5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
78 #ifdef PERL_IN_XSUB_RE
80 EXTERN_C const struct regexp_engine my_reg_engine;
85 #include "dquote_inline.h"
86 #include "invlist_inline.h"
87 #include "unicode_constants.h"
89 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
90 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
91 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
92 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
93 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
94 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
100 /* this is a chain of data about sub patterns we are processing that
101 need to be handled separately/specially in study_chunk. Its so
102 we can simulate recursion without losing state. */
104 typedef struct scan_frame {
105 regnode *last_regnode; /* last node to process in this frame */
106 regnode *next_regnode; /* next node to process when last is reached */
107 U32 prev_recursed_depth;
108 I32 stopparen; /* what stopparen do we use */
110 struct scan_frame *this_prev_frame; /* this previous frame */
111 struct scan_frame *prev_frame; /* previous frame */
112 struct scan_frame *next_frame; /* next frame */
115 /* Certain characters are output as a sequence with the first being a
117 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
120 struct RExC_state_t {
121 U32 flags; /* RXf_* are we folding, multilining? */
122 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
123 char *precomp; /* uncompiled string. */
124 char *precomp_end; /* pointer to end of uncompiled string. */
125 REGEXP *rx_sv; /* The SV that is the regexp. */
126 regexp *rx; /* perl core regexp structure */
127 regexp_internal *rxi; /* internal data for regexp object
129 char *start; /* Start of input for compile */
130 char *end; /* End of input for compile */
131 char *parse; /* Input-scan pointer. */
132 char *copy_start; /* start of copy of input within
133 constructed parse string */
134 char *save_copy_start; /* Provides one level of saving
135 and restoring 'copy_start' */
136 char *copy_start_in_input; /* Position in input string
137 corresponding to copy_start */
138 SSize_t whilem_seen; /* number of WHILEM in this expr */
139 regnode *emit_start; /* Start of emitted-code area */
140 regnode_offset emit; /* Code-emit pointer */
141 I32 naughty; /* How bad is this pattern? */
142 I32 sawback; /* Did we see \1, ...? */
144 SSize_t size; /* Number of regnode equivalents in
147 /* position beyond 'precomp' of the warning message furthest away from
148 * 'precomp'. During the parse, no warnings are raised for any problems
149 * earlier in the parse than this position. This works if warnings are
150 * raised the first time a given spot is parsed, and if only one
151 * independent warning is raised for any given spot */
152 Size_t latest_warn_offset;
154 I32 npar; /* Capture buffer count so far in the
155 parse, (OPEN) plus one. ("par" 0 is
157 I32 total_par; /* During initial parse, is either 0,
158 or -1; the latter indicating a
159 reparse is needed. After that pass,
160 it is what 'npar' became after the
161 pass. Hence, it being > 0 indicates
162 we are in a reparse situation */
163 I32 nestroot; /* root parens we are in - used by
166 regnode_offset *open_parens; /* offsets to open parens */
167 regnode_offset *close_parens; /* offsets to close parens */
168 I32 parens_buf_size; /* #slots malloced open/close_parens */
169 regnode *end_op; /* END node in program */
170 I32 utf8; /* whether the pattern is utf8 or not */
171 I32 orig_utf8; /* whether the pattern was originally in utf8 */
172 /* XXX use this for future optimisation of case
173 * where pattern must be upgraded to utf8. */
174 I32 uni_semantics; /* If a d charset modifier should use unicode
175 rules, even if the pattern is not in
177 HV *paren_names; /* Paren names */
179 regnode **recurse; /* Recurse regops */
180 I32 recurse_count; /* Number of recurse regops we have generated */
181 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
183 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
186 I32 override_recoding;
188 I32 recode_x_to_native;
190 I32 in_multi_char_class;
191 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
193 int code_index; /* next code_blocks[] slot */
194 SSize_t maxlen; /* mininum possible number of chars in string to match */
195 scan_frame *frame_head;
196 scan_frame *frame_last;
200 #ifdef ADD_TO_REGEXEC
201 char *starttry; /* -Dr: where regtry was called. */
202 #define RExC_starttry (pRExC_state->starttry)
204 SV *runtime_code_qr; /* qr with the runtime code blocks */
206 const char *lastparse;
208 AV *paren_name_list; /* idx -> name */
209 U32 study_chunk_recursed_count;
213 #define RExC_lastparse (pRExC_state->lastparse)
214 #define RExC_lastnum (pRExC_state->lastnum)
215 #define RExC_paren_name_list (pRExC_state->paren_name_list)
216 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
217 #define RExC_mysv (pRExC_state->mysv1)
218 #define RExC_mysv1 (pRExC_state->mysv1)
219 #define RExC_mysv2 (pRExC_state->mysv2)
229 #define RExC_flags (pRExC_state->flags)
230 #define RExC_pm_flags (pRExC_state->pm_flags)
231 #define RExC_precomp (pRExC_state->precomp)
232 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
233 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
234 #define RExC_save_copy_start_in_constructed (pRExC_state->save_copy_start)
235 #define RExC_precomp_end (pRExC_state->precomp_end)
236 #define RExC_rx_sv (pRExC_state->rx_sv)
237 #define RExC_rx (pRExC_state->rx)
238 #define RExC_rxi (pRExC_state->rxi)
239 #define RExC_start (pRExC_state->start)
240 #define RExC_end (pRExC_state->end)
241 #define RExC_parse (pRExC_state->parse)
242 #define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
243 #define RExC_whilem_seen (pRExC_state->whilem_seen)
244 #define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
245 under /d from /u ? */
248 #ifdef RE_TRACK_PATTERN_OFFSETS
249 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
252 #define RExC_emit (pRExC_state->emit)
253 #define RExC_emit_start (pRExC_state->emit_start)
254 #define RExC_sawback (pRExC_state->sawback)
255 #define RExC_seen (pRExC_state->seen)
256 #define RExC_size (pRExC_state->size)
257 #define RExC_maxlen (pRExC_state->maxlen)
258 #define RExC_npar (pRExC_state->npar)
259 #define RExC_total_parens (pRExC_state->total_par)
260 #define RExC_parens_buf_size (pRExC_state->parens_buf_size)
261 #define RExC_nestroot (pRExC_state->nestroot)
262 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
263 #define RExC_utf8 (pRExC_state->utf8)
264 #define RExC_uni_semantics (pRExC_state->uni_semantics)
265 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
266 #define RExC_open_parens (pRExC_state->open_parens)
267 #define RExC_close_parens (pRExC_state->close_parens)
268 #define RExC_end_op (pRExC_state->end_op)
269 #define RExC_paren_names (pRExC_state->paren_names)
270 #define RExC_recurse (pRExC_state->recurse)
271 #define RExC_recurse_count (pRExC_state->recurse_count)
272 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
273 #define RExC_study_chunk_recursed_bytes \
274 (pRExC_state->study_chunk_recursed_bytes)
275 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
276 #define RExC_contains_locale (pRExC_state->contains_locale)
278 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
280 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
281 #define RExC_frame_head (pRExC_state->frame_head)
282 #define RExC_frame_last (pRExC_state->frame_last)
283 #define RExC_frame_count (pRExC_state->frame_count)
284 #define RExC_strict (pRExC_state->strict)
285 #define RExC_study_started (pRExC_state->study_started)
286 #define RExC_warn_text (pRExC_state->warn_text)
287 #define RExC_in_script_run (pRExC_state->in_script_run)
288 #define RExC_use_BRANCHJ (pRExC_state->use_BRANCHJ)
289 #define RExC_unlexed_names (pRExC_state->unlexed_names)
291 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
292 * a flag to disable back-off on the fixed/floating substrings - if it's
293 * a high complexity pattern we assume the benefit of avoiding a full match
294 * is worth the cost of checking for the substrings even if they rarely help.
296 #define RExC_naughty (pRExC_state->naughty)
297 #define TOO_NAUGHTY (10)
298 #define MARK_NAUGHTY(add) \
299 if (RExC_naughty < TOO_NAUGHTY) \
300 RExC_naughty += (add)
301 #define MARK_NAUGHTY_EXP(exp, add) \
302 if (RExC_naughty < TOO_NAUGHTY) \
303 RExC_naughty += RExC_naughty / (exp) + (add)
305 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
306 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
307 ((*s) == '{' && regcurly(s)))
310 * Flags to be passed up and down.
312 #define WORST 0 /* Worst case. */
313 #define HASWIDTH 0x01 /* Known to not match null strings, could match
316 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
317 * character. (There needs to be a case: in the switch statement in regexec.c
318 * for any node marked SIMPLE.) Note that this is not the same thing as
321 #define SPSTART 0x04 /* Starts with * or + */
322 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
323 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
324 #define RESTART_PARSE 0x20 /* Need to redo the parse */
325 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
326 calcuate sizes as UTF-8 */
328 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
330 /* whether trie related optimizations are enabled */
331 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
332 #define TRIE_STUDY_OPT
333 #define FULL_TRIE_STUDY
339 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
340 #define PBITVAL(paren) (1 << ((paren) & 7))
341 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
342 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
343 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
345 #define REQUIRE_UTF8(flagp) STMT_START { \
347 *flagp = RESTART_PARSE|NEED_UTF8; \
352 /* Change from /d into /u rules, and restart the parse. RExC_uni_semantics is
353 * a flag that indicates we need to override /d with /u as a result of
354 * something in the pattern. It should only be used in regards to calling
355 * set_regex_charset() or get_regex_charse() */
356 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
358 if (DEPENDS_SEMANTICS) { \
359 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
360 RExC_uni_semantics = 1; \
361 if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) { \
362 /* No need to restart the parse if we haven't seen \
363 * anything that differs between /u and /d, and no need \
364 * to restart immediately if we're going to reparse \
365 * anyway to count parens */ \
366 *flagp |= RESTART_PARSE; \
367 return restart_retval; \
372 #define REQUIRE_BRANCHJ(flagp, restart_retval) \
374 RExC_use_BRANCHJ = 1; \
375 if (LIKELY(! IN_PARENS_PASS)) { \
376 /* No need to restart the parse immediately if we're \
377 * going to reparse anyway to count parens */ \
378 *flagp |= RESTART_PARSE; \
379 return restart_retval; \
383 /* Until we have completed the parse, we leave RExC_total_parens at 0 or
384 * less. After that, it must always be positive, because the whole re is
385 * considered to be surrounded by virtual parens. Setting it to negative
386 * indicates there is some construct that needs to know the actual number of
387 * parens to be properly handled. And that means an extra pass will be
388 * required after we've counted them all */
389 #define ALL_PARENS_COUNTED (RExC_total_parens > 0)
390 #define REQUIRE_PARENS_PASS \
391 STMT_START { /* No-op if have completed a pass */ \
392 if (! ALL_PARENS_COUNTED) RExC_total_parens = -1; \
394 #define IN_PARENS_PASS (RExC_total_parens < 0)
397 /* This is used to return failure (zero) early from the calling function if
398 * various flags in 'flags' are set. Two flags always cause a return:
399 * 'RESTART_PARSE' and 'NEED_UTF8'. 'extra' can be used to specify any
400 * additional flags that should cause a return; 0 if none. If the return will
401 * be done, '*flagp' is first set to be all of the flags that caused the
403 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
405 if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
406 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
411 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
413 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
414 RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
415 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
416 if (MUST_RESTART(*(flagp))) return 0
418 /* This converts the named class defined in regcomp.h to its equivalent class
419 * number defined in handy.h. */
420 #define namedclass_to_classnum(class) ((int) ((class) / 2))
421 #define classnum_to_namedclass(classnum) ((classnum) * 2)
423 #define _invlist_union_complement_2nd(a, b, output) \
424 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
425 #define _invlist_intersection_complement_2nd(a, b, output) \
426 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
428 /* About scan_data_t.
430 During optimisation we recurse through the regexp program performing
431 various inplace (keyhole style) optimisations. In addition study_chunk
432 and scan_commit populate this data structure with information about
433 what strings MUST appear in the pattern. We look for the longest
434 string that must appear at a fixed location, and we look for the
435 longest string that may appear at a floating location. So for instance
440 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
441 strings (because they follow a .* construct). study_chunk will identify
442 both FOO and BAR as being the longest fixed and floating strings respectively.
444 The strings can be composites, for instance
448 will result in a composite fixed substring 'foo'.
450 For each string some basic information is maintained:
453 This is the position the string must appear at, or not before.
454 It also implicitly (when combined with minlenp) tells us how many
455 characters must match before the string we are searching for.
456 Likewise when combined with minlenp and the length of the string it
457 tells us how many characters must appear after the string we have
461 Only used for floating strings. This is the rightmost point that
462 the string can appear at. If set to SSize_t_MAX it indicates that the
463 string can occur infinitely far to the right.
464 For fixed strings, it is equal to min_offset.
467 A pointer to the minimum number of characters of the pattern that the
468 string was found inside. This is important as in the case of positive
469 lookahead or positive lookbehind we can have multiple patterns
474 The minimum length of the pattern overall is 3, the minimum length
475 of the lookahead part is 3, but the minimum length of the part that
476 will actually match is 1. So 'FOO's minimum length is 3, but the
477 minimum length for the F is 1. This is important as the minimum length
478 is used to determine offsets in front of and behind the string being
479 looked for. Since strings can be composites this is the length of the
480 pattern at the time it was committed with a scan_commit. Note that
481 the length is calculated by study_chunk, so that the minimum lengths
482 are not known until the full pattern has been compiled, thus the
483 pointer to the value.
487 In the case of lookbehind the string being searched for can be
488 offset past the start point of the final matching string.
489 If this value was just blithely removed from the min_offset it would
490 invalidate some of the calculations for how many chars must match
491 before or after (as they are derived from min_offset and minlen and
492 the length of the string being searched for).
493 When the final pattern is compiled and the data is moved from the
494 scan_data_t structure into the regexp structure the information
495 about lookbehind is factored in, with the information that would
496 have been lost precalculated in the end_shift field for the
499 The fields pos_min and pos_delta are used to store the minimum offset
500 and the delta to the maximum offset at the current point in the pattern.
504 struct scan_data_substrs {
505 SV *str; /* longest substring found in pattern */
506 SSize_t min_offset; /* earliest point in string it can appear */
507 SSize_t max_offset; /* latest point in string it can appear */
508 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
509 SSize_t lookbehind; /* is the pos of the string modified by LB */
510 I32 flags; /* per substring SF_* and SCF_* flags */
513 typedef struct scan_data_t {
514 /*I32 len_min; unused */
515 /*I32 len_delta; unused */
519 SSize_t last_end; /* min value, <0 unless valid. */
520 SSize_t last_start_min;
521 SSize_t last_start_max;
522 U8 cur_is_floating; /* whether the last_* values should be set as
523 * the next fixed (0) or floating (1)
526 /* [0] is longest fixed substring so far, [1] is longest float so far */
527 struct scan_data_substrs substrs[2];
529 I32 flags; /* common SF_* and SCF_* flags */
531 SSize_t *last_closep;
532 regnode_ssc *start_class;
536 * Forward declarations for pregcomp()'s friends.
539 static const scan_data_t zero_scan_data = {
540 0, 0, NULL, 0, 0, 0, 0,
542 { NULL, 0, 0, 0, 0, 0 },
543 { NULL, 0, 0, 0, 0, 0 },
550 #define SF_BEFORE_SEOL 0x0001
551 #define SF_BEFORE_MEOL 0x0002
552 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
554 #define SF_IS_INF 0x0040
555 #define SF_HAS_PAR 0x0080
556 #define SF_IN_PAR 0x0100
557 #define SF_HAS_EVAL 0x0200
560 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
561 * longest substring in the pattern. When it is not set the optimiser keeps
562 * track of position, but does not keep track of the actual strings seen,
564 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
567 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
568 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
569 * turned off because of the alternation (BRANCH). */
570 #define SCF_DO_SUBSTR 0x0400
572 #define SCF_DO_STCLASS_AND 0x0800
573 #define SCF_DO_STCLASS_OR 0x1000
574 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
575 #define SCF_WHILEM_VISITED_POS 0x2000
577 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
578 #define SCF_SEEN_ACCEPT 0x8000
579 #define SCF_TRIE_DOING_RESTUDY 0x10000
580 #define SCF_IN_DEFINE 0x20000
585 #define UTF cBOOL(RExC_utf8)
587 /* The enums for all these are ordered so things work out correctly */
588 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
589 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
590 == REGEX_DEPENDS_CHARSET)
591 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
592 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
593 >= REGEX_UNICODE_CHARSET)
594 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
595 == REGEX_ASCII_RESTRICTED_CHARSET)
596 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
597 >= REGEX_ASCII_RESTRICTED_CHARSET)
598 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
599 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
601 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
603 /* For programs that want to be strictly Unicode compatible by dying if any
604 * attempt is made to match a non-Unicode code point against a Unicode
606 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
608 #define OOB_NAMEDCLASS -1
610 /* There is no code point that is out-of-bounds, so this is problematic. But
611 * its only current use is to initialize a variable that is always set before
613 #define OOB_UNICODE 0xDEADBEEF
615 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
618 /* length of regex to show in messages that don't mark a position within */
619 #define RegexLengthToShowInErrorMessages 127
622 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
623 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
624 * op/pragma/warn/regcomp.
626 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
627 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
629 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
630 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
632 /* The code in this file in places uses one level of recursion with parsing
633 * rebased to an alternate string constructed by us in memory. This can take
634 * the form of something that is completely different from the input, or
635 * something that uses the input as part of the alternate. In the first case,
636 * there should be no possibility of an error, as we are in complete control of
637 * the alternate string. But in the second case we don't completely control
638 * the input portion, so there may be errors in that. Here's an example:
640 * is handled specially because \x{df} folds to a sequence of more than one
641 * character: 'ss'. What is done is to create and parse an alternate string,
642 * which looks like this:
643 * /(?:\x{DF}|[abc\x{DF}def])/ui
644 * where it uses the input unchanged in the middle of something it constructs,
645 * which is a branch for the DF outside the character class, and clustering
646 * parens around the whole thing. (It knows enough to skip the DF inside the
647 * class while in this substitute parse.) 'abc' and 'def' may have errors that
648 * need to be reported. The general situation looks like this:
650 * |<------- identical ------>|
652 * Input: ---------------------------------------------------------------
653 * Constructed: ---------------------------------------------------
655 * |<------- identical ------>|
657 * sI..eI is the portion of the input pattern we are concerned with here.
658 * sC..EC is the constructed substitute parse string.
659 * sC..tC is constructed by us
660 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
661 * In the diagram, these are vertically aligned.
662 * eC..EC is also constructed by us.
663 * xC is the position in the substitute parse string where we found a
665 * xI is the position in the original pattern corresponding to xC.
667 * We want to display a message showing the real input string. Thus we need to
668 * translate from xC to xI. We know that xC >= tC, since the portion of the
669 * string sC..tC has been constructed by us, and so shouldn't have errors. We
671 * xI = tI + (xC - tC)
673 * When the substitute parse is constructed, the code needs to set:
676 * RExC_copy_start_in_input (tI)
677 * RExC_copy_start_in_constructed (tC)
678 * and restore them when done.
680 * During normal processing of the input pattern, both
681 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
682 * sI, so that xC equals xI.
685 #define sI RExC_precomp
686 #define eI RExC_precomp_end
687 #define sC RExC_start
689 #define tI RExC_copy_start_in_input
690 #define tC RExC_copy_start_in_constructed
691 #define xI(xC) (tI + (xC - tC))
692 #define xI_offset(xC) (xI(xC) - sI)
694 #define REPORT_LOCATION_ARGS(xC) \
696 (xI(xC) > eI) /* Don't run off end */ \
697 ? eI - sI /* Length before the <--HERE */ \
698 : ((xI_offset(xC) >= 0) \
700 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
701 IVdf " trying to output message for " \
703 __FILE__, __LINE__, (IV) xI_offset(xC), \
704 ((int) (eC - sC)), sC), 0)), \
705 sI), /* The input pattern printed up to the <--HERE */ \
707 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
708 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
710 /* Used to point after bad bytes for an error message, but avoid skipping
711 * past a nul byte. */
712 #define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)
714 /* Set up to clean up after our imminent demise */
715 #define PREPARE_TO_DIE \
718 SAVEFREESV(RExC_rx_sv); \
719 if (RExC_open_parens) \
720 SAVEFREEPV(RExC_open_parens); \
721 if (RExC_close_parens) \
722 SAVEFREEPV(RExC_close_parens); \
726 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
727 * arg. Show regex, up to a maximum length. If it's too long, chop and add
730 #define _FAIL(code) STMT_START { \
731 const char *ellipses = ""; \
732 IV len = RExC_precomp_end - RExC_precomp; \
735 if (len > RegexLengthToShowInErrorMessages) { \
736 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
737 len = RegexLengthToShowInErrorMessages - 10; \
743 #define FAIL(msg) _FAIL( \
744 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
745 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
747 #define FAIL2(msg,arg) _FAIL( \
748 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
749 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
752 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
754 #define Simple_vFAIL(m) STMT_START { \
755 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
756 m, REPORT_LOCATION_ARGS(RExC_parse)); \
760 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
762 #define vFAIL(m) STMT_START { \
768 * Like Simple_vFAIL(), but accepts two arguments.
770 #define Simple_vFAIL2(m,a1) STMT_START { \
771 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
772 REPORT_LOCATION_ARGS(RExC_parse)); \
776 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
778 #define vFAIL2(m,a1) STMT_START { \
780 Simple_vFAIL2(m, a1); \
785 * Like Simple_vFAIL(), but accepts three arguments.
787 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
788 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
789 REPORT_LOCATION_ARGS(RExC_parse)); \
793 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
795 #define vFAIL3(m,a1,a2) STMT_START { \
797 Simple_vFAIL3(m, a1, a2); \
801 * Like Simple_vFAIL(), but accepts four arguments.
803 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
804 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
805 REPORT_LOCATION_ARGS(RExC_parse)); \
808 #define vFAIL4(m,a1,a2,a3) STMT_START { \
810 Simple_vFAIL4(m, a1, a2, a3); \
813 /* A specialized version of vFAIL2 that works with UTF8f */
814 #define vFAIL2utf8f(m, a1) STMT_START { \
816 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
817 REPORT_LOCATION_ARGS(RExC_parse)); \
820 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
822 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
823 REPORT_LOCATION_ARGS(RExC_parse)); \
826 /* Setting this to NULL is a signal to not output warnings */
827 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE \
829 RExC_save_copy_start_in_constructed = RExC_copy_start_in_constructed;\
830 RExC_copy_start_in_constructed = NULL; \
832 #define RESTORE_WARNINGS \
833 RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed
835 /* Since a warning can be generated multiple times as the input is reparsed, we
836 * output it the first time we come to that point in the parse, but suppress it
837 * otherwise. 'RExC_copy_start_in_constructed' being NULL is a flag to not
838 * generate any warnings */
839 #define TO_OUTPUT_WARNINGS(loc) \
840 ( RExC_copy_start_in_constructed \
841 && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
843 /* After we've emitted a warning, we save the position in the input so we don't
845 #define UPDATE_WARNINGS_LOC(loc) \
847 if (TO_OUTPUT_WARNINGS(loc)) { \
848 RExC_latest_warn_offset = (xI(loc)) - RExC_precomp; \
852 /* 'warns' is the output of the packWARNx macro used in 'code' */
853 #define _WARN_HELPER(loc, warns, code) \
855 if (! RExC_copy_start_in_constructed) { \
856 Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
857 " expected at '%s'", \
858 __FILE__, __LINE__, loc); \
860 if (TO_OUTPUT_WARNINGS(loc)) { \
864 UPDATE_WARNINGS_LOC(loc); \
868 /* m is not necessarily a "literal string", in this macro */
869 #define reg_warn_non_literal_string(loc, m) \
870 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
871 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
872 "%s" REPORT_LOCATION, \
873 m, REPORT_LOCATION_ARGS(loc)))
875 #define ckWARNreg(loc,m) \
876 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
877 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
879 REPORT_LOCATION_ARGS(loc)))
881 #define vWARN(loc, m) \
882 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
883 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
885 REPORT_LOCATION_ARGS(loc))) \
887 #define vWARN_dep(loc, m) \
888 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
889 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
891 REPORT_LOCATION_ARGS(loc)))
893 #define ckWARNdep(loc,m) \
894 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
895 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
897 REPORT_LOCATION_ARGS(loc)))
899 #define ckWARNregdep(loc,m) \
900 _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
901 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
904 REPORT_LOCATION_ARGS(loc)))
906 #define ckWARN2reg_d(loc,m, a1) \
907 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
908 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
910 a1, REPORT_LOCATION_ARGS(loc)))
912 #define ckWARN2reg(loc, m, a1) \
913 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
914 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
916 a1, REPORT_LOCATION_ARGS(loc)))
918 #define vWARN3(loc, m, a1, a2) \
919 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
920 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
922 a1, a2, REPORT_LOCATION_ARGS(loc)))
924 #define ckWARN3reg(loc, m, a1, a2) \
925 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
926 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
929 REPORT_LOCATION_ARGS(loc)))
931 #define vWARN4(loc, m, a1, a2, a3) \
932 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
933 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
936 REPORT_LOCATION_ARGS(loc)))
938 #define ckWARN4reg(loc, m, a1, a2, a3) \
939 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
940 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
943 REPORT_LOCATION_ARGS(loc)))
945 #define vWARN5(loc, m, a1, a2, a3, a4) \
946 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
947 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
950 REPORT_LOCATION_ARGS(loc)))
952 #define ckWARNexperimental(loc, class, m) \
953 _WARN_HELPER(loc, packWARN(class), \
954 Perl_ck_warner_d(aTHX_ packWARN(class), \
956 REPORT_LOCATION_ARGS(loc)))
958 /* Convert between a pointer to a node and its offset from the beginning of the
960 #define REGNODE_p(offset) (RExC_emit_start + (offset))
961 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
963 /* Macros for recording node offsets. 20001227 mjd@plover.com
964 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
965 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
966 * Element 0 holds the number n.
967 * Position is 1 indexed.
969 #ifndef RE_TRACK_PATTERN_OFFSETS
970 #define Set_Node_Offset_To_R(offset,byte)
971 #define Set_Node_Offset(node,byte)
972 #define Set_Cur_Node_Offset
973 #define Set_Node_Length_To_R(node,len)
974 #define Set_Node_Length(node,len)
975 #define Set_Node_Cur_Length(node,start)
976 #define Node_Offset(n)
977 #define Node_Length(n)
978 #define Set_Node_Offset_Length(node,offset,len)
979 #define ProgLen(ri) ri->u.proglen
980 #define SetProgLen(ri,x) ri->u.proglen = x
981 #define Track_Code(code)
983 #define ProgLen(ri) ri->u.offsets[0]
984 #define SetProgLen(ri,x) ri->u.offsets[0] = x
985 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
986 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
987 __LINE__, (int)(offset), (int)(byte))); \
989 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
992 RExC_offsets[2*(offset)-1] = (byte); \
996 #define Set_Node_Offset(node,byte) \
997 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
998 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
1000 #define Set_Node_Length_To_R(node,len) STMT_START { \
1001 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
1002 __LINE__, (int)(node), (int)(len))); \
1004 Perl_croak(aTHX_ "value of node is %d in Length macro", \
1007 RExC_offsets[2*(node)] = (len); \
1011 #define Set_Node_Length(node,len) \
1012 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
1013 #define Set_Node_Cur_Length(node, start) \
1014 Set_Node_Length(node, RExC_parse - start)
1016 /* Get offsets and lengths */
1017 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
1018 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
1020 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
1021 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
1022 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
1025 #define Track_Code(code) STMT_START { code } STMT_END
1028 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
1029 #define EXPERIMENTAL_INPLACESCAN
1030 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
1034 Perl_re_printf(pTHX_ const char *fmt, ...)
1038 PerlIO *f= Perl_debug_log;
1039 PERL_ARGS_ASSERT_RE_PRINTF;
1041 result = PerlIO_vprintf(f, fmt, ap);
1047 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1051 PerlIO *f= Perl_debug_log;
1052 PERL_ARGS_ASSERT_RE_INDENTF;
1053 va_start(ap, depth);
1054 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1055 result = PerlIO_vprintf(f, fmt, ap);
1059 #endif /* DEBUGGING */
1061 #define DEBUG_RExC_seen() \
1062 DEBUG_OPTIMISE_MORE_r({ \
1063 Perl_re_printf( aTHX_ "RExC_seen: "); \
1065 if (RExC_seen & REG_ZERO_LEN_SEEN) \
1066 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
1068 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
1069 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
1071 if (RExC_seen & REG_GPOS_SEEN) \
1072 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1074 if (RExC_seen & REG_RECURSE_SEEN) \
1075 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1077 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1078 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1080 if (RExC_seen & REG_VERBARG_SEEN) \
1081 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1083 if (RExC_seen & REG_CUTGROUP_SEEN) \
1084 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1086 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1087 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1089 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1090 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1092 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1093 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1095 Perl_re_printf( aTHX_ "\n"); \
1098 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1099 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1104 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1105 const char *close_str)
1110 Perl_re_printf( aTHX_ "%s", open_str);
1111 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1112 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1113 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1114 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1115 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1116 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1117 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1118 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1119 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1120 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1121 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1122 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1123 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1124 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1125 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1126 Perl_re_printf( aTHX_ "%s", close_str);
1131 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1132 U32 depth, int is_inf)
1134 GET_RE_DEBUG_FLAGS_DECL;
1136 DEBUG_OPTIMISE_MORE_r({
1139 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1143 (IV)data->pos_delta,
1147 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1149 Perl_re_printf( aTHX_
1150 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1152 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1153 is_inf ? "INF " : ""
1156 if (data->last_found) {
1158 Perl_re_printf(aTHX_
1159 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1160 SvPVX_const(data->last_found),
1162 (IV)data->last_start_min,
1163 (IV)data->last_start_max
1166 for (i = 0; i < 2; i++) {
1167 Perl_re_printf(aTHX_
1168 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1169 data->cur_is_floating == i ? "*" : "",
1170 i ? "Float" : "Fixed",
1171 SvPVX_const(data->substrs[i].str),
1172 (IV)data->substrs[i].min_offset,
1173 (IV)data->substrs[i].max_offset
1175 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1179 Perl_re_printf( aTHX_ "\n");
1185 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1186 regnode *scan, U32 depth, U32 flags)
1188 GET_RE_DEBUG_FLAGS_DECL;
1195 Next = regnext(scan);
1196 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1197 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1200 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1201 Next ? (REG_NODE_NUM(Next)) : 0 );
1202 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1203 Perl_re_printf( aTHX_ "\n");
1208 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1209 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1211 # define DEBUG_PEEP(str, scan, depth, flags) \
1212 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1215 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1216 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1220 /* =========================================================
1221 * BEGIN edit_distance stuff.
1223 * This calculates how many single character changes of any type are needed to
1224 * transform a string into another one. It is taken from version 3.1 of
1226 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1229 /* Our unsorted dictionary linked list. */
1230 /* Note we use UVs, not chars. */
1235 struct dictionary* next;
1237 typedef struct dictionary item;
1240 PERL_STATIC_INLINE item*
1241 push(UV key, item* curr)
1244 Newx(head, 1, item);
1252 PERL_STATIC_INLINE item*
1253 find(item* head, UV key)
1255 item* iterator = head;
1257 if (iterator->key == key){
1260 iterator = iterator->next;
1266 PERL_STATIC_INLINE item*
1267 uniquePush(item* head, UV key)
1269 item* iterator = head;
1272 if (iterator->key == key) {
1275 iterator = iterator->next;
1278 return push(key, head);
1281 PERL_STATIC_INLINE void
1282 dict_free(item* head)
1284 item* iterator = head;
1287 item* temp = iterator;
1288 iterator = iterator->next;
1295 /* End of Dictionary Stuff */
1297 /* All calculations/work are done here */
1299 S_edit_distance(const UV* src,
1301 const STRLEN x, /* length of src[] */
1302 const STRLEN y, /* length of tgt[] */
1303 const SSize_t maxDistance
1307 UV swapCount, swapScore, targetCharCount, i, j;
1309 UV score_ceil = x + y;
1311 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1313 /* intialize matrix start values */
1314 Newx(scores, ( (x + 2) * (y + 2)), UV);
1315 scores[0] = score_ceil;
1316 scores[1 * (y + 2) + 0] = score_ceil;
1317 scores[0 * (y + 2) + 1] = score_ceil;
1318 scores[1 * (y + 2) + 1] = 0;
1319 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1324 for (i=1;i<=x;i++) {
1326 head = uniquePush(head, src[i]);
1327 scores[(i+1) * (y + 2) + 1] = i;
1328 scores[(i+1) * (y + 2) + 0] = score_ceil;
1331 for (j=1;j<=y;j++) {
1334 head = uniquePush(head, tgt[j]);
1335 scores[1 * (y + 2) + (j + 1)] = j;
1336 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1339 targetCharCount = find(head, tgt[j-1])->value;
1340 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1342 if (src[i-1] != tgt[j-1]){
1343 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1347 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1351 find(head, src[i-1])->value = i;
1355 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1358 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1362 /* END of edit_distance() stuff
1363 * ========================================================= */
1365 /* is c a control character for which we have a mnemonic? */
1366 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1369 S_cntrl_to_mnemonic(const U8 c)
1371 /* Returns the mnemonic string that represents character 'c', if one
1372 * exists; NULL otherwise. The only ones that exist for the purposes of
1373 * this routine are a few control characters */
1376 case '\a': return "\\a";
1377 case '\b': return "\\b";
1378 case ESC_NATIVE: return "\\e";
1379 case '\f': return "\\f";
1380 case '\n': return "\\n";
1381 case '\r': return "\\r";
1382 case '\t': return "\\t";
1388 /* Mark that we cannot extend a found fixed substring at this point.
1389 Update the longest found anchored substring or the longest found
1390 floating substrings if needed. */
1393 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1394 SSize_t *minlenp, int is_inf)
1396 const STRLEN l = CHR_SVLEN(data->last_found);
1397 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1398 const STRLEN old_l = CHR_SVLEN(longest_sv);
1399 GET_RE_DEBUG_FLAGS_DECL;
1401 PERL_ARGS_ASSERT_SCAN_COMMIT;
1403 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1404 const U8 i = data->cur_is_floating;
1405 SvSetMagicSV(longest_sv, data->last_found);
1406 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1409 data->substrs[0].max_offset = data->substrs[0].min_offset;
1411 data->substrs[1].max_offset = (l
1412 ? data->last_start_max
1413 : (data->pos_delta > SSize_t_MAX - data->pos_min
1415 : data->pos_min + data->pos_delta));
1417 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1418 data->substrs[1].max_offset = SSize_t_MAX;
1421 if (data->flags & SF_BEFORE_EOL)
1422 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1424 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1425 data->substrs[i].minlenp = minlenp;
1426 data->substrs[i].lookbehind = 0;
1429 SvCUR_set(data->last_found, 0);
1431 SV * const sv = data->last_found;
1432 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1433 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1438 data->last_end = -1;
1439 data->flags &= ~SF_BEFORE_EOL;
1440 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1443 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1444 * list that describes which code points it matches */
1447 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1449 /* Set the SSC 'ssc' to match an empty string or any code point */
1451 PERL_ARGS_ASSERT_SSC_ANYTHING;
1453 assert(is_ANYOF_SYNTHETIC(ssc));
1455 /* mortalize so won't leak */
1456 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1457 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1461 S_ssc_is_anything(const regnode_ssc *ssc)
1463 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1464 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1465 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1466 * in any way, so there's no point in using it */
1471 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1473 assert(is_ANYOF_SYNTHETIC(ssc));
1475 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1479 /* See if the list consists solely of the range 0 - Infinity */
1480 invlist_iterinit(ssc->invlist);
1481 ret = invlist_iternext(ssc->invlist, &start, &end)
1485 invlist_iterfinish(ssc->invlist);
1491 /* If e.g., both \w and \W are set, matches everything */
1492 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1494 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1495 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1505 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1507 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1508 * string, any code point, or any posix class under locale */
1510 PERL_ARGS_ASSERT_SSC_INIT;
1512 Zero(ssc, 1, regnode_ssc);
1513 set_ANYOF_SYNTHETIC(ssc);
1514 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1517 /* If any portion of the regex is to operate under locale rules that aren't
1518 * fully known at compile time, initialization includes it. The reason
1519 * this isn't done for all regexes is that the optimizer was written under
1520 * the assumption that locale was all-or-nothing. Given the complexity and
1521 * lack of documentation in the optimizer, and that there are inadequate
1522 * test cases for locale, many parts of it may not work properly, it is
1523 * safest to avoid locale unless necessary. */
1524 if (RExC_contains_locale) {
1525 ANYOF_POSIXL_SETALL(ssc);
1528 ANYOF_POSIXL_ZERO(ssc);
1533 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1534 const regnode_ssc *ssc)
1536 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1537 * to the list of code points matched, and locale posix classes; hence does
1538 * not check its flags) */
1543 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1545 assert(is_ANYOF_SYNTHETIC(ssc));
1547 invlist_iterinit(ssc->invlist);
1548 ret = invlist_iternext(ssc->invlist, &start, &end)
1552 invlist_iterfinish(ssc->invlist);
1558 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1565 #define INVLIST_INDEX 0
1566 #define ONLY_LOCALE_MATCHES_INDEX 1
1567 #define DEFERRED_USER_DEFINED_INDEX 2
1570 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1571 const regnode_charclass* const node)
1573 /* Returns a mortal inversion list defining which code points are matched
1574 * by 'node', which is of type ANYOF. Handles complementing the result if
1575 * appropriate. If some code points aren't knowable at this time, the
1576 * returned list must, and will, contain every code point that is a
1581 SV* only_utf8_locale_invlist = NULL;
1583 const U32 n = ARG(node);
1584 bool new_node_has_latin1 = FALSE;
1585 const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFHb))
1587 : ANYOF_FLAGS(node);
1589 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1591 /* Look at the data structure created by S_set_ANYOF_arg() */
1592 if (n != ANYOF_ONLY_HAS_BITMAP) {
1593 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1594 AV * const av = MUTABLE_AV(SvRV(rv));
1595 SV **const ary = AvARRAY(av);
1596 assert(RExC_rxi->data->what[n] == 's');
1598 if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
1600 /* Here there are things that won't be known until runtime -- we
1601 * have to assume it could be anything */
1602 invlist = sv_2mortal(_new_invlist(1));
1603 return _add_range_to_invlist(invlist, 0, UV_MAX);
1605 else if (ary[INVLIST_INDEX]) {
1607 /* Use the node's inversion list */
1608 invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
1611 /* Get the code points valid only under UTF-8 locales */
1612 if ( (flags & ANYOFL_FOLD)
1613 && av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
1615 only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
1620 invlist = sv_2mortal(_new_invlist(0));
1623 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1624 * code points, and an inversion list for the others, but if there are code
1625 * points that should match only conditionally on the target string being
1626 * UTF-8, those are placed in the inversion list, and not the bitmap.
1627 * Since there are circumstances under which they could match, they are
1628 * included in the SSC. But if the ANYOF node is to be inverted, we have
1629 * to exclude them here, so that when we invert below, the end result
1630 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1631 * have to do this here before we add the unconditionally matched code
1633 if (flags & ANYOF_INVERT) {
1634 _invlist_intersection_complement_2nd(invlist,
1639 /* Add in the points from the bit map */
1640 if (! inRANGE(OP(node), ANYOFH, ANYOFHb)) {
1641 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1642 if (ANYOF_BITMAP_TEST(node, i)) {
1643 unsigned int start = i++;
1645 for (; i < NUM_ANYOF_CODE_POINTS
1646 && ANYOF_BITMAP_TEST(node, i); ++i)
1650 invlist = _add_range_to_invlist(invlist, start, i-1);
1651 new_node_has_latin1 = TRUE;
1656 /* If this can match all upper Latin1 code points, have to add them
1657 * as well. But don't add them if inverting, as when that gets done below,
1658 * it would exclude all these characters, including the ones it shouldn't
1659 * that were added just above */
1660 if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
1661 && (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1663 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1666 /* Similarly for these */
1667 if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1668 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1671 if (flags & ANYOF_INVERT) {
1672 _invlist_invert(invlist);
1674 else if (flags & ANYOFL_FOLD) {
1675 if (new_node_has_latin1) {
1677 /* Under /li, any 0-255 could fold to any other 0-255, depending on
1678 * the locale. We can skip this if there are no 0-255 at all. */
1679 _invlist_union(invlist, PL_Latin1, &invlist);
1681 invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
1682 invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
1685 if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
1686 invlist = add_cp_to_invlist(invlist, 'I');
1688 if (_invlist_contains_cp(invlist,
1689 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
1691 invlist = add_cp_to_invlist(invlist, 'i');
1696 /* Similarly add the UTF-8 locale possible matches. These have to be
1697 * deferred until after the non-UTF-8 locale ones are taken care of just
1698 * above, or it leads to wrong results under ANYOF_INVERT */
1699 if (only_utf8_locale_invlist) {
1700 _invlist_union_maybe_complement_2nd(invlist,
1701 only_utf8_locale_invlist,
1702 flags & ANYOF_INVERT,
1709 /* These two functions currently do the exact same thing */
1710 #define ssc_init_zero ssc_init
1712 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1713 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1715 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1716 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1717 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1720 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1721 const regnode_charclass *and_with)
1723 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1724 * another SSC or a regular ANYOF class. Can create false positives. */
1727 U8 and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFHb)
1729 : ANYOF_FLAGS(and_with);
1732 PERL_ARGS_ASSERT_SSC_AND;
1734 assert(is_ANYOF_SYNTHETIC(ssc));
1736 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1737 * the code point inversion list and just the relevant flags */
1738 if (is_ANYOF_SYNTHETIC(and_with)) {
1739 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1740 anded_flags = and_with_flags;
1742 /* XXX This is a kludge around what appears to be deficiencies in the
1743 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1744 * there are paths through the optimizer where it doesn't get weeded
1745 * out when it should. And if we don't make some extra provision for
1746 * it like the code just below, it doesn't get added when it should.
1747 * This solution is to add it only when AND'ing, which is here, and
1748 * only when what is being AND'ed is the pristine, original node
1749 * matching anything. Thus it is like adding it to ssc_anything() but
1750 * only when the result is to be AND'ed. Probably the same solution
1751 * could be adopted for the same problem we have with /l matching,
1752 * which is solved differently in S_ssc_init(), and that would lead to
1753 * fewer false positives than that solution has. But if this solution
1754 * creates bugs, the consequences are only that a warning isn't raised
1755 * that should be; while the consequences for having /l bugs is
1756 * incorrect matches */
1757 if (ssc_is_anything((regnode_ssc *)and_with)) {
1758 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1762 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1763 if (OP(and_with) == ANYOFD) {
1764 anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
1767 anded_flags = and_with_flags
1768 &( ANYOF_COMMON_FLAGS
1769 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1770 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1771 if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
1773 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1778 ANYOF_FLAGS(ssc) &= anded_flags;
1780 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1781 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1782 * 'and_with' may be inverted. When not inverted, we have the situation of
1784 * (C1 | P1) & (C2 | P2)
1785 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1786 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1787 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1788 * <= ((C1 & C2) | P1 | P2)
1789 * Alternatively, the last few steps could be:
1790 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1791 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1792 * <= (C1 | C2 | (P1 & P2))
1793 * We favor the second approach if either P1 or P2 is non-empty. This is
1794 * because these components are a barrier to doing optimizations, as what
1795 * they match cannot be known until the moment of matching as they are
1796 * dependent on the current locale, 'AND"ing them likely will reduce or
1798 * But we can do better if we know that C1,P1 are in their initial state (a
1799 * frequent occurrence), each matching everything:
1800 * (<everything>) & (C2 | P2) = C2 | P2
1801 * Similarly, if C2,P2 are in their initial state (again a frequent
1802 * occurrence), the result is a no-op
1803 * (C1 | P1) & (<everything>) = C1 | P1
1806 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1807 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1808 * <= (C1 & ~C2) | (P1 & ~P2)
1811 if ((and_with_flags & ANYOF_INVERT)
1812 && ! is_ANYOF_SYNTHETIC(and_with))
1816 ssc_intersection(ssc,
1818 FALSE /* Has already been inverted */
1821 /* If either P1 or P2 is empty, the intersection will be also; can skip
1823 if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
1824 ANYOF_POSIXL_ZERO(ssc);
1826 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1828 /* Note that the Posix class component P from 'and_with' actually
1830 * P = Pa | Pb | ... | Pn
1831 * where each component is one posix class, such as in [\w\s].
1833 * ~P = ~(Pa | Pb | ... | Pn)
1834 * = ~Pa & ~Pb & ... & ~Pn
1835 * <= ~Pa | ~Pb | ... | ~Pn
1836 * The last is something we can easily calculate, but unfortunately
1837 * is likely to have many false positives. We could do better
1838 * in some (but certainly not all) instances if two classes in
1839 * P have known relationships. For example
1840 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1842 * :lower: & :print: = :lower:
1843 * And similarly for classes that must be disjoint. For example,
1844 * since \s and \w can have no elements in common based on rules in
1845 * the POSIX standard,
1846 * \w & ^\S = nothing
1847 * Unfortunately, some vendor locales do not meet the Posix
1848 * standard, in particular almost everything by Microsoft.
1849 * The loop below just changes e.g., \w into \W and vice versa */
1851 regnode_charclass_posixl temp;
1852 int add = 1; /* To calculate the index of the complement */
1854 Zero(&temp, 1, regnode_charclass_posixl);
1855 ANYOF_POSIXL_ZERO(&temp);
1856 for (i = 0; i < ANYOF_MAX; i++) {
1858 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1859 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1861 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1862 ANYOF_POSIXL_SET(&temp, i + add);
1864 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1866 ANYOF_POSIXL_AND(&temp, ssc);
1868 } /* else ssc already has no posixes */
1869 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1870 in its initial state */
1871 else if (! is_ANYOF_SYNTHETIC(and_with)
1872 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1874 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1875 * copy it over 'ssc' */
1876 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1877 if (is_ANYOF_SYNTHETIC(and_with)) {
1878 StructCopy(and_with, ssc, regnode_ssc);
1881 ssc->invlist = anded_cp_list;
1882 ANYOF_POSIXL_ZERO(ssc);
1883 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1884 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1888 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1889 || (and_with_flags & ANYOF_MATCHES_POSIXL))
1891 /* One or the other of P1, P2 is non-empty. */
1892 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1893 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1895 ssc_union(ssc, anded_cp_list, FALSE);
1897 else { /* P1 = P2 = empty */
1898 ssc_intersection(ssc, anded_cp_list, FALSE);
1904 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1905 const regnode_charclass *or_with)
1907 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1908 * another SSC or a regular ANYOF class. Can create false positives if
1909 * 'or_with' is to be inverted. */
1913 U8 or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFHb)
1915 : ANYOF_FLAGS(or_with);
1917 PERL_ARGS_ASSERT_SSC_OR;
1919 assert(is_ANYOF_SYNTHETIC(ssc));
1921 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1922 * the code point inversion list and just the relevant flags */
1923 if (is_ANYOF_SYNTHETIC(or_with)) {
1924 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1925 ored_flags = or_with_flags;
1928 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1929 ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
1930 if (OP(or_with) != ANYOFD) {
1933 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1934 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1935 if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
1937 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1942 ANYOF_FLAGS(ssc) |= ored_flags;
1944 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1945 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1946 * 'or_with' may be inverted. When not inverted, we have the simple
1947 * situation of computing:
1948 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1949 * If P1|P2 yields a situation with both a class and its complement are
1950 * set, like having both \w and \W, this matches all code points, and we
1951 * can delete these from the P component of the ssc going forward. XXX We
1952 * might be able to delete all the P components, but I (khw) am not certain
1953 * about this, and it is better to be safe.
1956 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1957 * <= (C1 | P1) | ~C2
1958 * <= (C1 | ~C2) | P1
1959 * (which results in actually simpler code than the non-inverted case)
1962 if ((or_with_flags & ANYOF_INVERT)
1963 && ! is_ANYOF_SYNTHETIC(or_with))
1965 /* We ignore P2, leaving P1 going forward */
1966 } /* else Not inverted */
1967 else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
1968 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1969 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1971 for (i = 0; i < ANYOF_MAX; i += 2) {
1972 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1974 ssc_match_all_cp(ssc);
1975 ANYOF_POSIXL_CLEAR(ssc, i);
1976 ANYOF_POSIXL_CLEAR(ssc, i+1);
1984 FALSE /* Already has been inverted */
1988 PERL_STATIC_INLINE void
1989 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1991 PERL_ARGS_ASSERT_SSC_UNION;
1993 assert(is_ANYOF_SYNTHETIC(ssc));
1995 _invlist_union_maybe_complement_2nd(ssc->invlist,
2001 PERL_STATIC_INLINE void
2002 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
2004 const bool invert2nd)
2006 PERL_ARGS_ASSERT_SSC_INTERSECTION;
2008 assert(is_ANYOF_SYNTHETIC(ssc));
2010 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
2016 PERL_STATIC_INLINE void
2017 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
2019 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
2021 assert(is_ANYOF_SYNTHETIC(ssc));
2023 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
2026 PERL_STATIC_INLINE void
2027 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
2029 /* AND just the single code point 'cp' into the SSC 'ssc' */
2031 SV* cp_list = _new_invlist(2);
2033 PERL_ARGS_ASSERT_SSC_CP_AND;
2035 assert(is_ANYOF_SYNTHETIC(ssc));
2037 cp_list = add_cp_to_invlist(cp_list, cp);
2038 ssc_intersection(ssc, cp_list,
2039 FALSE /* Not inverted */
2041 SvREFCNT_dec_NN(cp_list);
2044 PERL_STATIC_INLINE void
2045 S_ssc_clear_locale(regnode_ssc *ssc)
2047 /* Set the SSC 'ssc' to not match any locale things */
2048 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
2050 assert(is_ANYOF_SYNTHETIC(ssc));
2052 ANYOF_POSIXL_ZERO(ssc);
2053 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
2056 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
2059 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
2061 /* The synthetic start class is used to hopefully quickly winnow down
2062 * places where a pattern could start a match in the target string. If it
2063 * doesn't really narrow things down that much, there isn't much point to
2064 * having the overhead of using it. This function uses some very crude
2065 * heuristics to decide if to use the ssc or not.
2067 * It returns TRUE if 'ssc' rules out more than half what it considers to
2068 * be the "likely" possible matches, but of course it doesn't know what the
2069 * actual things being matched are going to be; these are only guesses
2071 * For /l matches, it assumes that the only likely matches are going to be
2072 * in the 0-255 range, uniformly distributed, so half of that is 127
2073 * For /a and /d matches, it assumes that the likely matches will be just
2074 * the ASCII range, so half of that is 63
2075 * For /u and there isn't anything matching above the Latin1 range, it
2076 * assumes that that is the only range likely to be matched, and uses
2077 * half that as the cut-off: 127. If anything matches above Latin1,
2078 * it assumes that all of Unicode could match (uniformly), except for
2079 * non-Unicode code points and things in the General Category "Other"
2080 * (unassigned, private use, surrogates, controls and formats). This
2081 * is a much large number. */
2083 U32 count = 0; /* Running total of number of code points matched by
2085 UV start, end; /* Start and end points of current range in inversion
2086 XXX outdated. UTF-8 locales are common, what about invert? list */
2087 const U32 max_code_points = (LOC)
2089 : (( ! UNI_SEMANTICS
2090 || invlist_highest(ssc->invlist) < 256)
2093 const U32 max_match = max_code_points / 2;
2095 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2097 invlist_iterinit(ssc->invlist);
2098 while (invlist_iternext(ssc->invlist, &start, &end)) {
2099 if (start >= max_code_points) {
2102 end = MIN(end, max_code_points - 1);
2103 count += end - start + 1;
2104 if (count >= max_match) {
2105 invlist_iterfinish(ssc->invlist);
2115 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2117 /* The inversion list in the SSC is marked mortal; now we need a more
2118 * permanent copy, which is stored the same way that is done in a regular
2119 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2122 SV* invlist = invlist_clone(ssc->invlist, NULL);
2124 PERL_ARGS_ASSERT_SSC_FINALIZE;
2126 assert(is_ANYOF_SYNTHETIC(ssc));
2128 /* The code in this file assumes that all but these flags aren't relevant
2129 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2130 * by the time we reach here */
2131 assert(! (ANYOF_FLAGS(ssc)
2132 & ~( ANYOF_COMMON_FLAGS
2133 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2134 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2136 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2138 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
2140 /* Make sure is clone-safe */
2141 ssc->invlist = NULL;
2143 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2144 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2145 OP(ssc) = ANYOFPOSIXL;
2147 else if (RExC_contains_locale) {
2151 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2154 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2155 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2156 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2157 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2158 ? (TRIE_LIST_CUR( idx ) - 1) \
2164 dump_trie(trie,widecharmap,revcharmap)
2165 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2166 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2168 These routines dump out a trie in a somewhat readable format.
2169 The _interim_ variants are used for debugging the interim
2170 tables that are used to generate the final compressed
2171 representation which is what dump_trie expects.
2173 Part of the reason for their existence is to provide a form
2174 of documentation as to how the different representations function.
2179 Dumps the final compressed table form of the trie to Perl_debug_log.
2180 Used for debugging make_trie().
2184 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2185 AV *revcharmap, U32 depth)
2188 SV *sv=sv_newmortal();
2189 int colwidth= widecharmap ? 6 : 4;
2191 GET_RE_DEBUG_FLAGS_DECL;
2193 PERL_ARGS_ASSERT_DUMP_TRIE;
2195 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2196 depth+1, "Match","Base","Ofs" );
2198 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2199 SV ** const tmp = av_fetch( revcharmap, state, 0);
2201 Perl_re_printf( aTHX_ "%*s",
2203 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2204 PL_colors[0], PL_colors[1],
2205 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2206 PERL_PV_ESCAPE_FIRSTCHAR
2211 Perl_re_printf( aTHX_ "\n");
2212 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2214 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2215 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2216 Perl_re_printf( aTHX_ "\n");
2218 for( state = 1 ; state < trie->statecount ; state++ ) {
2219 const U32 base = trie->states[ state ].trans.base;
2221 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2223 if ( trie->states[ state ].wordnum ) {
2224 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2226 Perl_re_printf( aTHX_ "%6s", "" );
2229 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2234 while( ( base + ofs < trie->uniquecharcount ) ||
2235 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2236 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2240 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2242 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2243 if ( ( base + ofs >= trie->uniquecharcount )
2244 && ( base + ofs - trie->uniquecharcount
2246 && trie->trans[ base + ofs
2247 - trie->uniquecharcount ].check == state )
2249 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2250 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2253 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2257 Perl_re_printf( aTHX_ "]");
2260 Perl_re_printf( aTHX_ "\n" );
2262 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2264 for (word=1; word <= trie->wordcount; word++) {
2265 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2266 (int)word, (int)(trie->wordinfo[word].prev),
2267 (int)(trie->wordinfo[word].len));
2269 Perl_re_printf( aTHX_ "\n" );
2272 Dumps a fully constructed but uncompressed trie in list form.
2273 List tries normally only are used for construction when the number of
2274 possible chars (trie->uniquecharcount) is very high.
2275 Used for debugging make_trie().
2278 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2279 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2283 SV *sv=sv_newmortal();
2284 int colwidth= widecharmap ? 6 : 4;
2285 GET_RE_DEBUG_FLAGS_DECL;
2287 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2289 /* print out the table precompression. */
2290 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2292 Perl_re_indentf( aTHX_ "%s",
2293 depth+1, "------:-----+-----------------\n" );
2295 for( state=1 ; state < next_alloc ; state ++ ) {
2298 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2299 depth+1, (UV)state );
2300 if ( ! trie->states[ state ].wordnum ) {
2301 Perl_re_printf( aTHX_ "%5s| ","");
2303 Perl_re_printf( aTHX_ "W%4x| ",
2304 trie->states[ state ].wordnum
2307 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2308 SV ** const tmp = av_fetch( revcharmap,
2309 TRIE_LIST_ITEM(state, charid).forid, 0);
2311 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2313 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2315 PL_colors[0], PL_colors[1],
2316 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2317 | PERL_PV_ESCAPE_FIRSTCHAR
2319 TRIE_LIST_ITEM(state, charid).forid,
2320 (UV)TRIE_LIST_ITEM(state, charid).newstate
2323 Perl_re_printf( aTHX_ "\n%*s| ",
2324 (int)((depth * 2) + 14), "");
2327 Perl_re_printf( aTHX_ "\n");
2332 Dumps a fully constructed but uncompressed trie in table form.
2333 This is the normal DFA style state transition table, with a few
2334 twists to facilitate compression later.
2335 Used for debugging make_trie().
2338 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2339 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2344 SV *sv=sv_newmortal();
2345 int colwidth= widecharmap ? 6 : 4;
2346 GET_RE_DEBUG_FLAGS_DECL;
2348 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2351 print out the table precompression so that we can do a visual check
2352 that they are identical.
2355 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2357 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2358 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2360 Perl_re_printf( aTHX_ "%*s",
2362 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2363 PL_colors[0], PL_colors[1],
2364 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2365 PERL_PV_ESCAPE_FIRSTCHAR
2371 Perl_re_printf( aTHX_ "\n");
2372 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2374 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2375 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2378 Perl_re_printf( aTHX_ "\n" );
2380 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2382 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2384 (UV)TRIE_NODENUM( state ) );
2386 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2387 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2389 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2391 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2393 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2394 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2395 (UV)trie->trans[ state ].check );
2397 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2398 (UV)trie->trans[ state ].check,
2399 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2407 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2408 startbranch: the first branch in the whole branch sequence
2409 first : start branch of sequence of branch-exact nodes.
2410 May be the same as startbranch
2411 last : Thing following the last branch.
2412 May be the same as tail.
2413 tail : item following the branch sequence
2414 count : words in the sequence
2415 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2416 depth : indent depth
2418 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2420 A trie is an N'ary tree where the branches are determined by digital
2421 decomposition of the key. IE, at the root node you look up the 1st character and
2422 follow that branch repeat until you find the end of the branches. Nodes can be
2423 marked as "accepting" meaning they represent a complete word. Eg:
2427 would convert into the following structure. Numbers represent states, letters
2428 following numbers represent valid transitions on the letter from that state, if
2429 the number is in square brackets it represents an accepting state, otherwise it
2430 will be in parenthesis.
2432 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2436 (1) +-i->(6)-+-s->[7]
2438 +-s->(3)-+-h->(4)-+-e->[5]
2440 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2442 This shows that when matching against the string 'hers' we will begin at state 1
2443 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2444 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2445 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2446 single traverse. We store a mapping from accepting to state to which word was
2447 matched, and then when we have multiple possibilities we try to complete the
2448 rest of the regex in the order in which they occurred in the alternation.
2450 The only prior NFA like behaviour that would be changed by the TRIE support is
2451 the silent ignoring of duplicate alternations which are of the form:
2453 / (DUPE|DUPE) X? (?{ ... }) Y /x
2455 Thus EVAL blocks following a trie may be called a different number of times with
2456 and without the optimisation. With the optimisations dupes will be silently
2457 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2458 the following demonstrates:
2460 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2462 which prints out 'word' three times, but
2464 'words'=~/(word|word|word)(?{ print $1 })S/
2466 which doesnt print it out at all. This is due to other optimisations kicking in.
2468 Example of what happens on a structural level:
2470 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2472 1: CURLYM[1] {1,32767}(18)
2483 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2484 and should turn into:
2486 1: CURLYM[1] {1,32767}(18)
2488 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2496 Cases where tail != last would be like /(?foo|bar)baz/:
2506 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2507 and would end up looking like:
2510 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2517 d = uvchr_to_utf8_flags(d, uv, 0);
2519 is the recommended Unicode-aware way of saying
2524 #define TRIE_STORE_REVCHAR(val) \
2527 SV *zlopp = newSV(UTF8_MAXBYTES); \
2528 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2529 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2530 SvCUR_set(zlopp, kapow - flrbbbbb); \
2533 av_push(revcharmap, zlopp); \
2535 char ooooff = (char)val; \
2536 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2540 /* This gets the next character from the input, folding it if not already
2542 #define TRIE_READ_CHAR STMT_START { \
2545 /* if it is UTF then it is either already folded, or does not need \
2547 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2549 else if (folder == PL_fold_latin1) { \
2550 /* This folder implies Unicode rules, which in the range expressible \
2551 * by not UTF is the lower case, with the two exceptions, one of \
2552 * which should have been taken care of before calling this */ \
2553 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2554 uvc = toLOWER_L1(*uc); \
2555 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2558 /* raw data, will be folded later if needed */ \
2566 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2567 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2568 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2569 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2570 TRIE_LIST_LEN( state ) = ging; \
2572 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2573 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2574 TRIE_LIST_CUR( state )++; \
2577 #define TRIE_LIST_NEW(state) STMT_START { \
2578 Newx( trie->states[ state ].trans.list, \
2579 4, reg_trie_trans_le ); \
2580 TRIE_LIST_CUR( state ) = 1; \
2581 TRIE_LIST_LEN( state ) = 4; \
2584 #define TRIE_HANDLE_WORD(state) STMT_START { \
2585 U16 dupe= trie->states[ state ].wordnum; \
2586 regnode * const noper_next = regnext( noper ); \
2589 /* store the word for dumping */ \
2591 if (OP(noper) != NOTHING) \
2592 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2594 tmp = newSVpvn_utf8( "", 0, UTF ); \
2595 av_push( trie_words, tmp ); \
2599 trie->wordinfo[curword].prev = 0; \
2600 trie->wordinfo[curword].len = wordlen; \
2601 trie->wordinfo[curword].accept = state; \
2603 if ( noper_next < tail ) { \
2605 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2607 trie->jump[curword] = (U16)(noper_next - convert); \
2609 jumper = noper_next; \
2611 nextbranch= regnext(cur); \
2615 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2616 /* chain, so that when the bits of chain are later */\
2617 /* linked together, the dups appear in the chain */\
2618 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2619 trie->wordinfo[dupe].prev = curword; \
2621 /* we haven't inserted this word yet. */ \
2622 trie->states[ state ].wordnum = curword; \
2627 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2628 ( ( base + charid >= ucharcount \
2629 && base + charid < ubound \
2630 && state == trie->trans[ base - ucharcount + charid ].check \
2631 && trie->trans[ base - ucharcount + charid ].next ) \
2632 ? trie->trans[ base - ucharcount + charid ].next \
2633 : ( state==1 ? special : 0 ) \
2636 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2638 TRIE_BITMAP_SET(trie, uvc); \
2639 /* store the folded codepoint */ \
2641 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2644 /* store first byte of utf8 representation of */ \
2645 /* variant codepoints */ \
2646 if (! UVCHR_IS_INVARIANT(uvc)) { \
2647 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2652 #define MADE_JUMP_TRIE 2
2653 #define MADE_EXACT_TRIE 4
2656 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2657 regnode *first, regnode *last, regnode *tail,
2658 U32 word_count, U32 flags, U32 depth)
2660 /* first pass, loop through and scan words */
2661 reg_trie_data *trie;
2662 HV *widecharmap = NULL;
2663 AV *revcharmap = newAV();
2669 regnode *jumper = NULL;
2670 regnode *nextbranch = NULL;
2671 regnode *convert = NULL;
2672 U32 *prev_states; /* temp array mapping each state to previous one */
2673 /* we just use folder as a flag in utf8 */
2674 const U8 * folder = NULL;
2676 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2677 * which stands for one trie structure, one hash, optionally followed
2680 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2681 AV *trie_words = NULL;
2682 /* along with revcharmap, this only used during construction but both are
2683 * useful during debugging so we store them in the struct when debugging.
2686 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2687 STRLEN trie_charcount=0;
2689 SV *re_trie_maxbuff;
2690 GET_RE_DEBUG_FLAGS_DECL;
2692 PERL_ARGS_ASSERT_MAKE_TRIE;
2694 PERL_UNUSED_ARG(depth);
2698 case EXACT: case EXACT_ONLY8: case EXACTL: break;
2702 case EXACTFLU8: folder = PL_fold_latin1; break;
2703 case EXACTF: folder = PL_fold; break;
2704 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2707 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2709 trie->startstate = 1;
2710 trie->wordcount = word_count;
2711 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2712 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2713 if (flags == EXACT || flags == EXACT_ONLY8 || flags == EXACTL)
2714 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2715 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2716 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2719 trie_words = newAV();
2722 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
2723 assert(re_trie_maxbuff);
2724 if (!SvIOK(re_trie_maxbuff)) {
2725 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2727 DEBUG_TRIE_COMPILE_r({
2728 Perl_re_indentf( aTHX_
2729 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2731 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2732 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2735 /* Find the node we are going to overwrite */
2736 if ( first == startbranch && OP( last ) != BRANCH ) {
2737 /* whole branch chain */
2740 /* branch sub-chain */
2741 convert = NEXTOPER( first );
2744 /* -- First loop and Setup --
2746 We first traverse the branches and scan each word to determine if it
2747 contains widechars, and how many unique chars there are, this is
2748 important as we have to build a table with at least as many columns as we
2751 We use an array of integers to represent the character codes 0..255
2752 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2753 the native representation of the character value as the key and IV's for
2756 *TODO* If we keep track of how many times each character is used we can
2757 remap the columns so that the table compression later on is more
2758 efficient in terms of memory by ensuring the most common value is in the
2759 middle and the least common are on the outside. IMO this would be better
2760 than a most to least common mapping as theres a decent chance the most
2761 common letter will share a node with the least common, meaning the node
2762 will not be compressible. With a middle is most common approach the worst
2763 case is when we have the least common nodes twice.
2767 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2768 regnode *noper = NEXTOPER( cur );
2772 U32 wordlen = 0; /* required init */
2773 STRLEN minchars = 0;
2774 STRLEN maxchars = 0;
2775 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2778 if (OP(noper) == NOTHING) {
2779 /* skip past a NOTHING at the start of an alternation
2780 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2782 regnode *noper_next= regnext(noper);
2783 if (noper_next < tail)
2788 && ( OP(noper) == flags
2789 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
2790 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
2791 || OP(noper) == EXACTFUP))))
2793 uc= (U8*)STRING(noper);
2794 e= uc + STR_LEN(noper);
2801 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2802 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2803 regardless of encoding */
2804 if (OP( noper ) == EXACTFUP) {
2805 /* false positives are ok, so just set this */
2806 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2810 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2812 TRIE_CHARCOUNT(trie)++;
2815 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2816 * is in effect. Under /i, this character can match itself, or
2817 * anything that folds to it. If not under /i, it can match just
2818 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2819 * all fold to k, and all are single characters. But some folds
2820 * expand to more than one character, so for example LATIN SMALL
2821 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2822 * the string beginning at 'uc' is 'ffi', it could be matched by
2823 * three characters, or just by the one ligature character. (It
2824 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2825 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2826 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2827 * match.) The trie needs to know the minimum and maximum number
2828 * of characters that could match so that it can use size alone to
2829 * quickly reject many match attempts. The max is simple: it is
2830 * the number of folded characters in this branch (since a fold is
2831 * never shorter than what folds to it. */
2835 /* And the min is equal to the max if not under /i (indicated by
2836 * 'folder' being NULL), or there are no multi-character folds. If
2837 * there is a multi-character fold, the min is incremented just
2838 * once, for the character that folds to the sequence. Each
2839 * character in the sequence needs to be added to the list below of
2840 * characters in the trie, but we count only the first towards the
2841 * min number of characters needed. This is done through the
2842 * variable 'foldlen', which is returned by the macros that look
2843 * for these sequences as the number of bytes the sequence
2844 * occupies. Each time through the loop, we decrement 'foldlen' by
2845 * how many bytes the current char occupies. Only when it reaches
2846 * 0 do we increment 'minchars' or look for another multi-character
2848 if (folder == NULL) {
2851 else if (foldlen > 0) {
2852 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2857 /* See if *uc is the beginning of a multi-character fold. If
2858 * so, we decrement the length remaining to look at, to account
2859 * for the current character this iteration. (We can use 'uc'
2860 * instead of the fold returned by TRIE_READ_CHAR because for
2861 * non-UTF, the latin1_safe macro is smart enough to account
2862 * for all the unfolded characters, and because for UTF, the
2863 * string will already have been folded earlier in the
2864 * compilation process */
2866 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2867 foldlen -= UTF8SKIP(uc);
2870 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2875 /* The current character (and any potential folds) should be added
2876 * to the possible matching characters for this position in this
2880 U8 folded= folder[ (U8) uvc ];
2881 if ( !trie->charmap[ folded ] ) {
2882 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2883 TRIE_STORE_REVCHAR( folded );
2886 if ( !trie->charmap[ uvc ] ) {
2887 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2888 TRIE_STORE_REVCHAR( uvc );
2891 /* store the codepoint in the bitmap, and its folded
2893 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2894 set_bit = 0; /* We've done our bit :-) */
2898 /* XXX We could come up with the list of code points that fold
2899 * to this using PL_utf8_foldclosures, except not for
2900 * multi-char folds, as there may be multiple combinations
2901 * there that could work, which needs to wait until runtime to
2902 * resolve (The comment about LIGATURE FFI above is such an
2907 widecharmap = newHV();
2909 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2912 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2914 if ( !SvTRUE( *svpp ) ) {
2915 sv_setiv( *svpp, ++trie->uniquecharcount );
2916 TRIE_STORE_REVCHAR(uvc);
2919 } /* end loop through characters in this branch of the trie */
2921 /* We take the min and max for this branch and combine to find the min
2922 * and max for all branches processed so far */
2923 if( cur == first ) {
2924 trie->minlen = minchars;
2925 trie->maxlen = maxchars;
2926 } else if (minchars < trie->minlen) {
2927 trie->minlen = minchars;
2928 } else if (maxchars > trie->maxlen) {
2929 trie->maxlen = maxchars;
2931 } /* end first pass */
2932 DEBUG_TRIE_COMPILE_r(
2933 Perl_re_indentf( aTHX_
2934 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2936 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2937 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2938 (int)trie->minlen, (int)trie->maxlen )
2942 We now know what we are dealing with in terms of unique chars and
2943 string sizes so we can calculate how much memory a naive
2944 representation using a flat table will take. If it's over a reasonable
2945 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2946 conservative but potentially much slower representation using an array
2949 At the end we convert both representations into the same compressed
2950 form that will be used in regexec.c for matching with. The latter
2951 is a form that cannot be used to construct with but has memory
2952 properties similar to the list form and access properties similar
2953 to the table form making it both suitable for fast searches and
2954 small enough that its feasable to store for the duration of a program.
2956 See the comment in the code where the compressed table is produced
2957 inplace from the flat tabe representation for an explanation of how
2958 the compression works.
2963 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2966 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2967 > SvIV(re_trie_maxbuff) )
2970 Second Pass -- Array Of Lists Representation
2972 Each state will be represented by a list of charid:state records
2973 (reg_trie_trans_le) the first such element holds the CUR and LEN
2974 points of the allocated array. (See defines above).
2976 We build the initial structure using the lists, and then convert
2977 it into the compressed table form which allows faster lookups
2978 (but cant be modified once converted).
2981 STRLEN transcount = 1;
2983 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2986 trie->states = (reg_trie_state *)
2987 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2988 sizeof(reg_trie_state) );
2992 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2994 regnode *noper = NEXTOPER( cur );
2995 U32 state = 1; /* required init */
2996 U16 charid = 0; /* sanity init */
2997 U32 wordlen = 0; /* required init */
2999 if (OP(noper) == NOTHING) {
3000 regnode *noper_next= regnext(noper);
3001 if (noper_next < tail)
3006 && ( OP(noper) == flags
3007 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
3008 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
3009 || OP(noper) == EXACTFUP))))
3011 const U8 *uc= (U8*)STRING(noper);
3012 const U8 *e= uc + STR_LEN(noper);
3014 for ( ; uc < e ; uc += len ) {
3019 charid = trie->charmap[ uvc ];
3021 SV** const svpp = hv_fetch( widecharmap,
3028 charid=(U16)SvIV( *svpp );
3031 /* charid is now 0 if we dont know the char read, or
3032 * nonzero if we do */
3039 if ( !trie->states[ state ].trans.list ) {
3040 TRIE_LIST_NEW( state );
3043 check <= TRIE_LIST_USED( state );
3046 if ( TRIE_LIST_ITEM( state, check ).forid
3049 newstate = TRIE_LIST_ITEM( state, check ).newstate;
3054 newstate = next_alloc++;
3055 prev_states[newstate] = state;
3056 TRIE_LIST_PUSH( state, charid, newstate );
3061 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3065 TRIE_HANDLE_WORD(state);
3067 } /* end second pass */
3069 /* next alloc is the NEXT state to be allocated */
3070 trie->statecount = next_alloc;
3071 trie->states = (reg_trie_state *)
3072 PerlMemShared_realloc( trie->states,
3074 * sizeof(reg_trie_state) );
3076 /* and now dump it out before we compress it */
3077 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3078 revcharmap, next_alloc,
3082 trie->trans = (reg_trie_trans *)
3083 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3090 for( state=1 ; state < next_alloc ; state ++ ) {
3094 DEBUG_TRIE_COMPILE_MORE_r(
3095 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
3099 if (trie->states[state].trans.list) {
3100 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3104 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3105 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3106 if ( forid < minid ) {
3108 } else if ( forid > maxid ) {
3112 if ( transcount < tp + maxid - minid + 1) {
3114 trie->trans = (reg_trie_trans *)
3115 PerlMemShared_realloc( trie->trans,
3117 * sizeof(reg_trie_trans) );
3118 Zero( trie->trans + (transcount / 2),
3122 base = trie->uniquecharcount + tp - minid;
3123 if ( maxid == minid ) {
3125 for ( ; zp < tp ; zp++ ) {
3126 if ( ! trie->trans[ zp ].next ) {
3127 base = trie->uniquecharcount + zp - minid;
3128 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3130 trie->trans[ zp ].check = state;
3136 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3138 trie->trans[ tp ].check = state;
3143 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3144 const U32 tid = base
3145 - trie->uniquecharcount
3146 + TRIE_LIST_ITEM( state, idx ).forid;
3147 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3149 trie->trans[ tid ].check = state;
3151 tp += ( maxid - minid + 1 );
3153 Safefree(trie->states[ state ].trans.list);
3156 DEBUG_TRIE_COMPILE_MORE_r(
3157 Perl_re_printf( aTHX_ " base: %d\n",base);
3160 trie->states[ state ].trans.base=base;
3162 trie->lasttrans = tp + 1;
3166 Second Pass -- Flat Table Representation.
3168 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3169 each. We know that we will need Charcount+1 trans at most to store
3170 the data (one row per char at worst case) So we preallocate both
3171 structures assuming worst case.
3173 We then construct the trie using only the .next slots of the entry
3176 We use the .check field of the first entry of the node temporarily
3177 to make compression both faster and easier by keeping track of how
3178 many non zero fields are in the node.
3180 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3183 There are two terms at use here: state as a TRIE_NODEIDX() which is
3184 a number representing the first entry of the node, and state as a
3185 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3186 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3187 if there are 2 entrys per node. eg:
3195 The table is internally in the right hand, idx form. However as we
3196 also have to deal with the states array which is indexed by nodenum
3197 we have to use TRIE_NODENUM() to convert.
3200 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3203 trie->trans = (reg_trie_trans *)
3204 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3205 * trie->uniquecharcount + 1,
3206 sizeof(reg_trie_trans) );
3207 trie->states = (reg_trie_state *)
3208 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3209 sizeof(reg_trie_state) );
3210 next_alloc = trie->uniquecharcount + 1;
3213 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3215 regnode *noper = NEXTOPER( cur );
3217 U32 state = 1; /* required init */
3219 U16 charid = 0; /* sanity init */
3220 U32 accept_state = 0; /* sanity init */
3222 U32 wordlen = 0; /* required init */
3224 if (OP(noper) == NOTHING) {
3225 regnode *noper_next= regnext(noper);
3226 if (noper_next < tail)
3231 && ( OP(noper) == flags
3232 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
3233 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
3234 || OP(noper) == EXACTFUP))))
3236 const U8 *uc= (U8*)STRING(noper);
3237 const U8 *e= uc + STR_LEN(noper);
3239 for ( ; uc < e ; uc += len ) {
3244 charid = trie->charmap[ uvc ];
3246 SV* const * const svpp = hv_fetch( widecharmap,
3250 charid = svpp ? (U16)SvIV(*svpp) : 0;
3254 if ( !trie->trans[ state + charid ].next ) {
3255 trie->trans[ state + charid ].next = next_alloc;
3256 trie->trans[ state ].check++;
3257 prev_states[TRIE_NODENUM(next_alloc)]
3258 = TRIE_NODENUM(state);
3259 next_alloc += trie->uniquecharcount;
3261 state = trie->trans[ state + charid ].next;
3263 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3265 /* charid is now 0 if we dont know the char read, or
3266 * nonzero if we do */
3269 accept_state = TRIE_NODENUM( state );
3270 TRIE_HANDLE_WORD(accept_state);
3272 } /* end second pass */
3274 /* and now dump it out before we compress it */
3275 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3277 next_alloc, depth+1));
3281 * Inplace compress the table.*
3283 For sparse data sets the table constructed by the trie algorithm will
3284 be mostly 0/FAIL transitions or to put it another way mostly empty.
3285 (Note that leaf nodes will not contain any transitions.)
3287 This algorithm compresses the tables by eliminating most such
3288 transitions, at the cost of a modest bit of extra work during lookup:
3290 - Each states[] entry contains a .base field which indicates the
3291 index in the state[] array wheres its transition data is stored.
3293 - If .base is 0 there are no valid transitions from that node.
3295 - If .base is nonzero then charid is added to it to find an entry in
3298 -If trans[states[state].base+charid].check!=state then the
3299 transition is taken to be a 0/Fail transition. Thus if there are fail
3300 transitions at the front of the node then the .base offset will point
3301 somewhere inside the previous nodes data (or maybe even into a node
3302 even earlier), but the .check field determines if the transition is
3306 The following process inplace converts the table to the compressed
3307 table: We first do not compress the root node 1,and mark all its
3308 .check pointers as 1 and set its .base pointer as 1 as well. This
3309 allows us to do a DFA construction from the compressed table later,
3310 and ensures that any .base pointers we calculate later are greater
3313 - We set 'pos' to indicate the first entry of the second node.
3315 - We then iterate over the columns of the node, finding the first and
3316 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3317 and set the .check pointers accordingly, and advance pos
3318 appropriately and repreat for the next node. Note that when we copy
3319 the next pointers we have to convert them from the original
3320 NODEIDX form to NODENUM form as the former is not valid post
3323 - If a node has no transitions used we mark its base as 0 and do not
3324 advance the pos pointer.
3326 - If a node only has one transition we use a second pointer into the
3327 structure to fill in allocated fail transitions from other states.
3328 This pointer is independent of the main pointer and scans forward
3329 looking for null transitions that are allocated to a state. When it
3330 finds one it writes the single transition into the "hole". If the
3331 pointer doesnt find one the single transition is appended as normal.
3333 - Once compressed we can Renew/realloc the structures to release the
3336 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3337 specifically Fig 3.47 and the associated pseudocode.
3341 const U32 laststate = TRIE_NODENUM( next_alloc );
3344 trie->statecount = laststate;
3346 for ( state = 1 ; state < laststate ; state++ ) {
3348 const U32 stateidx = TRIE_NODEIDX( state );
3349 const U32 o_used = trie->trans[ stateidx ].check;
3350 U32 used = trie->trans[ stateidx ].check;
3351 trie->trans[ stateidx ].check = 0;
3354 used && charid < trie->uniquecharcount;
3357 if ( flag || trie->trans[ stateidx + charid ].next ) {
3358 if ( trie->trans[ stateidx + charid ].next ) {
3360 for ( ; zp < pos ; zp++ ) {
3361 if ( ! trie->trans[ zp ].next ) {
3365 trie->states[ state ].trans.base
3367 + trie->uniquecharcount
3369 trie->trans[ zp ].next
3370 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3372 trie->trans[ zp ].check = state;
3373 if ( ++zp > pos ) pos = zp;
3380 trie->states[ state ].trans.base
3381 = pos + trie->uniquecharcount - charid ;
3383 trie->trans[ pos ].next
3384 = SAFE_TRIE_NODENUM(
3385 trie->trans[ stateidx + charid ].next );
3386 trie->trans[ pos ].check = state;
3391 trie->lasttrans = pos + 1;
3392 trie->states = (reg_trie_state *)
3393 PerlMemShared_realloc( trie->states, laststate
3394 * sizeof(reg_trie_state) );
3395 DEBUG_TRIE_COMPILE_MORE_r(
3396 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3398 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3402 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3405 } /* end table compress */
3407 DEBUG_TRIE_COMPILE_MORE_r(
3408 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3410 (UV)trie->statecount,
3411 (UV)trie->lasttrans)
3413 /* resize the trans array to remove unused space */
3414 trie->trans = (reg_trie_trans *)
3415 PerlMemShared_realloc( trie->trans, trie->lasttrans
3416 * sizeof(reg_trie_trans) );
3418 { /* Modify the program and insert the new TRIE node */
3419 U8 nodetype =(U8)(flags & 0xFF);
3423 regnode *optimize = NULL;
3424 #ifdef RE_TRACK_PATTERN_OFFSETS
3427 U32 mjd_nodelen = 0;
3428 #endif /* RE_TRACK_PATTERN_OFFSETS */
3429 #endif /* DEBUGGING */
3431 This means we convert either the first branch or the first Exact,
3432 depending on whether the thing following (in 'last') is a branch
3433 or not and whther first is the startbranch (ie is it a sub part of
3434 the alternation or is it the whole thing.)
3435 Assuming its a sub part we convert the EXACT otherwise we convert
3436 the whole branch sequence, including the first.
3438 /* Find the node we are going to overwrite */
3439 if ( first != startbranch || OP( last ) == BRANCH ) {
3440 /* branch sub-chain */
3441 NEXT_OFF( first ) = (U16)(last - first);
3442 #ifdef RE_TRACK_PATTERN_OFFSETS
3444 mjd_offset= Node_Offset((convert));
3445 mjd_nodelen= Node_Length((convert));
3448 /* whole branch chain */
3450 #ifdef RE_TRACK_PATTERN_OFFSETS
3453 const regnode *nop = NEXTOPER( convert );
3454 mjd_offset= Node_Offset((nop));
3455 mjd_nodelen= Node_Length((nop));
3459 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3461 (UV)mjd_offset, (UV)mjd_nodelen)
3464 /* But first we check to see if there is a common prefix we can
3465 split out as an EXACT and put in front of the TRIE node. */
3466 trie->startstate= 1;
3467 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3468 /* we want to find the first state that has more than
3469 * one transition, if that state is not the first state
3470 * then we have a common prefix which we can remove.
3473 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3475 I32 first_ofs = -1; /* keeps track of the ofs of the first
3476 transition, -1 means none */
3478 const U32 base = trie->states[ state ].trans.base;
3480 /* does this state terminate an alternation? */
3481 if ( trie->states[state].wordnum )
3484 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3485 if ( ( base + ofs >= trie->uniquecharcount ) &&
3486 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3487 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3489 if ( ++count > 1 ) {
3490 /* we have more than one transition */
3493 /* if this is the first state there is no common prefix
3494 * to extract, so we can exit */
3495 if ( state == 1 ) break;
3496 tmp = av_fetch( revcharmap, ofs, 0);
3497 ch = (U8*)SvPV_nolen_const( *tmp );
3499 /* if we are on count 2 then we need to initialize the
3500 * bitmap, and store the previous char if there was one
3503 /* clear the bitmap */
3504 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3506 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3509 if (first_ofs >= 0) {
3510 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3511 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3513 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3515 Perl_re_printf( aTHX_ "%s", (char*)ch)
3519 /* store the current firstchar in the bitmap */
3520 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3521 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3527 /* This state has only one transition, its transition is part
3528 * of a common prefix - we need to concatenate the char it
3529 * represents to what we have so far. */
3530 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3532 char *ch = SvPV( *tmp, len );
3534 SV *sv=sv_newmortal();
3535 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3537 (UV)state, (UV)first_ofs,
3538 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3539 PL_colors[0], PL_colors[1],
3540 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3541 PERL_PV_ESCAPE_FIRSTCHAR
3546 OP( convert ) = nodetype;
3547 str=STRING(convert);
3550 STR_LEN(convert) += len;
3556 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3561 trie->prefixlen = (state-1);
3563 regnode *n = convert+NODE_SZ_STR(convert);
3564 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3565 trie->startstate = state;
3566 trie->minlen -= (state - 1);
3567 trie->maxlen -= (state - 1);
3569 /* At least the UNICOS C compiler choked on this
3570 * being argument to DEBUG_r(), so let's just have
3573 #ifdef PERL_EXT_RE_BUILD
3579 regnode *fix = convert;
3580 U32 word = trie->wordcount;
3581 #ifdef RE_TRACK_PATTERN_OFFSETS
3584 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3585 while( ++fix < n ) {
3586 Set_Node_Offset_Length(fix, 0, 0);
3589 SV ** const tmp = av_fetch( trie_words, word, 0 );
3591 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3592 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3594 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3602 NEXT_OFF(convert) = (U16)(tail - convert);
3603 DEBUG_r(optimize= n);
3609 if ( trie->maxlen ) {
3610 NEXT_OFF( convert ) = (U16)(tail - convert);
3611 ARG_SET( convert, data_slot );
3612 /* Store the offset to the first unabsorbed branch in
3613 jump[0], which is otherwise unused by the jump logic.
3614 We use this when dumping a trie and during optimisation. */
3616 trie->jump[0] = (U16)(nextbranch - convert);
3618 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3619 * and there is a bitmap
3620 * and the first "jump target" node we found leaves enough room
3621 * then convert the TRIE node into a TRIEC node, with the bitmap
3622 * embedded inline in the opcode - this is hypothetically faster.
3624 if ( !trie->states[trie->startstate].wordnum
3626 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3628 OP( convert ) = TRIEC;
3629 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3630 PerlMemShared_free(trie->bitmap);
3633 OP( convert ) = TRIE;
3635 /* store the type in the flags */
3636 convert->flags = nodetype;
3640 + regarglen[ OP( convert ) ];
3642 /* XXX We really should free up the resource in trie now,
3643 as we won't use them - (which resources?) dmq */
3645 /* needed for dumping*/
3646 DEBUG_r(if (optimize) {
3647 regnode *opt = convert;
3649 while ( ++opt < optimize) {
3650 Set_Node_Offset_Length(opt, 0, 0);
3653 Try to clean up some of the debris left after the
3656 while( optimize < jumper ) {
3657 Track_Code( mjd_nodelen += Node_Length((optimize)); );
3658 OP( optimize ) = OPTIMIZED;
3659 Set_Node_Offset_Length(optimize, 0, 0);
3662 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3664 } /* end node insert */
3666 /* Finish populating the prev field of the wordinfo array. Walk back
3667 * from each accept state until we find another accept state, and if
3668 * so, point the first word's .prev field at the second word. If the
3669 * second already has a .prev field set, stop now. This will be the
3670 * case either if we've already processed that word's accept state,
3671 * or that state had multiple words, and the overspill words were
3672 * already linked up earlier.
3679 for (word=1; word <= trie->wordcount; word++) {
3681 if (trie->wordinfo[word].prev)
3683 state = trie->wordinfo[word].accept;
3685 state = prev_states[state];
3688 prev = trie->states[state].wordnum;
3692 trie->wordinfo[word].prev = prev;
3694 Safefree(prev_states);
3698 /* and now dump out the compressed format */
3699 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3701 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3703 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3704 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3706 SvREFCNT_dec_NN(revcharmap);
3710 : trie->startstate>1
3716 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3718 /* The Trie is constructed and compressed now so we can build a fail array if
3721 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3723 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3727 We find the fail state for each state in the trie, this state is the longest
3728 proper suffix of the current state's 'word' that is also a proper prefix of
3729 another word in our trie. State 1 represents the word '' and is thus the
3730 default fail state. This allows the DFA not to have to restart after its
3731 tried and failed a word at a given point, it simply continues as though it
3732 had been matching the other word in the first place.
3734 'abcdgu'=~/abcdefg|cdgu/
3735 When we get to 'd' we are still matching the first word, we would encounter
3736 'g' which would fail, which would bring us to the state representing 'd' in
3737 the second word where we would try 'g' and succeed, proceeding to match
3740 /* add a fail transition */
3741 const U32 trie_offset = ARG(source);
3742 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3744 const U32 ucharcount = trie->uniquecharcount;
3745 const U32 numstates = trie->statecount;
3746 const U32 ubound = trie->lasttrans + ucharcount;
3750 U32 base = trie->states[ 1 ].trans.base;
3753 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3755 GET_RE_DEBUG_FLAGS_DECL;
3757 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3758 PERL_UNUSED_CONTEXT;
3760 PERL_UNUSED_ARG(depth);
3763 if ( OP(source) == TRIE ) {
3764 struct regnode_1 *op = (struct regnode_1 *)
3765 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3766 StructCopy(source, op, struct regnode_1);
3767 stclass = (regnode *)op;
3769 struct regnode_charclass *op = (struct regnode_charclass *)
3770 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3771 StructCopy(source, op, struct regnode_charclass);
3772 stclass = (regnode *)op;
3774 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3776 ARG_SET( stclass, data_slot );
3777 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3778 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3779 aho->trie=trie_offset;
3780 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3781 Copy( trie->states, aho->states, numstates, reg_trie_state );
3782 Newx( q, numstates, U32);
3783 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3786 /* initialize fail[0..1] to be 1 so that we always have
3787 a valid final fail state */
3788 fail[ 0 ] = fail[ 1 ] = 1;
3790 for ( charid = 0; charid < ucharcount ; charid++ ) {
3791 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3793 q[ q_write ] = newstate;
3794 /* set to point at the root */
3795 fail[ q[ q_write++ ] ]=1;
3798 while ( q_read < q_write) {
3799 const U32 cur = q[ q_read++ % numstates ];
3800 base = trie->states[ cur ].trans.base;
3802 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3803 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3805 U32 fail_state = cur;
3808 fail_state = fail[ fail_state ];
3809 fail_base = aho->states[ fail_state ].trans.base;
3810 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3812 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3813 fail[ ch_state ] = fail_state;
3814 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3816 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3818 q[ q_write++ % numstates] = ch_state;
3822 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3823 when we fail in state 1, this allows us to use the
3824 charclass scan to find a valid start char. This is based on the principle
3825 that theres a good chance the string being searched contains lots of stuff
3826 that cant be a start char.
3828 fail[ 0 ] = fail[ 1 ] = 0;
3829 DEBUG_TRIE_COMPILE_r({
3830 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3831 depth, (UV)numstates
3833 for( q_read=1; q_read<numstates; q_read++ ) {
3834 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3836 Perl_re_printf( aTHX_ "\n");
3839 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3844 /* The below joins as many adjacent EXACTish nodes as possible into a single
3845 * one. The regop may be changed if the node(s) contain certain sequences that
3846 * require special handling. The joining is only done if:
3847 * 1) there is room in the current conglomerated node to entirely contain the
3849 * 2) they are compatible node types
3851 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3852 * these get optimized out
3854 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3855 * as possible, even if that means splitting an existing node so that its first
3856 * part is moved to the preceeding node. This would maximise the efficiency of
3857 * memEQ during matching.
3859 * If a node is to match under /i (folded), the number of characters it matches
3860 * can be different than its character length if it contains a multi-character
3861 * fold. *min_subtract is set to the total delta number of characters of the
3864 * And *unfolded_multi_char is set to indicate whether or not the node contains
3865 * an unfolded multi-char fold. This happens when it won't be known until
3866 * runtime whether the fold is valid or not; namely
3867 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3868 * target string being matched against turns out to be UTF-8 is that fold
3870 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3872 * (Multi-char folds whose components are all above the Latin1 range are not
3873 * run-time locale dependent, and have already been folded by the time this
3874 * function is called.)
3876 * This is as good a place as any to discuss the design of handling these
3877 * multi-character fold sequences. It's been wrong in Perl for a very long
3878 * time. There are three code points in Unicode whose multi-character folds
3879 * were long ago discovered to mess things up. The previous designs for
3880 * dealing with these involved assigning a special node for them. This
3881 * approach doesn't always work, as evidenced by this example:
3882 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3883 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3884 * would match just the \xDF, it won't be able to handle the case where a
3885 * successful match would have to cross the node's boundary. The new approach
3886 * that hopefully generally solves the problem generates an EXACTFUP node
3887 * that is "sss" in this case.
3889 * It turns out that there are problems with all multi-character folds, and not
3890 * just these three. Now the code is general, for all such cases. The
3891 * approach taken is:
3892 * 1) This routine examines each EXACTFish node that could contain multi-
3893 * character folded sequences. Since a single character can fold into
3894 * such a sequence, the minimum match length for this node is less than
3895 * the number of characters in the node. This routine returns in
3896 * *min_subtract how many characters to subtract from the the actual
3897 * length of the string to get a real minimum match length; it is 0 if
3898 * there are no multi-char foldeds. This delta is used by the caller to
3899 * adjust the min length of the match, and the delta between min and max,
3900 * so that the optimizer doesn't reject these possibilities based on size
3903 * 2) For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
3904 * under /u, we fold it to 'ss' in regatom(), and in this routine, after
3905 * joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
3906 * EXACTFU nodes. The node type of such nodes is then changed to
3907 * EXACTFUP, indicating it is problematic, and needs careful handling.
3908 * (The procedures in step 1) above are sufficient to handle this case in
3909 * UTF-8 encoded nodes.) The reason this is problematic is that this is
3910 * the only case where there is a possible fold length change in non-UTF-8
3911 * patterns. By reserving a special node type for problematic cases, the
3912 * far more common regular EXACTFU nodes can be processed faster.
3913 * regexec.c takes advantage of this.
3915 * EXACTFUP has been created as a grab-bag for (hopefully uncommon)
3916 * problematic cases. These all only occur when the pattern is not
3917 * UTF-8. In addition to the 'ss' sequence where there is a possible fold
3918 * length change, it handles the situation where the string cannot be
3919 * entirely folded. The strings in an EXACTFish node are folded as much
3920 * as possible during compilation in regcomp.c. This saves effort in
3921 * regex matching. By using an EXACTFUP node when it is not possible to
3922 * fully fold at compile time, regexec.c can know that everything in an
3923 * EXACTFU node is folded, so folding can be skipped at runtime. The only
3924 * case where folding in EXACTFU nodes can't be done at compile time is
3925 * the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8. This
3926 * is because its fold requires UTF-8 to represent. Thus EXACTFUP nodes
3927 * handle two very different cases. Alternatively, there could have been
3928 * a node type where there are length changes, one for unfolded, and one
3929 * for both. If yet another special case needed to be created, the number
3930 * of required node types would have to go to 7. khw figures that even
3931 * though there are plenty of node types to spare, that the maintenance
3932 * cost wasn't worth the small speedup of doing it that way, especially
3933 * since he thinks the MICRO SIGN is rarely encountered in practice.
3935 * There are other cases where folding isn't done at compile time, but
3936 * none of them are under /u, and hence not for EXACTFU nodes. The folds
3937 * in EXACTFL nodes aren't known until runtime, and vary as the locale
3938 * changes. Some folds in EXACTF depend on if the runtime target string
3939 * is UTF-8 or not. (regatom() will create an EXACTFU node even under /di
3940 * when no fold in it depends on the UTF-8ness of the target string.)
3942 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3943 * validity of the fold won't be known until runtime, and so must remain
3944 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3945 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3946 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3947 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3948 * The reason this is a problem is that the optimizer part of regexec.c
3949 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3950 * that a character in the pattern corresponds to at most a single
3951 * character in the target string. (And I do mean character, and not byte
3952 * here, unlike other parts of the documentation that have never been
3953 * updated to account for multibyte Unicode.) Sharp s in EXACTF and
3954 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3955 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3956 * EXACTFL nodes, violate the assumption, and they are the only instances
3957 * where it is violated. I'm reluctant to try to change the assumption,
3958 * as the code involved is impenetrable to me (khw), so instead the code
3959 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3960 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3961 * boolean indicating whether or not the node contains such a fold. When
3962 * it is true, the caller sets a flag that later causes the optimizer in
3963 * this file to not set values for the floating and fixed string lengths,
3964 * and thus avoids the optimizer code in regexec.c that makes the invalid
3965 * assumption. Thus, there is no optimization based on string lengths for
3966 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3967 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3968 * assumption is wrong only in these cases is that all other non-UTF-8
3969 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3970 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3971 * EXACTF nodes because we don't know at compile time if it actually
3972 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3973 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it