Commit | Line | Data |
---|---|---|
5aabfad6 | 1 | # |
2 | # Trigonometric functions, mostly inherited from Math::Complex. | |
d54bf66f | 3 | # -- Jarkko Hietaniemi, since April 1997 |
5cd24f17 | 4 | # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex) |
5aabfad6 | 5 | # |
6 | ||
7 | require Exporter; | |
8 | package Math::Trig; | |
9 | ||
17f410f9 | 10 | use 5.005_64; |
5aabfad6 | 11 | use strict; |
12 | ||
13 | use Math::Complex qw(:trig); | |
14 | ||
17f410f9 | 15 | our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS); |
5aabfad6 | 16 | |
17 | @ISA = qw(Exporter); | |
18 | ||
19 | $VERSION = 1.00; | |
20 | ||
ace5de91 GS |
21 | my @angcnv = qw(rad2deg rad2grad |
22 | deg2rad deg2grad | |
23 | grad2rad grad2deg); | |
5aabfad6 | 24 | |
25 | @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}}, | |
26 | @angcnv); | |
27 | ||
d54bf66f JH |
28 | my @rdlcnv = qw(cartesian_to_cylindrical |
29 | cartesian_to_spherical | |
30 | cylindrical_to_cartesian | |
31 | cylindrical_to_spherical | |
32 | spherical_to_cartesian | |
33 | spherical_to_cylindrical); | |
34 | ||
35 | @EXPORT_OK = (@rdlcnv, 'great_circle_distance'); | |
36 | ||
37 | %EXPORT_TAGS = ('radial' => [ @rdlcnv ]); | |
38 | ||
9db5a202 JH |
39 | sub pi2 () { 2 * pi } |
40 | sub pip2 () { pi / 2 } | |
41 | ||
42 | sub DR () { pi2/360 } | |
43 | sub RD () { 360/pi2 } | |
44 | sub DG () { 400/360 } | |
45 | sub GD () { 360/400 } | |
46 | sub RG () { 400/pi2 } | |
47 | sub GR () { pi2/400 } | |
5aabfad6 | 48 | |
49 | # | |
50 | # Truncating remainder. | |
51 | # | |
52 | ||
53 | sub remt ($$) { | |
54 | # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available. | |
55 | $_[0] - $_[1] * int($_[0] / $_[1]); | |
56 | } | |
57 | ||
58 | # | |
59 | # Angle conversions. | |
60 | # | |
61 | ||
9db5a202 JH |
62 | sub rad2rad($) { remt($_[0], pi2) } |
63 | ||
64 | sub deg2deg($) { remt($_[0], 360) } | |
65 | ||
66 | sub grad2grad($) { remt($_[0], 400) } | |
5aabfad6 | 67 | |
9db5a202 | 68 | sub rad2deg ($;$) { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) } |
5aabfad6 | 69 | |
9db5a202 | 70 | sub deg2rad ($;$) { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) } |
5aabfad6 | 71 | |
9db5a202 | 72 | sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) } |
5aabfad6 | 73 | |
9db5a202 | 74 | sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) } |
5aabfad6 | 75 | |
9db5a202 JH |
76 | sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) } |
77 | ||
78 | sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) } | |
5aabfad6 | 79 | |
d54bf66f JH |
80 | sub cartesian_to_spherical { |
81 | my ( $x, $y, $z ) = @_; | |
82 | ||
83 | my $rho = sqrt( $x * $x + $y * $y + $z * $z ); | |
84 | ||
85 | return ( $rho, | |
86 | atan2( $y, $x ), | |
87 | $rho ? acos( $z / $rho ) : 0 ); | |
88 | } | |
89 | ||
90 | sub spherical_to_cartesian { | |
91 | my ( $rho, $theta, $phi ) = @_; | |
92 | ||
93 | return ( $rho * cos( $theta ) * sin( $phi ), | |
94 | $rho * sin( $theta ) * sin( $phi ), | |
95 | $rho * cos( $phi ) ); | |
96 | } | |
97 | ||
98 | sub spherical_to_cylindrical { | |
99 | my ( $x, $y, $z ) = spherical_to_cartesian( @_ ); | |
100 | ||
101 | return ( sqrt( $x * $x + $y * $y ), $_[1], $z ); | |
102 | } | |
103 | ||
104 | sub cartesian_to_cylindrical { | |
105 | my ( $x, $y, $z ) = @_; | |
106 | ||
107 | return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z ); | |
108 | } | |
109 | ||
110 | sub cylindrical_to_cartesian { | |
111 | my ( $rho, $theta, $z ) = @_; | |
112 | ||
113 | return ( $rho * cos( $theta ), $rho * sin( $theta ), $z ); | |
114 | } | |
115 | ||
116 | sub cylindrical_to_spherical { | |
117 | return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) ); | |
118 | } | |
119 | ||
120 | sub great_circle_distance { | |
121 | my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_; | |
122 | ||
123 | $rho = 1 unless defined $rho; # Default to the unit sphere. | |
124 | ||
125 | my $lat0 = pip2 - $phi0; | |
126 | my $lat1 = pip2 - $phi1; | |
127 | ||
128 | return $rho * | |
129 | acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) + | |
130 | sin( $lat0 ) * sin( $lat1 ) ); | |
131 | } | |
132 | ||
133 | =pod | |
134 | ||
5aabfad6 | 135 | =head1 NAME |
136 | ||
137 | Math::Trig - trigonometric functions | |
138 | ||
139 | =head1 SYNOPSIS | |
140 | ||
141 | use Math::Trig; | |
3cb6de81 | 142 | |
5aabfad6 | 143 | $x = tan(0.9); |
144 | $y = acos(3.7); | |
145 | $z = asin(2.4); | |
3cb6de81 | 146 | |
5aabfad6 | 147 | $halfpi = pi/2; |
148 | ||
ace5de91 | 149 | $rad = deg2rad(120); |
5aabfad6 | 150 | |
151 | =head1 DESCRIPTION | |
152 | ||
153 | C<Math::Trig> defines many trigonometric functions not defined by the | |
4ae80833 | 154 | core Perl which defines only the C<sin()> and C<cos()>. The constant |
5aabfad6 | 155 | B<pi> is also defined as are a few convenience functions for angle |
156 | conversions. | |
157 | ||
158 | =head1 TRIGONOMETRIC FUNCTIONS | |
159 | ||
160 | The tangent | |
161 | ||
d54bf66f JH |
162 | =over 4 |
163 | ||
164 | =item B<tan> | |
165 | ||
166 | =back | |
5aabfad6 | 167 | |
168 | The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot | |
169 | are aliases) | |
170 | ||
d54bf66f | 171 | B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan> |
5aabfad6 | 172 | |
173 | The arcus (also known as the inverse) functions of the sine, cosine, | |
174 | and tangent | |
175 | ||
d54bf66f | 176 | B<asin>, B<acos>, B<atan> |
5aabfad6 | 177 | |
178 | The principal value of the arc tangent of y/x | |
179 | ||
d54bf66f | 180 | B<atan2>(y, x) |
5aabfad6 | 181 | |
182 | The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc | |
183 | and acotan/acot are aliases) | |
184 | ||
d54bf66f | 185 | B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan> |
5aabfad6 | 186 | |
187 | The hyperbolic sine, cosine, and tangent | |
188 | ||
d54bf66f | 189 | B<sinh>, B<cosh>, B<tanh> |
5aabfad6 | 190 | |
191 | The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch | |
192 | and cotanh/coth are aliases) | |
193 | ||
d54bf66f | 194 | B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh> |
5aabfad6 | 195 | |
196 | The arcus (also known as the inverse) functions of the hyperbolic | |
197 | sine, cosine, and tangent | |
198 | ||
d54bf66f | 199 | B<asinh>, B<acosh>, B<atanh> |
5aabfad6 | 200 | |
201 | The arcus cofunctions of the hyperbolic sine, cosine, and tangent | |
202 | (acsch/acosech and acoth/acotanh are aliases) | |
203 | ||
d54bf66f | 204 | B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh> |
5aabfad6 | 205 | |
206 | The trigonometric constant B<pi> is also defined. | |
207 | ||
d54bf66f | 208 | $pi2 = 2 * B<pi>; |
5aabfad6 | 209 | |
5cd24f17 | 210 | =head2 ERRORS DUE TO DIVISION BY ZERO |
211 | ||
212 | The following functions | |
213 | ||
d54bf66f | 214 | acoth |
5cd24f17 | 215 | acsc |
5cd24f17 | 216 | acsch |
d54bf66f JH |
217 | asec |
218 | asech | |
219 | atanh | |
220 | cot | |
221 | coth | |
222 | csc | |
223 | csch | |
224 | sec | |
225 | sech | |
226 | tan | |
227 | tanh | |
5cd24f17 | 228 | |
229 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
230 | by zero or taking logarithm of zero. These situations cause fatal |
231 | runtime errors looking like this | |
5cd24f17 | 232 | |
233 | cot(0): Division by zero. | |
234 | (Because in the definition of cot(0), the divisor sin(0) is 0) | |
235 | Died at ... | |
236 | ||
8c03c583 JH |
237 | or |
238 | ||
239 | atanh(-1): Logarithm of zero. | |
240 | Died at... | |
241 | ||
242 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
243 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |
244 | C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the | |
245 | C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the | |
246 | C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * | |
247 | pi>, where I<k> is any integer. | |
5cd24f17 | 248 | |
249 | =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS | |
5aabfad6 | 250 | |
251 | Please note that some of the trigonometric functions can break out | |
252 | from the B<real axis> into the B<complex plane>. For example | |
253 | C<asin(2)> has no definition for plain real numbers but it has | |
254 | definition for complex numbers. | |
255 | ||
256 | In Perl terms this means that supplying the usual Perl numbers (also | |
257 | known as scalars, please see L<perldata>) as input for the | |
258 | trigonometric functions might produce as output results that no more | |
259 | are simple real numbers: instead they are complex numbers. | |
260 | ||
261 | The C<Math::Trig> handles this by using the C<Math::Complex> package | |
262 | which knows how to handle complex numbers, please see L<Math::Complex> | |
263 | for more information. In practice you need not to worry about getting | |
264 | complex numbers as results because the C<Math::Complex> takes care of | |
265 | details like for example how to display complex numbers. For example: | |
266 | ||
267 | print asin(2), "\n"; | |
3cb6de81 | 268 | |
5aabfad6 | 269 | should produce something like this (take or leave few last decimals): |
270 | ||
271 | 1.5707963267949-1.31695789692482i | |
272 | ||
5cd24f17 | 273 | That is, a complex number with the real part of approximately C<1.571> |
274 | and the imaginary part of approximately C<-1.317>. | |
5aabfad6 | 275 | |
d54bf66f | 276 | =head1 PLANE ANGLE CONVERSIONS |
5aabfad6 | 277 | |
278 | (Plane, 2-dimensional) angles may be converted with the following functions. | |
279 | ||
ace5de91 GS |
280 | $radians = deg2rad($degrees); |
281 | $radians = grad2rad($gradians); | |
3cb6de81 | 282 | |
ace5de91 GS |
283 | $degrees = rad2deg($radians); |
284 | $degrees = grad2deg($gradians); | |
3cb6de81 | 285 | |
ace5de91 GS |
286 | $gradians = deg2grad($degrees); |
287 | $gradians = rad2grad($radians); | |
5aabfad6 | 288 | |
5cd24f17 | 289 | The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians. |
9db5a202 JH |
290 | The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle. |
291 | If you don't want this, supply a true second argument: | |
292 | ||
293 | $zillions_of_radians = deg2rad($zillions_of_degrees, 1); | |
294 | $negative_degrees = rad2deg($negative_radians, 1); | |
295 | ||
296 | You can also do the wrapping explicitly by rad2rad(), deg2deg(), and | |
297 | grad2grad(). | |
5aabfad6 | 298 | |
d54bf66f JH |
299 | =head1 RADIAL COORDINATE CONVERSIONS |
300 | ||
301 | B<Radial coordinate systems> are the B<spherical> and the B<cylindrical> | |
302 | systems, explained shortly in more detail. | |
303 | ||
304 | You can import radial coordinate conversion functions by using the | |
305 | C<:radial> tag: | |
306 | ||
307 | use Math::Trig ':radial'; | |
308 | ||
309 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
310 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
311 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
312 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
313 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
314 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
315 | ||
316 | B<All angles are in radians>. | |
317 | ||
318 | =head2 COORDINATE SYSTEMS | |
319 | ||
320 | B<Cartesian> coordinates are the usual rectangular I<(x, y, | |
321 | z)>-coordinates. | |
322 | ||
323 | Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional | |
324 | coordinates which define a point in three-dimensional space. They are | |
325 | based on a sphere surface. The radius of the sphere is B<rho>, also | |
326 | known as the I<radial> coordinate. The angle in the I<xy>-plane | |
327 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
328 | coordinate. The angle from the I<z>-axis is B<phi>, also known as the | |
329 | I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and | |
330 | the `Bay of Guinea' (think of the missing big chunk of Africa) I<0, | |
4b0d1da8 JH |
331 | pi/2, rho>. In geographical terms I<phi> is latitude (northward |
332 | positive, southward negative) and I<theta> is longitude (eastward | |
333 | positive, westward negative). | |
d54bf66f | 334 | |
4b0d1da8 | 335 | B<BEWARE>: some texts define I<theta> and I<phi> the other way round, |
d54bf66f JH |
336 | some texts define the I<phi> to start from the horizontal plane, some |
337 | texts use I<r> in place of I<rho>. | |
338 | ||
339 | Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional | |
340 | coordinates which define a point in three-dimensional space. They are | |
341 | based on a cylinder surface. The radius of the cylinder is B<rho>, | |
342 | also known as the I<radial> coordinate. The angle in the I<xy>-plane | |
343 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
344 | coordinate. The third coordinate is the I<z>, pointing up from the | |
345 | B<theta>-plane. | |
346 | ||
347 | =head2 3-D ANGLE CONVERSIONS | |
348 | ||
349 | Conversions to and from spherical and cylindrical coordinates are | |
350 | available. Please notice that the conversions are not necessarily | |
351 | reversible because of the equalities like I<pi> angles being equal to | |
352 | I<-pi> angles. | |
353 | ||
354 | =over 4 | |
355 | ||
356 | =item cartesian_to_cylindrical | |
357 | ||
358 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
359 | ||
360 | =item cartesian_to_spherical | |
361 | ||
362 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
363 | ||
364 | =item cylindrical_to_cartesian | |
365 | ||
366 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
367 | ||
368 | =item cylindrical_to_spherical | |
369 | ||
370 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
371 | ||
372 | Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>. | |
373 | ||
374 | =item spherical_to_cartesian | |
375 | ||
376 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
377 | ||
378 | =item spherical_to_cylindrical | |
379 | ||
380 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
381 | ||
382 | Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>. | |
383 | ||
384 | =back | |
385 | ||
386 | =head1 GREAT CIRCLE DISTANCES | |
387 | ||
388 | You can compute spherical distances, called B<great circle distances>, | |
389 | by importing the C<great_circle_distance> function: | |
390 | ||
391 | use Math::Trig 'great_circle_distance' | |
392 | ||
4b0d1da8 | 393 | $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]); |
d54bf66f JH |
394 | |
395 | The I<great circle distance> is the shortest distance between two | |
396 | points on a sphere. The distance is in C<$rho> units. The C<$rho> is | |
397 | optional, it defaults to 1 (the unit sphere), therefore the distance | |
398 | defaults to radians. | |
399 | ||
4b0d1da8 JH |
400 | If you think geographically the I<theta> are longitudes: zero at the |
401 | Greenwhich meridian, eastward positive, westward negative--and the | |
2d06e7d7 | 402 | I<phi> are latitudes: zero at the North Pole, northward positive, |
4b0d1da8 | 403 | southward negative. B<NOTE>: this formula thinks in mathematics, not |
2d06e7d7 JH |
404 | geographically: the I<phi> zero is at the North Pole, not at the |
405 | Equator on the west coast of Africa (Bay of Guinea). You need to | |
406 | subtract your geographical coordinates from I<pi/2> (also known as 90 | |
407 | degrees). | |
4b0d1da8 JH |
408 | |
409 | $distance = great_circle_distance($lon0, pi/2 - $lat0, | |
410 | $lon1, pi/2 - $lat1, $rho); | |
411 | ||
51301382 | 412 | =head1 EXAMPLES |
d54bf66f JH |
413 | |
414 | To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N | |
415 | 139.8E) in kilometers: | |
416 | ||
417 | use Math::Trig qw(great_circle_distance deg2rad); | |
418 | ||
419 | # Notice the 90 - latitude: phi zero is at the North Pole. | |
420 | @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); | |
421 | @T = (deg2rad(139.8),deg2rad(90 - 35.7)); | |
422 | ||
423 | $km = great_circle_distance(@L, @T, 6378); | |
424 | ||
4b0d1da8 | 425 | The answer may be off by few percentages because of the irregular |
41bd693c JH |
426 | (slightly aspherical) form of the Earth. The used formula |
427 | ||
428 | lat0 = 90 degrees - phi0 | |
429 | lat1 = 90 degrees - phi1 | |
430 | d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) + | |
431 | sin(lat0) * sin(lat1)) | |
432 | ||
433 | is also somewhat unreliable for small distances (for locations | |
434 | separated less than about five degrees) because it uses arc cosine | |
435 | which is rather ill-conditioned for values close to zero. | |
d54bf66f | 436 | |
5cd24f17 | 437 | =head1 BUGS |
5aabfad6 | 438 | |
5cd24f17 | 439 | Saying C<use Math::Trig;> exports many mathematical routines in the |
440 | caller environment and even overrides some (C<sin>, C<cos>). This is | |
441 | construed as a feature by the Authors, actually... ;-) | |
5aabfad6 | 442 | |
5cd24f17 | 443 | The code is not optimized for speed, especially because we use |
444 | C<Math::Complex> and thus go quite near complex numbers while doing | |
445 | the computations even when the arguments are not. This, however, | |
446 | cannot be completely avoided if we want things like C<asin(2)> to give | |
447 | an answer instead of giving a fatal runtime error. | |
5aabfad6 | 448 | |
5cd24f17 | 449 | =head1 AUTHORS |
5aabfad6 | 450 | |
ace5de91 | 451 | Jarkko Hietaniemi <F<jhi@iki.fi>> and |
6e238990 | 452 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>. |
5aabfad6 | 453 | |
454 | =cut | |
455 | ||
456 | # eof |