* one-shot flag */
3242 GvLINE(dstr) = CopLINE(PL_curcop);
3243 GvEGV(dstr) = (GV*)dstr;
3248 location = (SV **) &GvCV(dstr);
3249 import_flag = GVf_IMPORTED_CV;
3252 location = (SV **) &GvHV(dstr);
3253 import_flag = GVf_IMPORTED_HV;
3256 location = (SV **) &GvAV(dstr);
3257 import_flag = GVf_IMPORTED_AV;
3260 location = (SV **) &GvIOp(dstr);
3263 location = (SV **) &GvFORM(dstr);
3265 location = &GvSV(dstr);
3266 import_flag = GVf_IMPORTED_SV;
3269 if (stype == SVt_PVCV) {
3270 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3271 SvREFCNT_dec(GvCV(dstr));
3273 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3274 PL_sub_generation++;
3277 SAVEGENERICSV(*location);
3281 if (stype == SVt_PVCV && *location != sref) {
3282 CV* const cv = (CV*)*location;
3284 if (!GvCVGEN((GV*)dstr) &&
3285 (CvROOT(cv) || CvXSUB(cv)))
3287 /* Redefining a sub - warning is mandatory if
3288 it was a const and its value changed. */
3289 if (CvCONST(cv) && CvCONST((CV*)sref)
3290 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3292 /* They are 2 constant subroutines generated from
3293 the same constant. This probably means that
3294 they are really the "same" proxy subroutine
3295 instantiated in 2 places. Most likely this is
3296 when a constant is exported twice. Don't warn.
3299 else if (ckWARN(WARN_REDEFINE)
3301 && (!CvCONST((CV*)sref)
3302 || sv_cmp(cv_const_sv(cv),
3303 cv_const_sv((CV*)sref))))) {
3304 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3306 ? "Constant subroutine %s::%s redefined"
3307 : "Subroutine %s::%s redefined",
3308 HvNAME_get(GvSTASH((GV*)dstr)),
3309 GvENAME((GV*)dstr));
3313 cv_ckproto(cv, (GV*)dstr,
3314 SvPOK(sref) ? SvPVX_const(sref) : NULL);
3316 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3317 GvASSUMECV_on(dstr);
3318 PL_sub_generation++;
3321 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3322 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3323 GvFLAGS(dstr) |= import_flag;
3329 if (SvTAINTED(sstr))
3335 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3338 register U32 sflags;
3344 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3346 sstr = &PL_sv_undef;
3347 stype = SvTYPE(sstr);
3348 dtype = SvTYPE(dstr);
3353 /* need to nuke the magic */
3355 SvRMAGICAL_off(dstr);
3358 /* There's a lot of redundancy below but we're going for speed here */
3363 if (dtype != SVt_PVGV) {
3364 (void)SvOK_off(dstr);
3372 sv_upgrade(dstr, SVt_IV);
3377 sv_upgrade(dstr, SVt_PVIV);
3380 (void)SvIOK_only(dstr);
3381 SvIV_set(dstr, SvIVX(sstr));
3384 /* SvTAINTED can only be true if the SV has taint magic, which in
3385 turn means that the SV type is PVMG (or greater). This is the
3386 case statement for SVt_IV, so this cannot be true (whatever gcov
3388 assert(!SvTAINTED(sstr));
3398 sv_upgrade(dstr, SVt_NV);
3403 sv_upgrade(dstr, SVt_PVNV);
3406 SvNV_set(dstr, SvNVX(sstr));
3407 (void)SvNOK_only(dstr);
3408 /* SvTAINTED can only be true if the SV has taint magic, which in
3409 turn means that the SV type is PVMG (or greater). This is the
3410 case statement for SVt_NV, so this cannot be true (whatever gcov
3412 assert(!SvTAINTED(sstr));
3419 sv_upgrade(dstr, SVt_RV);
3422 #ifdef PERL_OLD_COPY_ON_WRITE
3423 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3424 if (dtype < SVt_PVIV)
3425 sv_upgrade(dstr, SVt_PVIV);
3432 sv_upgrade(dstr, SVt_PV);
3435 if (dtype < SVt_PVIV)
3436 sv_upgrade(dstr, SVt_PVIV);
3439 if (dtype < SVt_PVNV)
3440 sv_upgrade(dstr, SVt_PVNV);
3447 const char * const type = sv_reftype(sstr,0);
3449 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3451 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3456 if (dtype <= SVt_PVGV) {
3457 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3463 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3465 if ((int)SvTYPE(sstr) != stype) {
3466 stype = SvTYPE(sstr);
3467 if (stype == SVt_PVGV && dtype <= SVt_PVGV) {
3468 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3473 if (stype == SVt_PVLV)
3474 SvUPGRADE(dstr, SVt_PVNV);
3476 SvUPGRADE(dstr, (U32)stype);
3479 /* dstr may have been upgraded. */
3480 dtype = SvTYPE(dstr);
3481 sflags = SvFLAGS(sstr);
3483 if (sflags & SVf_ROK) {
3484 if (dtype == SVt_PVGV &&
3485 SvROK(sstr) && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3488 if (GvIMPORTED(dstr) != GVf_IMPORTED
3489 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3491 GvIMPORTED_on(dstr);
3496 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3500 if (dtype >= SVt_PV) {
3501 if (dtype == SVt_PVGV) {
3502 S_glob_assign_ref(aTHX_ dstr, sstr);
3505 if (SvPVX_const(dstr)) {
3511 (void)SvOK_off(dstr);
3512 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3513 SvFLAGS(dstr) |= sflags & (SVf_ROK|SVf_AMAGIC);
3514 assert(!(sflags & SVp_NOK));
3515 assert(!(sflags & SVp_IOK));
3516 assert(!(sflags & SVf_NOK));
3517 assert(!(sflags & SVf_IOK));
3519 else if (dtype == SVt_PVGV) {
3520 if (!(sflags & SVf_OK)) {
3521 if (ckWARN(WARN_MISC))
3522 Perl_warner(aTHX_ packWARN(WARN_MISC),
3523 "Undefined value assigned to typeglob");
3526 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3527 if (dstr != (SV*)gv) {
3530 GvGP(dstr) = gp_ref(GvGP(gv));
3534 else if (sflags & SVp_POK) {
3538 * Check to see if we can just swipe the string. If so, it's a
3539 * possible small lose on short strings, but a big win on long ones.
3540 * It might even be a win on short strings if SvPVX_const(dstr)
3541 * has to be allocated and SvPVX_const(sstr) has to be freed.
3544 /* Whichever path we take through the next code, we want this true,
3545 and doing it now facilitates the COW check. */
3546 (void)SvPOK_only(dstr);
3549 /* We're not already COW */
3550 ((sflags & (SVf_FAKE | SVf_READONLY)) != (SVf_FAKE | SVf_READONLY)
3551 #ifndef PERL_OLD_COPY_ON_WRITE
3552 /* or we are, but dstr isn't a suitable target. */
3553 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3558 (sflags & SVs_TEMP) && /* slated for free anyway? */
3559 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3560 (!(flags & SV_NOSTEAL)) &&
3561 /* and we're allowed to steal temps */
3562 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3563 SvLEN(sstr) && /* and really is a string */
3564 /* and won't be needed again, potentially */
3565 !(PL_op && PL_op->op_type == OP_AASSIGN))
3566 #ifdef PERL_OLD_COPY_ON_WRITE
3567 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3568 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3569 && SvTYPE(sstr) >= SVt_PVIV)
3572 /* Failed the swipe test, and it's not a shared hash key either.
3573 Have to copy the string. */
3574 STRLEN len = SvCUR(sstr);
3575 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3576 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3577 SvCUR_set(dstr, len);
3578 *SvEND(dstr) = '\0';
3580 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3582 /* Either it's a shared hash key, or it's suitable for
3583 copy-on-write or we can swipe the string. */
3585 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3589 #ifdef PERL_OLD_COPY_ON_WRITE
3591 /* I believe I should acquire a global SV mutex if
3592 it's a COW sv (not a shared hash key) to stop
3593 it going un copy-on-write.
3594 If the source SV has gone un copy on write between up there
3595 and down here, then (assert() that) it is of the correct
3596 form to make it copy on write again */
3597 if ((sflags & (SVf_FAKE | SVf_READONLY))
3598 != (SVf_FAKE | SVf_READONLY)) {
3599 SvREADONLY_on(sstr);
3601 /* Make the source SV into a loop of 1.
3602 (about to become 2) */
3603 SV_COW_NEXT_SV_SET(sstr, sstr);
3607 /* Initial code is common. */
3608 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3613 /* making another shared SV. */
3614 STRLEN cur = SvCUR(sstr);
3615 STRLEN len = SvLEN(sstr);
3616 #ifdef PERL_OLD_COPY_ON_WRITE
3618 assert (SvTYPE(dstr) >= SVt_PVIV);
3619 /* SvIsCOW_normal */
3620 /* splice us in between source and next-after-source. */
3621 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3622 SV_COW_NEXT_SV_SET(sstr, dstr);
3623 SvPV_set(dstr, SvPVX_mutable(sstr));
3627 /* SvIsCOW_shared_hash */
3628 DEBUG_C(PerlIO_printf(Perl_debug_log,
3629 "Copy on write: Sharing hash\n"));
3631 assert (SvTYPE(dstr) >= SVt_PV);
3633 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3635 SvLEN_set(dstr, len);
3636 SvCUR_set(dstr, cur);
3637 SvREADONLY_on(dstr);
3639 /* Relesase a global SV mutex. */
3642 { /* Passes the swipe test. */
3643 SvPV_set(dstr, SvPVX_mutable(sstr));
3644 SvLEN_set(dstr, SvLEN(sstr));
3645 SvCUR_set(dstr, SvCUR(sstr));
3648 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3649 SvPV_set(sstr, NULL);
3655 if (sflags & SVp_NOK) {
3656 SvNV_set(dstr, SvNVX(sstr));
3658 if (sflags & SVp_IOK) {
3659 SvRELEASE_IVX(dstr);
3660 SvIV_set(dstr, SvIVX(sstr));
3661 /* Must do this otherwise some other overloaded use of 0x80000000
3662 gets confused. I guess SVpbm_VALID */
3663 if (sflags & SVf_IVisUV)
3666 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3668 const MAGIC * const smg = SvVOK(sstr);
3670 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3671 smg->mg_ptr, smg->mg_len);
3672 SvRMAGICAL_on(dstr);
3676 else if (sflags & (SVp_IOK|SVp_NOK)) {
3677 (void)SvOK_off(dstr);
3678 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3679 if (sflags & SVp_IOK) {
3680 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3681 SvIV_set(dstr, SvIVX(sstr));
3683 if (sflags & SVp_NOK) {
3684 SvNV_set(dstr, SvNVX(sstr));
3688 if ((stype == SVt_PVGV || stype == SVt_PVLV)
3689 && (sflags & SVp_SCREAM)) {
3690 /* This stringification rule for globs is spread in 3 places.
3691 This feels bad. FIXME. */
3692 const U32 wasfake = sflags & SVf_FAKE;
3694 /* FAKE globs can get coerced, so need to turn this off
3695 temporarily if it is on. */
3697 gv_efullname3(dstr, (GV *)sstr, "*");
3698 SvFLAGS(sstr) |= wasfake;
3701 (void)SvOK_off(dstr);
3703 if (SvTAINTED(sstr))
3708 =for apidoc sv_setsv_mg
3710 Like C<sv_setsv>, but also handles 'set' magic.
3716 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3718 sv_setsv(dstr,sstr);
3722 #ifdef PERL_OLD_COPY_ON_WRITE
3724 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3726 STRLEN cur = SvCUR(sstr);
3727 STRLEN len = SvLEN(sstr);
3728 register char *new_pv;
3731 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3739 if (SvTHINKFIRST(dstr))
3740 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3741 else if (SvPVX_const(dstr))
3742 Safefree(SvPVX_const(dstr));
3746 SvUPGRADE(dstr, SVt_PVIV);
3748 assert (SvPOK(sstr));
3749 assert (SvPOKp(sstr));
3750 assert (!SvIOK(sstr));
3751 assert (!SvIOKp(sstr));
3752 assert (!SvNOK(sstr));
3753 assert (!SvNOKp(sstr));
3755 if (SvIsCOW(sstr)) {
3757 if (SvLEN(sstr) == 0) {
3758 /* source is a COW shared hash key. */
3759 DEBUG_C(PerlIO_printf(Perl_debug_log,
3760 "Fast copy on write: Sharing hash\n"));
3761 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3764 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3766 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3767 SvUPGRADE(sstr, SVt_PVIV);
3768 SvREADONLY_on(sstr);
3770 DEBUG_C(PerlIO_printf(Perl_debug_log,
3771 "Fast copy on write: Converting sstr to COW\n"));
3772 SV_COW_NEXT_SV_SET(dstr, sstr);
3774 SV_COW_NEXT_SV_SET(sstr, dstr);
3775 new_pv = SvPVX_mutable(sstr);
3778 SvPV_set(dstr, new_pv);
3779 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3782 SvLEN_set(dstr, len);
3783 SvCUR_set(dstr, cur);
3792 =for apidoc sv_setpvn
3794 Copies a string into an SV. The C<len> parameter indicates the number of
3795 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3796 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3802 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3805 register char *dptr;
3807 SV_CHECK_THINKFIRST_COW_DROP(sv);
3813 /* len is STRLEN which is unsigned, need to copy to signed */
3816 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3818 SvUPGRADE(sv, SVt_PV);
3820 dptr = SvGROW(sv, len + 1);
3821 Move(ptr,dptr,len,char);
3824 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3829 =for apidoc sv_setpvn_mg
3831 Like C<sv_setpvn>, but also handles 'set' magic.
3837 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3839 sv_setpvn(sv,ptr,len);
3844 =for apidoc sv_setpv
3846 Copies a string into an SV. The string must be null-terminated. Does not
3847 handle 'set' magic. See C<sv_setpv_mg>.
3853 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3856 register STRLEN len;
3858 SV_CHECK_THINKFIRST_COW_DROP(sv);
3864 SvUPGRADE(sv, SVt_PV);
3866 SvGROW(sv, len + 1);
3867 Move(ptr,SvPVX(sv),len+1,char);
3869 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3874 =for apidoc sv_setpv_mg
3876 Like C<sv_setpv>, but also handles 'set' magic.
3882 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3889 =for apidoc sv_usepvn
3891 Tells an SV to use C<ptr> to find its string value. Normally the string is
3892 stored inside the SV but sv_usepvn allows the SV to use an outside string.
3893 The C<ptr> should point to memory that was allocated by C<malloc>. The
3894 string length, C<len>, must be supplied. This function will realloc the
3895 memory pointed to by C<ptr>, so that pointer should not be freed or used by
3896 the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
3897 See C<sv_usepvn_mg>.
3903 Perl_sv_usepvn(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3907 SV_CHECK_THINKFIRST_COW_DROP(sv);
3908 SvUPGRADE(sv, SVt_PV);
3913 if (SvPVX_const(sv))
3916 allocate = PERL_STRLEN_ROUNDUP(len + 1);
3917 ptr = saferealloc (ptr, allocate);
3920 SvLEN_set(sv, allocate);
3922 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3927 =for apidoc sv_usepvn_mg
3929 Like C<sv_usepvn>, but also handles 'set' magic.
3935 Perl_sv_usepvn_mg(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3937 sv_usepvn(sv,ptr,len);
3941 #ifdef PERL_OLD_COPY_ON_WRITE
3942 /* Need to do this *after* making the SV normal, as we need the buffer
3943 pointer to remain valid until after we've copied it. If we let go too early,
3944 another thread could invalidate it by unsharing last of the same hash key
3945 (which it can do by means other than releasing copy-on-write Svs)
3946 or by changing the other copy-on-write SVs in the loop. */
3948 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
3950 if (len) { /* this SV was SvIsCOW_normal(sv) */
3951 /* we need to find the SV pointing to us. */
3952 SV *current = SV_COW_NEXT_SV(after);
3954 if (current == sv) {
3955 /* The SV we point to points back to us (there were only two of us
3957 Hence other SV is no longer copy on write either. */
3959 SvREADONLY_off(after);
3961 /* We need to follow the pointers around the loop. */
3963 while ((next = SV_COW_NEXT_SV(current)) != sv) {
3966 /* don't loop forever if the structure is bust, and we have
3967 a pointer into a closed loop. */
3968 assert (current != after);
3969 assert (SvPVX_const(current) == pvx);
3971 /* Make the SV before us point to the SV after us. */
3972 SV_COW_NEXT_SV_SET(current, after);
3975 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
3980 Perl_sv_release_IVX(pTHX_ register SV *sv)
3983 sv_force_normal_flags(sv, 0);
3989 =for apidoc sv_force_normal_flags
3991 Undo various types of fakery on an SV: if the PV is a shared string, make
3992 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
3993 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
3994 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
3995 then a copy-on-write scalar drops its PV buffer (if any) and becomes
3996 SvPOK_off rather than making a copy. (Used where this scalar is about to be
3997 set to some other value.) In addition, the C<flags> parameter gets passed to
3998 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
3999 with flags set to 0.
4005 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4008 #ifdef PERL_OLD_COPY_ON_WRITE
4009 if (SvREADONLY(sv)) {
4010 /* At this point I believe I should acquire a global SV mutex. */
4012 const char * const pvx = SvPVX_const(sv);
4013 const STRLEN len = SvLEN(sv);
4014 const STRLEN cur = SvCUR(sv);
4015 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4017 PerlIO_printf(Perl_debug_log,
4018 "Copy on write: Force normal %ld\n",
4024 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4027 if (flags & SV_COW_DROP_PV) {
4028 /* OK, so we don't need to copy our buffer. */
4031 SvGROW(sv, cur + 1);
4032 Move(pvx,SvPVX(sv),cur,char);
4036 sv_release_COW(sv, pvx, len, next);
4041 else if (IN_PERL_RUNTIME)
4042 Perl_croak(aTHX_ PL_no_modify);
4043 /* At this point I believe that I can drop the global SV mutex. */
4046 if (SvREADONLY(sv)) {
4048 const char * const pvx = SvPVX_const(sv);
4049 const STRLEN len = SvCUR(sv);
4054 SvGROW(sv, len + 1);
4055 Move(pvx,SvPVX(sv),len,char);
4057 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4059 else if (IN_PERL_RUNTIME)
4060 Perl_croak(aTHX_ PL_no_modify);
4064 sv_unref_flags(sv, flags);
4065 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4072 Efficient removal of characters from the beginning of the string buffer.
4073 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4074 the string buffer. The C<ptr> becomes the first character of the adjusted
4075 string. Uses the "OOK hack".
4076 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4077 refer to the same chunk of data.
4083 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4085 register STRLEN delta;
4086 if (!ptr || !SvPOKp(sv))
4088 delta = ptr - SvPVX_const(sv);
4089 SV_CHECK_THINKFIRST(sv);
4090 if (SvTYPE(sv) < SVt_PVIV)
4091 sv_upgrade(sv,SVt_PVIV);
4094 if (!SvLEN(sv)) { /* make copy of shared string */
4095 const char *pvx = SvPVX_const(sv);
4096 const STRLEN len = SvCUR(sv);
4097 SvGROW(sv, len + 1);
4098 Move(pvx,SvPVX(sv),len,char);
4102 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4103 and we do that anyway inside the SvNIOK_off
4105 SvFLAGS(sv) |= SVf_OOK;
4108 SvLEN_set(sv, SvLEN(sv) - delta);
4109 SvCUR_set(sv, SvCUR(sv) - delta);
4110 SvPV_set(sv, SvPVX(sv) + delta);
4111 SvIV_set(sv, SvIVX(sv) + delta);
4115 =for apidoc sv_catpvn
4117 Concatenates the string onto the end of the string which is in the SV. The
4118 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4119 status set, then the bytes appended should be valid UTF-8.
4120 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4122 =for apidoc sv_catpvn_flags
4124 Concatenates the string onto the end of the string which is in the SV. The
4125 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4126 status set, then the bytes appended should be valid UTF-8.
4127 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4128 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4129 in terms of this function.
4135 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4139 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4141 SvGROW(dsv, dlen + slen + 1);
4143 sstr = SvPVX_const(dsv);
4144 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4145 SvCUR_set(dsv, SvCUR(dsv) + slen);
4147 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4149 if (flags & SV_SMAGIC)
4154 =for apidoc sv_catsv
4156 Concatenates the string from SV C<ssv> onto the end of the string in
4157 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4158 not 'set' magic. See C<sv_catsv_mg>.
4160 =for apidoc sv_catsv_flags
4162 Concatenates the string from SV C<ssv> onto the end of the string in
4163 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4164 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4165 and C<sv_catsv_nomg> are implemented in terms of this function.
4170 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4175 const char *spv = SvPV_const(ssv, slen);
4177 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4178 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4179 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4180 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4181 dsv->sv_flags doesn't have that bit set.
4182 Andy Dougherty 12 Oct 2001
4184 const I32 sutf8 = DO_UTF8(ssv);
4187 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4189 dutf8 = DO_UTF8(dsv);
4191 if (dutf8 != sutf8) {
4193 /* Not modifying source SV, so taking a temporary copy. */
4194 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4196 sv_utf8_upgrade(csv);
4197 spv = SvPV_const(csv, slen);
4200 sv_utf8_upgrade_nomg(dsv);
4202 sv_catpvn_nomg(dsv, spv, slen);
4205 if (flags & SV_SMAGIC)
4210 =for apidoc sv_catpv
4212 Concatenates the string onto the end of the string which is in the SV.
4213 If the SV has the UTF-8 status set, then the bytes appended should be
4214 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4219 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4222 register STRLEN len;
4228 junk = SvPV_force(sv, tlen);
4230 SvGROW(sv, tlen + len + 1);
4232 ptr = SvPVX_const(sv);
4233 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4234 SvCUR_set(sv, SvCUR(sv) + len);
4235 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4240 =for apidoc sv_catpv_mg
4242 Like C<sv_catpv>, but also handles 'set' magic.
4248 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4257 Creates a new SV. A non-zero C<len> parameter indicates the number of
4258 bytes of preallocated string space the SV should have. An extra byte for a
4259 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4260 space is allocated.) The reference count for the new SV is set to 1.
4262 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4263 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4264 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4265 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4266 modules supporting older perls.
4272 Perl_newSV(pTHX_ STRLEN len)
4279 sv_upgrade(sv, SVt_PV);
4280 SvGROW(sv, len + 1);
4285 =for apidoc sv_magicext
4287 Adds magic to an SV, upgrading it if necessary. Applies the
4288 supplied vtable and returns a pointer to the magic added.
4290 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4291 In particular, you can add magic to SvREADONLY SVs, and add more than
4292 one instance of the same 'how'.
4294 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4295 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4296 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4297 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4299 (This is now used as a subroutine by C<sv_magic>.)
4304 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4305 const char* name, I32 namlen)
4310 if (SvTYPE(sv) < SVt_PVMG) {
4311 SvUPGRADE(sv, SVt_PVMG);
4313 Newxz(mg, 1, MAGIC);
4314 mg->mg_moremagic = SvMAGIC(sv);
4315 SvMAGIC_set(sv, mg);
4317 /* Sometimes a magic contains a reference loop, where the sv and
4318 object refer to each other. To prevent a reference loop that
4319 would prevent such objects being freed, we look for such loops
4320 and if we find one we avoid incrementing the object refcount.
4322 Note we cannot do this to avoid self-tie loops as intervening RV must
4323 have its REFCNT incremented to keep it in existence.
4326 if (!obj || obj == sv ||
4327 how == PERL_MAGIC_arylen ||
4328 how == PERL_MAGIC_qr ||
4329 how == PERL_MAGIC_symtab ||
4330 (SvTYPE(obj) == SVt_PVGV &&
4331 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4332 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4333 GvFORM(obj) == (CV*)sv)))
4338 mg->mg_obj = SvREFCNT_inc(obj);
4339 mg->mg_flags |= MGf_REFCOUNTED;
4342 /* Normal self-ties simply pass a null object, and instead of
4343 using mg_obj directly, use the SvTIED_obj macro to produce a
4344 new RV as needed. For glob "self-ties", we are tieing the PVIO
4345 with an RV obj pointing to the glob containing the PVIO. In
4346 this case, to avoid a reference loop, we need to weaken the
4350 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4351 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4357 mg->mg_len = namlen;
4360 mg->mg_ptr = savepvn(name, namlen);
4361 else if (namlen == HEf_SVKEY)
4362 mg->mg_ptr = (char*)SvREFCNT_inc((SV*)name);
4364 mg->mg_ptr = (char *) name;
4366 mg->mg_virtual = vtable;
4370 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4375 =for apidoc sv_magic
4377 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4378 then adds a new magic item of type C<how> to the head of the magic list.
4380 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4381 handling of the C<name> and C<namlen> arguments.
4383 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4384 to add more than one instance of the same 'how'.
4390 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4396 #ifdef PERL_OLD_COPY_ON_WRITE
4398 sv_force_normal_flags(sv, 0);
4400 if (SvREADONLY(sv)) {
4402 /* its okay to attach magic to shared strings; the subsequent
4403 * upgrade to PVMG will unshare the string */
4404 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4407 && how != PERL_MAGIC_regex_global
4408 && how != PERL_MAGIC_bm
4409 && how != PERL_MAGIC_fm
4410 && how != PERL_MAGIC_sv
4411 && how != PERL_MAGIC_backref
4414 Perl_croak(aTHX_ PL_no_modify);
4417 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4418 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4419 /* sv_magic() refuses to add a magic of the same 'how' as an
4422 if (how == PERL_MAGIC_taint) {
4424 /* Any scalar which already had taint magic on which someone
4425 (erroneously?) did SvIOK_on() or similar will now be
4426 incorrectly sporting public "OK" flags. */
4427 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4435 vtable = &PL_vtbl_sv;
4437 case PERL_MAGIC_overload:
4438 vtable = &PL_vtbl_amagic;
4440 case PERL_MAGIC_overload_elem:
4441 vtable = &PL_vtbl_amagicelem;
4443 case PERL_MAGIC_overload_table:
4444 vtable = &PL_vtbl_ovrld;
4447 vtable = &PL_vtbl_bm;
4449 case PERL_MAGIC_regdata:
4450 vtable = &PL_vtbl_regdata;
4452 case PERL_MAGIC_regdatum:
4453 vtable = &PL_vtbl_regdatum;
4455 case PERL_MAGIC_env:
4456 vtable = &PL_vtbl_env;
4459 vtable = &PL_vtbl_fm;
4461 case PERL_MAGIC_envelem:
4462 vtable = &PL_vtbl_envelem;
4464 case PERL_MAGIC_regex_global:
4465 vtable = &PL_vtbl_mglob;
4467 case PERL_MAGIC_isa:
4468 vtable = &PL_vtbl_isa;
4470 case PERL_MAGIC_isaelem:
4471 vtable = &PL_vtbl_isaelem;
4473 case PERL_MAGIC_nkeys:
4474 vtable = &PL_vtbl_nkeys;
4476 case PERL_MAGIC_dbfile:
4479 case PERL_MAGIC_dbline:
4480 vtable = &PL_vtbl_dbline;
4482 #ifdef USE_LOCALE_COLLATE
4483 case PERL_MAGIC_collxfrm:
4484 vtable = &PL_vtbl_collxfrm;
4486 #endif /* USE_LOCALE_COLLATE */
4487 case PERL_MAGIC_tied:
4488 vtable = &PL_vtbl_pack;
4490 case PERL_MAGIC_tiedelem:
4491 case PERL_MAGIC_tiedscalar:
4492 vtable = &PL_vtbl_packelem;
4495 vtable = &PL_vtbl_regexp;
4497 case PERL_MAGIC_sig:
4498 vtable = &PL_vtbl_sig;
4500 case PERL_MAGIC_sigelem:
4501 vtable = &PL_vtbl_sigelem;
4503 case PERL_MAGIC_taint:
4504 vtable = &PL_vtbl_taint;
4506 case PERL_MAGIC_uvar:
4507 vtable = &PL_vtbl_uvar;
4509 case PERL_MAGIC_vec:
4510 vtable = &PL_vtbl_vec;
4512 case PERL_MAGIC_arylen_p:
4513 case PERL_MAGIC_rhash:
4514 case PERL_MAGIC_symtab:
4515 case PERL_MAGIC_vstring:
4518 case PERL_MAGIC_utf8:
4519 vtable = &PL_vtbl_utf8;
4521 case PERL_MAGIC_substr:
4522 vtable = &PL_vtbl_substr;
4524 case PERL_MAGIC_defelem:
4525 vtable = &PL_vtbl_defelem;
4527 case PERL_MAGIC_arylen:
4528 vtable = &PL_vtbl_arylen;
4530 case PERL_MAGIC_pos:
4531 vtable = &PL_vtbl_pos;
4533 case PERL_MAGIC_backref:
4534 vtable = &PL_vtbl_backref;
4536 case PERL_MAGIC_ext:
4537 /* Reserved for use by extensions not perl internals. */
4538 /* Useful for attaching extension internal data to perl vars. */
4539 /* Note that multiple extensions may clash if magical scalars */
4540 /* etc holding private data from one are passed to another. */
4544 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4547 /* Rest of work is done else where */
4548 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4551 case PERL_MAGIC_taint:
4554 case PERL_MAGIC_ext:
4555 case PERL_MAGIC_dbfile:
4562 =for apidoc sv_unmagic
4564 Removes all magic of type C<type> from an SV.
4570 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4574 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4576 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4577 for (mg = *mgp; mg; mg = *mgp) {
4578 if (mg->mg_type == type) {
4579 const MGVTBL* const vtbl = mg->mg_virtual;
4580 *mgp = mg->mg_moremagic;
4581 if (vtbl && vtbl->svt_free)
4582 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4583 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4585 Safefree(mg->mg_ptr);
4586 else if (mg->mg_len == HEf_SVKEY)
4587 SvREFCNT_dec((SV*)mg->mg_ptr);
4588 else if (mg->mg_type == PERL_MAGIC_utf8 && mg->mg_ptr)
4589 Safefree(mg->mg_ptr);
4591 if (mg->mg_flags & MGf_REFCOUNTED)
4592 SvREFCNT_dec(mg->mg_obj);
4596 mgp = &mg->mg_moremagic;
4600 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4601 SvMAGIC_set(sv, NULL);
4608 =for apidoc sv_rvweaken
4610 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4611 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4612 push a back-reference to this RV onto the array of backreferences
4613 associated with that magic.
4619 Perl_sv_rvweaken(pTHX_ SV *sv)
4622 if (!SvOK(sv)) /* let undefs pass */
4625 Perl_croak(aTHX_ "Can't weaken a nonreference");
4626 else if (SvWEAKREF(sv)) {
4627 if (ckWARN(WARN_MISC))
4628 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4632 Perl_sv_add_backref(aTHX_ tsv, sv);
4638 /* Give tsv backref magic if it hasn't already got it, then push a
4639 * back-reference to sv onto the array associated with the backref magic.
4643 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4648 if (SvTYPE(tsv) == SVt_PVHV) {
4649 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4653 /* There is no AV in the offical place - try a fixup. */
4654 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4657 /* Aha. They've got it stowed in magic. Bring it back. */
4658 av = (AV*)mg->mg_obj;
4659 /* Stop mg_free decreasing the refernce count. */
4661 /* Stop mg_free even calling the destructor, given that
4662 there's no AV to free up. */
4664 sv_unmagic(tsv, PERL_MAGIC_backref);
4673 const MAGIC *const mg
4674 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4676 av = (AV*)mg->mg_obj;
4680 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4681 /* av now has a refcnt of 2, which avoids it getting freed
4682 * before us during global cleanup. The extra ref is removed
4683 * by magic_killbackrefs() when tsv is being freed */
4686 if (AvFILLp(av) >= AvMAX(av)) {
4687 av_extend(av, AvFILLp(av)+1);
4689 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4692 /* delete a back-reference to ourselves from the backref magic associated
4693 * with the SV we point to.
4697 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4704 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4705 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4706 /* We mustn't attempt to "fix up" the hash here by moving the
4707 backreference array back to the hv_aux structure, as that is stored
4708 in the main HvARRAY(), and hfreentries assumes that no-one
4709 reallocates HvARRAY() while it is running. */
4712 const MAGIC *const mg
4713 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4715 av = (AV *)mg->mg_obj;
4718 if (PL_in_clean_all)
4720 Perl_croak(aTHX_ "panic: del_backref");
4727 /* We shouldn't be in here more than once, but for paranoia reasons lets
4729 for (i = AvFILLp(av); i >= 0; i--) {
4731 const SSize_t fill = AvFILLp(av);
4733 /* We weren't the last entry.
4734 An unordered list has this property that you can take the
4735 last element off the end to fill the hole, and it's still
4736 an unordered list :-)
4741 AvFILLp(av) = fill - 1;
4747 Perl_sv_kill_backrefs(pTHX_ SV *sv, AV *av)
4749 SV **svp = AvARRAY(av);
4751 PERL_UNUSED_ARG(sv);
4753 /* Not sure why the av can get freed ahead of its sv, but somehow it does
4754 in ext/B/t/bytecode.t test 15 (involving print <DATA>) */
4755 if (svp && !SvIS_FREED(av)) {
4756 SV *const *const last = svp + AvFILLp(av);
4758 while (svp <= last) {
4760 SV *const referrer = *svp;
4761 if (SvWEAKREF(referrer)) {
4762 /* XXX Should we check that it hasn't changed? */
4763 SvRV_set(referrer, 0);
4765 SvWEAKREF_off(referrer);
4766 } else if (SvTYPE(referrer) == SVt_PVGV ||
4767 SvTYPE(referrer) == SVt_PVLV) {
4768 /* You lookin' at me? */
4769 assert(GvSTASH(referrer));
4770 assert(GvSTASH(referrer) == (HV*)sv);
4771 GvSTASH(referrer) = 0;
4774 "panic: magic_killbackrefs (flags=%"UVxf")",
4775 (UV)SvFLAGS(referrer));
4783 SvREFCNT_dec(av); /* remove extra count added by sv_add_backref() */
4788 =for apidoc sv_insert
4790 Inserts a string at the specified offset/length within the SV. Similar to
4791 the Perl substr() function.
4797 Perl_sv_insert(pTHX_ SV *bigstr, STRLEN offset, STRLEN len, const char *little, STRLEN littlelen)
4802 register char *midend;
4803 register char *bigend;
4809 Perl_croak(aTHX_ "Can't modify non-existent substring");
4810 SvPV_force(bigstr, curlen);
4811 (void)SvPOK_only_UTF8(bigstr);
4812 if (offset + len > curlen) {
4813 SvGROW(bigstr, offset+len+1);
4814 Zero(SvPVX(bigstr)+curlen, offset+len-curlen, char);