Commit | Line | Data |
---|---|---|
5aabfad6 | 1 | # |
2 | # Trigonometric functions, mostly inherited from Math::Complex. | |
d54bf66f | 3 | # -- Jarkko Hietaniemi, since April 1997 |
5cd24f17 | 4 | # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex) |
5aabfad6 | 5 | # |
6 | ||
7 | require Exporter; | |
8 | package Math::Trig; | |
9 | ||
17f410f9 | 10 | use 5.005_64; |
5aabfad6 | 11 | use strict; |
12 | ||
13 | use Math::Complex qw(:trig); | |
14 | ||
17f410f9 | 15 | our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS); |
5aabfad6 | 16 | |
17 | @ISA = qw(Exporter); | |
18 | ||
19 | $VERSION = 1.00; | |
20 | ||
ace5de91 GS |
21 | my @angcnv = qw(rad2deg rad2grad |
22 | deg2rad deg2grad | |
23 | grad2rad grad2deg); | |
5aabfad6 | 24 | |
25 | @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}}, | |
26 | @angcnv); | |
27 | ||
d54bf66f JH |
28 | my @rdlcnv = qw(cartesian_to_cylindrical |
29 | cartesian_to_spherical | |
30 | cylindrical_to_cartesian | |
31 | cylindrical_to_spherical | |
32 | spherical_to_cartesian | |
33 | spherical_to_cylindrical); | |
34 | ||
35 | @EXPORT_OK = (@rdlcnv, 'great_circle_distance'); | |
36 | ||
37 | %EXPORT_TAGS = ('radial' => [ @rdlcnv ]); | |
38 | ||
6570f784 GS |
39 | sub pi2 () { 2 * pi } # use constant generates warning |
40 | sub pip2 () { pi / 2 } # use constant generates warning | |
d54bf66f JH |
41 | use constant DR => pi2/360; |
42 | use constant RD => 360/pi2; | |
43 | use constant DG => 400/360; | |
44 | use constant GD => 360/400; | |
45 | use constant RG => 400/pi2; | |
46 | use constant GR => pi2/400; | |
5aabfad6 | 47 | |
48 | # | |
49 | # Truncating remainder. | |
50 | # | |
51 | ||
52 | sub remt ($$) { | |
53 | # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available. | |
54 | $_[0] - $_[1] * int($_[0] / $_[1]); | |
55 | } | |
56 | ||
57 | # | |
58 | # Angle conversions. | |
59 | # | |
60 | ||
ace5de91 | 61 | sub rad2deg ($) { remt(RD * $_[0], 360) } |
5aabfad6 | 62 | |
ace5de91 | 63 | sub deg2rad ($) { remt(DR * $_[0], pi2) } |
5aabfad6 | 64 | |
ace5de91 | 65 | sub grad2deg ($) { remt(GD * $_[0], 360) } |
5aabfad6 | 66 | |
ace5de91 | 67 | sub deg2grad ($) { remt(DG * $_[0], 400) } |
5aabfad6 | 68 | |
ace5de91 | 69 | sub rad2grad ($) { remt(RG * $_[0], 400) } |
5aabfad6 | 70 | |
ace5de91 | 71 | sub grad2rad ($) { remt(GR * $_[0], pi2) } |
5aabfad6 | 72 | |
d54bf66f JH |
73 | sub cartesian_to_spherical { |
74 | my ( $x, $y, $z ) = @_; | |
75 | ||
76 | my $rho = sqrt( $x * $x + $y * $y + $z * $z ); | |
77 | ||
78 | return ( $rho, | |
79 | atan2( $y, $x ), | |
80 | $rho ? acos( $z / $rho ) : 0 ); | |
81 | } | |
82 | ||
83 | sub spherical_to_cartesian { | |
84 | my ( $rho, $theta, $phi ) = @_; | |
85 | ||
86 | return ( $rho * cos( $theta ) * sin( $phi ), | |
87 | $rho * sin( $theta ) * sin( $phi ), | |
88 | $rho * cos( $phi ) ); | |
89 | } | |
90 | ||
91 | sub spherical_to_cylindrical { | |
92 | my ( $x, $y, $z ) = spherical_to_cartesian( @_ ); | |
93 | ||
94 | return ( sqrt( $x * $x + $y * $y ), $_[1], $z ); | |
95 | } | |
96 | ||
97 | sub cartesian_to_cylindrical { | |
98 | my ( $x, $y, $z ) = @_; | |
99 | ||
100 | return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z ); | |
101 | } | |
102 | ||
103 | sub cylindrical_to_cartesian { | |
104 | my ( $rho, $theta, $z ) = @_; | |
105 | ||
106 | return ( $rho * cos( $theta ), $rho * sin( $theta ), $z ); | |
107 | } | |
108 | ||
109 | sub cylindrical_to_spherical { | |
110 | return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) ); | |
111 | } | |
112 | ||
113 | sub great_circle_distance { | |
114 | my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_; | |
115 | ||
116 | $rho = 1 unless defined $rho; # Default to the unit sphere. | |
117 | ||
118 | my $lat0 = pip2 - $phi0; | |
119 | my $lat1 = pip2 - $phi1; | |
120 | ||
121 | return $rho * | |
122 | acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) + | |
123 | sin( $lat0 ) * sin( $lat1 ) ); | |
124 | } | |
125 | ||
126 | =pod | |
127 | ||
5aabfad6 | 128 | =head1 NAME |
129 | ||
130 | Math::Trig - trigonometric functions | |
131 | ||
132 | =head1 SYNOPSIS | |
133 | ||
134 | use Math::Trig; | |
3cb6de81 | 135 | |
5aabfad6 | 136 | $x = tan(0.9); |
137 | $y = acos(3.7); | |
138 | $z = asin(2.4); | |
3cb6de81 | 139 | |
5aabfad6 | 140 | $halfpi = pi/2; |
141 | ||
ace5de91 | 142 | $rad = deg2rad(120); |
5aabfad6 | 143 | |
144 | =head1 DESCRIPTION | |
145 | ||
146 | C<Math::Trig> defines many trigonometric functions not defined by the | |
4ae80833 | 147 | core Perl which defines only the C<sin()> and C<cos()>. The constant |
5aabfad6 | 148 | B<pi> is also defined as are a few convenience functions for angle |
149 | conversions. | |
150 | ||
151 | =head1 TRIGONOMETRIC FUNCTIONS | |
152 | ||
153 | The tangent | |
154 | ||
d54bf66f JH |
155 | =over 4 |
156 | ||
157 | =item B<tan> | |
158 | ||
159 | =back | |
5aabfad6 | 160 | |
161 | The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot | |
162 | are aliases) | |
163 | ||
d54bf66f | 164 | B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan> |
5aabfad6 | 165 | |
166 | The arcus (also known as the inverse) functions of the sine, cosine, | |
167 | and tangent | |
168 | ||
d54bf66f | 169 | B<asin>, B<acos>, B<atan> |
5aabfad6 | 170 | |
171 | The principal value of the arc tangent of y/x | |
172 | ||
d54bf66f | 173 | B<atan2>(y, x) |
5aabfad6 | 174 | |
175 | The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc | |
176 | and acotan/acot are aliases) | |
177 | ||
d54bf66f | 178 | B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan> |
5aabfad6 | 179 | |
180 | The hyperbolic sine, cosine, and tangent | |
181 | ||
d54bf66f | 182 | B<sinh>, B<cosh>, B<tanh> |
5aabfad6 | 183 | |
184 | The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch | |
185 | and cotanh/coth are aliases) | |
186 | ||
d54bf66f | 187 | B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh> |
5aabfad6 | 188 | |
189 | The arcus (also known as the inverse) functions of the hyperbolic | |
190 | sine, cosine, and tangent | |
191 | ||
d54bf66f | 192 | B<asinh>, B<acosh>, B<atanh> |
5aabfad6 | 193 | |
194 | The arcus cofunctions of the hyperbolic sine, cosine, and tangent | |
195 | (acsch/acosech and acoth/acotanh are aliases) | |
196 | ||
d54bf66f | 197 | B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh> |
5aabfad6 | 198 | |
199 | The trigonometric constant B<pi> is also defined. | |
200 | ||
d54bf66f | 201 | $pi2 = 2 * B<pi>; |
5aabfad6 | 202 | |
5cd24f17 | 203 | =head2 ERRORS DUE TO DIVISION BY ZERO |
204 | ||
205 | The following functions | |
206 | ||
d54bf66f | 207 | acoth |
5cd24f17 | 208 | acsc |
5cd24f17 | 209 | acsch |
d54bf66f JH |
210 | asec |
211 | asech | |
212 | atanh | |
213 | cot | |
214 | coth | |
215 | csc | |
216 | csch | |
217 | sec | |
218 | sech | |
219 | tan | |
220 | tanh | |
5cd24f17 | 221 | |
222 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
223 | by zero or taking logarithm of zero. These situations cause fatal |
224 | runtime errors looking like this | |
5cd24f17 | 225 | |
226 | cot(0): Division by zero. | |
227 | (Because in the definition of cot(0), the divisor sin(0) is 0) | |
228 | Died at ... | |
229 | ||
8c03c583 JH |
230 | or |
231 | ||
232 | atanh(-1): Logarithm of zero. | |
233 | Died at... | |
234 | ||
235 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
236 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |
237 | C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the | |
238 | C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the | |
239 | C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * | |
240 | pi>, where I<k> is any integer. | |
5cd24f17 | 241 | |
242 | =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS | |
5aabfad6 | 243 | |
244 | Please note that some of the trigonometric functions can break out | |
245 | from the B<real axis> into the B<complex plane>. For example | |
246 | C<asin(2)> has no definition for plain real numbers but it has | |
247 | definition for complex numbers. | |
248 | ||
249 | In Perl terms this means that supplying the usual Perl numbers (also | |
250 | known as scalars, please see L<perldata>) as input for the | |
251 | trigonometric functions might produce as output results that no more | |
252 | are simple real numbers: instead they are complex numbers. | |
253 | ||
254 | The C<Math::Trig> handles this by using the C<Math::Complex> package | |
255 | which knows how to handle complex numbers, please see L<Math::Complex> | |
256 | for more information. In practice you need not to worry about getting | |
257 | complex numbers as results because the C<Math::Complex> takes care of | |
258 | details like for example how to display complex numbers. For example: | |
259 | ||
260 | print asin(2), "\n"; | |
3cb6de81 | 261 | |
5aabfad6 | 262 | should produce something like this (take or leave few last decimals): |
263 | ||
264 | 1.5707963267949-1.31695789692482i | |
265 | ||
5cd24f17 | 266 | That is, a complex number with the real part of approximately C<1.571> |
267 | and the imaginary part of approximately C<-1.317>. | |
5aabfad6 | 268 | |
d54bf66f | 269 | =head1 PLANE ANGLE CONVERSIONS |
5aabfad6 | 270 | |
271 | (Plane, 2-dimensional) angles may be converted with the following functions. | |
272 | ||
ace5de91 GS |
273 | $radians = deg2rad($degrees); |
274 | $radians = grad2rad($gradians); | |
3cb6de81 | 275 | |
ace5de91 GS |
276 | $degrees = rad2deg($radians); |
277 | $degrees = grad2deg($gradians); | |
3cb6de81 | 278 | |
ace5de91 GS |
279 | $gradians = deg2grad($degrees); |
280 | $gradians = rad2grad($radians); | |
5aabfad6 | 281 | |
5cd24f17 | 282 | The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians. |
5aabfad6 | 283 | |
d54bf66f JH |
284 | =head1 RADIAL COORDINATE CONVERSIONS |
285 | ||
286 | B<Radial coordinate systems> are the B<spherical> and the B<cylindrical> | |
287 | systems, explained shortly in more detail. | |
288 | ||
289 | You can import radial coordinate conversion functions by using the | |
290 | C<:radial> tag: | |
291 | ||
292 | use Math::Trig ':radial'; | |
293 | ||
294 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
295 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
296 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
297 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
298 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
299 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
300 | ||
301 | B<All angles are in radians>. | |
302 | ||
303 | =head2 COORDINATE SYSTEMS | |
304 | ||
305 | B<Cartesian> coordinates are the usual rectangular I<(x, y, | |
306 | z)>-coordinates. | |
307 | ||
308 | Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional | |
309 | coordinates which define a point in three-dimensional space. They are | |
310 | based on a sphere surface. The radius of the sphere is B<rho>, also | |
311 | known as the I<radial> coordinate. The angle in the I<xy>-plane | |
312 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
313 | coordinate. The angle from the I<z>-axis is B<phi>, also known as the | |
314 | I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and | |
315 | the `Bay of Guinea' (think of the missing big chunk of Africa) I<0, | |
4b0d1da8 JH |
316 | pi/2, rho>. In geographical terms I<phi> is latitude (northward |
317 | positive, southward negative) and I<theta> is longitude (eastward | |
318 | positive, westward negative). | |
d54bf66f | 319 | |
4b0d1da8 | 320 | B<BEWARE>: some texts define I<theta> and I<phi> the other way round, |
d54bf66f JH |
321 | some texts define the I<phi> to start from the horizontal plane, some |
322 | texts use I<r> in place of I<rho>. | |
323 | ||
324 | Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional | |
325 | coordinates which define a point in three-dimensional space. They are | |
326 | based on a cylinder surface. The radius of the cylinder is B<rho>, | |
327 | also known as the I<radial> coordinate. The angle in the I<xy>-plane | |
328 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
329 | coordinate. The third coordinate is the I<z>, pointing up from the | |
330 | B<theta>-plane. | |
331 | ||
332 | =head2 3-D ANGLE CONVERSIONS | |
333 | ||
334 | Conversions to and from spherical and cylindrical coordinates are | |
335 | available. Please notice that the conversions are not necessarily | |
336 | reversible because of the equalities like I<pi> angles being equal to | |
337 | I<-pi> angles. | |
338 | ||
339 | =over 4 | |
340 | ||
341 | =item cartesian_to_cylindrical | |
342 | ||
343 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
344 | ||
345 | =item cartesian_to_spherical | |
346 | ||
347 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
348 | ||
349 | =item cylindrical_to_cartesian | |
350 | ||
351 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
352 | ||
353 | =item cylindrical_to_spherical | |
354 | ||
355 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
356 | ||
357 | Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>. | |
358 | ||
359 | =item spherical_to_cartesian | |
360 | ||
361 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
362 | ||
363 | =item spherical_to_cylindrical | |
364 | ||
365 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
366 | ||
367 | Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>. | |
368 | ||
369 | =back | |
370 | ||
371 | =head1 GREAT CIRCLE DISTANCES | |
372 | ||
373 | You can compute spherical distances, called B<great circle distances>, | |
374 | by importing the C<great_circle_distance> function: | |
375 | ||
376 | use Math::Trig 'great_circle_distance' | |
377 | ||
4b0d1da8 | 378 | $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]); |
d54bf66f JH |
379 | |
380 | The I<great circle distance> is the shortest distance between two | |
381 | points on a sphere. The distance is in C<$rho> units. The C<$rho> is | |
382 | optional, it defaults to 1 (the unit sphere), therefore the distance | |
383 | defaults to radians. | |
384 | ||
4b0d1da8 JH |
385 | If you think geographically the I<theta> are longitudes: zero at the |
386 | Greenwhich meridian, eastward positive, westward negative--and the | |
2d06e7d7 | 387 | I<phi> are latitudes: zero at the North Pole, northward positive, |
4b0d1da8 | 388 | southward negative. B<NOTE>: this formula thinks in mathematics, not |
2d06e7d7 JH |
389 | geographically: the I<phi> zero is at the North Pole, not at the |
390 | Equator on the west coast of Africa (Bay of Guinea). You need to | |
391 | subtract your geographical coordinates from I<pi/2> (also known as 90 | |
392 | degrees). | |
4b0d1da8 JH |
393 | |
394 | $distance = great_circle_distance($lon0, pi/2 - $lat0, | |
395 | $lon1, pi/2 - $lat1, $rho); | |
396 | ||
51301382 | 397 | =head1 EXAMPLES |
d54bf66f JH |
398 | |
399 | To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N | |
400 | 139.8E) in kilometers: | |
401 | ||
402 | use Math::Trig qw(great_circle_distance deg2rad); | |
403 | ||
404 | # Notice the 90 - latitude: phi zero is at the North Pole. | |
405 | @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); | |
406 | @T = (deg2rad(139.8),deg2rad(90 - 35.7)); | |
407 | ||
408 | $km = great_circle_distance(@L, @T, 6378); | |
409 | ||
4b0d1da8 | 410 | The answer may be off by few percentages because of the irregular |
41bd693c JH |
411 | (slightly aspherical) form of the Earth. The used formula |
412 | ||
413 | lat0 = 90 degrees - phi0 | |
414 | lat1 = 90 degrees - phi1 | |
415 | d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) + | |
416 | sin(lat0) * sin(lat1)) | |
417 | ||
418 | is also somewhat unreliable for small distances (for locations | |
419 | separated less than about five degrees) because it uses arc cosine | |
420 | which is rather ill-conditioned for values close to zero. | |
d54bf66f | 421 | |
5cd24f17 | 422 | =head1 BUGS |
5aabfad6 | 423 | |
5cd24f17 | 424 | Saying C<use Math::Trig;> exports many mathematical routines in the |
425 | caller environment and even overrides some (C<sin>, C<cos>). This is | |
426 | construed as a feature by the Authors, actually... ;-) | |
5aabfad6 | 427 | |
5cd24f17 | 428 | The code is not optimized for speed, especially because we use |
429 | C<Math::Complex> and thus go quite near complex numbers while doing | |
430 | the computations even when the arguments are not. This, however, | |
431 | cannot be completely avoided if we want things like C<asin(2)> to give | |
432 | an answer instead of giving a fatal runtime error. | |
5aabfad6 | 433 | |
5cd24f17 | 434 | =head1 AUTHORS |
5aabfad6 | 435 | |
ace5de91 | 436 | Jarkko Hietaniemi <F<jhi@iki.fi>> and |
6e238990 | 437 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>. |
5aabfad6 | 438 | |
439 | =cut | |
440 | ||
441 | # eof |