This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Fix lack of closing ] in link.
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
1129b882
NC
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
4ac71550
TC
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
84d4ea48
JH
16 */
17
166f8a29
DM
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
84d4ea48
JH
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
42165d27
VK
33#if defined(UNDER_CE)
34/* looks like 'small' is reserved word for WINCE (or somesuch)*/
35#define small xsmall
36#endif
37
84d4ea48
JH
38#define sv_cmp_static Perl_sv_cmp
39#define sv_cmp_locale_static Perl_sv_cmp_locale
40
c53fc8a6
JH
41#ifndef SMALLSORT
42#define SMALLSORT (200)
43#endif
44
7b9ef140
RH
45/* Flags for qsortsv and mergesortsv */
46#define SORTf_DESC 1
47#define SORTf_STABLE 2
afe59f35 48#define SORTf_UNSTABLE 8
7b9ef140 49
84d4ea48
JH
50/*
51 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
52 *
53 * The original code was written in conjunction with BSD Computer Software
54 * Research Group at University of California, Berkeley.
55 *
393db44d
JL
56 * See also: "Optimistic Sorting and Information Theoretic Complexity"
57 * Peter McIlroy
58 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
59 * pp 467-474, Austin, Texas, 25-27 January 1993.
84d4ea48 60 *
393db44d 61 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
84d4ea48
JH
62 *
63 * The code can be distributed under the same terms as Perl itself.
64 *
65 */
66
84d4ea48
JH
67
68typedef char * aptr; /* pointer for arithmetic on sizes */
69typedef SV * gptr; /* pointers in our lists */
70
71/* Binary merge internal sort, with a few special mods
72** for the special perl environment it now finds itself in.
73**
74** Things that were once options have been hotwired
75** to values suitable for this use. In particular, we'll always
76** initialize looking for natural runs, we'll always produce stable
77** output, and we'll always do Peter McIlroy's binary merge.
78*/
79
80/* Pointer types for arithmetic and storage and convenience casts */
81
82#define APTR(P) ((aptr)(P))
83#define GPTP(P) ((gptr *)(P))
84#define GPPP(P) ((gptr **)(P))
85
86
87/* byte offset from pointer P to (larger) pointer Q */
88#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
89
90#define PSIZE sizeof(gptr)
91
92/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
93
94#ifdef PSHIFT
95#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
96#define PNBYTE(N) ((N) << (PSHIFT))
97#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
98#else
99/* Leave optimization to compiler */
100#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
101#define PNBYTE(N) ((N) * (PSIZE))
102#define PINDEX(P, N) (GPTP(P) + (N))
103#endif
104
105/* Pointer into other corresponding to pointer into this */
106#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
107
108#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
109
110
486ec47a 111/* Runs are identified by a pointer in the auxiliary list.
84d4ea48
JH
112** The pointer is at the start of the list,
113** and it points to the start of the next list.
114** NEXT is used as an lvalue, too.
115*/
116
117#define NEXT(P) (*GPPP(P))
118
119
120/* PTHRESH is the minimum number of pairs with the same sense to justify
121** checking for a run and extending it. Note that PTHRESH counts PAIRS,
122** not just elements, so PTHRESH == 8 means a run of 16.
123*/
124
125#define PTHRESH (8)
126
127/* RTHRESH is the number of elements in a run that must compare low
128** to the low element from the opposing run before we justify
129** doing a binary rampup instead of single stepping.
130** In random input, N in a row low should only happen with
131** probability 2^(1-N), so we can risk that we are dealing
132** with orderly input without paying much when we aren't.
133*/
134
135#define RTHRESH (6)
136
137
138/*
139** Overview of algorithm and variables.
140** The array of elements at list1 will be organized into runs of length 2,
141** or runs of length >= 2 * PTHRESH. We only try to form long runs when
142** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
143**
144** Unless otherwise specified, pair pointers address the first of two elements.
145**
a0288114
AL
146** b and b+1 are a pair that compare with sense "sense".
147** b is the "bottom" of adjacent pairs that might form a longer run.
84d4ea48
JH
148**
149** p2 parallels b in the list2 array, where runs are defined by
150** a pointer chain.
151**
a0288114 152** t represents the "top" of the adjacent pairs that might extend
84d4ea48
JH
153** the run beginning at b. Usually, t addresses a pair
154** that compares with opposite sense from (b,b+1).
155** However, it may also address a singleton element at the end of list1,
a0288114 156** or it may be equal to "last", the first element beyond list1.
84d4ea48
JH
157**
158** r addresses the Nth pair following b. If this would be beyond t,
159** we back it off to t. Only when r is less than t do we consider the
160** run long enough to consider checking.
161**
162** q addresses a pair such that the pairs at b through q already form a run.
163** Often, q will equal b, indicating we only are sure of the pair itself.
164** However, a search on the previous cycle may have revealed a longer run,
165** so q may be greater than b.
166**
167** p is used to work back from a candidate r, trying to reach q,
168** which would mean b through r would be a run. If we discover such a run,
169** we start q at r and try to push it further towards t.
170** If b through r is NOT a run, we detect the wrong order at (p-1,p).
171** In any event, after the check (if any), we have two main cases.
172**
173** 1) Short run. b <= q < p <= r <= t.
174** b through q is a run (perhaps trivial)
175** q through p are uninteresting pairs
176** p through r is a run
177**
178** 2) Long run. b < r <= q < t.
179** b through q is a run (of length >= 2 * PTHRESH)
180**
181** Note that degenerate cases are not only possible, but likely.
182** For example, if the pair following b compares with opposite sense,
183** then b == q < p == r == t.
184*/
185
186
957d8989 187static IV
d4c19fe8 188dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
84d4ea48 189{
957d8989 190 I32 sense;
eb578fdb
KW
191 gptr *b, *p, *q, *t, *p2;
192 gptr *last, *r;
957d8989 193 IV runs = 0;
84d4ea48
JH
194
195 b = list1;
196 last = PINDEX(b, nmemb);
197 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
198 for (p2 = list2; b < last; ) {
199 /* We just started, or just reversed sense.
200 ** Set t at end of pairs with the prevailing sense.
201 */
202 for (p = b+2, t = p; ++p < last; t = ++p) {
203 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
204 }
205 q = b;
206 /* Having laid out the playing field, look for long runs */
207 do {
208 p = r = b + (2 * PTHRESH);
209 if (r >= t) p = r = t; /* too short to care about */
210 else {
211 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
47127b64 212 ((p -= 2) > q)) {}
84d4ea48
JH
213 if (p <= q) {
214 /* b through r is a (long) run.
215 ** Extend it as far as possible.
216 */
217 p = q = r;
218 while (((p += 2) < t) &&
219 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
220 r = p = q + 2; /* no simple pairs, no after-run */
221 }
222 }
223 if (q > b) { /* run of greater than 2 at b */
d4c19fe8
AL
224 gptr *savep = p;
225
84d4ea48
JH
226 p = q += 2;
227 /* pick up singleton, if possible */
228 if ((p == t) &&
229 ((t + 1) == last) &&
230 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
231 savep = r = p = q = last;
957d8989 232 p2 = NEXT(p2) = p2 + (p - b); ++runs;
d4c19fe8
AL
233 if (sense)
234 while (b < --p) {
235 const gptr c = *b;
236 *b++ = *p;
237 *p = c;
238 }
84d4ea48
JH
239 p = savep;
240 }
241 while (q < p) { /* simple pairs */
957d8989 242 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48 243 if (sense) {
d4c19fe8 244 const gptr c = *q++;
84d4ea48
JH
245 *(q-1) = *q;
246 *q++ = c;
247 } else q += 2;
248 }
249 if (((b = p) == t) && ((t+1) == last)) {
957d8989 250 NEXT(p2) = p2 + 1; ++runs;
84d4ea48
JH
251 b++;
252 }
253 q = r;
254 } while (b < t);
255 sense = !sense;
256 }
957d8989 257 return runs;
84d4ea48
JH
258}
259
260
3fe0b9a9 261/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 262 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 263 * on others. The most likely explanation was platform-specific
957d8989
JL
264 * differences in cache sizes and relative speeds.
265 *
266 * The quicksort divide-and-conquer algorithm guarantees that, as the
267 * problem is subdivided into smaller and smaller parts, the parts
268 * fit into smaller (and faster) caches. So it doesn't matter how
269 * many levels of cache exist, quicksort will "find" them, and,
e62b3022 270 * as long as smaller is faster, take advantage of them.
957d8989 271 *
3fe0b9a9 272 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
273 * Suppose we have five runs (each typically of length 2 after dynprep).
274 *
275 * pass base aux
276 * 0 1 2 3 4 5
277 * 1 12 34 5
278 * 2 1234 5
279 * 3 12345
280 * 4 12345
281 *
282 * Adjacent pairs are merged in "grand sweeps" through the input.
283 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
284 * runs 3 and 4 are merged and the runs from run 5 have been copied.
285 * The only cache that matters is one large enough to hold *all* the input.
286 * On some platforms, this may be many times slower than smaller caches.
287 *
288 * The following pseudo-code uses the same basic merge algorithm,
289 * but in a divide-and-conquer way.
290 *
291 * # merge $runs runs at offset $offset of list $list1 into $list2.
292 * # all unmerged runs ($runs == 1) originate in list $base.
293 * sub mgsort2 {
294 * my ($offset, $runs, $base, $list1, $list2) = @_;
295 *
296 * if ($runs == 1) {
297 * if ($list1 is $base) copy run to $list2
298 * return offset of end of list (or copy)
299 * } else {
300 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
301 * mgsort2($off2, $runs/2, $base, $list2, $list1)
302 * merge the adjacent runs at $offset of $list1 into $list2
303 * return the offset of the end of the merged runs
304 * }
305 * }
306 * mgsort2(0, $runs, $base, $aux, $base);
307 *
308 * For our 5 runs, the tree of calls looks like
309 *
310 * 5
311 * 3 2
312 * 2 1 1 1
313 * 1 1
314 *
315 * 1 2 3 4 5
316 *
317 * and the corresponding activity looks like
318 *
319 * copy runs 1 and 2 from base to aux
320 * merge runs 1 and 2 from aux to base
321 * (run 3 is where it belongs, no copy needed)
322 * merge runs 12 and 3 from base to aux
323 * (runs 4 and 5 are where they belong, no copy needed)
324 * merge runs 4 and 5 from base to aux
325 * merge runs 123 and 45 from aux to base
326 *
327 * Note that we merge runs 1 and 2 immediately after copying them,
328 * while they are still likely to be in fast cache. Similarly,
329 * run 3 is merged with run 12 while it still may be lingering in cache.
330 * This implementation should therefore enjoy much of the cache-friendly
331 * behavior that quicksort does. In addition, it does less copying
332 * than the original mergesort implementation (only runs 1 and 2 are copied)
333 * and the "balancing" of merges is better (merged runs comprise more nearly
334 * equal numbers of original runs).
335 *
336 * The actual cache-friendly implementation will use a pseudo-stack
337 * to avoid recursion, and will unroll processing of runs of length 2,
338 * but it is otherwise similar to the recursive implementation.
957d8989
JL
339 */
340
341typedef struct {
342 IV offset; /* offset of 1st of 2 runs at this level */
343 IV runs; /* how many runs must be combined into 1 */
344} off_runs; /* pseudo-stack element */
345
6c3fb703
NC
346
347static I32
31e9e0a3 348cmp_desc(pTHX_ gptr const a, gptr const b)
6c3fb703
NC
349{
350 return -PL_sort_RealCmp(aTHX_ a, b);
351}
352
e2091bb6
Z
353/*
354=for apidoc sortsv_flags
355
356In-place sort an array of SV pointers with the given comparison routine,
357with various SORTf_* flag options.
358
359=cut
360*/
361void
362Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989 363{
551405c4 364 IV i, run, offset;
957d8989 365 I32 sense, level;
eb578fdb 366 gptr *f1, *f2, *t, *b, *p;
957d8989 367 int iwhich;
551405c4 368 gptr *aux;
957d8989
JL
369 gptr *p1;
370 gptr small[SMALLSORT];
371 gptr *which[3];
372 off_runs stack[60], *stackp;
d4c19fe8 373 SVCOMPARE_t savecmp = NULL;
957d8989 374
e2091bb6 375 PERL_ARGS_ASSERT_SORTSV_FLAGS;
957d8989 376 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703 377
f4f44d65 378 if ((flags & SORTf_DESC) != 0) {
6c3fb703
NC
379 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
380 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
381 cmp = cmp_desc;
382 }
383
957d8989 384 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
486ec47a 385 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
957d8989
JL
386 level = 0;
387 stackp = stack;
388 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
389 stackp->offset = offset = 0;
390 which[0] = which[2] = base;
391 which[1] = aux;
392 for (;;) {
393 /* On levels where both runs have be constructed (stackp->runs == 0),
394 * merge them, and note the offset of their end, in case the offset
395 * is needed at the next level up. Hop up a level, and,
396 * as long as stackp->runs is 0, keep merging.
397 */
551405c4
AL
398 IV runs = stackp->runs;
399 if (runs == 0) {
400 gptr *list1, *list2;
957d8989
JL
401 iwhich = level & 1;
402 list1 = which[iwhich]; /* area where runs are now */
403 list2 = which[++iwhich]; /* area for merged runs */
404 do {
eb578fdb 405 gptr *l1, *l2, *tp2;
957d8989
JL
406 offset = stackp->offset;
407 f1 = p1 = list1 + offset; /* start of first run */
408 p = tp2 = list2 + offset; /* where merged run will go */
409 t = NEXT(p); /* where first run ends */
410 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
411 t = NEXT(t); /* where second runs ends */
412 l2 = POTHER(t, list2, list1); /* ... on the other side */
413 offset = PNELEM(list2, t);
414 while (f1 < l1 && f2 < l2) {
415 /* If head 1 is larger than head 2, find ALL the elements
416 ** in list 2 strictly less than head1, write them all,
417 ** then head 1. Then compare the new heads, and repeat,
418 ** until one or both lists are exhausted.
419 **
420 ** In all comparisons (after establishing
421 ** which head to merge) the item to merge
422 ** (at pointer q) is the first operand of
423 ** the comparison. When we want to know
a0288114 424 ** if "q is strictly less than the other",
957d8989
JL
425 ** we can't just do
426 ** cmp(q, other) < 0
427 ** because stability demands that we treat equality
428 ** as high when q comes from l2, and as low when
429 ** q was from l1. So we ask the question by doing
430 ** cmp(q, other) <= sense
431 ** and make sense == 0 when equality should look low,
432 ** and -1 when equality should look high.
433 */
434
eb578fdb 435 gptr *q;
957d8989
JL
436 if (cmp(aTHX_ *f1, *f2) <= 0) {
437 q = f2; b = f1; t = l1;
438 sense = -1;
439 } else {
440 q = f1; b = f2; t = l2;
441 sense = 0;
442 }
443
444
445 /* ramp up
446 **
447 ** Leave t at something strictly
448 ** greater than q (or at the end of the list),
449 ** and b at something strictly less than q.
450 */
451 for (i = 1, run = 0 ;;) {
452 if ((p = PINDEX(b, i)) >= t) {
453 /* off the end */
454 if (((p = PINDEX(t, -1)) > b) &&
455 (cmp(aTHX_ *q, *p) <= sense))
456 t = p;
457 else b = p;
458 break;
459 } else if (cmp(aTHX_ *q, *p) <= sense) {
460 t = p;
461 break;
462 } else b = p;
463 if (++run >= RTHRESH) i += i;
464 }
465
466
467 /* q is known to follow b and must be inserted before t.
468 ** Increment b, so the range of possibilities is [b,t).
469 ** Round binary split down, to favor early appearance.
470 ** Adjust b and t until q belongs just before t.
471 */
472
473 b++;
474 while (b < t) {
475 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
476 if (cmp(aTHX_ *q, *p) <= sense) {
477 t = p;
478 } else b = p + 1;
479 }
480
481
482 /* Copy all the strictly low elements */
483
484 if (q == f1) {
485 FROMTOUPTO(f2, tp2, t);
486 *tp2++ = *f1++;
487 } else {
488 FROMTOUPTO(f1, tp2, t);
489 *tp2++ = *f2++;
490 }
491 }
492
493
494 /* Run out remaining list */
495 if (f1 == l1) {
496 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
497 } else FROMTOUPTO(f1, tp2, l1);
498 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
499
500 if (--level == 0) goto done;
501 --stackp;
502 t = list1; list1 = list2; list2 = t; /* swap lists */
503 } while ((runs = stackp->runs) == 0);
504 }
505
506
507 stackp->runs = 0; /* current run will finish level */
508 /* While there are more than 2 runs remaining,
509 * turn them into exactly 2 runs (at the "other" level),
510 * each made up of approximately half the runs.
511 * Stack the second half for later processing,
512 * and set about producing the first half now.
513 */
514 while (runs > 2) {
515 ++level;
516 ++stackp;
517 stackp->offset = offset;
518 runs -= stackp->runs = runs / 2;
519 }
520 /* We must construct a single run from 1 or 2 runs.
521 * All the original runs are in which[0] == base.
522 * The run we construct must end up in which[level&1].
523 */
524 iwhich = level & 1;
525 if (runs == 1) {
526 /* Constructing a single run from a single run.
527 * If it's where it belongs already, there's nothing to do.
528 * Otherwise, copy it to where it belongs.
529 * A run of 1 is either a singleton at level 0,
530 * or the second half of a split 3. In neither event
531 * is it necessary to set offset. It will be set by the merge
532 * that immediately follows.
533 */
534 if (iwhich) { /* Belongs in aux, currently in base */
535 f1 = b = PINDEX(base, offset); /* where list starts */
536 f2 = PINDEX(aux, offset); /* where list goes */
537 t = NEXT(f2); /* where list will end */
538 offset = PNELEM(aux, t); /* offset thereof */
539 t = PINDEX(base, offset); /* where it currently ends */
540 FROMTOUPTO(f1, f2, t); /* copy */
541 NEXT(b) = t; /* set up parallel pointer */
542 } else if (level == 0) goto done; /* single run at level 0 */
543 } else {
544 /* Constructing a single run from two runs.
545 * The merge code at the top will do that.
546 * We need only make sure the two runs are in the "other" array,
547 * so they'll end up in the correct array after the merge.
548 */
549 ++level;
550 ++stackp;
551 stackp->offset = offset;
552 stackp->runs = 0; /* take care of both runs, trigger merge */
553 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
554 f1 = b = PINDEX(base, offset); /* where first run starts */
555 f2 = PINDEX(aux, offset); /* where it will be copied */
556 t = NEXT(f2); /* where first run will end */
557 offset = PNELEM(aux, t); /* offset thereof */
558 p = PINDEX(base, offset); /* end of first run */
559 t = NEXT(t); /* where second run will end */
560 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
561 FROMTOUPTO(f1, f2, t); /* copy both runs */
486ec47a 562 NEXT(b) = p; /* paralleled pointer for 1st */
957d8989
JL
563 NEXT(p) = t; /* ... and for second */
564 }
565 }
566 }
7b52d656 567 done:
957d8989 568 if (aux != small) Safefree(aux); /* free iff allocated */
0e1d050c 569 if (savecmp != NULL) {
6c3fb703
NC
570 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
571 }
957d8989
JL
572 return;
573}
574
84d4ea48
JH
575/*
576 * The quicksort implementation was derived from source code contributed
577 * by Tom Horsley.
578 *
579 * NOTE: this code was derived from Tom Horsley's qsort replacement
580 * and should not be confused with the original code.
581 */
582
583/* Copyright (C) Tom Horsley, 1997. All rights reserved.
584
585 Permission granted to distribute under the same terms as perl which are
586 (briefly):
587
588 This program is free software; you can redistribute it and/or modify
589 it under the terms of either:
590
591 a) the GNU General Public License as published by the Free
592 Software Foundation; either version 1, or (at your option) any
593 later version, or
594
595 b) the "Artistic License" which comes with this Kit.
596
597 Details on the perl license can be found in the perl source code which
598 may be located via the www.perl.com web page.
599
600 This is the most wonderfulest possible qsort I can come up with (and
601 still be mostly portable) My (limited) tests indicate it consistently
602 does about 20% fewer calls to compare than does the qsort in the Visual
603 C++ library, other vendors may vary.
604
605 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
606 others I invented myself (or more likely re-invented since they seemed
607 pretty obvious once I watched the algorithm operate for a while).
608
609 Most of this code was written while watching the Marlins sweep the Giants
610 in the 1997 National League Playoffs - no Braves fans allowed to use this
611 code (just kidding :-).
612
613 I realize that if I wanted to be true to the perl tradition, the only
614 comment in this file would be something like:
615
616 ...they shuffled back towards the rear of the line. 'No, not at the
617 rear!' the slave-driver shouted. 'Three files up. And stay there...
618
619 However, I really needed to violate that tradition just so I could keep
620 track of what happens myself, not to mention some poor fool trying to
621 understand this years from now :-).
622*/
623
624/* ********************************************************** Configuration */
625
626#ifndef QSORT_ORDER_GUESS
627#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
628#endif
629
630/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
631 future processing - a good max upper bound is log base 2 of memory size
632 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
633 safely be smaller than that since the program is taking up some space and
634 most operating systems only let you grab some subset of contiguous
635 memory (not to mention that you are normally sorting data larger than
636 1 byte element size :-).
637*/
638#ifndef QSORT_MAX_STACK
639#define QSORT_MAX_STACK 32
640#endif
641
642/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
643 Anything bigger and we use qsort. If you make this too small, the qsort
644 will probably break (or become less efficient), because it doesn't expect
645 the middle element of a partition to be the same as the right or left -
646 you have been warned).
647*/
648#ifndef QSORT_BREAK_EVEN
649#define QSORT_BREAK_EVEN 6
650#endif
651
4eb872f6
JL
652/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
653 to go quadratic on. We innoculate larger partitions against
654 quadratic behavior by shuffling them before sorting. This is not
655 an absolute guarantee of non-quadratic behavior, but it would take
656 staggeringly bad luck to pick extreme elements as the pivot
657 from randomized data.
658*/
659#ifndef QSORT_PLAY_SAFE
660#define QSORT_PLAY_SAFE 255
661#endif
662
84d4ea48
JH
663/* ************************************************************* Data Types */
664
665/* hold left and right index values of a partition waiting to be sorted (the
666 partition includes both left and right - right is NOT one past the end or
667 anything like that).
668*/
669struct partition_stack_entry {
670 int left;
671 int right;
672#ifdef QSORT_ORDER_GUESS
673 int qsort_break_even;
674#endif
675};
676
677/* ******************************************************* Shorthand Macros */
678
679/* Note that these macros will be used from inside the qsort function where
680 we happen to know that the variable 'elt_size' contains the size of an
681 array element and the variable 'temp' points to enough space to hold a
682 temp element and the variable 'array' points to the array being sorted
683 and 'compare' is the pointer to the compare routine.
684
685 Also note that there are very many highly architecture specific ways
686 these might be sped up, but this is simply the most generally portable
687 code I could think of.
688*/
689
690/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
691*/
692#define qsort_cmp(elt1, elt2) \
693 ((*compare)(aTHX_ array[elt1], array[elt2]))
694
695#ifdef QSORT_ORDER_GUESS
696#define QSORT_NOTICE_SWAP swapped++;
697#else
698#define QSORT_NOTICE_SWAP
699#endif
700
701/* swaps contents of array elements elt1, elt2.
702*/
703#define qsort_swap(elt1, elt2) \
704 STMT_START { \
705 QSORT_NOTICE_SWAP \
706 temp = array[elt1]; \
707 array[elt1] = array[elt2]; \
708 array[elt2] = temp; \
709 } STMT_END
710
711/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
712 elt3 and elt3 gets elt1.
713*/
714#define qsort_rotate(elt1, elt2, elt3) \
715 STMT_START { \
716 QSORT_NOTICE_SWAP \
717 temp = array[elt1]; \
718 array[elt1] = array[elt2]; \
719 array[elt2] = array[elt3]; \
720 array[elt3] = temp; \
721 } STMT_END
722
723/* ************************************************************ Debug stuff */
724
725#ifdef QSORT_DEBUG
726
727static void
728break_here()
729{
730 return; /* good place to set a breakpoint */
731}
732
733#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
734
735static void
736doqsort_all_asserts(
737 void * array,
738 size_t num_elts,
739 size_t elt_size,
740 int (*compare)(const void * elt1, const void * elt2),
741 int pc_left, int pc_right, int u_left, int u_right)
742{
743 int i;
744
745 qsort_assert(pc_left <= pc_right);
746 qsort_assert(u_right < pc_left);
747 qsort_assert(pc_right < u_left);
748 for (i = u_right + 1; i < pc_left; ++i) {
749 qsort_assert(qsort_cmp(i, pc_left) < 0);
750 }
751 for (i = pc_left; i < pc_right; ++i) {
752 qsort_assert(qsort_cmp(i, pc_right) == 0);
753 }
754 for (i = pc_right + 1; i < u_left; ++i) {
755 qsort_assert(qsort_cmp(pc_right, i) < 0);
756 }
757}
758
759#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
760 doqsort_all_asserts(array, num_elts, elt_size, compare, \
761 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
762
763#else
764
765#define qsort_assert(t) ((void)0)
766
767#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
768
769#endif
770
4eb872f6 771/*
ccfc67b7
JH
772=head1 Array Manipulation Functions
773
84d4ea48
JH
774=for apidoc sortsv
775
8f5d5a51 776In-place sort an array of SV pointers with the given comparison routine.
84d4ea48 777
796b6530 778Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
7b9ef140 779flexible routine.
78210658 780
84d4ea48
JH
781=cut
782*/
4eb872f6 783
84d4ea48
JH
784void
785Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
786{
7918f24d
NC
787 PERL_ARGS_ASSERT_SORTSV;
788
7b9ef140 789 sortsv_flags(array, nmemb, cmp, 0);
6c3fb703
NC
790}
791
4d562308
SF
792#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
793#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
794#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
795
84d4ea48
JH
796PP(pp_sort)
797{
20b7effb 798 dSP; dMARK; dORIGMARK;
eb578fdb 799 SV **p1 = ORIGMARK+1, **p2;
c70927a6 800 SSize_t max, i;
7d49f689 801 AV* av = NULL;
84d4ea48 802 GV *gv;
cbbf8932 803 CV *cv = NULL;
1c23e2bd 804 U8 gimme = GIMME_V;
0bcc34c2 805 OP* const nextop = PL_op->op_next;
84d4ea48
JH
806 I32 overloading = 0;
807 bool hasargs = FALSE;
2b66f6d3 808 bool copytmps;
84d4ea48 809 I32 is_xsub = 0;
901017d6
AL
810 const U8 priv = PL_op->op_private;
811 const U8 flags = PL_op->op_flags;
7b9ef140
RH
812 U32 sort_flags = 0;
813 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
814 = Perl_sortsv_flags;
4d562308 815 I32 all_SIVs = 1;
84d4ea48 816
7b9ef140
RH
817 if ((priv & OPpSORT_DESCEND) != 0)
818 sort_flags |= SORTf_DESC;
7b9ef140
RH
819 if ((priv & OPpSORT_STABLE) != 0)
820 sort_flags |= SORTf_STABLE;
afe59f35
FC
821 if ((priv & OPpSORT_UNSTABLE) != 0)
822 sort_flags |= SORTf_UNSTABLE;
7b9ef140 823
84d4ea48
JH
824 if (gimme != G_ARRAY) {
825 SP = MARK;
b59aed67 826 EXTEND(SP,1);
84d4ea48
JH
827 RETPUSHUNDEF;
828 }
829
830 ENTER;
831 SAVEVPTR(PL_sortcop);
471178c0
NC
832 if (flags & OPf_STACKED) {
833 if (flags & OPf_SPECIAL) {
e6dae479 834 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
932bca29
DM
835 assert(nullop->op_type == OP_NULL);
836 PL_sortcop = nullop->op_next;
84d4ea48
JH
837 }
838 else {
f7bc00ea 839 GV *autogv = NULL;
5a34f1cd 840 HV *stash;
f7bc00ea
FC
841 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
842 check_cv:
84d4ea48 843 if (cv && SvPOK(cv)) {
ad64d0ec 844 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
84d4ea48
JH
845 if (proto && strEQ(proto, "$$")) {
846 hasargs = TRUE;
847 }
848 }
2fc49ef1
FC
849 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
850 is_xsub = 1;
851 }
852 else if (!(cv && CvROOT(cv))) {
853 if (gv) {
f7bc00ea
FC
854 goto autoload;
855 }
856 else if (!CvANON(cv) && (gv = CvGV(cv))) {
857 if (cv != GvCV(gv)) cv = GvCV(gv);
858 autoload:
859 if (!autogv && (
860 autogv = gv_autoload_pvn(
861 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
862 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
863 )
864 )) {
865 cv = GvCVu(autogv);
866 goto check_cv;
867 }
868 else {
84d4ea48 869 SV *tmpstr = sv_newmortal();
bd61b366 870 gv_efullname3(tmpstr, gv, NULL);
147e3846 871 DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
be2597df 872 SVfARG(tmpstr));
f7bc00ea 873 }
84d4ea48
JH
874 }
875 else {
876 DIE(aTHX_ "Undefined subroutine in sort");
877 }
878 }
879
880 if (is_xsub)
881 PL_sortcop = (OP*)cv;
9850bf21 882 else
84d4ea48 883 PL_sortcop = CvSTART(cv);
84d4ea48
JH
884 }
885 }
886 else {
5f66b61c 887 PL_sortcop = NULL;
84d4ea48
JH
888 }
889
84721d61
DM
890 /* optimiser converts "@a = sort @a" to "sort \@a". In this case,
891 * push (@a) onto stack, then assign result back to @a at the end of
892 * this function */
0723351e 893 if (priv & OPpSORT_INPLACE) {
fe1bc4cf
DM
894 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
895 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
502c6561 896 av = MUTABLE_AV((*SP));
84721d61
DM
897 if (SvREADONLY(av))
898 Perl_croak_no_modify();
fe1bc4cf 899 max = AvFILL(av) + 1;
84721d61 900 MEXTEND(SP, max);
fe1bc4cf 901 if (SvMAGICAL(av)) {
fe2774ed 902 for (i=0; i < max; i++) {
fe1bc4cf 903 SV **svp = av_fetch(av, i, FALSE);
a0714e2c 904 *SP++ = (svp) ? *svp : NULL;
fe1bc4cf
DM
905 }
906 }
84721d61
DM
907 else {
908 SV **svp = AvARRAY(av);
909 assert(svp || max == 0);
910 for (i = 0; i < max; i++)
911 *SP++ = *svp++;
fe1bc4cf 912 }
84721d61
DM
913 SP--;
914 p1 = p2 = SP - (max-1);
fe1bc4cf
DM
915 }
916 else {
917 p2 = MARK+1;
918 max = SP - MARK;
919 }
920
83a44efe
SF
921 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
922 * any nulls; also stringify or converting to integer or number as
923 * required any args */
ff859a7f 924 copytmps = cBOOL(PL_sortcop);
fe1bc4cf
DM
925 for (i=max; i > 0 ; i--) {
926 if ((*p1 = *p2++)) { /* Weed out nulls. */
60779a30 927 if (copytmps && SvPADTMP(*p1)) {
2b66f6d3 928 *p1 = sv_mortalcopy(*p1);
60779a30 929 }
fe1bc4cf 930 SvTEMP_off(*p1);
83a44efe
SF
931 if (!PL_sortcop) {
932 if (priv & OPpSORT_NUMERIC) {
933 if (priv & OPpSORT_INTEGER) {
bdbefedf
DM
934 if (!SvIOK(*p1))
935 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
83a44efe
SF
936 }
937 else {
bdbefedf
DM
938 if (!SvNSIOK(*p1))
939 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
4d562308
SF
940 if (all_SIVs && !SvSIOK(*p1))
941 all_SIVs = 0;
83a44efe
SF
942 }
943 }
944 else {
bdbefedf
DM
945 if (!SvPOK(*p1))
946 (void)sv_2pv_flags(*p1, 0,
947 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
83a44efe 948 }
bdbefedf
DM
949 if (SvAMAGIC(*p1))
950 overloading = 1;
84d4ea48 951 }
fe1bc4cf 952 p1++;
84d4ea48 953 }
fe1bc4cf
DM
954 else
955 max--;
84d4ea48 956 }
fe1bc4cf 957 if (max > 1) {
471178c0 958 SV **start;
fe1bc4cf 959 if (PL_sortcop) {
84d4ea48 960 PERL_CONTEXT *cx;
901017d6 961 const bool oldcatch = CATCH_GET;
8ae997c5 962 I32 old_savestack_ix = PL_savestack_ix;
84d4ea48 963
84d4ea48
JH
964 SAVEOP();
965
966 CATCH_SET(TRUE);
967 PUSHSTACKi(PERLSI_SORT);
968 if (!hasargs && !is_xsub) {
8465ba45
FC
969 SAVEGENERICSV(PL_firstgv);
970 SAVEGENERICSV(PL_secondgv);
971 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
972 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
973 ));
974 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
975 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
976 ));
dc9ef998
TC
977 /* make sure the GP isn't removed out from under us for
978 * the SAVESPTR() */
979 save_gp(PL_firstgv, 0);
980 save_gp(PL_secondgv, 0);
981 /* we don't want modifications localized */
982 GvINTRO_off(PL_firstgv);
983 GvINTRO_off(PL_secondgv);
16ada235
Z
984 SAVEGENERICSV(GvSV(PL_firstgv));
985 SvREFCNT_inc(GvSV(PL_firstgv));
986 SAVEGENERICSV(GvSV(PL_secondgv));
987 SvREFCNT_inc(GvSV(PL_secondgv));
84d4ea48
JH
988 }
989
33411212 990 gimme = G_SCALAR;
ed8ff0f3 991 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
471178c0 992 if (!(flags & OPf_SPECIAL)) {
79646418 993 cx->cx_type = CXt_SUB|CXp_MULTICALL;
a73d8813 994 cx_pushsub(cx, cv, NULL, hasargs);
9850bf21 995 if (!is_xsub) {
b70d5558 996 PADLIST * const padlist = CvPADLIST(cv);
9850bf21 997
d2af2719 998 if (++CvDEPTH(cv) >= 2)
9850bf21 999 pad_push(padlist, CvDEPTH(cv));
9850bf21 1000 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
84d4ea48 1001
9850bf21
RH
1002 if (hasargs) {
1003 /* This is mostly copied from pp_entersub */
502c6561 1004 AV * const av = MUTABLE_AV(PAD_SVl(0));
84d4ea48 1005
9850bf21 1006 cx->blk_sub.savearray = GvAV(PL_defgv);
502c6561 1007 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
9850bf21
RH
1008 }
1009
1010 }
84d4ea48 1011 }
486430a5 1012
471178c0
NC
1013 start = p1 - max;
1014 sortsvp(aTHX_ start, max,
7b9ef140
RH
1015 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1016 sort_flags);
84d4ea48 1017
4df352a8 1018 /* Reset cx, in case the context stack has been reallocated. */
4ebe6e95 1019 cx = CX_CUR();
4df352a8
DM
1020
1021 PL_stack_sp = PL_stack_base + cx->blk_oldsp;
1022
2f450c1b 1023 CX_LEAVE_SCOPE(cx);
9850bf21 1024 if (!(flags & OPf_SPECIAL)) {
4df352a8 1025 assert(CxTYPE(cx) == CXt_SUB);
a73d8813 1026 cx_popsub(cx);
9850bf21 1027 }
2f450c1b 1028 else
4df352a8 1029 assert(CxTYPE(cx) == CXt_NULL);
2f450c1b 1030 /* there isn't a POPNULL ! */
1dfbe6b4 1031
ed8ff0f3 1032 cx_popblock(cx);
5da525e9 1033 CX_POP(cx);
84d4ea48
JH
1034 POPSTACK;
1035 CATCH_SET(oldcatch);
1036 }
fe1bc4cf 1037 else {
84d4ea48 1038 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
84721d61 1039 start = ORIGMARK+1;
471178c0 1040 sortsvp(aTHX_ start, max,
0723351e 1041 (priv & OPpSORT_NUMERIC)
4d562308 1042 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
f0f5dc9d
AL
1043 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1044 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
130c5df3
KW
1045 : (
1046#ifdef USE_LOCALE_COLLATE
1047 IN_LC_RUNTIME(LC_COLLATE)
84d4ea48 1048 ? ( overloading
d3fcec1f
SP
1049 ? (SVCOMPARE_t)S_amagic_cmp_locale
1050 : (SVCOMPARE_t)sv_cmp_locale_static)
130c5df3
KW
1051 :
1052#endif
1053 ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)),
7b9ef140 1054 sort_flags);
471178c0 1055 }
7b9ef140 1056 if ((priv & OPpSORT_REVERSE) != 0) {
471178c0
NC
1057 SV **q = start+max-1;
1058 while (start < q) {
0bcc34c2 1059 SV * const tmp = *start;
471178c0
NC
1060 *start++ = *q;
1061 *q-- = tmp;
84d4ea48
JH
1062 }
1063 }
1064 }
84721d61
DM
1065
1066 if (av) {
1067 /* copy back result to the array */
1068 SV** const base = MARK+1;
1069 if (SvMAGICAL(av)) {
1070 for (i = 0; i < max; i++)
1071 base[i] = newSVsv(base[i]);
1072 av_clear(av);
1073 av_extend(av, max);
1074 for (i=0; i < max; i++) {
1075 SV * const sv = base[i];
1076 SV ** const didstore = av_store(av, i, sv);
1077 if (SvSMAGICAL(sv))
1078 mg_set(sv);
1079 if (!didstore)
1080 sv_2mortal(sv);
1081 }
1082 }
1083 else {
1084 /* the elements of av are likely to be the same as the
1085 * (non-refcounted) elements on the stack, just in a different
1086 * order. However, its possible that someone's messed with av
1087 * in the meantime. So bump and unbump the relevant refcounts
1088 * first.
1089 */
45c198c1
DM
1090 for (i = 0; i < max; i++) {
1091 SV *sv = base[i];
1092 assert(sv);
1093 if (SvREFCNT(sv) > 1)
1094 base[i] = newSVsv(sv);
1095 else
1096 SvREFCNT_inc_simple_void_NN(sv);
1097 }
84721d61
DM
1098 av_clear(av);
1099 if (max > 0) {
1100 av_extend(av, max);
1101 Copy(base, AvARRAY(av), max, SV*);
1102 }
1103 AvFILLp(av) = max - 1;
1104 AvREIFY_off(av);
1105 AvREAL_on(av);
1106 }
fe1bc4cf 1107 }
84d4ea48 1108 LEAVE;
84721d61 1109 PL_stack_sp = ORIGMARK + max;
84d4ea48
JH
1110 return nextop;
1111}
1112
1113static I32
31e9e0a3 1114S_sortcv(pTHX_ SV *const a, SV *const b)
84d4ea48 1115{
901017d6 1116 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1117 I32 result;
ad021bfb 1118 PMOP * const pm = PL_curpm;
a9ea019a 1119 COP * const cop = PL_curcop;
16ada235 1120 SV *olda, *oldb;
7918f24d
NC
1121
1122 PERL_ARGS_ASSERT_SORTCV;
1123
16ada235
Z
1124 olda = GvSV(PL_firstgv);
1125 GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1126 SvREFCNT_dec(olda);
1127 oldb = GvSV(PL_secondgv);
1128 GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1129 SvREFCNT_dec(oldb);
84d4ea48
JH
1130 PL_stack_sp = PL_stack_base;
1131 PL_op = PL_sortcop;
1132 CALLRUNOPS(aTHX);
a9ea019a 1133 PL_curcop = cop;
33411212
DM
1134 /* entry zero of a stack is always PL_sv_undef, which
1135 * simplifies converting a '()' return into undef in scalar context */
1136 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1137 result = SvIV(*PL_stack_sp);
626ed49c 1138
53d3542d 1139 LEAVE_SCOPE(oldsaveix);
ad021bfb 1140 PL_curpm = pm;
84d4ea48
JH
1141 return result;
1142}
1143
1144static I32
31e9e0a3 1145S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
84d4ea48 1146{
901017d6 1147 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1148 I32 result;
901017d6 1149 AV * const av = GvAV(PL_defgv);
ad021bfb 1150 PMOP * const pm = PL_curpm;
a9ea019a 1151 COP * const cop = PL_curcop;
84d4ea48 1152
7918f24d
NC
1153 PERL_ARGS_ASSERT_SORTCV_STACKED;
1154
8f443ca6
GG
1155 if (AvREAL(av)) {
1156 av_clear(av);
1157 AvREAL_off(av);
1158 AvREIFY_on(av);
1159 }
84d4ea48 1160 if (AvMAX(av) < 1) {
8f443ca6 1161 SV **ary = AvALLOC(av);
84d4ea48
JH
1162 if (AvARRAY(av) != ary) {
1163 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
9c6bc640 1164 AvARRAY(av) = ary;
84d4ea48
JH
1165 }
1166 if (AvMAX(av) < 1) {
84d4ea48 1167 Renew(ary,2,SV*);
00195859 1168 AvMAX(av) = 1;
9c6bc640 1169 AvARRAY(av) = ary;
8f443ca6 1170 AvALLOC(av) = ary;
84d4ea48
JH
1171 }
1172 }
1173 AvFILLp(av) = 1;
1174
1175 AvARRAY(av)[0] = a;
1176 AvARRAY(av)[1] = b;
1177 PL_stack_sp = PL_stack_base;
1178 PL_op = PL_sortcop;
1179 CALLRUNOPS(aTHX);
a9ea019a 1180 PL_curcop = cop;
33411212
DM
1181 /* entry zero of a stack is always PL_sv_undef, which
1182 * simplifies converting a '()' return into undef in scalar context */
1183 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1184 result = SvIV(*PL_stack_sp);
626ed49c 1185
53d3542d 1186 LEAVE_SCOPE(oldsaveix);
ad021bfb 1187 PL_curpm = pm;
84d4ea48
JH
1188 return result;
1189}
1190
1191static I32
31e9e0a3 1192S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
84d4ea48 1193{
20b7effb 1194 dSP;
901017d6 1195 const I32 oldsaveix = PL_savestack_ix;
ea726b52 1196 CV * const cv=MUTABLE_CV(PL_sortcop);
84d4ea48 1197 I32 result;
ad021bfb 1198 PMOP * const pm = PL_curpm;
84d4ea48 1199
7918f24d
NC
1200 PERL_ARGS_ASSERT_SORTCV_XSUB;
1201
84d4ea48
JH
1202 SP = PL_stack_base;
1203 PUSHMARK(SP);
1204 EXTEND(SP, 2);
1205 *++SP = a;
1206 *++SP = b;
1207 PUTBACK;
1208 (void)(*CvXSUB(cv))(aTHX_ cv);
33411212
DM
1209 /* entry zero of a stack is always PL_sv_undef, which
1210 * simplifies converting a '()' return into undef in scalar context */
1211 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
84d4ea48 1212 result = SvIV(*PL_stack_sp);
33411212 1213
53d3542d 1214 LEAVE_SCOPE(oldsaveix);
ad021bfb 1215 PL_curpm = pm;
84d4ea48
JH
1216 return result;
1217}
1218
1219
1220static I32
31e9e0a3 1221S_sv_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1222{
427fbfe8 1223 I32 cmp = do_ncmp(a, b);
7918f24d
NC
1224
1225 PERL_ARGS_ASSERT_SV_NCMP;
1226
427fbfe8 1227 if (cmp == 2) {
f3dab52a
FC
1228 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1229 return 0;
1230 }
427fbfe8
TC
1231
1232 return cmp;
84d4ea48
JH
1233}
1234
1235static I32
31e9e0a3 1236S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1237{
901017d6
AL
1238 const IV iv1 = SvIV(a);
1239 const IV iv2 = SvIV(b);
7918f24d
NC
1240
1241 PERL_ARGS_ASSERT_SV_I_NCMP;
1242
84d4ea48
JH
1243 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1244}
901017d6
AL
1245
1246#define tryCALL_AMAGICbin(left,right,meth) \
79a8d529 1247 (SvAMAGIC(left)||SvAMAGIC(right)) \
31d632c3 1248 ? amagic_call(left, right, meth, 0) \
a0714e2c 1249 : NULL;
84d4ea48 1250
659c4b96 1251#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
eeb9de02 1252
84d4ea48 1253static I32
5aaab254 1254S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1255{
31d632c3 1256 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1257
1258 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1259
84d4ea48 1260 if (tmpsv) {
84d4ea48 1261 if (SvIOK(tmpsv)) {
901017d6 1262 const I32 i = SvIVX(tmpsv);
eeb9de02 1263 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1264 }
901017d6
AL
1265 else {
1266 const NV d = SvNV(tmpsv);
eeb9de02 1267 return SORT_NORMAL_RETURN_VALUE(d);
901017d6 1268 }
84d4ea48 1269 }
f0f5dc9d 1270 return S_sv_ncmp(aTHX_ a, b);
84d4ea48
JH
1271}
1272
1273static I32
5aaab254 1274S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1275{
31d632c3 1276 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1277
1278 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1279
84d4ea48 1280 if (tmpsv) {
84d4ea48 1281 if (SvIOK(tmpsv)) {
901017d6 1282 const I32 i = SvIVX(tmpsv);
eeb9de02 1283 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1284 }
901017d6
AL
1285 else {
1286 const NV d = SvNV(tmpsv);
eeb9de02 1287 return SORT_NORMAL_RETURN_VALUE(d);
901017d6 1288 }
84d4ea48 1289 }
f0f5dc9d 1290 return S_sv_i_ncmp(aTHX_ a, b);
84d4ea48
JH
1291}
1292
1293static I32
5aaab254 1294S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1295{
31d632c3 1296 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1297
1298 PERL_ARGS_ASSERT_AMAGIC_CMP;
1299
84d4ea48 1300 if (tmpsv) {
84d4ea48 1301 if (SvIOK(tmpsv)) {
901017d6 1302 const I32 i = SvIVX(tmpsv);
eeb9de02 1303 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1304 }
901017d6
AL
1305 else {
1306 const NV d = SvNV(tmpsv);
eeb9de02 1307 return SORT_NORMAL_RETURN_VALUE(d);
901017d6 1308 }
84d4ea48
JH
1309 }
1310 return sv_cmp(str1, str2);
1311}
1312
91191cf7
KW
1313#ifdef USE_LOCALE_COLLATE
1314
84d4ea48 1315static I32
5aaab254 1316S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1317{
31d632c3 1318 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1319
1320 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1321
84d4ea48 1322 if (tmpsv) {
84d4ea48 1323 if (SvIOK(tmpsv)) {
901017d6 1324 const I32 i = SvIVX(tmpsv);
eeb9de02 1325 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1326 }
901017d6
AL
1327 else {
1328 const NV d = SvNV(tmpsv);
eeb9de02 1329 return SORT_NORMAL_RETURN_VALUE(d);
901017d6 1330 }
84d4ea48
JH
1331 }
1332 return sv_cmp_locale(str1, str2);
1333}
241d1a3b 1334
91191cf7
KW
1335#endif
1336
241d1a3b 1337/*
14d04a33 1338 * ex: set ts=8 sts=4 sw=4 et:
37442d52 1339 */