Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # $RCSFile$ |
2 | # | |
3 | # Complex numbers and associated mathematical functions | |
0c721ce2 JH |
4 | # -- Raphael Manfredi, September 1996 |
5 | # -- Jarkko Hietaniemi, March 1997 | |
a0d0e21e LW |
6 | |
7 | require Exporter; | |
5aabfad6 | 8 | package Math::Complex; |
a0d0e21e | 9 | |
0c721ce2 JH |
10 | use strict; |
11 | ||
5aabfad6 | 12 | use vars qw($VERSION @ISA |
13 | @EXPORT %EXPORT_TAGS | |
14 | $package $display | |
0c721ce2 JH |
15 | $pi $i $ilog10 $logn %logn); |
16 | ||
5aabfad6 | 17 | @ISA = qw(Exporter); |
18 | ||
19 | $VERSION = 1.01; | |
20 | ||
21 | my @trig = qw( | |
22 | pi | |
23 | tan | |
24 | csc cosec sec cot cotan | |
25 | asin acos atan | |
26 | acsc acosec asec acot acotan | |
27 | sinh cosh tanh | |
28 | csch cosech sech coth cotanh | |
29 | asinh acosh atanh | |
30 | acsch acosech asech acoth acotanh | |
31 | ); | |
32 | ||
33 | @EXPORT = (qw( | |
34 | i Re Im arg | |
35 | sqrt exp log ln | |
36 | log10 logn cbrt root | |
37 | cplx cplxe | |
38 | ), | |
39 | @trig); | |
40 | ||
41 | %EXPORT_TAGS = ( | |
42 | 'trig' => [@trig], | |
66730be0 | 43 | ); |
a0d0e21e | 44 | |
a5f75d66 | 45 | use overload |
0c721ce2 JH |
46 | '+' => \&plus, |
47 | '-' => \&minus, | |
48 | '*' => \&multiply, | |
49 | '/' => \÷, | |
66730be0 RM |
50 | '**' => \&power, |
51 | '<=>' => \&spaceship, | |
52 | 'neg' => \&negate, | |
0c721ce2 | 53 | '~' => \&conjugate, |
66730be0 RM |
54 | 'abs' => \&abs, |
55 | 'sqrt' => \&sqrt, | |
56 | 'exp' => \&exp, | |
57 | 'log' => \&log, | |
58 | 'sin' => \&sin, | |
59 | 'cos' => \&cos, | |
0c721ce2 | 60 | 'tan' => \&tan, |
66730be0 RM |
61 | 'atan2' => \&atan2, |
62 | qw("" stringify); | |
63 | ||
64 | # | |
65 | # Package globals | |
66 | # | |
67 | ||
68 | $package = 'Math::Complex'; # Package name | |
69 | $display = 'cartesian'; # Default display format | |
70 | ||
71 | # | |
72 | # Object attributes (internal): | |
73 | # cartesian [real, imaginary] -- cartesian form | |
74 | # polar [rho, theta] -- polar form | |
75 | # c_dirty cartesian form not up-to-date | |
76 | # p_dirty polar form not up-to-date | |
77 | # display display format (package's global when not set) | |
78 | # | |
79 | ||
80 | # | |
81 | # ->make | |
82 | # | |
83 | # Create a new complex number (cartesian form) | |
84 | # | |
85 | sub make { | |
86 | my $self = bless {}, shift; | |
87 | my ($re, $im) = @_; | |
40da2db3 | 88 | $self->{'cartesian'} = [$re, $im]; |
66730be0 RM |
89 | $self->{c_dirty} = 0; |
90 | $self->{p_dirty} = 1; | |
91 | return $self; | |
92 | } | |
93 | ||
94 | # | |
95 | # ->emake | |
96 | # | |
97 | # Create a new complex number (exponential form) | |
98 | # | |
99 | sub emake { | |
100 | my $self = bless {}, shift; | |
101 | my ($rho, $theta) = @_; | |
102 | $theta += pi() if $rho < 0; | |
40da2db3 | 103 | $self->{'polar'} = [abs($rho), $theta]; |
66730be0 RM |
104 | $self->{p_dirty} = 0; |
105 | $self->{c_dirty} = 1; | |
106 | return $self; | |
107 | } | |
108 | ||
109 | sub new { &make } # For backward compatibility only. | |
110 | ||
111 | # | |
112 | # cplx | |
113 | # | |
114 | # Creates a complex number from a (re, im) tuple. | |
115 | # This avoids the burden of writing Math::Complex->make(re, im). | |
116 | # | |
117 | sub cplx { | |
118 | my ($re, $im) = @_; | |
0c721ce2 | 119 | return $package->make($re, defined $im ? $im : 0); |
66730be0 RM |
120 | } |
121 | ||
122 | # | |
123 | # cplxe | |
124 | # | |
125 | # Creates a complex number from a (rho, theta) tuple. | |
126 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
127 | # | |
128 | sub cplxe { | |
129 | my ($rho, $theta) = @_; | |
0c721ce2 | 130 | return $package->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
131 | } |
132 | ||
133 | # | |
134 | # pi | |
135 | # | |
136 | # The number defined as 2 * pi = 360 degrees | |
137 | # | |
138 | sub pi () { | |
139 | $pi = 4 * atan2(1, 1) unless $pi; | |
140 | return $pi; | |
141 | } | |
142 | ||
143 | # | |
144 | # i | |
145 | # | |
146 | # The number defined as i*i = -1; | |
147 | # | |
148 | sub i () { | |
149 | $i = bless {} unless $i; # There can be only one i | |
40da2db3 JH |
150 | $i->{'cartesian'} = [0, 1]; |
151 | $i->{'polar'} = [1, pi/2]; | |
66730be0 RM |
152 | $i->{c_dirty} = 0; |
153 | $i->{p_dirty} = 0; | |
154 | return $i; | |
155 | } | |
156 | ||
157 | # | |
158 | # Attribute access/set routines | |
159 | # | |
160 | ||
0c721ce2 JH |
161 | sub cartesian {$_[0]->{c_dirty} ? |
162 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
163 | sub polar {$_[0]->{p_dirty} ? | |
164 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 165 | |
40da2db3 JH |
166 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
167 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
168 | |
169 | # | |
170 | # ->update_cartesian | |
171 | # | |
172 | # Recompute and return the cartesian form, given accurate polar form. | |
173 | # | |
174 | sub update_cartesian { | |
175 | my $self = shift; | |
40da2db3 | 176 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 177 | $self->{c_dirty} = 0; |
40da2db3 | 178 | return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; |
66730be0 RM |
179 | } |
180 | ||
181 | # | |
182 | # | |
183 | # ->update_polar | |
184 | # | |
185 | # Recompute and return the polar form, given accurate cartesian form. | |
186 | # | |
187 | sub update_polar { | |
188 | my $self = shift; | |
40da2db3 | 189 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 190 | $self->{p_dirty} = 0; |
40da2db3 JH |
191 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
192 | return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; | |
66730be0 RM |
193 | } |
194 | ||
195 | # | |
196 | # (plus) | |
197 | # | |
198 | # Computes z1+z2. | |
199 | # | |
200 | sub plus { | |
201 | my ($z1, $z2, $regular) = @_; | |
0c721ce2 | 202 | $z2 = cplx($z2, 0) unless ref $z2; |
66730be0 | 203 | my ($re1, $im1) = @{$z1->cartesian}; |
0c721ce2 | 204 | my ($re2, $im2) = @{$z2->cartesian}; |
66730be0 RM |
205 | unless (defined $regular) { |
206 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
207 | return $z1; | |
208 | } | |
209 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
210 | } | |
211 | ||
212 | # | |
213 | # (minus) | |
214 | # | |
215 | # Computes z1-z2. | |
216 | # | |
217 | sub minus { | |
218 | my ($z1, $z2, $inverted) = @_; | |
0c721ce2 | 219 | $z2 = cplx($z2, 0) unless ref $z2; |
66730be0 | 220 | my ($re1, $im1) = @{$z1->cartesian}; |
0c721ce2 | 221 | my ($re2, $im2) = @{$z2->cartesian}; |
66730be0 RM |
222 | unless (defined $inverted) { |
223 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
224 | return $z1; | |
225 | } | |
226 | return $inverted ? | |
227 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
228 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
229 | } | |
230 | ||
231 | # | |
232 | # (multiply) | |
233 | # | |
234 | # Computes z1*z2. | |
235 | # | |
236 | sub multiply { | |
237 | my ($z1, $z2, $regular) = @_; | |
238 | my ($r1, $t1) = @{$z1->polar}; | |
0c721ce2 JH |
239 | my ($r2, $t2) = ref $z2 ? |
240 | @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); | |
66730be0 RM |
241 | unless (defined $regular) { |
242 | $z1->set_polar([$r1 * $r2, $t1 + $t2]); | |
243 | return $z1; | |
244 | } | |
245 | return (ref $z1)->emake($r1 * $r2, $t1 + $t2); | |
246 | } | |
247 | ||
248 | # | |
0c721ce2 JH |
249 | # divbyzero |
250 | # | |
251 | # Die on division by zero. | |
252 | # | |
253 | sub divbyzero { | |
5aabfad6 | 254 | warn "$_[0]: Division by zero.\n"; |
0c721ce2 JH |
255 | warn "(Because in the definition of $_[0], $_[1] is 0)\n" |
256 | if (defined $_[1]); | |
257 | my @up = caller(1); | |
258 | my $dmess = "Died at $up[1] line $up[2].\n"; | |
259 | die $dmess; | |
260 | } | |
261 | ||
262 | # | |
66730be0 RM |
263 | # (divide) |
264 | # | |
265 | # Computes z1/z2. | |
266 | # | |
267 | sub divide { | |
268 | my ($z1, $z2, $inverted) = @_; | |
269 | my ($r1, $t1) = @{$z1->polar}; | |
0c721ce2 JH |
270 | my ($r2, $t2) = ref $z2 ? |
271 | @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); | |
66730be0 | 272 | unless (defined $inverted) { |
0c721ce2 | 273 | divbyzero "$z1/0" if ($r2 == 0); |
66730be0 RM |
274 | $z1->set_polar([$r1 / $r2, $t1 - $t2]); |
275 | return $z1; | |
276 | } | |
0c721ce2 JH |
277 | if ($inverted) { |
278 | divbyzero "$z2/0" if ($r1 == 0); | |
279 | return (ref $z1)->emake($r2 / $r1, $t2 - $t1); | |
280 | } else { | |
281 | divbyzero "$z1/0" if ($r2 == 0); | |
282 | return (ref $z1)->emake($r1 / $r2, $t1 - $t2); | |
283 | } | |
66730be0 RM |
284 | } |
285 | ||
286 | # | |
287 | # (power) | |
288 | # | |
289 | # Computes z1**z2 = exp(z2 * log z1)). | |
290 | # | |
291 | sub power { | |
292 | my ($z1, $z2, $inverted) = @_; | |
293 | return exp($z1 * log $z2) if defined $inverted && $inverted; | |
294 | return exp($z2 * log $z1); | |
295 | } | |
296 | ||
297 | # | |
298 | # (spaceship) | |
299 | # | |
300 | # Computes z1 <=> z2. | |
301 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. | |
302 | # | |
303 | sub spaceship { | |
304 | my ($z1, $z2, $inverted) = @_; | |
0c721ce2 | 305 | $z2 = cplx($z2, 0) unless ref $z2; |
66730be0 | 306 | my ($re1, $im1) = @{$z1->cartesian}; |
0c721ce2 | 307 | my ($re2, $im2) = @{$z2->cartesian}; |
66730be0 RM |
308 | my $sgn = $inverted ? -1 : 1; |
309 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
310 | return $sgn * ($im1 <=> $im2); | |
311 | } | |
312 | ||
313 | # | |
314 | # (negate) | |
315 | # | |
316 | # Computes -z. | |
317 | # | |
318 | sub negate { | |
319 | my ($z) = @_; | |
320 | if ($z->{c_dirty}) { | |
321 | my ($r, $t) = @{$z->polar}; | |
322 | return (ref $z)->emake($r, pi + $t); | |
323 | } | |
324 | my ($re, $im) = @{$z->cartesian}; | |
325 | return (ref $z)->make(-$re, -$im); | |
326 | } | |
327 | ||
328 | # | |
329 | # (conjugate) | |
330 | # | |
331 | # Compute complex's conjugate. | |
332 | # | |
333 | sub conjugate { | |
334 | my ($z) = @_; | |
335 | if ($z->{c_dirty}) { | |
336 | my ($r, $t) = @{$z->polar}; | |
337 | return (ref $z)->emake($r, -$t); | |
338 | } | |
339 | my ($re, $im) = @{$z->cartesian}; | |
340 | return (ref $z)->make($re, -$im); | |
341 | } | |
342 | ||
343 | # | |
344 | # (abs) | |
345 | # | |
346 | # Compute complex's norm (rho). | |
347 | # | |
348 | sub abs { | |
349 | my ($z) = @_; | |
0c721ce2 | 350 | return abs($z) unless ref $z; |
66730be0 RM |
351 | my ($r, $t) = @{$z->polar}; |
352 | return abs($r); | |
353 | } | |
354 | ||
355 | # | |
356 | # arg | |
357 | # | |
358 | # Compute complex's argument (theta). | |
359 | # | |
360 | sub arg { | |
361 | my ($z) = @_; | |
0c721ce2 | 362 | return ($z < 0 ? pi : 0) unless ref $z; |
66730be0 RM |
363 | my ($r, $t) = @{$z->polar}; |
364 | return $t; | |
365 | } | |
366 | ||
367 | # | |
368 | # (sqrt) | |
369 | # | |
0c721ce2 | 370 | # Compute sqrt(z). |
66730be0 RM |
371 | # |
372 | sub sqrt { | |
373 | my ($z) = @_; | |
0c721ce2 | 374 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
375 | my ($r, $t) = @{$z->polar}; |
376 | return (ref $z)->emake(sqrt($r), $t/2); | |
377 | } | |
378 | ||
379 | # | |
380 | # cbrt | |
381 | # | |
0c721ce2 | 382 | # Compute cbrt(z) (cubic root). |
66730be0 RM |
383 | # |
384 | sub cbrt { | |
385 | my ($z) = @_; | |
0c721ce2 | 386 | return cplx($z, 0) ** (1/3) unless ref $z; |
66730be0 RM |
387 | my ($r, $t) = @{$z->polar}; |
388 | return (ref $z)->emake($r**(1/3), $t/3); | |
389 | } | |
390 | ||
391 | # | |
392 | # root | |
393 | # | |
394 | # Computes all nth root for z, returning an array whose size is n. | |
395 | # `n' must be a positive integer. | |
396 | # | |
397 | # The roots are given by (for k = 0..n-1): | |
398 | # | |
399 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
400 | # | |
401 | sub root { | |
402 | my ($z, $n) = @_; | |
403 | $n = int($n + 0.5); | |
404 | return undef unless $n > 0; | |
405 | my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); | |
406 | my @root; | |
407 | my $k; | |
408 | my $theta_inc = 2 * pi / $n; | |
409 | my $rho = $r ** (1/$n); | |
410 | my $theta; | |
411 | my $complex = ref($z) || $package; | |
412 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { | |
413 | push(@root, $complex->emake($rho, $theta)); | |
a0d0e21e | 414 | } |
66730be0 | 415 | return @root; |
a0d0e21e LW |
416 | } |
417 | ||
66730be0 RM |
418 | # |
419 | # Re | |
420 | # | |
421 | # Return Re(z). | |
422 | # | |
a0d0e21e | 423 | sub Re { |
66730be0 RM |
424 | my ($z) = @_; |
425 | return $z unless ref $z; | |
426 | my ($re, $im) = @{$z->cartesian}; | |
427 | return $re; | |
a0d0e21e LW |
428 | } |
429 | ||
66730be0 RM |
430 | # |
431 | # Im | |
432 | # | |
433 | # Return Im(z). | |
434 | # | |
a0d0e21e | 435 | sub Im { |
66730be0 RM |
436 | my ($z) = @_; |
437 | return 0 unless ref $z; | |
438 | my ($re, $im) = @{$z->cartesian}; | |
439 | return $im; | |
a0d0e21e LW |
440 | } |
441 | ||
66730be0 RM |
442 | # |
443 | # (exp) | |
444 | # | |
445 | # Computes exp(z). | |
446 | # | |
447 | sub exp { | |
448 | my ($z) = @_; | |
0c721ce2 | 449 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
450 | my ($x, $y) = @{$z->cartesian}; |
451 | return (ref $z)->emake(exp($x), $y); | |
452 | } | |
453 | ||
454 | # | |
455 | # (log) | |
456 | # | |
457 | # Compute log(z). | |
458 | # | |
459 | sub log { | |
460 | my ($z) = @_; | |
0c721ce2 | 461 | $z = cplx($z, 0) unless ref $z; |
66730be0 | 462 | my ($r, $t) = @{$z->polar}; |
0c721ce2 JH |
463 | my ($x, $y) = @{$z->cartesian}; |
464 | $t -= 2 * pi if ($t > pi() and $x < 0); | |
465 | $t += 2 * pi if ($t < -pi() and $x < 0); | |
66730be0 RM |
466 | return (ref $z)->make(log($r), $t); |
467 | } | |
468 | ||
469 | # | |
0c721ce2 JH |
470 | # ln |
471 | # | |
472 | # Alias for log(). | |
473 | # | |
474 | sub ln { Math::Complex::log(@_) } | |
475 | ||
476 | # | |
66730be0 RM |
477 | # log10 |
478 | # | |
479 | # Compute log10(z). | |
480 | # | |
481 | sub log10 { | |
482 | my ($z) = @_; | |
0c721ce2 JH |
483 | my $ilog10 = 1 / log(10) unless defined $ilog10; |
484 | return log(cplx($z, 0)) * $ilog10 unless ref $z; | |
66730be0 | 485 | my ($r, $t) = @{$z->polar}; |
0c721ce2 | 486 | return (ref $z)->make(log($r) * $ilog10, $t * $ilog10); |
66730be0 RM |
487 | } |
488 | ||
489 | # | |
490 | # logn | |
491 | # | |
492 | # Compute logn(z,n) = log(z) / log(n) | |
493 | # | |
494 | sub logn { | |
495 | my ($z, $n) = @_; | |
0c721ce2 | 496 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
497 | my $logn = $logn{$n}; |
498 | $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) | |
0c721ce2 | 499 | return log($z) / $logn; |
66730be0 RM |
500 | } |
501 | ||
502 | # | |
503 | # (cos) | |
504 | # | |
505 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
506 | # | |
507 | sub cos { | |
508 | my ($z) = @_; | |
509 | my ($x, $y) = @{$z->cartesian}; | |
510 | my $ey = exp($y); | |
511 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
512 | return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, |
513 | sin($x) * ($ey_1 - $ey)/2); | |
66730be0 RM |
514 | } |
515 | ||
516 | # | |
517 | # (sin) | |
518 | # | |
519 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
520 | # | |
521 | sub sin { | |
522 | my ($z) = @_; | |
523 | my ($x, $y) = @{$z->cartesian}; | |
524 | my $ey = exp($y); | |
525 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
526 | return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, |
527 | cos($x) * ($ey - $ey_1)/2); | |
66730be0 RM |
528 | } |
529 | ||
530 | # | |
531 | # tan | |
532 | # | |
533 | # Compute tan(z) = sin(z) / cos(z). | |
534 | # | |
535 | sub tan { | |
536 | my ($z) = @_; | |
0c721ce2 JH |
537 | my $cz = cos($z); |
538 | divbyzero "tan($z)", "cos($z)" if ($cz == 0); | |
539 | return sin($z) / $cz; | |
66730be0 RM |
540 | } |
541 | ||
542 | # | |
0c721ce2 JH |
543 | # sec |
544 | # | |
545 | # Computes the secant sec(z) = 1 / cos(z). | |
546 | # | |
547 | sub sec { | |
548 | my ($z) = @_; | |
549 | my $cz = cos($z); | |
550 | divbyzero "sec($z)", "cos($z)" if ($cz == 0); | |
551 | return 1 / $cz; | |
552 | } | |
553 | ||
554 | # | |
555 | # csc | |
556 | # | |
557 | # Computes the cosecant csc(z) = 1 / sin(z). | |
558 | # | |
559 | sub csc { | |
560 | my ($z) = @_; | |
561 | my $sz = sin($z); | |
562 | divbyzero "csc($z)", "sin($z)" if ($sz == 0); | |
563 | return 1 / $sz; | |
564 | } | |
565 | ||
66730be0 | 566 | # |
0c721ce2 | 567 | # cosec |
66730be0 | 568 | # |
0c721ce2 JH |
569 | # Alias for csc(). |
570 | # | |
571 | sub cosec { Math::Complex::csc(@_) } | |
572 | ||
573 | # | |
574 | # cot | |
575 | # | |
576 | # Computes cot(z) = 1 / tan(z). | |
577 | # | |
578 | sub cot { | |
66730be0 | 579 | my ($z) = @_; |
0c721ce2 JH |
580 | my $sz = sin($z); |
581 | divbyzero "cot($z)", "sin($z)" if ($sz == 0); | |
582 | return cos($z) / $sz; | |
66730be0 RM |
583 | } |
584 | ||
585 | # | |
0c721ce2 JH |
586 | # cotan |
587 | # | |
588 | # Alias for cot(). | |
589 | # | |
590 | sub cotan { Math::Complex::cot(@_) } | |
591 | ||
592 | # | |
66730be0 RM |
593 | # acos |
594 | # | |
595 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
596 | # | |
597 | sub acos { | |
598 | my ($z) = @_; | |
0c721ce2 JH |
599 | $z = cplx($z, 0) unless ref $z; |
600 | return ~i * log($z + (Re($z) * Im($z) > 0 ? 1 : -1) * sqrt($z*$z - 1)); | |
66730be0 RM |
601 | } |
602 | ||
603 | # | |
604 | # asin | |
605 | # | |
606 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
607 | # | |
608 | sub asin { | |
609 | my ($z) = @_; | |
0c721ce2 JH |
610 | $z = cplx($z, 0) unless ref $z; |
611 | return ~i * log(i * $z + sqrt(1 - $z*$z)); | |
66730be0 RM |
612 | } |
613 | ||
614 | # | |
615 | # atan | |
616 | # | |
0c721ce2 | 617 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
618 | # |
619 | sub atan { | |
620 | my ($z) = @_; | |
0c721ce2 JH |
621 | divbyzero "atan($z)", "i - $z" if ($z == i); |
622 | return i/2*log((i + $z) / (i - $z)); | |
a0d0e21e LW |
623 | } |
624 | ||
66730be0 | 625 | # |
0c721ce2 JH |
626 | # asec |
627 | # | |
628 | # Computes the arc secant asec(z) = acos(1 / z). | |
629 | # | |
630 | sub asec { | |
631 | my ($z) = @_; | |
632 | return acos(1 / $z); | |
633 | } | |
634 | ||
635 | # | |
636 | # acosec | |
637 | # | |
638 | # Computes the arc cosecant sec(z) = asin(1 / z). | |
639 | # | |
640 | sub acosec { | |
641 | my ($z) = @_; | |
642 | return asin(1 / $z); | |
643 | } | |
644 | ||
645 | # | |
646 | # acsc | |
66730be0 | 647 | # |
0c721ce2 JH |
648 | # Alias for acosec(). |
649 | # | |
650 | sub acsc { Math::Complex::acosec(@_) } | |
651 | ||
66730be0 | 652 | # |
0c721ce2 JH |
653 | # acot |
654 | # | |
655 | # Computes the arc cotangent acot(z) = -i/2 log((i+z) / (z-i)) | |
656 | # | |
657 | sub acot { | |
66730be0 | 658 | my ($z) = @_; |
0c721ce2 | 659 | divbyzero "acot($z)", "$z - i" if ($z == i); |
66730be0 RM |
660 | return i/-2 * log((i + $z) / ($z - i)); |
661 | } | |
662 | ||
663 | # | |
0c721ce2 JH |
664 | # acotan |
665 | # | |
666 | # Alias for acot(). | |
667 | # | |
668 | sub acotan { Math::Complex::acot(@_) } | |
669 | ||
670 | # | |
66730be0 RM |
671 | # cosh |
672 | # | |
673 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
674 | # | |
675 | sub cosh { | |
676 | my ($z) = @_; | |
0c721ce2 JH |
677 | $z = cplx($z, 0) unless ref $z; |
678 | my ($x, $y) = @{$z->cartesian}; | |
66730be0 RM |
679 | my $ex = exp($x); |
680 | my $ex_1 = 1 / $ex; | |
681 | return ($ex + $ex_1)/2 unless ref $z; | |
0c721ce2 JH |
682 | return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, |
683 | sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
684 | } |
685 | ||
686 | # | |
687 | # sinh | |
688 | # | |
689 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
690 | # | |
691 | sub sinh { | |
692 | my ($z) = @_; | |
0c721ce2 JH |
693 | $z = cplx($z, 0) unless ref $z; |
694 | my ($x, $y) = @{$z->cartesian}; | |
66730be0 RM |
695 | my $ex = exp($x); |
696 | my $ex_1 = 1 / $ex; | |
697 | return ($ex - $ex_1)/2 unless ref $z; | |
0c721ce2 JH |
698 | return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, |
699 | sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
700 | } |
701 | ||
702 | # | |
703 | # tanh | |
704 | # | |
705 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
706 | # | |
707 | sub tanh { | |
708 | my ($z) = @_; | |
0c721ce2 JH |
709 | my $cz = cosh($z); |
710 | divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); | |
711 | return sinh($z) / $cz; | |
66730be0 RM |
712 | } |
713 | ||
714 | # | |
0c721ce2 JH |
715 | # sech |
716 | # | |
717 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
718 | # | |
719 | sub sech { | |
720 | my ($z) = @_; | |
721 | my $cz = cosh($z); | |
722 | divbyzero "sech($z)", "cosh($z)" if ($cz == 0); | |
723 | return 1 / $cz; | |
724 | } | |
725 | ||
726 | # | |
727 | # csch | |
728 | # | |
729 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 730 | # |
0c721ce2 JH |
731 | sub csch { |
732 | my ($z) = @_; | |
733 | my $sz = sinh($z); | |
734 | divbyzero "csch($z)", "sinh($z)" if ($sz == 0); | |
735 | return 1 / $sz; | |
736 | } | |
737 | ||
738 | # | |
739 | # cosech | |
740 | # | |
741 | # Alias for csch(). | |
742 | # | |
743 | sub cosech { Math::Complex::csch(@_) } | |
744 | ||
66730be0 | 745 | # |
0c721ce2 JH |
746 | # coth |
747 | # | |
748 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
749 | # | |
750 | sub coth { | |
66730be0 | 751 | my ($z) = @_; |
0c721ce2 JH |
752 | my $sz = sinh($z); |
753 | divbyzero "coth($z)", "sinh($z)" if ($sz == 0); | |
754 | return cosh($z) / $sz; | |
66730be0 RM |
755 | } |
756 | ||
757 | # | |
0c721ce2 JH |
758 | # cotanh |
759 | # | |
760 | # Alias for coth(). | |
761 | # | |
762 | sub cotanh { Math::Complex::coth(@_) } | |
763 | ||
764 | # | |
66730be0 RM |
765 | # acosh |
766 | # | |
767 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). | |
768 | # | |
769 | sub acosh { | |
770 | my ($z) = @_; | |
0c721ce2 JH |
771 | $z = cplx($z, 0) unless ref $z; # asinh(-2) |
772 | return log($z + sqrt($z*$z - 1)); | |
66730be0 RM |
773 | } |
774 | ||
775 | # | |
776 | # asinh | |
777 | # | |
778 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
779 | # | |
780 | sub asinh { | |
781 | my ($z) = @_; | |
0c721ce2 JH |
782 | $z = cplx($z, 0) unless ref $z; # asinh(-2) |
783 | return log($z + sqrt($z*$z + 1)); | |
66730be0 RM |
784 | } |
785 | ||
786 | # | |
787 | # atanh | |
788 | # | |
789 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
790 | # | |
791 | sub atanh { | |
792 | my ($z) = @_; | |
0c721ce2 JH |
793 | $z = cplx($z, 0) unless ref $z; # atanh(-2) |
794 | divbyzero 'atanh(1)', "1 - $z" if ($z == 1); | |
66730be0 | 795 | my $cz = (1 + $z) / (1 - $z); |
66730be0 RM |
796 | return log($cz) / 2; |
797 | } | |
798 | ||
799 | # | |
0c721ce2 JH |
800 | # asech |
801 | # | |
802 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
803 | # | |
804 | sub asech { | |
805 | my ($z) = @_; | |
806 | divbyzero 'asech(0)', $z if ($z == 0); | |
807 | return acosh(1 / $z); | |
808 | } | |
809 | ||
810 | # | |
811 | # acsch | |
66730be0 | 812 | # |
0c721ce2 | 813 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 814 | # |
0c721ce2 | 815 | sub acsch { |
66730be0 | 816 | my ($z) = @_; |
0c721ce2 JH |
817 | divbyzero 'acsch(0)', $z if ($z == 0); |
818 | return asinh(1 / $z); | |
819 | } | |
820 | ||
821 | # | |
822 | # acosech | |
823 | # | |
824 | # Alias for acosh(). | |
825 | # | |
826 | sub acosech { Math::Complex::acsch(@_) } | |
827 | ||
828 | # | |
829 | # acoth | |
830 | # | |
831 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
832 | # | |
833 | sub acoth { | |
834 | my ($z) = @_; | |
835 | $z = cplx($z, 0) unless ref $z; # acoth(-2) | |
836 | divbyzero 'acoth(1)', "$z - 1" if ($z == 1); | |
66730be0 | 837 | my $cz = (1 + $z) / ($z - 1); |
66730be0 RM |
838 | return log($cz) / 2; |
839 | } | |
840 | ||
841 | # | |
0c721ce2 JH |
842 | # acotanh |
843 | # | |
844 | # Alias for acot(). | |
845 | # | |
846 | sub acotanh { Math::Complex::acoth(@_) } | |
847 | ||
848 | # | |
66730be0 RM |
849 | # (atan2) |
850 | # | |
851 | # Compute atan(z1/z2). | |
852 | # | |
853 | sub atan2 { | |
854 | my ($z1, $z2, $inverted) = @_; | |
855 | my ($re1, $im1) = @{$z1->cartesian}; | |
0c721ce2 | 856 | my ($re2, $im2) = @{$z2->cartesian}; |
66730be0 RM |
857 | my $tan; |
858 | if (defined $inverted && $inverted) { # atan(z2/z1) | |
859 | return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; | |
860 | $tan = $z2 / $z1; | |
861 | } else { | |
862 | return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; | |
863 | $tan = $z1 / $z2; | |
864 | } | |
865 | return atan($tan); | |
866 | } | |
867 | ||
868 | # | |
869 | # display_format | |
870 | # ->display_format | |
871 | # | |
872 | # Set (fetch if no argument) display format for all complex numbers that | |
873 | # don't happen to have overrriden it via ->display_format | |
874 | # | |
875 | # When called as a method, this actually sets the display format for | |
876 | # the current object. | |
877 | # | |
878 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
879 | # letter is used actually, so the type can be fully spelled out for clarity. | |
880 | # | |
881 | sub display_format { | |
882 | my $self = shift; | |
883 | my $format = undef; | |
884 | ||
885 | if (ref $self) { # Called as a method | |
886 | $format = shift; | |
0c721ce2 | 887 | } else { # Regular procedure call |
66730be0 RM |
888 | $format = $self; |
889 | undef $self; | |
890 | } | |
891 | ||
892 | if (defined $self) { | |
893 | return defined $self->{display} ? $self->{display} : $display | |
894 | unless defined $format; | |
895 | return $self->{display} = $format; | |
896 | } | |
897 | ||
898 | return $display unless defined $format; | |
899 | return $display = $format; | |
900 | } | |
901 | ||
902 | # | |
903 | # (stringify) | |
904 | # | |
905 | # Show nicely formatted complex number under its cartesian or polar form, | |
906 | # depending on the current display format: | |
907 | # | |
908 | # . If a specific display format has been recorded for this object, use it. | |
909 | # . Otherwise, use the generic current default for all complex numbers, | |
910 | # which is a package global variable. | |
911 | # | |
a0d0e21e | 912 | sub stringify { |
66730be0 RM |
913 | my ($z) = shift; |
914 | my $format; | |
915 | ||
916 | $format = $display; | |
917 | $format = $z->{display} if defined $z->{display}; | |
918 | ||
919 | return $z->stringify_polar if $format =~ /^p/i; | |
920 | return $z->stringify_cartesian; | |
921 | } | |
922 | ||
923 | # | |
924 | # ->stringify_cartesian | |
925 | # | |
926 | # Stringify as a cartesian representation 'a+bi'. | |
927 | # | |
928 | sub stringify_cartesian { | |
929 | my $z = shift; | |
930 | my ($x, $y) = @{$z->cartesian}; | |
931 | my ($re, $im); | |
932 | ||
55497cff | 933 | $x = int($x + ($x < 0 ? -1 : 1) * 1e-14) |
934 | if int(abs($x)) != int(abs($x) + 1e-14); | |
935 | $y = int($y + ($y < 0 ? -1 : 1) * 1e-14) | |
936 | if int(abs($y)) != int(abs($y) + 1e-14); | |
937 | ||
66730be0 RM |
938 | $re = "$x" if abs($x) >= 1e-14; |
939 | if ($y == 1) { $im = 'i' } | |
940 | elsif ($y == -1) { $im = '-i' } | |
40da2db3 | 941 | elsif (abs($y) >= 1e-14) { $im = $y . "i" } |
66730be0 | 942 | |
0c721ce2 | 943 | my $str = ''; |
66730be0 RM |
944 | $str = $re if defined $re; |
945 | $str .= "+$im" if defined $im; | |
946 | $str =~ s/\+-/-/; | |
947 | $str =~ s/^\+//; | |
948 | $str = '0' unless $str; | |
949 | ||
950 | return $str; | |
951 | } | |
952 | ||
953 | # | |
954 | # ->stringify_polar | |
955 | # | |
956 | # Stringify as a polar representation '[r,t]'. | |
957 | # | |
958 | sub stringify_polar { | |
959 | my $z = shift; | |
960 | my ($r, $t) = @{$z->polar}; | |
961 | my $theta; | |
0c721ce2 | 962 | my $eps = 1e-14; |
66730be0 | 963 | |
0c721ce2 | 964 | return '[0,0]' if $r <= $eps; |
a0d0e21e | 965 | |
66730be0 RM |
966 | my $tpi = 2 * pi; |
967 | my $nt = $t / $tpi; | |
968 | $nt = ($nt - int($nt)) * $tpi; | |
969 | $nt += $tpi if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 970 | |
0c721ce2 JH |
971 | if (abs($nt) <= $eps) { $theta = 0 } |
972 | elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } | |
66730be0 | 973 | |
55497cff | 974 | if (defined $theta) { |
0c721ce2 JH |
975 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
976 | if int(abs($r)) != int(abs($r) + $eps); | |
977 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
978 | if ($theta ne 'pi' and | |
979 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 980 | return "\[$r,$theta\]"; |
981 | } | |
66730be0 RM |
982 | |
983 | # | |
984 | # Okay, number is not a real. Try to identify pi/n and friends... | |
985 | # | |
986 | ||
987 | $nt -= $tpi if $nt > pi; | |
988 | my ($n, $k, $kpi); | |
989 | ||
990 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { | |
991 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); | |
0c721ce2 JH |
992 | if (abs($kpi/$n - $nt) <= $eps) { |
993 | $theta = ($nt < 0 ? '-':''). | |
994 | ($k == 1 ? 'pi':"${k}pi").'/'.abs($n); | |
66730be0 RM |
995 | last; |
996 | } | |
997 | } | |
998 | ||
999 | $theta = $nt unless defined $theta; | |
1000 | ||
0c721ce2 JH |
1001 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
1002 | if int(abs($r)) != int(abs($r) + $eps); | |
1003 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
1004 | if ($theta !~ m(^-?\d*pi/\d+$) and | |
1005 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 1006 | |
66730be0 | 1007 | return "\[$r,$theta\]"; |
a0d0e21e | 1008 | } |
a5f75d66 AD |
1009 | |
1010 | 1; | |
1011 | __END__ | |
1012 | ||
1013 | =head1 NAME | |
1014 | ||
66730be0 | 1015 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1016 | |
1017 | =head1 SYNOPSIS | |
1018 | ||
66730be0 | 1019 | use Math::Complex; |
5aabfad6 | 1020 | |
66730be0 RM |
1021 | $z = Math::Complex->make(5, 6); |
1022 | $t = 4 - 3*i + $z; | |
1023 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1024 | |
1025 | =head1 DESCRIPTION | |
1026 | ||
66730be0 RM |
1027 | This package lets you create and manipulate complex numbers. By default, |
1028 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1029 | full complex support, along with a full set of mathematical functions | |
1030 | typically associated with and/or extended to complex numbers. | |
1031 | ||
1032 | If you wonder what complex numbers are, they were invented to be able to solve | |
1033 | the following equation: | |
1034 | ||
1035 | x*x = -1 | |
1036 | ||
1037 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1038 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1039 | I<i> is a pure I<imaginary> number. | |
1040 | ||
1041 | The arithmetics with pure imaginary numbers works just like you would expect | |
1042 | it with real numbers... you just have to remember that | |
1043 | ||
1044 | i*i = -1 | |
1045 | ||
1046 | so you have: | |
1047 | ||
1048 | 5i + 7i = i * (5 + 7) = 12i | |
1049 | 4i - 3i = i * (4 - 3) = i | |
1050 | 4i * 2i = -8 | |
1051 | 6i / 2i = 3 | |
1052 | 1 / i = -i | |
1053 | ||
1054 | Complex numbers are numbers that have both a real part and an imaginary | |
1055 | part, and are usually noted: | |
1056 | ||
1057 | a + bi | |
1058 | ||
1059 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1060 | arithmetic with complex numbers is straightforward. You have to | |
1061 | keep track of the real and the imaginary parts, but otherwise the | |
1062 | rules used for real numbers just apply: | |
1063 | ||
1064 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1065 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1066 | ||
1067 | A graphical representation of complex numbers is possible in a plane | |
1068 | (also called the I<complex plane>, but it's really a 2D plane). | |
1069 | The number | |
1070 | ||
1071 | z = a + bi | |
1072 | ||
1073 | is the point whose coordinates are (a, b). Actually, it would | |
1074 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1075 | of two complex numbers is a vectorial addition. | |
1076 | ||
1077 | Since there is a bijection between a point in the 2D plane and a complex | |
1078 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1079 | can also be uniquely identified with polar coordinates: | |
1080 | ||
1081 | [rho, theta] | |
1082 | ||
1083 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1084 | the vector and the I<x> axis. There is a notation for this using the | |
1085 | exponential form, which is: | |
1086 | ||
1087 | rho * exp(i * theta) | |
1088 | ||
1089 | where I<i> is the famous imaginary number introduced above. Conversion | |
1090 | between this form and the cartesian form C<a + bi> is immediate: | |
1091 | ||
1092 | a = rho * cos(theta) | |
1093 | b = rho * sin(theta) | |
1094 | ||
1095 | which is also expressed by this formula: | |
1096 | ||
1097 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) | |
1098 | ||
1099 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1100 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1101 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1102 | noted C<abs(z)>. | |
1103 | ||
1104 | The polar notation (also known as the trigonometric | |
1105 | representation) is much more handy for performing multiplications and | |
1106 | divisions of complex numbers, whilst the cartesian notation is better | |
1107 | suited for additions and substractions. Real numbers are on the I<x> | |
1108 | axis, and therefore I<theta> is zero. | |
1109 | ||
1110 | All the common operations that can be performed on a real number have | |
1111 | been defined to work on complex numbers as well, and are merely | |
1112 | I<extensions> of the operations defined on real numbers. This means | |
1113 | they keep their natural meaning when there is no imaginary part, provided | |
1114 | the number is within their definition set. | |
1115 | ||
1116 | For instance, the C<sqrt> routine which computes the square root of | |
1117 | its argument is only defined for positive real numbers and yields a | |
1118 | positive real number (it is an application from B<R+> to B<R+>). | |
1119 | If we allow it to return a complex number, then it can be extended to | |
1120 | negative real numbers to become an application from B<R> to B<C> (the | |
1121 | set of complex numbers): | |
1122 | ||
1123 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1124 | ||
1125 | It can also be extended to be an application from B<C> to B<C>, | |
1126 | whilst its restriction to B<R> behaves as defined above by using | |
1127 | the following definition: | |
1128 | ||
1129 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1130 | ||
1131 | Indeed, a negative real number can be noted C<[x,pi]> | |
1132 | (the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a | |
1133 | negative number) | |
1134 | and the above definition states that | |
1135 | ||
1136 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1137 | ||
1138 | which is exactly what we had defined for negative real numbers above. | |
a5f75d66 | 1139 | |
66730be0 RM |
1140 | All the common mathematical functions defined on real numbers that |
1141 | are extended to complex numbers share that same property of working | |
1142 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1143 | be called an extension, would it?). | |
a5f75d66 | 1144 | |
66730be0 RM |
1145 | A I<new> operation possible on a complex number that is |
1146 | the identity for real numbers is called the I<conjugate>, and is noted | |
1147 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1148 | |
66730be0 RM |
1149 | z = a + bi |
1150 | ~z = a - bi | |
a5f75d66 | 1151 | |
66730be0 | 1152 | Simple... Now look: |
a5f75d66 | 1153 | |
66730be0 | 1154 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1155 | |
66730be0 RM |
1156 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1157 | distance to the origin, also known as: | |
a5f75d66 | 1158 | |
66730be0 | 1159 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1160 | |
66730be0 RM |
1161 | so |
1162 | ||
1163 | z * ~z = abs(z) ** 2 | |
1164 | ||
1165 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1166 | ||
1167 | a * a = abs(a) ** 2 | |
1168 | ||
1169 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1170 | for the absolute value). This example explains why the norm of C<z> is | |
1171 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1172 | is the regular C<abs> we know when the complex number actually has no | |
1173 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1174 | notation for the norm. | |
1175 | ||
1176 | =head1 OPERATIONS | |
1177 | ||
1178 | Given the following notations: | |
1179 | ||
1180 | z1 = a + bi = r1 * exp(i * t1) | |
1181 | z2 = c + di = r2 * exp(i * t2) | |
1182 | z = <any complex or real number> | |
1183 | ||
1184 | the following (overloaded) operations are supported on complex numbers: | |
1185 | ||
1186 | z1 + z2 = (a + c) + i(b + d) | |
1187 | z1 - z2 = (a - c) + i(b - d) | |
1188 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1189 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1190 | z1 ** z2 = exp(z2 * log z1) | |
1191 | ~z1 = a - bi | |
1192 | abs(z1) = r1 = sqrt(a*a + b*b) | |
1193 | sqrt(z1) = sqrt(r1) * exp(i * t1/2) | |
1194 | exp(z1) = exp(a) * exp(i * b) | |
1195 | log(z1) = log(r1) + i*t1 | |
1196 | sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) | |
1197 | cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) | |
1198 | abs(z1) = r1 | |
1199 | atan2(z1, z2) = atan(z1/z2) | |
1200 | ||
1201 | The following extra operations are supported on both real and complex | |
1202 | numbers: | |
1203 | ||
1204 | Re(z) = a | |
1205 | Im(z) = b | |
1206 | arg(z) = t | |
1207 | ||
1208 | cbrt(z) = z ** (1/3) | |
1209 | log10(z) = log(z) / log(10) | |
1210 | logn(z, n) = log(z) / log(n) | |
1211 | ||
1212 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1213 | |
5aabfad6 | 1214 | csc(z) = 1 / sin(z) |
1215 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1216 | cot(z) = 1 / tan(z) |
66730be0 RM |
1217 | |
1218 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
1219 | acos(z) = -i * log(z + sqrt(z*z-1)) | |
1220 | atan(z) = i/2 * log((i+z) / (i-z)) | |
0c721ce2 | 1221 | |
5aabfad6 | 1222 | acsc(z) = asin(1 / z) |
1223 | asec(z) = acos(1 / z) | |
0c721ce2 | 1224 | acot(z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1225 | |
1226 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1227 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1228 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1229 | ||
5aabfad6 | 1230 | csch(z) = 1 / sinh(z) |
1231 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1232 | coth(z) = 1 / tanh(z) |
66730be0 RM |
1233 | |
1234 | asinh(z) = log(z + sqrt(z*z+1)) | |
1235 | acosh(z) = log(z + sqrt(z*z-1)) | |
1236 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1237 | |
5aabfad6 | 1238 | acsch(z) = asinh(1 / z) |
1239 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1240 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1241 | ||
1242 | I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, I<coth>, | |
1243 | I<acosech>, I<acotanh>, have aliases I<ln>, I<cosec>, I<cotan>, | |
1244 | I<acosec>, I<acotan>, I<cosech>, I<cotanh>, I<acosech>, I<acotanh>, | |
1245 | respectively. | |
1246 | ||
1247 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1248 | roots of some complex, where I<n> is a strictly positive integer. |
1249 | There are exactly I<n> such roots, returned as a list. Getting the | |
1250 | number mathematicians call C<j> such that: | |
1251 | ||
1252 | 1 + j + j*j = 0; | |
1253 | ||
1254 | is a simple matter of writing: | |
1255 | ||
1256 | $j = ((root(1, 3))[1]; | |
1257 | ||
1258 | The I<k>th root for C<z = [r,t]> is given by: | |
1259 | ||
1260 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1261 | ||
0c721ce2 JH |
1262 | The I<spaceship> comparison operator is also defined. In order to |
1263 | ensure its restriction to real numbers is conform to what you would | |
1264 | expect, the comparison is run on the real part of the complex number | |
1265 | first, and imaginary parts are compared only when the real parts | |
1266 | match. | |
66730be0 RM |
1267 | |
1268 | =head1 CREATION | |
1269 | ||
1270 | To create a complex number, use either: | |
1271 | ||
1272 | $z = Math::Complex->make(3, 4); | |
1273 | $z = cplx(3, 4); | |
1274 | ||
1275 | if you know the cartesian form of the number, or | |
1276 | ||
1277 | $z = 3 + 4*i; | |
1278 | ||
1279 | if you like. To create a number using the trigonometric form, use either: | |
1280 | ||
1281 | $z = Math::Complex->emake(5, pi/3); | |
1282 | $x = cplxe(5, pi/3); | |
1283 | ||
0c721ce2 JH |
1284 | instead. The first argument is the modulus, the second is the angle |
1285 | (in radians, the full circle is 2*pi). (Mnmemonic: C<e> is used as a | |
1286 | notation for complex numbers in the trigonometric form). | |
66730be0 RM |
1287 | |
1288 | It is possible to write: | |
1289 | ||
1290 | $x = cplxe(-3, pi/4); | |
1291 | ||
1292 | but that will be silently converted into C<[3,-3pi/4]>, since the modulus | |
1293 | must be positive (it represents the distance to the origin in the complex | |
1294 | plane). | |
1295 | ||
1296 | =head1 STRINGIFICATION | |
1297 | ||
1298 | When printed, a complex number is usually shown under its cartesian | |
1299 | form I<a+bi>, but there are legitimate cases where the polar format | |
1300 | I<[r,t]> is more appropriate. | |
1301 | ||
1302 | By calling the routine C<Math::Complex::display_format> and supplying either | |
1303 | C<"polar"> or C<"cartesian">, you override the default display format, | |
1304 | which is C<"cartesian">. Not supplying any argument returns the current | |
1305 | setting. | |
1306 | ||
1307 | This default can be overridden on a per-number basis by calling the | |
1308 | C<display_format> method instead. As before, not supplying any argument | |
1309 | returns the current display format for this number. Otherwise whatever you | |
1310 | specify will be the new display format for I<this> particular number. | |
1311 | ||
1312 | For instance: | |
1313 | ||
1314 | use Math::Complex; | |
1315 | ||
1316 | Math::Complex::display_format('polar'); | |
1317 | $j = ((root(1, 3))[1]; | |
1318 | print "j = $j\n"; # Prints "j = [1,2pi/3] | |
1319 | $j->display_format('cartesian'); | |
1320 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1321 | ||
1322 | The polar format attempts to emphasize arguments like I<k*pi/n> | |
1323 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]). | |
1324 | ||
1325 | =head1 USAGE | |
1326 | ||
1327 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1328 | is simple and almost transparent. | |
1329 | ||
1330 | Here are some examples: | |
1331 | ||
1332 | use Math::Complex; | |
1333 | ||
1334 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1335 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1336 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1337 | ||
1338 | $z = -16 + 0*i; # Force it to be a complex | |
1339 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1340 | ||
1341 | $k = exp(i * 2*pi/3); | |
1342 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1343 | |
5aabfad6 | 1344 | =head1 CAVEATS |
1345 | ||
1346 | The division (/) and the following functions | |
1347 | ||
1348 | tan | |
1349 | sec | |
1350 | csc | |
1351 | cot | |
1352 | atan | |
1353 | acot | |
1354 | tanh | |
1355 | sech | |
1356 | csch | |
1357 | coth | |
1358 | atanh | |
1359 | asech | |
1360 | acsch | |
1361 | acoth | |
1362 | ||
1363 | cannot be computed for all arguments because that would mean dividing | |
1364 | by zero. These situations cause fatal runtime errors looking like this | |
1365 | ||
1366 | cot(0): Division by zero. | |
1367 | (Because in the definition of cot(0), sin(0) is 0) | |
1368 | Died at ... | |
1369 | ||
a5f75d66 AD |
1370 | =head1 BUGS |
1371 | ||
66730be0 RM |
1372 | Saying C<use Math::Complex;> exports many mathematical routines in the caller |
1373 | environment. This is construed as a feature by the Author, actually... ;-) | |
1374 | ||
1375 | The code is not optimized for speed, although we try to use the cartesian | |
1376 | form for addition-like operators and the trigonometric form for all | |
1377 | multiplication-like operators. | |
1378 | ||
1379 | The arg() routine does not ensure the angle is within the range [-pi,+pi] | |
1380 | (a side effect caused by multiplication and division using the trigonometric | |
1381 | representation). | |
a5f75d66 | 1382 | |
66730be0 RM |
1383 | All routines expect to be given real or complex numbers. Don't attempt to |
1384 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1385 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1386 | |
0c721ce2 | 1387 | =head1 AUTHORS |
a5f75d66 | 1388 | |
0c721ce2 JH |
1389 | Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> |
1390 | Jarkko Hietaniemi <F<jhi@iki.fi>> |