Commit | Line | Data |
---|---|---|
7a6a85bf RG |
1 | /* |
2 | * Store and retrieve mechanism. | |
3 | */ | |
4 | ||
5 | /* | |
6 | * $Id: Storable.xs,v 0.7.1.2 2000/08/14 07:19:27 ram Exp $ | |
7 | * | |
8 | * Copyright (c) 1995-2000, Raphael Manfredi | |
9 | * | |
10 | * You may redistribute only under the terms of the Artistic License, | |
11 | * as specified in the README file that comes with the distribution. | |
12 | * | |
13 | * $Log: Storable.xs,v $ | |
14 | * Revision 0.7.1.2 2000/08/14 07:19:27 ram | |
15 | * patch2: added a refcnt dec in retrieve_tied_key() | |
16 | * | |
17 | * Revision 0.7.1.1 2000/08/13 20:10:06 ram | |
18 | * patch1: was wrongly optimizing for "undef" values in hashes | |
19 | * patch1: added support for ref to tied items in hash/array | |
20 | * patch1: added overloading support | |
21 | * | |
22 | * Revision 0.7 2000/08/03 22:04:44 ram | |
23 | * Baseline for second beta release. | |
24 | * | |
25 | */ | |
26 | ||
27 | #include <EXTERN.h> | |
28 | #include <perl.h> | |
29 | #include <patchlevel.h> /* Perl's one, needed since 5.6 */ | |
30 | #include <XSUB.h> | |
31 | ||
32 | /*#define DEBUGME /* Debug mode, turns assertions on as well */ | |
33 | /*#define DASSERT /* Assertion mode */ | |
34 | ||
35 | /* | |
36 | * Pre PerlIO time when none of USE_PERLIO and PERLIO_IS_STDIO is defined | |
37 | * Provide them with the necessary defines so they can build with pre-5.004. | |
38 | */ | |
39 | #ifndef USE_PERLIO | |
40 | #ifndef PERLIO_IS_STDIO | |
41 | #define PerlIO FILE | |
42 | #define PerlIO_getc(x) getc(x) | |
43 | #define PerlIO_putc(f,x) putc(x,f) | |
44 | #define PerlIO_read(x,y,z) fread(y,1,z,x) | |
45 | #define PerlIO_write(x,y,z) fwrite(y,1,z,x) | |
46 | #define PerlIO_stdoutf printf | |
47 | #endif /* PERLIO_IS_STDIO */ | |
48 | #endif /* USE_PERLIO */ | |
49 | ||
50 | /* | |
51 | * Earlier versions of perl might be used, we can't assume they have the latest! | |
52 | */ | |
53 | #ifndef newRV_noinc | |
54 | #define newRV_noinc(sv) ((Sv = newRV(sv)), --SvREFCNT(SvRV(Sv)), Sv) | |
55 | #endif | |
56 | #if (PATCHLEVEL <= 4) /* Older perls (<= 5.004) lack PL_ namespace */ | |
57 | #define PL_sv_yes sv_yes | |
58 | #define PL_sv_no sv_no | |
59 | #define PL_sv_undef sv_undef | |
60 | #endif | |
61 | #ifndef HvSHAREKEYS_off | |
62 | #define HvSHAREKEYS_off(hv) /* Ignore */ | |
63 | #endif | |
64 | ||
65 | #ifdef DEBUGME | |
66 | #ifndef DASSERT | |
67 | #define DASSERT | |
68 | #endif | |
69 | #define TRACEME(x) do { PerlIO_stdoutf x; PerlIO_stdoutf("\n"); } while (0) | |
70 | #else | |
71 | #define TRACEME(x) | |
72 | #endif | |
73 | ||
74 | #ifdef DASSERT | |
75 | #define ASSERT(x,y) do { \ | |
76 | if (!(x)) { \ | |
77 | PerlIO_stdoutf("ASSERT FAILED (\"%s\", line %d): ", \ | |
78 | __FILE__, __LINE__); \ | |
79 | PerlIO_stdoutf y; PerlIO_stdoutf("\n"); \ | |
80 | } \ | |
81 | } while (0) | |
82 | #else | |
83 | #define ASSERT(x,y) | |
84 | #endif | |
85 | ||
86 | /* | |
87 | * Type markers. | |
88 | */ | |
89 | ||
90 | #define C(x) ((char) (x)) /* For markers with dynamic retrieval handling */ | |
91 | ||
92 | #define SX_OBJECT C(0) /* Already stored object */ | |
93 | #define SX_LSCALAR C(1) /* Scalar (string) forthcoming (length, data) */ | |
94 | #define SX_ARRAY C(2) /* Array forthcominng (size, item list) */ | |
95 | #define SX_HASH C(3) /* Hash forthcoming (size, key/value pair list) */ | |
96 | #define SX_REF C(4) /* Reference to object forthcoming */ | |
97 | #define SX_UNDEF C(5) /* Undefined scalar */ | |
98 | #define SX_INTEGER C(6) /* Integer forthcoming */ | |
99 | #define SX_DOUBLE C(7) /* Double forthcoming */ | |
100 | #define SX_BYTE C(8) /* (signed) byte forthcoming */ | |
101 | #define SX_NETINT C(9) /* Integer in network order forthcoming */ | |
102 | #define SX_SCALAR C(10) /* Scalar (small) forthcoming (length, data) */ | |
103 | #define SX_TIED_ARRAY C(11) /* Tied array forthcoming */ | |
104 | #define SX_TIED_HASH C(12) /* Tied hash forthcoming */ | |
105 | #define SX_TIED_SCALAR C(13) /* Tied scalar forthcoming */ | |
106 | #define SX_SV_UNDEF C(14) /* Perl's immortal PL_sv_undef */ | |
107 | #define SX_SV_YES C(15) /* Perl's immortal PL_sv_yes */ | |
108 | #define SX_SV_NO C(16) /* Perl's immortal PL_sv_no */ | |
109 | #define SX_BLESS C(17) /* Object is blessed */ | |
110 | #define SX_IX_BLESS C(18) /* Object is blessed, classname given by index */ | |
111 | #define SX_HOOK C(19) /* Stored via hook, user-defined */ | |
112 | #define SX_OVERLOAD C(20) /* Overloaded reference */ | |
113 | #define SX_TIED_KEY C(21) /* Tied magic key forthcoming */ | |
114 | #define SX_TIED_IDX C(22) /* Tied magic index forthcoming */ | |
115 | #define SX_ERROR C(23) /* Error */ | |
116 | ||
117 | /* | |
118 | * Those are only used to retrieve "old" pre-0.6 binary images. | |
119 | */ | |
120 | #define SX_ITEM 'i' /* An array item introducer */ | |
121 | #define SX_IT_UNDEF 'I' /* Undefined array item */ | |
122 | #define SX_KEY 'k' /* An hash key introducer */ | |
123 | #define SX_VALUE 'v' /* An hash value introducer */ | |
124 | #define SX_VL_UNDEF 'V' /* Undefined hash value */ | |
125 | ||
126 | /* | |
127 | * Those are only used to retrieve "old" pre-0.7 binary images | |
128 | */ | |
129 | ||
130 | #define SX_CLASS 'b' /* Object is blessed, class name length <255 */ | |
131 | #define SX_LG_CLASS 'B' /* Object is blessed, class name length >255 */ | |
132 | #define SX_STORED 'X' /* End of object */ | |
133 | ||
134 | /* | |
135 | * Limits between short/long length representation. | |
136 | */ | |
137 | ||
138 | #define LG_SCALAR 255 /* Large scalar length limit */ | |
139 | #define LG_BLESS 127 /* Large classname bless limit */ | |
140 | ||
141 | /* | |
142 | * Operation types | |
143 | */ | |
144 | ||
145 | #define ST_STORE 0x1 /* Store operation */ | |
146 | #define ST_RETRIEVE 0x2 /* Retrieval operation */ | |
147 | #define ST_CLONE 0x4 /* Deep cloning operation */ | |
148 | ||
149 | /* | |
150 | * The following structure is used for hash table key retrieval. Since, when | |
151 | * retrieving objects, we'll be facing blessed hash references, it's best | |
152 | * to pre-allocate that buffer once and resize it as the need arises, never | |
153 | * freeing it (keys will be saved away someplace else anyway, so even large | |
154 | * keys are not enough a motivation to reclaim that space). | |
155 | * | |
156 | * This structure is also used for memory store/retrieve operations which | |
157 | * happen in a fixed place before being malloc'ed elsewhere if persistency | |
158 | * is required. Hence the aptr pointer. | |
159 | */ | |
160 | struct extendable { | |
161 | char *arena; /* Will hold hash key strings, resized as needed */ | |
162 | STRLEN asiz; /* Size of aforementionned buffer */ | |
163 | char *aptr; /* Arena pointer, for in-place read/write ops */ | |
164 | char *aend; /* First invalid address */ | |
165 | }; | |
166 | ||
167 | /* | |
168 | * At store time: | |
169 | * An hash table records the objects which have already been stored. | |
170 | * Those are referred to as SX_OBJECT in the file, and their "tag" (i.e. | |
171 | * an arbitrary sequence number) is used to identify them. | |
172 | * | |
173 | * At retrieve time: | |
174 | * An array table records the objects which have already been retrieved, | |
175 | * as seen by the tag determind by counting the objects themselves. The | |
176 | * reference to that retrieved object is kept in the table, and is returned | |
177 | * when an SX_OBJECT is found bearing that same tag. | |
178 | * | |
179 | * The same processing is used to record "classname" for blessed objects: | |
180 | * indexing by a hash at store time, and via an array at retrieve time. | |
181 | */ | |
182 | ||
183 | typedef unsigned long stag_t; /* Used by pre-0.6 binary format */ | |
184 | ||
185 | /* | |
186 | * The following "thread-safe" related defines were contributed by | |
187 | * Murray Nesbitt <murray@activestate.com> and integrated by RAM, who | |
188 | * only renamed things a little bit to ensure consistency with surrounding | |
189 | * code. -- RAM, 14/09/1999 | |
190 | * | |
191 | * The original patch suffered from the fact that the stcxt_t structure | |
192 | * was global. Murray tried to minimize the impact on the code as much as | |
193 | * possible. | |
194 | * | |
195 | * Starting with 0.7, Storable can be re-entrant, via the STORABLE_xxx hooks | |
196 | * on objects. Therefore, the notion of context needs to be generalized, | |
197 | * threading or not. | |
198 | */ | |
199 | ||
200 | #define MY_VERSION "Storable(" XS_VERSION ")" | |
201 | ||
202 | typedef struct stcxt { | |
203 | int entry; /* flags recursion */ | |
204 | int optype; /* type of traversal operation */ | |
205 | HV *hseen; /* which objects have been seen, store time */ | |
206 | AV *aseen; /* which objects have been seen, retrieve time */ | |
207 | HV *hclass; /* which classnames have been seen, store time */ | |
208 | AV *aclass; /* which classnames have been seen, retrieve time */ | |
209 | HV *hook; /* cache for hook methods per class name */ | |
210 | I32 tagnum; /* incremented at store time for each seen object */ | |
211 | I32 classnum; /* incremented at store time for each seen classname */ | |
212 | int netorder; /* true if network order used */ | |
213 | int forgive_me; /* whether to be forgiving... */ | |
214 | int canonical; /* whether to store hashes sorted by key */ | |
215 | int dirty; /* context is dirty due to CROAK() -- can be cleaned */ | |
216 | struct extendable keybuf; /* for hash key retrieval */ | |
217 | struct extendable membuf; /* for memory store/retrieve operations */ | |
218 | PerlIO *fio; /* where I/O are performed, NULL for memory */ | |
219 | int ver_major; /* major of version for retrieved object */ | |
220 | int ver_minor; /* minor of version for retrieved object */ | |
221 | SV *(**retrieve_vtbl)(); /* retrieve dispatch table */ | |
222 | struct stcxt *prev; /* contexts chained backwards in real recursion */ | |
223 | } stcxt_t; | |
224 | ||
225 | #if defined(MULTIPLICITY) || defined(PERL_OBJECT) || defined(PERL_CAPI) | |
226 | ||
227 | #if (PATCHLEVEL <= 4) && (SUBVERSION < 68) | |
228 | #define dSTCXT_SV \ | |
229 | SV *perinterp_sv = perl_get_sv(MY_VERSION, FALSE) | |
230 | #else /* >= perl5.004_68 */ | |
231 | #define dSTCXT_SV \ | |
232 | SV *perinterp_sv = *hv_fetch(PL_modglobal, \ | |
233 | MY_VERSION, sizeof(MY_VERSION)-1, TRUE) | |
234 | #endif /* < perl5.004_68 */ | |
235 | ||
236 | #define dSTCXT_PTR(T,name) \ | |
237 | T name = (T)(perinterp_sv && SvIOK(perinterp_sv)\ | |
238 | ? SvIVX(perinterp_sv) : NULL) | |
239 | #define dSTCXT \ | |
240 | dSTCXT_SV; \ | |
241 | dSTCXT_PTR(stcxt_t *, cxt) | |
242 | ||
243 | #define INIT_STCXT \ | |
244 | dSTCXT; \ | |
245 | Newz(0, cxt, 1, stcxt_t); \ | |
246 | sv_setiv(perinterp_sv, (IV) cxt) | |
247 | ||
248 | #define SET_STCXT(x) do { \ | |
249 | dSTCXT_SV; \ | |
250 | sv_setiv(perinterp_sv, (IV) (x)); \ | |
251 | } while (0) | |
252 | ||
253 | #else /* !MULTIPLICITY && !PERL_OBJECT && !PERL_CAPI */ | |
254 | ||
255 | static stcxt_t Context; | |
256 | static stcxt_t *Context_ptr = &Context; | |
257 | #define dSTCXT stcxt_t *cxt = Context_ptr | |
258 | #define INIT_STCXT dSTCXT | |
259 | #define SET_STCXT(x) Context_ptr = x | |
260 | ||
261 | #endif /* MULTIPLICITY || PERL_OBJECT || PERL_CAPI */ | |
262 | ||
263 | /* | |
264 | * KNOWN BUG: | |
265 | * Croaking implies a memory leak, since we don't use setjmp/longjmp | |
266 | * to catch the exit and free memory used during store or retrieve | |
267 | * operations. This is not too difficult to fix, but I need to understand | |
268 | * how Perl does it, and croaking is exceptional anyway, so I lack the | |
269 | * motivation to do it. | |
270 | * | |
271 | * The current workaround is to mark the context as dirty when croaking, | |
272 | * so that data structures can be freed whenever we renter Storable code | |
273 | * (but only *then*: it's a workaround, not a fix). | |
274 | * | |
275 | * This is also imperfect, because we don't really know how far they trapped | |
276 | * the croak(), and when we were recursing, we won't be able to clean anything | |
277 | * but the topmost context stacked. | |
278 | */ | |
279 | ||
280 | #define CROAK(x) do { cxt->dirty = 1; croak x; } while (0) | |
281 | ||
282 | /* | |
283 | * End of "thread-safe" related definitions. | |
284 | */ | |
285 | ||
286 | /* | |
287 | * key buffer handling | |
288 | */ | |
289 | #define kbuf (cxt->keybuf).arena | |
290 | #define ksiz (cxt->keybuf).asiz | |
291 | #define KBUFINIT() do { \ | |
292 | if (!kbuf) { \ | |
293 | TRACEME(("** allocating kbuf of 128 bytes")); \ | |
294 | New(10003, kbuf, 128, char); \ | |
295 | ksiz = 128; \ | |
296 | } \ | |
297 | } while (0) | |
298 | #define KBUFCHK(x) do { \ | |
299 | if (x >= ksiz) { \ | |
300 | TRACEME(("** extending kbuf to %d bytes", x+1)); \ | |
301 | Renew(kbuf, x+1, char); \ | |
302 | ksiz = x+1; \ | |
303 | } \ | |
304 | } while (0) | |
305 | ||
306 | /* | |
307 | * memory buffer handling | |
308 | */ | |
309 | #define mbase (cxt->membuf).arena | |
310 | #define msiz (cxt->membuf).asiz | |
311 | #define mptr (cxt->membuf).aptr | |
312 | #define mend (cxt->membuf).aend | |
313 | ||
314 | #define MGROW (1 << 13) | |
315 | #define MMASK (MGROW - 1) | |
316 | ||
317 | #define round_mgrow(x) \ | |
318 | ((unsigned long) (((unsigned long) (x) + MMASK) & ~MMASK)) | |
319 | #define trunc_int(x) \ | |
320 | ((unsigned long) ((unsigned long) (x) & ~(sizeof(int)-1))) | |
321 | #define int_aligned(x) \ | |
322 | ((unsigned long) (x) == trunc_int(x)) | |
323 | ||
324 | #define MBUF_INIT(x) do { \ | |
325 | if (!mbase) { \ | |
326 | TRACEME(("** allocating mbase of %d bytes", MGROW)); \ | |
327 | New(10003, mbase, MGROW, char); \ | |
328 | msiz = MGROW; \ | |
329 | } \ | |
330 | mptr = mbase; \ | |
331 | if (x) \ | |
332 | mend = mbase + x; \ | |
333 | else \ | |
334 | mend = mbase + msiz; \ | |
335 | } while (0) | |
336 | ||
337 | #define MBUF_TRUNC(x) mptr = mbase + x | |
338 | #define MBUF_SIZE() (mptr - mbase) | |
339 | ||
340 | /* | |
341 | * Use SvPOKp(), because SvPOK() fails on tainted scalars. | |
342 | * See store_scalar() for other usage of this workaround. | |
343 | */ | |
344 | #define MBUF_LOAD(v) do { \ | |
345 | if (!SvPOKp(v)) \ | |
346 | CROAK(("Not a scalar string")); \ | |
347 | mptr = mbase = SvPV(v, msiz); \ | |
348 | mend = mbase + msiz; \ | |
349 | } while (0) | |
350 | ||
351 | #define MBUF_XTEND(x) do { \ | |
352 | int nsz = (int) round_mgrow((x)+msiz); \ | |
353 | int offset = mptr - mbase; \ | |
354 | TRACEME(("** extending mbase to %d bytes", nsz)); \ | |
355 | Renew(mbase, nsz, char); \ | |
356 | msiz = nsz; \ | |
357 | mptr = mbase + offset; \ | |
358 | mend = mbase + nsz; \ | |
359 | } while (0) | |
360 | ||
361 | #define MBUF_CHK(x) do { \ | |
362 | if ((mptr + (x)) > mend) \ | |
363 | MBUF_XTEND(x); \ | |
364 | } while (0) | |
365 | ||
366 | #define MBUF_GETC(x) do { \ | |
367 | if (mptr < mend) \ | |
368 | x = (int) (unsigned char) *mptr++; \ | |
369 | else \ | |
370 | return (SV *) 0; \ | |
371 | } while (0) | |
372 | ||
373 | #define MBUF_GETINT(x) do { \ | |
374 | if ((mptr + sizeof(int)) <= mend) { \ | |
375 | if (int_aligned(mptr)) \ | |
376 | x = *(int *) mptr; \ | |
377 | else \ | |
378 | memcpy(&x, mptr, sizeof(int)); \ | |
379 | mptr += sizeof(int); \ | |
380 | } else \ | |
381 | return (SV *) 0; \ | |
382 | } while (0) | |
383 | ||
384 | #define MBUF_READ(x,s) do { \ | |
385 | if ((mptr + (s)) <= mend) { \ | |
386 | memcpy(x, mptr, s); \ | |
387 | mptr += s; \ | |
388 | } else \ | |
389 | return (SV *) 0; \ | |
390 | } while (0) | |
391 | ||
392 | #define MBUF_SAFEREAD(x,s,z) do { \ | |
393 | if ((mptr + (s)) <= mend) { \ | |
394 | memcpy(x, mptr, s); \ | |
395 | mptr += s; \ | |
396 | } else { \ | |
397 | sv_free(z); \ | |
398 | return (SV *) 0; \ | |
399 | } \ | |
400 | } while (0) | |
401 | ||
402 | #define MBUF_PUTC(c) do { \ | |
403 | if (mptr < mend) \ | |
404 | *mptr++ = (char) c; \ | |
405 | else { \ | |
406 | MBUF_XTEND(1); \ | |
407 | *mptr++ = (char) c; \ | |
408 | } \ | |
409 | } while (0) | |
410 | ||
411 | #define MBUF_PUTINT(i) do { \ | |
412 | MBUF_CHK(sizeof(int)); \ | |
413 | if (int_aligned(mptr)) \ | |
414 | *(int *) mptr = i; \ | |
415 | else \ | |
416 | memcpy(mptr, &i, sizeof(int)); \ | |
417 | mptr += sizeof(int); \ | |
418 | } while (0) | |
419 | ||
420 | #define MBUF_WRITE(x,s) do { \ | |
421 | MBUF_CHK(s); \ | |
422 | memcpy(mptr, x, s); \ | |
423 | mptr += s; \ | |
424 | } while (0) | |
425 | ||
426 | /* | |
427 | * LOW_32BITS | |
428 | * | |
429 | * Keep only the low 32 bits of a pointer (used for tags, which are not | |
430 | * really pointers). | |
431 | */ | |
432 | ||
433 | #if PTRSIZE <= 4 | |
434 | #define LOW_32BITS(x) ((I32) (x)) | |
435 | #else | |
7a6a85bf RG |
436 | #define LOW_32BITS(x) ((I32) ((unsigned long) (x) & 0xffffffffUL)) |
437 | #endif | |
7a6a85bf RG |
438 | |
439 | /* | |
440 | * Possible return values for sv_type(). | |
441 | */ | |
442 | ||
443 | #define svis_REF 0 | |
444 | #define svis_SCALAR 1 | |
445 | #define svis_ARRAY 2 | |
446 | #define svis_HASH 3 | |
447 | #define svis_TIED 4 | |
448 | #define svis_TIED_ITEM 5 | |
449 | #define svis_OTHER 6 | |
450 | ||
451 | /* | |
452 | * Flags for SX_HOOK. | |
453 | */ | |
454 | ||
455 | #define SHF_TYPE_MASK 0x03 | |
456 | #define SHF_LARGE_CLASSLEN 0x04 | |
457 | #define SHF_LARGE_STRLEN 0x08 | |
458 | #define SHF_LARGE_LISTLEN 0x10 | |
459 | #define SHF_IDX_CLASSNAME 0x20 | |
460 | #define SHF_NEED_RECURSE 0x40 | |
461 | #define SHF_HAS_LIST 0x80 | |
462 | ||
463 | /* | |
464 | * Types for SX_HOOK (2 bits). | |
465 | */ | |
466 | ||
467 | #define SHT_SCALAR 0 | |
468 | #define SHT_ARRAY 1 | |
469 | #define SHT_HASH 2 | |
470 | ||
471 | /* | |
472 | * Before 0.6, the magic string was "perl-store" (binary version number 0). | |
473 | * | |
474 | * Since 0.6 introduced many binary incompatibilities, the magic string has | |
475 | * been changed to "pst0" to allow an old image to be properly retrieved by | |
476 | * a newer Storable, but ensure a newer image cannot be retrieved with an | |
477 | * older version. | |
478 | * | |
479 | * At 0.7, objects are given the ability to serialize themselves, and the | |
480 | * set of markers is extended, backward compatibility is not jeopardized, | |
481 | * so the binary version number could have remained unchanged. To correctly | |
482 | * spot errors if a file making use of 0.7-specific extensions is given to | |
483 | * 0.6 for retrieval, the binary version was moved to "2". And I'm introducing | |
484 | * a "minor" version, to better track this kind of evolution from now on. | |
485 | * | |
486 | */ | |
487 | static char old_magicstr[] = "perl-store"; /* Magic number before 0.6 */ | |
488 | static char magicstr[] = "pst0"; /* Used as a magic number */ | |
489 | ||
490 | #define STORABLE_BIN_MAJOR 2 /* Binary major "version" */ | |
491 | #define STORABLE_BIN_MINOR 1 /* Binary minor "version" */ | |
492 | ||
493 | /* | |
494 | * Useful store shortcuts... | |
495 | */ | |
496 | ||
497 | #define PUTMARK(x) do { \ | |
498 | if (!cxt->fio) \ | |
499 | MBUF_PUTC(x); \ | |
500 | else if (PerlIO_putc(cxt->fio, x) == EOF) \ | |
501 | return -1; \ | |
502 | } while (0) | |
503 | ||
504 | #ifdef HAS_HTONL | |
505 | #define WLEN(x) do { \ | |
506 | if (cxt->netorder) { \ | |
507 | int y = (int) htonl(x); \ | |
508 | if (!cxt->fio) \ | |
509 | MBUF_PUTINT(y); \ | |
510 | else if (PerlIO_write(cxt->fio, &y, sizeof(y)) != sizeof(y)) \ | |
511 | return -1; \ | |
512 | } else { \ | |
513 | if (!cxt->fio) \ | |
514 | MBUF_PUTINT(x); \ | |
515 | else if (PerlIO_write(cxt->fio, &x, sizeof(x)) != sizeof(x)) \ | |
516 | return -1; \ | |
517 | } \ | |
518 | } while (0) | |
519 | #else | |
520 | #define WLEN(x) do { \ | |
521 | if (!cxt->fio) \ | |
522 | MBUF_PUTINT(x); \ | |
523 | else if (PerlIO_write(cxt->fio, &x, sizeof(x)) != sizeof(x)) \ | |
524 | return -1; \ | |
525 | } while (0) | |
526 | #endif | |
527 | ||
528 | #define WRITE(x,y) do { \ | |
529 | if (!cxt->fio) \ | |
530 | MBUF_WRITE(x,y); \ | |
531 | else if (PerlIO_write(cxt->fio, x, y) != y) \ | |
532 | return -1; \ | |
533 | } while (0) | |
534 | ||
535 | #define STORE_SCALAR(pv, len) do { \ | |
536 | if (len <= LG_SCALAR) { \ | |
537 | unsigned char clen = (unsigned char) len; \ | |
538 | PUTMARK(SX_SCALAR); \ | |
539 | PUTMARK(clen); \ | |
540 | if (len) \ | |
541 | WRITE(pv, len); \ | |
542 | } else { \ | |
543 | PUTMARK(SX_LSCALAR); \ | |
544 | WLEN(len); \ | |
545 | WRITE(pv, len); \ | |
546 | } \ | |
547 | } while (0) | |
548 | ||
549 | /* | |
550 | * Store undef in arrays and hashes without recursing through store(). | |
551 | */ | |
552 | #define STORE_UNDEF() do { \ | |
553 | cxt->tagnum++; \ | |
554 | PUTMARK(SX_UNDEF); \ | |
555 | } while (0) | |
556 | ||
557 | /* | |
558 | * Useful retrieve shortcuts... | |
559 | */ | |
560 | ||
561 | #define GETCHAR() \ | |
562 | (cxt->fio ? PerlIO_getc(cxt->fio) : (mptr >= mend ? EOF : (int) *mptr++)) | |
563 | ||
564 | #define GETMARK(x) do { \ | |
565 | if (!cxt->fio) \ | |
566 | MBUF_GETC(x); \ | |
567 | else if ((x = PerlIO_getc(cxt->fio)) == EOF) \ | |
568 | return (SV *) 0; \ | |
569 | } while (0) | |
570 | ||
571 | #ifdef HAS_NTOHL | |
572 | #define RLEN(x) do { \ | |
573 | if (!cxt->fio) \ | |
574 | MBUF_GETINT(x); \ | |
575 | else if (PerlIO_read(cxt->fio, &x, sizeof(x)) != sizeof(x)) \ | |
576 | return (SV *) 0; \ | |
577 | if (cxt->netorder) \ | |
578 | x = (int) ntohl(x); \ | |
579 | } while (0) | |
580 | #else | |
581 | #define RLEN(x) do { \ | |
582 | if (!cxt->fio) \ | |
583 | MBUF_GETINT(x); \ | |
584 | else if (PerlIO_read(cxt->fio, &x, sizeof(x)) != sizeof(x)) \ | |
585 | return (SV *) 0; \ | |
586 | } while (0) | |
587 | #endif | |
588 | ||
589 | #define READ(x,y) do { \ | |
590 | if (!cxt->fio) \ | |
591 | MBUF_READ(x, y); \ | |
592 | else if (PerlIO_read(cxt->fio, x, y) != y) \ | |
593 | return (SV *) 0; \ | |
594 | } while (0) | |
595 | ||
596 | #define SAFEREAD(x,y,z) do { \ | |
597 | if (!cxt->fio) \ | |
598 | MBUF_SAFEREAD(x,y,z); \ | |
599 | else if (PerlIO_read(cxt->fio, x, y) != y) { \ | |
600 | sv_free(z); \ | |
601 | return (SV *) 0; \ | |
602 | } \ | |
603 | } while (0) | |
604 | ||
605 | /* | |
606 | * This macro is used at retrieve time, to remember where object 'y', bearing a | |
607 | * given tag 'tagnum', has been retrieved. Next time we see an SX_OBJECT marker, | |
608 | * we'll therefore know where it has been retrieved and will be able to | |
609 | * share the same reference, as in the original stored memory image. | |
610 | */ | |
611 | #define SEEN(y) do { \ | |
612 | if (!y) \ | |
613 | return (SV *) 0; \ | |
614 | if (av_store(cxt->aseen, cxt->tagnum++, SvREFCNT_inc(y)) == 0) \ | |
615 | return (SV *) 0; \ | |
616 | TRACEME(("aseen(#%d) = 0x%lx (refcnt=%d)", cxt->tagnum-1, \ | |
617 | (unsigned long) y, SvREFCNT(y)-1)); \ | |
618 | } while (0) | |
619 | ||
620 | /* | |
621 | * Bless `s' in `p', via a temporary reference, required by sv_bless(). | |
622 | */ | |
623 | #define BLESS(s,p) do { \ | |
624 | SV *ref; \ | |
625 | HV *stash; \ | |
626 | TRACEME(("blessing 0x%lx in %s", (unsigned long) (s), (p))); \ | |
627 | stash = gv_stashpv((p), TRUE); \ | |
628 | ref = newRV_noinc(s); \ | |
629 | (void) sv_bless(ref, stash); \ | |
630 | SvRV(ref) = 0; \ | |
631 | SvREFCNT_dec(ref); \ | |
632 | } while (0) | |
633 | ||
634 | static int store(); | |
635 | static SV *retrieve(); | |
636 | ||
637 | /* | |
638 | * Dynamic dispatching table for SV store. | |
639 | */ | |
640 | ||
641 | static int store_ref(stcxt_t *cxt, SV *sv); | |
642 | static int store_scalar(stcxt_t *cxt, SV *sv); | |
643 | static int store_array(stcxt_t *cxt, AV *av); | |
644 | static int store_hash(stcxt_t *cxt, HV *hv); | |
645 | static int store_tied(stcxt_t *cxt, SV *sv); | |
646 | static int store_tied_item(stcxt_t *cxt, SV *sv); | |
647 | static int store_other(stcxt_t *cxt, SV *sv); | |
648 | ||
649 | static int (*sv_store[])() = { | |
650 | store_ref, /* svis_REF */ | |
651 | store_scalar, /* svis_SCALAR */ | |
652 | store_array, /* svis_ARRAY */ | |
653 | store_hash, /* svis_HASH */ | |
654 | store_tied, /* svis_TIED */ | |
655 | store_tied_item, /* svis_TIED_ITEM */ | |
656 | store_other, /* svis_OTHER */ | |
657 | }; | |
658 | ||
659 | #define SV_STORE(x) (*sv_store[x]) | |
660 | ||
661 | /* | |
662 | * Dynamic dispatching tables for SV retrieval. | |
663 | */ | |
664 | ||
665 | static SV *retrieve_lscalar(stcxt_t *cxt); | |
666 | static SV *old_retrieve_array(stcxt_t *cxt); | |
667 | static SV *old_retrieve_hash(stcxt_t *cxt); | |
668 | static SV *retrieve_ref(stcxt_t *cxt); | |
669 | static SV *retrieve_undef(stcxt_t *cxt); | |
670 | static SV *retrieve_integer(stcxt_t *cxt); | |
671 | static SV *retrieve_double(stcxt_t *cxt); | |
672 | static SV *retrieve_byte(stcxt_t *cxt); | |
673 | static SV *retrieve_netint(stcxt_t *cxt); | |
674 | static SV *retrieve_scalar(stcxt_t *cxt); | |
675 | static SV *retrieve_tied_array(stcxt_t *cxt); | |
676 | static SV *retrieve_tied_hash(stcxt_t *cxt); | |
677 | static SV *retrieve_tied_scalar(stcxt_t *cxt); | |
678 | static SV *retrieve_other(stcxt_t *cxt); | |
679 | ||
680 | static SV *(*sv_old_retrieve[])() = { | |
681 | 0, /* SX_OBJECT -- entry unused dynamically */ | |
682 | retrieve_lscalar, /* SX_LSCALAR */ | |
683 | old_retrieve_array, /* SX_ARRAY -- for pre-0.6 binaries */ | |
684 | old_retrieve_hash, /* SX_HASH -- for pre-0.6 binaries */ | |
685 | retrieve_ref, /* SX_REF */ | |
686 | retrieve_undef, /* SX_UNDEF */ | |
687 | retrieve_integer, /* SX_INTEGER */ | |
688 | retrieve_double, /* SX_DOUBLE */ | |
689 | retrieve_byte, /* SX_BYTE */ | |
690 | retrieve_netint, /* SX_NETINT */ | |
691 | retrieve_scalar, /* SX_SCALAR */ | |
692 | retrieve_tied_array, /* SX_ARRAY */ | |
693 | retrieve_tied_hash, /* SX_HASH */ | |
694 | retrieve_tied_scalar, /* SX_SCALAR */ | |
695 | retrieve_other, /* SX_SV_UNDEF not supported */ | |
696 | retrieve_other, /* SX_SV_YES not supported */ | |
697 | retrieve_other, /* SX_SV_NO not supported */ | |
698 | retrieve_other, /* SX_BLESS not supported */ | |
699 | retrieve_other, /* SX_IX_BLESS not supported */ | |
700 | retrieve_other, /* SX_HOOK not supported */ | |
701 | retrieve_other, /* SX_OVERLOADED not supported */ | |
702 | retrieve_other, /* SX_TIED_KEY not supported */ | |
703 | retrieve_other, /* SX_TIED_IDX not supported */ | |
704 | retrieve_other, /* SX_ERROR */ | |
705 | }; | |
706 | ||
707 | static SV *retrieve_array(stcxt_t *cxt); | |
708 | static SV *retrieve_hash(stcxt_t *cxt); | |
709 | static SV *retrieve_sv_undef(stcxt_t *cxt); | |
710 | static SV *retrieve_sv_yes(stcxt_t *cxt); | |
711 | static SV *retrieve_sv_no(stcxt_t *cxt); | |
712 | static SV *retrieve_blessed(stcxt_t *cxt); | |
713 | static SV *retrieve_idx_blessed(stcxt_t *cxt); | |
714 | static SV *retrieve_hook(stcxt_t *cxt); | |
715 | static SV *retrieve_overloaded(stcxt_t *cxt); | |
716 | static SV *retrieve_tied_key(stcxt_t *cxt); | |
717 | static SV *retrieve_tied_idx(stcxt_t *cxt); | |
718 | ||
719 | static SV *(*sv_retrieve[])() = { | |
720 | 0, /* SX_OBJECT -- entry unused dynamically */ | |
721 | retrieve_lscalar, /* SX_LSCALAR */ | |
722 | retrieve_array, /* SX_ARRAY */ | |
723 | retrieve_hash, /* SX_HASH */ | |
724 | retrieve_ref, /* SX_REF */ | |
725 | retrieve_undef, /* SX_UNDEF */ | |
726 | retrieve_integer, /* SX_INTEGER */ | |
727 | retrieve_double, /* SX_DOUBLE */ | |
728 | retrieve_byte, /* SX_BYTE */ | |
729 | retrieve_netint, /* SX_NETINT */ | |
730 | retrieve_scalar, /* SX_SCALAR */ | |
731 | retrieve_tied_array, /* SX_ARRAY */ | |
732 | retrieve_tied_hash, /* SX_HASH */ | |
733 | retrieve_tied_scalar, /* SX_SCALAR */ | |
734 | retrieve_sv_undef, /* SX_SV_UNDEF */ | |
735 | retrieve_sv_yes, /* SX_SV_YES */ | |
736 | retrieve_sv_no, /* SX_SV_NO */ | |
737 | retrieve_blessed, /* SX_BLESS */ | |
738 | retrieve_idx_blessed, /* SX_IX_BLESS */ | |
739 | retrieve_hook, /* SX_HOOK */ | |
740 | retrieve_overloaded, /* SX_OVERLOAD */ | |
741 | retrieve_tied_key, /* SX_TIED_KEY */ | |
742 | retrieve_tied_idx, /* SX_TIED_IDX */ | |
743 | retrieve_other, /* SX_ERROR */ | |
744 | }; | |
745 | ||
746 | #define RETRIEVE(c,x) (*(c)->retrieve_vtbl[(x) >= SX_ERROR ? SX_ERROR : (x)]) | |
747 | ||
748 | static SV *mbuf2sv(); | |
749 | static int store_blessed(); | |
750 | ||
751 | /*** | |
752 | *** Context management. | |
753 | ***/ | |
754 | ||
755 | /* | |
756 | * init_perinterp | |
757 | * | |
758 | * Called once per "thread" (interpreter) to initialize some global context. | |
759 | */ | |
760 | static void init_perinterp() { | |
761 | INIT_STCXT; | |
762 | ||
763 | cxt->netorder = 0; /* true if network order used */ | |
764 | cxt->forgive_me = -1; /* whether to be forgiving... */ | |
765 | } | |
766 | ||
767 | /* | |
768 | * init_store_context | |
769 | * | |
770 | * Initialize a new store context for real recursion. | |
771 | */ | |
772 | static void init_store_context(cxt, f, optype, network_order) | |
773 | stcxt_t *cxt; | |
774 | PerlIO *f; | |
775 | int optype; | |
776 | int network_order; | |
777 | { | |
778 | TRACEME(("init_store_context")); | |
779 | ||
780 | cxt->netorder = network_order; | |
781 | cxt->forgive_me = -1; /* Fetched from perl if needed */ | |
782 | cxt->canonical = -1; /* Idem */ | |
783 | cxt->tagnum = -1; /* Reset tag numbers */ | |
784 | cxt->classnum = -1; /* Reset class numbers */ | |
785 | cxt->fio = f; /* Where I/O are performed */ | |
786 | cxt->optype = optype; /* A store, or a deep clone */ | |
787 | cxt->entry = 1; /* No recursion yet */ | |
788 | ||
789 | /* | |
790 | * The `hseen' table is used to keep track of each SV stored and their | |
791 | * associated tag numbers is special. It is "abused" because the | |
792 | * values stored are not real SV, just integers cast to (SV *), | |
793 | * which explains the freeing below. | |
794 | * | |
795 | * It is also one possible bottlneck to achieve good storing speed, | |
796 | * so the "shared keys" optimization is turned off (unlikely to be | |
797 | * of any use here), and the hash table is "pre-extended". Together, | |
798 | * those optimizations increase the throughput by 12%. | |
799 | */ | |
800 | ||
801 | cxt->hseen = newHV(); /* Table where seen objects are stored */ | |
802 | HvSHAREKEYS_off(cxt->hseen); | |
803 | ||
804 | /* | |
805 | * The following does not work well with perl5.004_04, and causes | |
806 | * a core dump later on, in a completely unrelated spot, which | |
807 | * makes me think there is a memory corruption going on. | |
808 | * | |
809 | * Calling hv_ksplit(hseen, HBUCKETS) instead of manually hacking | |
810 | * it below does not make any difference. It seems to work fine | |
811 | * with perl5.004_68 but given the probable nature of the bug, | |
812 | * that does not prove anything. | |
813 | * | |
814 | * It's a shame because increasing the amount of buckets raises | |
815 | * store() throughput by 5%, but until I figure this out, I can't | |
816 | * allow for this to go into production. | |
817 | * | |
818 | * It is reported fixed in 5.005, hence the #if. | |
819 | */ | |
820 | #if PATCHLEVEL < 5 | |
821 | #define HBUCKETS 4096 /* Buckets for %hseen */ | |
822 | HvMAX(cxt->hseen) = HBUCKETS - 1; /* keys %hseen = $HBUCKETS; */ | |
823 | #endif | |
824 | ||
825 | /* | |
826 | * The `hclass' hash uses the same settings as `hseen' above, but it is | |
827 | * used to assign sequential tags (numbers) to class names for blessed | |
828 | * objects. | |
829 | * | |
830 | * We turn the shared key optimization on. | |
831 | */ | |
832 | ||
833 | cxt->hclass = newHV(); /* Where seen classnames are stored */ | |
834 | ||
835 | #if PATCHLEVEL < 5 | |
836 | HvMAX(cxt->hclass) = HBUCKETS - 1; /* keys %hclass = $HBUCKETS; */ | |
837 | #endif | |
838 | ||
839 | /* | |
840 | * The `hook' hash table is used to keep track of the references on | |
841 | * the STORABLE_freeze hook routines, when found in some class name. | |
842 | * | |
843 | * It is assumed that the inheritance tree will not be changed during | |
844 | * storing, and that no new method will be dynamically created by the | |
845 | * hooks. | |
846 | */ | |
847 | ||
848 | cxt->hook = newHV(); /* Table where hooks are cached */ | |
849 | } | |
850 | ||
851 | /* | |
852 | * clean_store_context | |
853 | * | |
854 | * Clean store context by | |
855 | */ | |
856 | static void clean_store_context(cxt) | |
857 | stcxt_t *cxt; | |
858 | { | |
859 | HE *he; | |
860 | ||
861 | TRACEME(("clean_store_context")); | |
862 | ||
863 | ASSERT(cxt->optype & ST_STORE, ("was performing a store()")); | |
864 | ||
865 | /* | |
866 | * Insert real values into hashes where we stored faked pointers. | |
867 | */ | |
868 | ||
869 | hv_iterinit(cxt->hseen); | |
870 | while (he = hv_iternext(cxt->hseen)) | |
871 | HeVAL(he) = &PL_sv_undef; | |
872 | ||
873 | hv_iterinit(cxt->hclass); | |
874 | while (he = hv_iternext(cxt->hclass)) | |
875 | HeVAL(he) = &PL_sv_undef; | |
876 | ||
877 | /* | |
878 | * And now dispose of them... | |
879 | */ | |
880 | ||
881 | hv_undef(cxt->hseen); | |
882 | sv_free((SV *) cxt->hseen); | |
883 | ||
884 | hv_undef(cxt->hclass); | |
885 | sv_free((SV *) cxt->hclass); | |
886 | ||
887 | hv_undef(cxt->hook); | |
888 | sv_free((SV *) cxt->hook); | |
889 | ||
890 | cxt->entry = 0; | |
891 | cxt->dirty = 0; | |
892 | } | |
893 | ||
894 | /* | |
895 | * init_retrieve_context | |
896 | * | |
897 | * Initialize a new retrieve context for real recursion. | |
898 | */ | |
899 | static void init_retrieve_context(cxt, optype) | |
900 | stcxt_t *cxt; | |
901 | int optype; | |
902 | { | |
903 | TRACEME(("init_retrieve_context")); | |
904 | ||
905 | /* | |
906 | * The hook hash table is used to keep track of the references on | |
907 | * the STORABLE_thaw hook routines, when found in some class name. | |
908 | * | |
909 | * It is assumed that the inheritance tree will not be changed during | |
910 | * storing, and that no new method will be dynamically created by the | |
911 | * hooks. | |
912 | */ | |
913 | ||
914 | cxt->hook = newHV(); /* Caches STORABLE_thaw */ | |
915 | ||
916 | /* | |
917 | * If retrieving an old binary version, the cxt->retrieve_vtbl variable | |
918 | * was set to sv_old_retrieve. We'll need a hash table to keep track of | |
919 | * the correspondance between the tags and the tag number used by the | |
920 | * new retrieve routines. | |
921 | */ | |
922 | ||
923 | cxt->hseen = (cxt->retrieve_vtbl == sv_old_retrieve) ? newHV() : 0; | |
924 | ||
925 | cxt->aseen = newAV(); /* Where retrieved objects are kept */ | |
926 | cxt->aclass = newAV(); /* Where seen classnames are kept */ | |
927 | cxt->tagnum = 0; /* Have to count objects... */ | |
928 | cxt->classnum = 0; /* ...and class names as well */ | |
929 | cxt->optype = optype; | |
930 | cxt->entry = 1; /* No recursion yet */ | |
931 | } | |
932 | ||
933 | /* | |
934 | * clean_retrieve_context | |
935 | * | |
936 | * Clean retrieve context by | |
937 | */ | |
938 | static void clean_retrieve_context(cxt) | |
939 | stcxt_t *cxt; | |
940 | { | |
941 | TRACEME(("clean_retrieve_context")); | |
942 | ||
943 | ASSERT(cxt->optype & ST_RETRIEVE, ("was performing a retrieve()")); | |
944 | ||
945 | av_undef(cxt->aseen); | |
946 | sv_free((SV *) cxt->aseen); | |
947 | ||
948 | av_undef(cxt->aclass); | |
949 | sv_free((SV *) cxt->aclass); | |
950 | ||
951 | hv_undef(cxt->hook); | |
952 | sv_free((SV *) cxt->hook); | |
953 | ||
954 | if (cxt->hseen) | |
955 | sv_free((SV *) cxt->hseen); /* optional HV, for backward compat. */ | |
956 | ||
957 | cxt->entry = 0; | |
958 | cxt->dirty = 0; | |
959 | } | |
960 | ||
961 | /* | |
962 | * clean_context | |
963 | * | |
964 | * A workaround for the CROAK bug: cleanup the last context. | |
965 | */ | |
966 | static void clean_context(cxt) | |
967 | stcxt_t *cxt; | |
968 | { | |
969 | TRACEME(("clean_context")); | |
970 | ||
971 | ASSERT(cxt->dirty, ("dirty context")); | |
972 | ||
973 | if (cxt->optype & ST_RETRIEVE) | |
974 | clean_retrieve_context(cxt); | |
975 | else | |
976 | clean_store_context(cxt); | |
977 | } | |
978 | ||
979 | /* | |
980 | * allocate_context | |
981 | * | |
982 | * Allocate a new context and push it on top of the parent one. | |
983 | * This new context is made globally visible via SET_STCXT(). | |
984 | */ | |
985 | static stcxt_t *allocate_context(parent_cxt) | |
986 | stcxt_t *parent_cxt; | |
987 | { | |
988 | stcxt_t *cxt; | |
989 | ||
990 | TRACEME(("allocate_context")); | |
991 | ||
992 | ASSERT(!parent_cxt->dirty, ("parent context clean")); | |
993 | ||
994 | Newz(0, cxt, 1, stcxt_t); | |
995 | cxt->prev = parent_cxt; | |
996 | SET_STCXT(cxt); | |
997 | ||
998 | return cxt; | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * free_context | |
1003 | * | |
1004 | * Free current context, which cannot be the "root" one. | |
1005 | * Make the context underneath globally visible via SET_STCXT(). | |
1006 | */ | |
1007 | static void free_context(cxt) | |
1008 | stcxt_t *cxt; | |
1009 | { | |
1010 | stcxt_t *prev = cxt->prev; | |
1011 | ||
1012 | TRACEME(("free_context")); | |
1013 | ||
1014 | ASSERT(!cxt->dirty, ("clean context")); | |
1015 | ASSERT(prev, ("not freeing root context")); | |
1016 | ||
1017 | if (kbuf) | |
1018 | Safefree(kbuf); | |
1019 | if (mbase) | |
1020 | Safefree(mbase); | |
1021 | ||
1022 | Safefree(cxt); | |
1023 | SET_STCXT(prev); | |
1024 | } | |
1025 | ||
1026 | /*** | |
1027 | *** Predicates. | |
1028 | ***/ | |
1029 | ||
1030 | /* | |
1031 | * is_storing | |
1032 | * | |
1033 | * Tells whether we're in the middle of a store operation. | |
1034 | */ | |
1035 | int is_storing() | |
1036 | { | |
1037 | dSTCXT; | |
1038 | ||
1039 | return cxt->entry && (cxt->optype & ST_STORE); | |
1040 | } | |
1041 | ||
1042 | /* | |
1043 | * is_retrieving | |
1044 | * | |
1045 | * Tells whether we're in the middle of a retrieve operation. | |
1046 | */ | |
1047 | int is_retrieving() | |
1048 | { | |
1049 | dSTCXT; | |
1050 | ||
1051 | return cxt->entry && (cxt->optype & ST_RETRIEVE); | |
1052 | } | |
1053 | ||
1054 | /* | |
1055 | * last_op_in_netorder | |
1056 | * | |
1057 | * Returns whether last operation was made using network order. | |
1058 | * | |
1059 | * This is typically out-of-band information that might prove useful | |
1060 | * to people wishing to convert native to network order data when used. | |
1061 | */ | |
1062 | int last_op_in_netorder() | |
1063 | { | |
1064 | dSTCXT; | |
1065 | ||
1066 | return cxt->netorder; | |
1067 | } | |
1068 | ||
1069 | /*** | |
1070 | *** Hook lookup and calling routines. | |
1071 | ***/ | |
1072 | ||
1073 | /* | |
1074 | * pkg_fetchmeth | |
1075 | * | |
1076 | * A wrapper on gv_fetchmethod_autoload() which caches results. | |
1077 | * | |
1078 | * Returns the routine reference as an SV*, or null if neither the package | |
1079 | * nor its ancestors know about the method. | |
1080 | */ | |
1081 | static SV *pkg_fetchmeth(cache, pkg, method) | |
1082 | HV *cache; | |
1083 | HV *pkg; | |
1084 | char *method; | |
1085 | { | |
1086 | GV *gv; | |
1087 | SV *sv; | |
1088 | SV **svh; | |
1089 | ||
1090 | /* | |
1091 | * The following code is the same as the one performed by UNIVERSAL::can | |
1092 | * in the Perl core. | |
1093 | */ | |
1094 | ||
1095 | gv = gv_fetchmethod_autoload(pkg, method, FALSE); | |
1096 | if (gv && isGV(gv)) { | |
1097 | sv = newRV((SV*) GvCV(gv)); | |
1098 | TRACEME(("%s->%s: 0x%lx", HvNAME(pkg), method, (unsigned long) sv)); | |
1099 | } else { | |
1100 | sv = newSVsv(&PL_sv_undef); | |
1101 | TRACEME(("%s->%s: not found", HvNAME(pkg), method)); | |
1102 | } | |
1103 | ||
1104 | /* | |
1105 | * Cache the result, ignoring failure: if we can't store the value, | |
1106 | * it just won't be cached. | |
1107 | */ | |
1108 | ||
1109 | (void) hv_store(cache, HvNAME(pkg), strlen(HvNAME(pkg)), sv, 0); | |
1110 | ||
1111 | return SvOK(sv) ? sv : (SV *) 0; | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * pkg_hide | |
1116 | * | |
1117 | * Force cached value to be undef: hook ignored even if present. | |
1118 | */ | |
1119 | static void pkg_hide(cache, pkg, method) | |
1120 | HV *cache; | |
1121 | HV *pkg; | |
1122 | char *method; | |
1123 | { | |
1124 | (void) hv_store(cache, | |
1125 | HvNAME(pkg), strlen(HvNAME(pkg)), newSVsv(&PL_sv_undef), 0); | |
1126 | } | |
1127 | ||
1128 | /* | |
1129 | * pkg_can | |
1130 | * | |
1131 | * Our own "UNIVERSAL::can", which caches results. | |
1132 | * | |
1133 | * Returns the routine reference as an SV*, or null if the object does not | |
1134 | * know about the method. | |
1135 | */ | |
1136 | static SV *pkg_can(cache, pkg, method) | |
1137 | HV *cache; | |
1138 | HV *pkg; | |
1139 | char *method; | |
1140 | { | |
1141 | SV **svh; | |
1142 | SV *sv; | |
1143 | ||
1144 | TRACEME(("pkg_can for %s->%s", HvNAME(pkg), method)); | |
1145 | ||
1146 | /* | |
1147 | * Look into the cache to see whether we already have determined | |
1148 | * where the routine was, if any. | |
1149 | * | |
1150 | * NOTA BENE: we don't use `method' at all in our lookup, since we know | |
1151 | * that only one hook (i.e. always the same) is cached in a given cache. | |
1152 | */ | |
1153 | ||
1154 | svh = hv_fetch(cache, HvNAME(pkg), strlen(HvNAME(pkg)), FALSE); | |
1155 | if (svh) { | |
1156 | sv = *svh; | |
1157 | if (!SvOK(sv)) { | |
1158 | TRACEME(("cached %s->%s: not found", HvNAME(pkg), method)); | |
1159 | return (SV *) 0; | |
1160 | } else { | |
1161 | TRACEME(("cached %s->%s: 0x%lx", HvNAME(pkg), method, | |
1162 | (unsigned long) sv)); | |
1163 | return sv; | |
1164 | } | |
1165 | } | |
1166 | ||
1167 | TRACEME(("not cached yet")); | |
1168 | return pkg_fetchmeth(cache, pkg, method); /* Fetch and cache */ | |
1169 | } | |
1170 | ||
1171 | /* | |
1172 | * scalar_call | |
1173 | * | |
1174 | * Call routine as obj->hook(av) in scalar context. | |
1175 | * Propagates the single returned value if not called in void context. | |
1176 | */ | |
1177 | static SV *scalar_call(obj, hook, cloning, av, flags) | |
1178 | SV *obj; | |
1179 | SV *hook; | |
1180 | int cloning; | |
1181 | AV *av; | |
1182 | I32 flags; | |
1183 | { | |
1184 | dSP; | |
1185 | int count; | |
1186 | SV *sv = 0; | |
1187 | ||
1188 | TRACEME(("scalar_call (cloning=%d)", cloning)); | |
1189 | ||
1190 | ENTER; | |
1191 | SAVETMPS; | |
1192 | ||
1193 | PUSHMARK(sp); | |
1194 | XPUSHs(obj); | |
1195 | XPUSHs(sv_2mortal(newSViv(cloning))); /* Cloning flag */ | |
1196 | if (av) { | |
1197 | SV **ary = AvARRAY(av); | |
1198 | int cnt = AvFILLp(av) + 1; | |
1199 | int i; | |
1200 | XPUSHs(ary[0]); /* Frozen string */ | |
1201 | for (i = 1; i < cnt; i++) { | |
1202 | TRACEME(("pushing arg #%d (0x%lx)...", i, (unsigned long) ary[i])); | |
1203 | XPUSHs(sv_2mortal(newRV(ary[i]))); | |
1204 | } | |
1205 | } | |
1206 | PUTBACK; | |
1207 | ||
1208 | TRACEME(("calling...")); | |
1209 | count = perl_call_sv(hook, flags); /* Go back to Perl code */ | |
1210 | TRACEME(("count = %d", count)); | |
1211 | ||
1212 | SPAGAIN; | |
1213 | ||
1214 | if (count) { | |
1215 | sv = POPs; | |
1216 | SvREFCNT_inc(sv); /* We're returning it, must stay alive! */ | |
1217 | } | |
1218 | ||
1219 | PUTBACK; | |
1220 | FREETMPS; | |
1221 | LEAVE; | |
1222 | ||
1223 | return sv; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * array_call | |
1228 | * | |
f9a1036d | 1229 | * Call routine obj->hook(cloning) in list context. |
7a6a85bf RG |
1230 | * Returns the list of returned values in an array. |
1231 | */ | |
1232 | static AV *array_call(obj, hook, cloning) | |
1233 | SV *obj; | |
1234 | SV *hook; | |
1235 | int cloning; | |
1236 | { | |
1237 | dSP; | |
1238 | int count; | |
1239 | AV *av; | |
1240 | int i; | |
1241 | ||
f2233185 | 1242 | TRACEME(("arrary_call (cloning=%d)", cloning)); |
7a6a85bf RG |
1243 | |
1244 | ENTER; | |
1245 | SAVETMPS; | |
1246 | ||
1247 | PUSHMARK(sp); | |
1248 | XPUSHs(obj); /* Target object */ | |
1249 | XPUSHs(sv_2mortal(newSViv(cloning))); /* Cloning flag */ | |
1250 | PUTBACK; | |
1251 | ||
1252 | count = perl_call_sv(hook, G_ARRAY); /* Go back to Perl code */ | |
1253 | ||
1254 | SPAGAIN; | |
1255 | ||
1256 | av = newAV(); | |
1257 | for (i = count - 1; i >= 0; i--) { | |
1258 | SV *sv = POPs; | |
1259 | av_store(av, i, SvREFCNT_inc(sv)); | |
1260 | } | |
1261 | ||
1262 | PUTBACK; | |
1263 | FREETMPS; | |
1264 | LEAVE; | |
1265 | ||
1266 | return av; | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * known_class | |
1271 | * | |
1272 | * Lookup the class name in the `hclass' table and either assign it a new ID | |
1273 | * or return the existing one, by filling in `classnum'. | |
1274 | * | |
1275 | * Return true if the class was known, false if the ID was just generated. | |
1276 | */ | |
1277 | static int known_class(cxt, name, len, classnum) | |
1278 | stcxt_t *cxt; | |
1279 | char *name; /* Class name */ | |
1280 | int len; /* Name length */ | |
1281 | I32 *classnum; | |
1282 | { | |
1283 | SV **svh; | |
1284 | HV *hclass = cxt->hclass; | |
1285 | ||
1286 | TRACEME(("known_class (%s)", name)); | |
1287 | ||
1288 | /* | |
1289 | * Recall that we don't store pointers in this hash table, but tags. | |
1290 | * Therefore, we need LOW_32BITS() to extract the relevant parts. | |
1291 | */ | |
1292 | ||
1293 | svh = hv_fetch(hclass, name, len, FALSE); | |
1294 | if (svh) { | |
1295 | *classnum = LOW_32BITS(*svh); | |
1296 | return TRUE; | |
1297 | } | |
1298 | ||
1299 | /* | |
1300 | * Unknown classname, we need to record it. | |
7a6a85bf RG |
1301 | */ |
1302 | ||
1303 | cxt->classnum++; | |
3341c981 | 1304 | if (!hv_store(hclass, name, len, INT2PTR(SV*, cxt->classnum), 0)) |
7a6a85bf RG |
1305 | CROAK(("Unable to record new classname")); |
1306 | ||
1307 | *classnum = cxt->classnum; | |
1308 | return FALSE; | |
1309 | } | |
1310 | ||
1311 | /*** | |
1312 | *** Sepcific store routines. | |
1313 | ***/ | |
1314 | ||
1315 | /* | |
1316 | * store_ref | |
1317 | * | |
1318 | * Store a reference. | |
1319 | * Layout is SX_REF <object> or SX_OVERLOAD <object>. | |
1320 | */ | |
1321 | static int store_ref(cxt, sv) | |
1322 | stcxt_t *cxt; | |
1323 | SV *sv; | |
1324 | { | |
1325 | TRACEME(("store_ref (0x%lx)", (unsigned long) sv)); | |
1326 | ||
1327 | /* | |
1328 | * Follow reference, and check if target is overloaded. | |
1329 | */ | |
1330 | ||
1331 | sv = SvRV(sv); | |
1332 | ||
1333 | if (SvOBJECT(sv)) { | |
1334 | HV *stash = (HV *) SvSTASH(sv); | |
1335 | if (stash && Gv_AMG(stash)) { | |
1336 | TRACEME(("ref (0x%lx) is overloaded", (unsigned long) sv)); | |
1337 | PUTMARK(SX_OVERLOAD); | |
1338 | } else | |
1339 | PUTMARK(SX_REF); | |
1340 | } else | |
1341 | PUTMARK(SX_REF); | |
1342 | ||
1343 | return store(cxt, sv); | |
1344 | } | |
1345 | ||
1346 | /* | |
1347 | * store_scalar | |
1348 | * | |
1349 | * Store a scalar. | |
1350 | * | |
1351 | * Layout is SX_LSCALAR <length> <data>, SX_SCALAR <lenght> <data> or SX_UNDEF. | |
1352 | * The <data> section is omitted if <length> is 0. | |
1353 | * | |
1354 | * If integer or double, the layout is SX_INTEGER <data> or SX_DOUBLE <data>. | |
1355 | * Small integers (within [-127, +127]) are stored as SX_BYTE <byte>. | |
1356 | */ | |
1357 | static int store_scalar(cxt, sv) | |
1358 | stcxt_t *cxt; | |
1359 | SV *sv; | |
1360 | { | |
1361 | IV iv; | |
1362 | char *pv; | |
1363 | STRLEN len; | |
1364 | U32 flags = SvFLAGS(sv); /* "cc -O" may put it in register */ | |
1365 | ||
1366 | TRACEME(("store_scalar (0x%lx)", (unsigned long) sv)); | |
1367 | ||
1368 | /* | |
1369 | * For efficiency, break the SV encapsulation by peaking at the flags | |
1370 | * directly without using the Perl macros to avoid dereferencing | |
1371 | * sv->sv_flags each time we wish to check the flags. | |
1372 | */ | |
1373 | ||
1374 | if (!(flags & SVf_OK)) { /* !SvOK(sv) */ | |
1375 | if (sv == &PL_sv_undef) { | |
1376 | TRACEME(("immortal undef")); | |
1377 | PUTMARK(SX_SV_UNDEF); | |
1378 | } else { | |
1379 | TRACEME(("undef at 0x%x", sv)); | |
1380 | PUTMARK(SX_UNDEF); | |
1381 | } | |
1382 | return 0; | |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * Always store the string representation of a scalar if it exists. | |
1387 | * Gisle Aas provided me with this test case, better than a long speach: | |
1388 | * | |
1389 | * perl -MDevel::Peek -le '$a="abc"; $a+0; Dump($a)' | |
1390 | * SV = PVNV(0x80c8520) | |
1391 | * REFCNT = 1 | |
1392 | * FLAGS = (NOK,POK,pNOK,pPOK) | |
1393 | * IV = 0 | |
1394 | * NV = 0 | |
1395 | * PV = 0x80c83d0 "abc"\0 | |
1396 | * CUR = 3 | |
1397 | * LEN = 4 | |
1398 | * | |
1399 | * Write SX_SCALAR, length, followed by the actual data. | |
1400 | * | |
1401 | * Otherwise, write an SX_BYTE, SX_INTEGER or an SX_DOUBLE as | |
1402 | * appropriate, followed by the actual (binary) data. A double | |
1403 | * is written as a string if network order, for portability. | |
1404 | * | |
1405 | * NOTE: instead of using SvNOK(sv), we test for SvNOKp(sv). | |
1406 | * The reason is that when the scalar value is tainted, the SvNOK(sv) | |
1407 | * value is false. | |
1408 | * | |
1409 | * The test for a read-only scalar with both POK and NOK set is meant | |
1410 | * to quickly detect &PL_sv_yes and &PL_sv_no without having to pay the | |
1411 | * address comparison for each scalar we store. | |
1412 | */ | |
1413 | ||
1414 | #define SV_MAYBE_IMMORTAL (SVf_READONLY|SVf_POK|SVf_NOK) | |
1415 | ||
1416 | if ((flags & SV_MAYBE_IMMORTAL) == SV_MAYBE_IMMORTAL) { | |
1417 | if (sv == &PL_sv_yes) { | |
1418 | TRACEME(("immortal yes")); | |
1419 | PUTMARK(SX_SV_YES); | |
1420 | } else if (sv == &PL_sv_no) { | |
1421 | TRACEME(("immortal no")); | |
1422 | PUTMARK(SX_SV_NO); | |
1423 | } else { | |
1424 | pv = SvPV(sv, len); /* We know it's SvPOK */ | |
1425 | goto string; /* Share code below */ | |
1426 | } | |
1427 | } else if (flags & SVp_POK) { /* SvPOKp(sv) => string */ | |
1428 | pv = SvPV(sv, len); | |
1429 | ||
1430 | /* | |
1431 | * Will come here from below with pv and len set if double & netorder, | |
1432 | * or from above if it was readonly, POK and NOK but neither &PL_sv_yes | |
1433 | * nor &PL_sv_no. | |
1434 | */ | |
1435 | string: | |
1436 | ||
1437 | STORE_SCALAR(pv, len); | |
1438 | TRACEME(("ok (scalar 0x%lx '%s', length = %d)", | |
1439 | (unsigned long) sv, SvPVX(sv), len)); | |
1440 | ||
1441 | } else if (flags & SVp_NOK) { /* SvNOKp(sv) => double */ | |
f27e1f0a | 1442 | NV nv = SvNV(sv); |
7a6a85bf RG |
1443 | |
1444 | /* | |
1445 | * Watch for number being an integer in disguise. | |
1446 | */ | |
f27e1f0a | 1447 | if (nv == (NV) (iv = I_V(nv))) { |
7a6a85bf RG |
1448 | TRACEME(("double %lf is actually integer %ld", nv, iv)); |
1449 | goto integer; /* Share code below */ | |
1450 | } | |
1451 | ||
1452 | if (cxt->netorder) { | |
1453 | TRACEME(("double %lf stored as string", nv)); | |
1454 | pv = SvPV(sv, len); | |
1455 | goto string; /* Share code above */ | |
1456 | } | |
1457 | ||
1458 | PUTMARK(SX_DOUBLE); | |
1459 | WRITE(&nv, sizeof(nv)); | |
1460 | ||
1461 | TRACEME(("ok (double 0x%lx, value = %lf)", (unsigned long) sv, nv)); | |
1462 | ||
1463 | } else if (flags & SVp_IOK) { /* SvIOKp(sv) => integer */ | |
1464 | iv = SvIV(sv); | |
1465 | ||
1466 | /* | |
1467 | * Will come here from above with iv set if double is an integer. | |
1468 | */ | |
1469 | integer: | |
1470 | ||
1471 | /* | |
1472 | * Optimize small integers into a single byte, otherwise store as | |
1473 | * a real integer (converted into network order if they asked). | |
1474 | */ | |
1475 | ||
1476 | if (iv >= -128 && iv <= 127) { | |
1477 | unsigned char siv = (unsigned char) (iv + 128); /* [0,255] */ | |
1478 | PUTMARK(SX_BYTE); | |
1479 | PUTMARK(siv); | |
1480 | TRACEME(("small integer stored as %d", siv)); | |
1481 | } else if (cxt->netorder) { | |
1482 | int niv; | |
1483 | #ifdef HAS_HTONL | |
1484 | niv = (int) htonl(iv); | |
1485 | TRACEME(("using network order")); | |
1486 | #else | |
1487 | niv = (int) iv; | |
1488 | TRACEME(("as-is for network order")); | |
1489 | #endif | |
1490 | PUTMARK(SX_NETINT); | |
1491 | WRITE(&niv, sizeof(niv)); | |
1492 | } else { | |
1493 | PUTMARK(SX_INTEGER); | |
1494 | WRITE(&iv, sizeof(iv)); | |
1495 | } | |
1496 | ||
1497 | TRACEME(("ok (integer 0x%lx, value = %d)", (unsigned long) sv, iv)); | |
1498 | ||
1499 | } else | |
1500 | CROAK(("Can't determine type of %s(0x%lx)", sv_reftype(sv, FALSE), | |
1501 | (unsigned long) sv)); | |
1502 | ||
1503 | return 0; /* Ok, no recursion on scalars */ | |
1504 | } | |
1505 | ||
1506 | /* | |
1507 | * store_array | |
1508 | * | |
1509 | * Store an array. | |
1510 | * | |
1511 | * Layout is SX_ARRAY <size> followed by each item, in increading index order. | |
1512 | * Each item is stored as <object>. | |
1513 | */ | |
1514 | static int store_array(cxt, av) | |
1515 | stcxt_t *cxt; | |
1516 | AV *av; | |
1517 | { | |
1518 | SV **sav; | |
1519 | I32 len = av_len(av) + 1; | |
1520 | I32 i; | |
1521 | int ret; | |
1522 | ||
1523 | TRACEME(("store_array (0x%lx)", (unsigned long) av)); | |
1524 | ||
1525 | /* | |
1526 | * Signal array by emitting SX_ARRAY, followed by the array length. | |
1527 | */ | |
1528 | ||
1529 | PUTMARK(SX_ARRAY); | |
1530 | WLEN(len); | |
1531 | TRACEME(("size = %d", len)); | |
1532 | ||
1533 | /* | |
1534 | * Now store each item recursively. | |
1535 | */ | |
1536 | ||
1537 | for (i = 0; i < len; i++) { | |
1538 | sav = av_fetch(av, i, 0); | |
1539 | if (!sav) { | |
1540 | TRACEME(("(#%d) undef item", i)); | |
1541 | STORE_UNDEF(); | |
1542 | continue; | |
1543 | } | |
1544 | TRACEME(("(#%d) item", i)); | |
1545 | if (ret = store(cxt, *sav)) | |
1546 | return ret; | |
1547 | } | |
1548 | ||
1549 | TRACEME(("ok (array)")); | |
1550 | ||
1551 | return 0; | |
1552 | } | |
1553 | ||
1554 | /* | |
1555 | * sortcmp | |
1556 | * | |
1557 | * Sort two SVs | |
1558 | * Borrowed from perl source file pp_ctl.c, where it is used by pp_sort. | |
1559 | */ | |
1560 | static int | |
1561 | sortcmp(a, b) | |
1562 | const void *a; | |
1563 | const void *b; | |
1564 | { | |
1565 | return sv_cmp(*(SV * const *) a, *(SV * const *) b); | |
1566 | } | |
1567 | ||
1568 | ||
1569 | /* | |
1570 | * store_hash | |
1571 | * | |
1572 | * Store an hash table. | |
1573 | * | |
1574 | * Layout is SX_HASH <size> followed by each key/value pair, in random order. | |
1575 | * Values are stored as <object>. | |
1576 | * Keys are stored as <length> <data>, the <data> section being omitted | |
1577 | * if length is 0. | |
1578 | */ | |
1579 | static int store_hash(cxt, hv) | |
1580 | stcxt_t *cxt; | |
1581 | HV *hv; | |
1582 | { | |
1583 | I32 len = HvKEYS(hv); | |
1584 | I32 i; | |
1585 | int ret = 0; | |
1586 | I32 riter; | |
1587 | HE *eiter; | |
1588 | ||
1589 | TRACEME(("store_hash (0x%lx)", (unsigned long) hv)); | |
1590 | ||
1591 | /* | |
1592 | * Signal hash by emitting SX_HASH, followed by the table length. | |
1593 | */ | |
1594 | ||
1595 | PUTMARK(SX_HASH); | |
1596 | WLEN(len); | |
1597 | TRACEME(("size = %d", len)); | |
1598 | ||
1599 | /* | |
1600 | * Save possible iteration state via each() on that table. | |
1601 | */ | |
1602 | ||
1603 | riter = HvRITER(hv); | |
1604 | eiter = HvEITER(hv); | |
1605 | hv_iterinit(hv); | |
1606 | ||
1607 | /* | |
1608 | * Now store each item recursively. | |
1609 | * | |
1610 | * If canonical is defined to some true value then store each | |
1611 | * key/value pair in sorted order otherwise the order is random. | |
1612 | * Canonical order is irrelevant when a deep clone operation is performed. | |
1613 | * | |
1614 | * Fetch the value from perl only once per store() operation, and only | |
1615 | * when needed. | |
1616 | */ | |
1617 | ||
1618 | if ( | |
1619 | !(cxt->optype & ST_CLONE) && (cxt->canonical == 1 || | |
1620 | (cxt->canonical < 0 && (cxt->canonical = | |
1621 | SvTRUE(perl_get_sv("Storable::canonical", TRUE)) ? 1 : 0))) | |
1622 | ) { | |
1623 | /* | |
1624 | * Storing in order, sorted by key. | |
1625 | * Run through the hash, building up an array of keys in a | |
1626 | * mortal array, sort the array and then run through the | |
1627 | * array. | |
1628 | */ | |
1629 | ||
1630 | AV *av = newAV(); | |
1631 | ||
1632 | TRACEME(("using canonical order")); | |
1633 | ||
1634 | for (i = 0; i < len; i++) { | |
1635 | HE *he = hv_iternext(hv); | |
1636 | SV *key = hv_iterkeysv(he); | |
1637 | av_store(av, AvFILLp(av)+1, key); /* av_push(), really */ | |
1638 | } | |
1639 | ||
1640 | qsort((char *) AvARRAY(av), len, sizeof(SV *), sortcmp); | |
1641 | ||
1642 | for (i = 0; i < len; i++) { | |
1643 | char *keyval; | |
1644 | I32 keylen; | |
1645 | SV *key = av_shift(av); | |
1646 | HE *he = hv_fetch_ent(hv, key, 0, 0); | |
1647 | SV *val = HeVAL(he); | |
1648 | if (val == 0) | |
1649 | return 1; /* Internal error, not I/O error */ | |
1650 | ||
1651 | /* | |
1652 | * Store value first. | |
1653 | */ | |
1654 | ||
1655 | TRACEME(("(#%d) value 0x%lx", i, (unsigned long) val)); | |
1656 | ||
1657 | if (ret = store(cxt, val)) | |
1658 | goto out; | |
1659 | ||
1660 | /* | |
1661 | * Write key string. | |
1662 | * Keys are written after values to make sure retrieval | |
1663 | * can be optimal in terms of memory usage, where keys are | |
1664 | * read into a fixed unique buffer called kbuf. | |
1665 | * See retrieve_hash() for details. | |
1666 | */ | |
1667 | ||
1668 | keyval = hv_iterkey(he, &keylen); | |
1669 | TRACEME(("(#%d) key '%s'", i, keyval)); | |
1670 | WLEN(keylen); | |
1671 | if (keylen) | |
1672 | WRITE(keyval, keylen); | |
1673 | } | |
1674 | ||
1675 | /* | |
1676 | * Free up the temporary array | |
1677 | */ | |
1678 | ||
1679 | av_undef(av); | |
1680 | sv_free((SV *) av); | |
1681 | ||
1682 | } else { | |
1683 | ||
1684 | /* | |
1685 | * Storing in "random" order (in the order the keys are stored | |
1686 | * within the the hash). This is the default and will be faster! | |
1687 | */ | |
1688 | ||
1689 | for (i = 0; i < len; i++) { | |
1690 | char *key; | |
1691 | I32 len; | |
1692 | SV *val = hv_iternextsv(hv, &key, &len); | |
1693 | ||
1694 | if (val == 0) | |
1695 | return 1; /* Internal error, not I/O error */ | |
1696 | ||
1697 | /* | |
1698 | * Store value first. | |
1699 | */ | |
1700 | ||
1701 | TRACEME(("(#%d) value 0x%lx", i, (unsigned long) val)); | |
1702 | ||
1703 | if (ret = store(cxt, val)) | |
1704 | goto out; | |
1705 | ||
1706 | /* | |
1707 | * Write key string. | |
1708 | * Keys are written after values to make sure retrieval | |
1709 | * can be optimal in terms of memory usage, where keys are | |
1710 | * read into a fixed unique buffer called kbuf. | |
1711 | * See retrieve_hash() for details. | |
1712 | */ | |
1713 | ||
1714 | TRACEME(("(#%d) key '%s'", i, key)); | |
1715 | WLEN(len); | |
1716 | if (len) | |
1717 | WRITE(key, len); | |
1718 | } | |
1719 | } | |
1720 | ||
1721 | TRACEME(("ok (hash 0x%lx)", (unsigned long) hv)); | |
1722 | ||
1723 | out: | |
1724 | HvRITER(hv) = riter; /* Restore hash iterator state */ | |
1725 | HvEITER(hv) = eiter; | |
1726 | ||
1727 | return ret; | |
1728 | } | |
1729 | ||
1730 | /* | |
1731 | * store_tied | |
1732 | * | |
1733 | * When storing a tied object (be it a tied scalar, array or hash), we lay out | |
1734 | * a special mark, followed by the underlying tied object. For instance, when | |
1735 | * dealing with a tied hash, we store SX_TIED_HASH <hash object>, where | |
1736 | * <hash object> stands for the serialization of the tied hash. | |
1737 | */ | |
1738 | static int store_tied(cxt, sv) | |
1739 | stcxt_t *cxt; | |
1740 | SV *sv; | |
1741 | { | |
1742 | MAGIC *mg; | |
1743 | int ret = 0; | |
1744 | int svt = SvTYPE(sv); | |
1745 | char mtype = 'P'; | |
1746 | ||
1747 | TRACEME(("store_tied (0x%lx)", (unsigned long) sv)); | |
1748 | ||
1749 | /* | |
1750 | * We have a small run-time penalty here because we chose to factorise | |
1751 | * all tieds objects into the same routine, and not have a store_tied_hash, | |
1752 | * a store_tied_array, etc... | |
1753 | * | |
1754 | * Don't use a switch() statement, as most compilers don't optimize that | |
1755 | * well for 2/3 values. An if() else if() cascade is just fine. We put | |
1756 | * tied hashes first, as they are the most likely beasts. | |
1757 | */ | |
1758 | ||
1759 | if (svt == SVt_PVHV) { | |
1760 | TRACEME(("tied hash")); | |
1761 | PUTMARK(SX_TIED_HASH); /* Introduces tied hash */ | |
1762 | } else if (svt == SVt_PVAV) { | |
1763 | TRACEME(("tied array")); | |
1764 | PUTMARK(SX_TIED_ARRAY); /* Introduces tied array */ | |
1765 | } else { | |
1766 | TRACEME(("tied scalar")); | |
1767 | PUTMARK(SX_TIED_SCALAR); /* Introduces tied scalar */ | |
1768 | mtype = 'q'; | |
1769 | } | |
1770 | ||
1771 | if (!(mg = mg_find(sv, mtype))) | |
1772 | CROAK(("No magic '%c' found while storing tied %s", mtype, | |
1773 | (svt == SVt_PVHV) ? "hash" : | |
1774 | (svt == SVt_PVAV) ? "array" : "scalar")); | |
1775 | ||
1776 | /* | |
1777 | * The mg->mg_obj found by mg_find() above actually points to the | |
1778 | * underlying tied Perl object implementation. For instance, if the | |
1779 | * original SV was that of a tied array, then mg->mg_obj is an AV. | |
1780 | * | |
1781 | * Note that we store the Perl object as-is. We don't call its FETCH | |
1782 | * method along the way. At retrieval time, we won't call its STORE | |
1783 | * method either, but the tieing magic will be re-installed. In itself, | |
1784 | * that ensures that the tieing semantics are preserved since futher | |
1785 | * accesses on the retrieved object will indeed call the magic methods... | |
1786 | */ | |
1787 | ||
1788 | if (ret = store(cxt, mg->mg_obj)) | |
1789 | return ret; | |
1790 | ||
1791 | TRACEME(("ok (tied)")); | |
1792 | ||
1793 | return 0; | |
1794 | } | |
1795 | ||
1796 | /* | |
1797 | * store_tied_item | |
1798 | * | |
1799 | * Stores a reference to an item within a tied structure: | |
1800 | * | |
1801 | * . \$h{key}, stores both the (tied %h) object and 'key'. | |
1802 | * . \$a[idx], stores both the (tied @a) object and 'idx'. | |
1803 | * | |
1804 | * Layout is therefore either: | |
1805 | * SX_TIED_KEY <object> <key> | |
1806 | * SX_TIED_IDX <object> <index> | |
1807 | */ | |
1808 | static int store_tied_item(cxt, sv) | |
1809 | stcxt_t *cxt; | |
1810 | SV *sv; | |
1811 | { | |
1812 | MAGIC *mg; | |
1813 | int ret; | |
1814 | ||
1815 | TRACEME(("store_tied_item (0x%lx)", (unsigned long) sv)); | |
1816 | ||
1817 | if (!(mg = mg_find(sv, 'p'))) | |
1818 | CROAK(("No magic 'p' found while storing reference to tied item")); | |
1819 | ||
1820 | /* | |
1821 | * We discriminate between \$h{key} and \$a[idx] via mg_ptr. | |
1822 | */ | |
1823 | ||
1824 | if (mg->mg_ptr) { | |
1825 | TRACEME(("store_tied_item: storing a ref to a tied hash item")); | |
1826 | PUTMARK(SX_TIED_KEY); | |
1827 | TRACEME(("store_tied_item: storing OBJ 0x%lx", | |
1828 | (unsigned long) mg->mg_obj)); | |
1829 | ||
1830 | if (ret = store(cxt, mg->mg_obj)) | |
1831 | return ret; | |
1832 | ||
1833 | TRACEME(("store_tied_item: storing PTR 0x%lx", | |
1834 | (unsigned long) mg->mg_ptr)); | |
1835 | ||
1836 | if (ret = store(cxt, (SV *) mg->mg_ptr)) | |
1837 | return ret; | |
1838 | } else { | |
1839 | I32 idx = mg->mg_len; | |
1840 | ||
1841 | TRACEME(("store_tied_item: storing a ref to a tied array item ")); | |
1842 | PUTMARK(SX_TIED_IDX); | |
1843 | TRACEME(("store_tied_item: storing OBJ 0x%lx", | |
1844 | (unsigned long) mg->mg_obj)); | |
1845 | ||
1846 | if (ret = store(cxt, mg->mg_obj)) | |
1847 | return ret; | |
1848 | ||
1849 | TRACEME(("store_tied_item: storing IDX %d", idx)); | |
1850 | ||
1851 | WLEN(idx); | |
1852 | } | |
1853 | ||
1854 | TRACEME(("ok (tied item)")); | |
1855 | ||
1856 | return 0; | |
1857 | } | |
1858 | ||
1859 | /* | |
1860 | * store_hook -- dispatched manually, not via sv_store[] | |
1861 | * | |
1862 | * The blessed SV is serialized by a hook. | |
1863 | * | |
1864 | * Simple Layout is: | |
1865 | * | |
1866 | * SX_HOOK <flags> <len> <classname> <len2> <str> [<len3> <object-IDs>] | |
1867 | * | |
1868 | * where <flags> indicates how long <len>, <len2> and <len3> are, whether | |
1869 | * the trailing part [] is present, the type of object (scalar, array or hash). | |
1870 | * There is also a bit which says how the classname is stored between: | |
1871 | * | |
1872 | * <len> <classname> | |
1873 | * <index> | |
1874 | * | |
1875 | * and when the <index> form is used (classname already seen), the "large | |
1876 | * classname" bit in <flags> indicates how large the <index> is. | |
1877 | * | |
1878 | * The serialized string returned by the hook is of length <len2> and comes | |
1879 | * next. It is an opaque string for us. | |
1880 | * | |
1881 | * Those <len3> object IDs which are listed last represent the extra references | |
1882 | * not directly serialized by the hook, but which are linked to the object. | |
1883 | * | |
1884 | * When recursion is mandated to resolve object-IDs not yet seen, we have | |
1885 | * instead, with <header> being flags with bits set to indicate the object type | |
1886 | * and that recursion was indeed needed: | |
1887 | * | |
1888 | * SX_HOOK <header> <object> <header> <object> <flags> | |
1889 | * | |
1890 | * that same header being repeated between serialized objects obtained through | |
1891 | * recursion, until we reach flags indicating no recursion, at which point | |
1892 | * we know we've resynchronized with a single layout, after <flags>. | |
1893 | */ | |
1894 | static int store_hook(cxt, sv, type, pkg, hook) | |
1895 | stcxt_t *cxt; | |
1896 | SV *sv; | |
1897 | HV *pkg; | |
1898 | SV *hook; | |
1899 | { | |
1900 | I32 len; | |
1901 | char *class; | |
1902 | STRLEN len2; | |
1903 | SV *ref; | |
1904 | AV *av; | |
1905 | SV **ary; | |
1906 | int count; /* really len3 + 1 */ | |
1907 | unsigned char flags; | |
1908 | char *pv; | |
1909 | int i; | |
1910 | int recursed = 0; /* counts recursion */ | |
1911 | int obj_type; /* object type, on 2 bits */ | |
1912 | I32 classnum; | |
1913 | int ret; | |
1914 | int clone = cxt->optype & ST_CLONE; | |
1915 | ||
1916 | TRACEME(("store_hook, class \"%s\", tagged #%d", HvNAME(pkg), cxt->tagnum)); | |
1917 | ||
1918 | /* | |
1919 | * Determine object type on 2 bits. | |
1920 | */ | |
1921 | ||
1922 | switch (type) { | |
1923 | case svis_SCALAR: | |
1924 | obj_type = SHT_SCALAR; | |
1925 | break; | |
1926 | case svis_ARRAY: | |
1927 | obj_type = SHT_ARRAY; | |
1928 | break; | |
1929 | case svis_HASH: | |
1930 | obj_type = SHT_HASH; | |
1931 | break; | |
1932 | default: | |
1933 | CROAK(("Unexpected object type (%d) in store_hook()", type)); | |
1934 | } | |
1935 | flags = SHF_NEED_RECURSE | obj_type; | |
1936 | ||
1937 | class = HvNAME(pkg); | |
1938 | len = strlen(class); | |
1939 | ||
1940 | /* | |
1941 | * To call the hook, we need to fake a call like: | |
1942 | * | |
1943 | * $object->STORABLE_freeze($cloning); | |
1944 | * | |
1945 | * but we don't have the $object here. For instance, if $object is | |
1946 | * a blessed array, what we have in `sv' is the array, and we can't | |
1947 | * call a method on those. | |
1948 | * | |
1949 | * Therefore, we need to create a temporary reference to the object and | |
1950 | * make the call on that reference. | |
1951 | */ | |
1952 | ||
1953 | TRACEME(("about to call STORABLE_freeze on class %s", class)); | |
1954 | ||
1955 | ref = newRV_noinc(sv); /* Temporary reference */ | |
1956 | av = array_call(ref, hook, clone); /* @a = $object->STORABLE_freeze($c) */ | |
1957 | SvRV(ref) = 0; | |
1958 | SvREFCNT_dec(ref); /* Reclaim temporary reference */ | |
1959 | ||
1960 | count = AvFILLp(av) + 1; | |
1961 | TRACEME(("store_hook, array holds %d items", count)); | |
1962 | ||
1963 | /* | |
1964 | * If they return an empty list, it means they wish to ignore the | |
1965 | * hook for this class (and not just this instance -- that's for them | |
1966 | * to handle if they so wish). | |
1967 | * | |
1968 | * Simply disable the cached entry for the hook (it won't be recomputed | |
1969 | * since it's present in the cache) and recurse to store_blessed(). | |
1970 | */ | |
1971 | ||
1972 | if (!count) { | |
1973 | /* | |
1974 | * They must not change their mind in the middle of a serialization. | |
1975 | */ | |
1976 | ||
1977 | if (hv_fetch(cxt->hclass, class, len, FALSE)) | |
1978 | CROAK(("Too late to ignore hooks for %s class \"%s\"", | |
1979 | (cxt->optype & ST_CLONE) ? "cloning" : "storing", class)); | |
1980 | ||
1981 | pkg_hide(cxt->hook, pkg, "STORABLE_freeze"); | |
1982 | ||
1983 | ASSERT(!pkg_can(cxt->hook, pkg, "STORABLE_freeze"), ("hook invisible")); | |
1984 | TRACEME(("Ignoring STORABLE_freeze in class \"%s\"", class)); | |
1985 | ||
1986 | return store_blessed(cxt, sv, type, pkg); | |
1987 | } | |
1988 | ||
1989 | /* | |
1990 | * Get frozen string. | |
1991 | */ | |
1992 | ||
1993 | ary = AvARRAY(av); | |
1994 | pv = SvPV(ary[0], len2); | |
1995 | ||
1996 | /* | |
1997 | * Allocate a class ID if not already done. | |
1998 | */ | |
1999 | ||
2000 | if (!known_class(cxt, class, len, &classnum)) { | |
2001 | TRACEME(("first time we see class %s, ID = %d", class, classnum)); | |
2002 | classnum = -1; /* Mark: we must store classname */ | |
2003 | } else { | |
2004 | TRACEME(("already seen class %s, ID = %d", class, classnum)); | |
2005 | } | |
2006 | ||
2007 | /* | |
2008 | * If they returned more than one item, we need to serialize some | |
2009 | * extra references if not already done. | |
2010 | * | |
2011 | * Loop over the array, starting at postion #1, and for each item, | |
2012 | * ensure it is a reference, serialize it if not already done, and | |
2013 | * replace the entry with the tag ID of the corresponding serialized | |
2014 | * object. | |
2015 | * | |
2016 | * We CHEAT by not calling av_fetch() and read directly within the | |
2017 | * array, for speed. | |
2018 | */ | |
2019 | ||
2020 | for (i = 1; i < count; i++) { | |
2021 | SV **svh; | |
2022 | SV *xsv = ary[i]; | |
2023 | ||
2024 | if (!SvROK(xsv)) | |
2025 | CROAK(("Item #%d from hook in %s is not a reference", i, class)); | |
2026 | xsv = SvRV(xsv); /* Follow ref to know what to look for */ | |
2027 | ||
2028 | /* | |
2029 | * Look in hseen and see if we have a tag already. | |
2030 | * Serialize entry if not done already, and get its tag. | |
2031 | */ | |
2032 | ||
2033 | if (svh = hv_fetch(cxt->hseen, (char *) &xsv, sizeof(xsv), FALSE)) | |
2034 | goto sv_seen; /* Avoid moving code too far to the right */ | |
2035 | ||
2036 | TRACEME(("listed object %d at 0x%lx is unknown", | |
2037 | i-1, (unsigned long) xsv)); | |
2038 | ||
2039 | /* | |
2040 | * We need to recurse to store that object and get it to be known | |
2041 | * so that we can resolve the list of object-IDs at retrieve time. | |
2042 | * | |
2043 | * The first time we do this, we need to emit the proper header | |
2044 | * indicating that we recursed, and what the type of object is (the | |
2045 | * object we're storing via a user-hook). Indeed, during retrieval, | |
2046 | * we'll have to create the object before recursing to retrieve the | |
2047 | * others, in case those would point back at that object. | |
2048 | */ | |
2049 | ||
2050 | /* [SX_HOOK] <flags> <object>*/ | |
2051 | if (!recursed++) | |
2052 | PUTMARK(SX_HOOK); | |
2053 | PUTMARK(flags); | |
2054 | ||
2055 | if (ret = store(cxt, xsv)) /* Given by hook for us to store */ | |
2056 | return ret; | |
2057 | ||
2058 | svh = hv_fetch(cxt->hseen, (char *) &xsv, sizeof(xsv), FALSE); | |
2059 | if (!svh) | |
2060 | CROAK(("Could not serialize item #%d from hook in %s", i, class)); | |
2061 | ||
2062 | /* | |
2063 | * Replace entry with its tag (not a real SV, so no refcnt increment) | |
2064 | */ | |
2065 | ||
2066 | sv_seen: | |
2067 | SvREFCNT_dec(xsv); | |
2068 | ary[i] = *svh; | |
2069 | TRACEME(("listed object %d at 0x%lx is tag #%d", | |
2070 | i-1, (unsigned long) xsv, (I32) *svh)); | |
2071 | } | |
2072 | ||
2073 | /* | |
2074 | * Compute leading flags. | |
2075 | */ | |
2076 | ||
2077 | flags = obj_type; | |
2078 | if (((classnum == -1) ? len : classnum) > LG_SCALAR) | |
2079 | flags |= SHF_LARGE_CLASSLEN; | |
2080 | if (classnum != -1) | |
2081 | flags |= SHF_IDX_CLASSNAME; | |
2082 | if (len2 > LG_SCALAR) | |
2083 | flags |= SHF_LARGE_STRLEN; | |
2084 | if (count > 1) | |
2085 | flags |= SHF_HAS_LIST; | |
2086 | if (count > (LG_SCALAR + 1)) | |
2087 | flags |= SHF_LARGE_LISTLEN; | |
2088 | ||
2089 | /* | |
2090 | * We're ready to emit either serialized form: | |
2091 | * | |
2092 | * SX_HOOK <flags> <len> <classname> <len2> <str> [<len3> <object-IDs>] | |
2093 | * SX_HOOK <flags> <index> <len2> <str> [<len3> <object-IDs>] | |
2094 | * | |
2095 | * If we recursed, the SX_HOOK has already been emitted. | |
2096 | */ | |
2097 | ||
2098 | TRACEME(("SX_HOOK (recursed=%d) flags=0x%x class=%d len=%d len2=%d len3=%d", | |
2099 | recursed, flags, classnum, len, len2, count-1)); | |
2100 | ||
2101 | /* SX_HOOK <flags> */ | |
2102 | if (!recursed) | |
2103 | PUTMARK(SX_HOOK); | |
2104 | PUTMARK(flags); | |
2105 | ||
2106 | /* <len> <classname> or <index> */ | |
2107 | if (flags & SHF_IDX_CLASSNAME) { | |
2108 | if (flags & SHF_LARGE_CLASSLEN) | |
2109 | WLEN(classnum); | |
2110 | else { | |
2111 | unsigned char cnum = (unsigned char) classnum; | |
2112 | PUTMARK(cnum); | |
2113 | } | |
2114 | } else { | |
2115 | if (flags & SHF_LARGE_CLASSLEN) | |
2116 | WLEN(len); | |
2117 | else { | |
2118 | unsigned char clen = (unsigned char) len; | |
2119 | PUTMARK(clen); | |
2120 | } | |
2121 | WRITE(class, len); /* Final \0 is omitted */ | |
2122 | } | |
2123 | ||
2124 | /* <len2> <frozen-str> */ | |
2125 | if (flags & SHF_LARGE_STRLEN) | |
2126 | WLEN(len2); | |
2127 | else { | |
2128 | unsigned char clen = (unsigned char) len2; | |
2129 | PUTMARK(clen); | |
2130 | } | |
2131 | if (len2) | |
2132 | WRITE(pv, len2); /* Final \0 is omitted */ | |
2133 | ||
2134 | /* [<len3> <object-IDs>] */ | |
2135 | if (flags & SHF_HAS_LIST) { | |
2136 | int len3 = count - 1; | |
2137 | if (flags & SHF_LARGE_LISTLEN) | |
2138 | WLEN(len3); | |
2139 | else { | |
2140 | unsigned char clen = (unsigned char) len3; | |
2141 | PUTMARK(clen); | |
2142 | } | |
2143 | ||
2144 | /* | |
2145 | * NOTA BENE, for 64-bit machines: the ary[i] below does not yield a | |
2146 | * real pointer, rather a tag number, well under the 32-bit limit. | |
2147 | */ | |
2148 | ||
2149 | for (i = 1; i < count; i++) { | |
2150 | I32 tagval = htonl(LOW_32BITS(ary[i])); | |
2151 | WRITE(&tagval, sizeof(I32)); | |
2152 | TRACEME(("object %d, tag #%d", i-1, ntohl(tagval))); | |
2153 | } | |
2154 | } | |
2155 | ||
2156 | /* | |
2157 | * Free the array. We need extra care for indices after 0, since they | |
2158 | * don't hold real SVs but integers cast. | |
2159 | */ | |
2160 | ||
2161 | if (count > 1) | |
2162 | AvFILLp(av) = 0; /* Cheat, nothing after 0 interests us */ | |
2163 | av_undef(av); | |
2164 | sv_free((SV *) av); | |
2165 | ||
2166 | return 0; | |
2167 | } | |
2168 | ||
2169 | /* | |
2170 | * store_blessed -- dispatched manually, not via sv_store[] | |
2171 | * | |
2172 | * Check whether there is a STORABLE_xxx hook defined in the class or in one | |
2173 | * of its ancestors. If there is, then redispatch to store_hook(); | |
2174 | * | |
2175 | * Otherwise, the blessed SV is stored using the following layout: | |
2176 | * | |
2177 | * SX_BLESS <flag> <len> <classname> <object> | |
2178 | * | |
2179 | * where <flag> indicates whether <len> is stored on 0 or 4 bytes, depending | |
2180 | * on the high-order bit in flag: if 1, then length follows on 4 bytes. | |
2181 | * Otherwise, the low order bits give the length, thereby giving a compact | |
2182 | * representation for class names less than 127 chars long. | |
2183 | * | |
2184 | * Each <classname> seen is remembered and indexed, so that the next time | |
2185 | * an object in the blessed in the same <classname> is stored, the following | |
2186 | * will be emitted: | |
2187 | * | |
2188 | * SX_IX_BLESS <flag> <index> <object> | |
2189 | * | |
2190 | * where <index> is the classname index, stored on 0 or 4 bytes depending | |
2191 | * on the high-order bit in flag (same encoding as above for <len>). | |
2192 | */ | |
2193 | static int store_blessed(cxt, sv, type, pkg) | |
2194 | stcxt_t *cxt; | |
2195 | SV *sv; | |
2196 | int type; | |
2197 | HV *pkg; | |
2198 | { | |
2199 | SV *hook; | |
2200 | I32 len; | |
2201 | char *class; | |
2202 | I32 classnum; | |
2203 | ||
2204 | TRACEME(("store_blessed, type %d, class \"%s\"", type, HvNAME(pkg))); | |
2205 | ||
2206 | /* | |
2207 | * Look for a hook for this blessed SV and redirect to store_hook() | |
2208 | * if needed. | |
2209 | */ | |
2210 | ||
2211 | hook = pkg_can(cxt->hook, pkg, "STORABLE_freeze"); | |
2212 | if (hook) | |
2213 | return store_hook(cxt, sv, type, pkg, hook); | |
2214 | ||
2215 | /* | |
2216 | * This is a blessed SV without any serialization hook. | |
2217 | */ | |
2218 | ||
2219 | class = HvNAME(pkg); | |
2220 | len = strlen(class); | |
2221 | ||
2222 | TRACEME(("blessed 0x%lx in %s, no hook: tagged #%d", | |
2223 | (unsigned long) sv, class, cxt->tagnum)); | |
2224 | ||
2225 | /* | |
2226 | * Determine whether it is the first time we see that class name (in which | |
2227 | * case it will be stored in the SX_BLESS form), or whether we already | |
2228 | * saw that class name before (in which case the SX_IX_BLESS form will be | |
2229 | * used). | |
2230 | */ | |
2231 | ||
2232 | if (known_class(cxt, class, len, &classnum)) { | |
2233 | TRACEME(("already seen class %s, ID = %d", class, classnum)); | |
2234 | PUTMARK(SX_IX_BLESS); | |
2235 | if (classnum <= LG_BLESS) { | |
2236 | unsigned char cnum = (unsigned char) classnum; | |
2237 | PUTMARK(cnum); | |
2238 | } else { | |
2239 | unsigned char flag = (unsigned char) 0x80; | |
2240 | PUTMARK(flag); | |
2241 | WLEN(classnum); | |
2242 | } | |
2243 | } else { | |
2244 | TRACEME(("first time we see class %s, ID = %d", class, classnum)); | |
2245 | PUTMARK(SX_BLESS); | |
2246 | if (len <= LG_BLESS) { | |
2247 | unsigned char clen = (unsigned char) len; | |
2248 | PUTMARK(clen); | |
2249 | } else { | |
2250 | unsigned char flag = (unsigned char) 0x80; | |
2251 | PUTMARK(flag); | |
2252 | WLEN(len); /* Don't BER-encode, this should be rare */ | |
2253 | } | |
2254 | WRITE(class, len); /* Final \0 is omitted */ | |
2255 | } | |
2256 | ||
2257 | /* | |
2258 | * Now emit the <object> part. | |
2259 | */ | |
2260 | ||
2261 | return SV_STORE(type)(cxt, sv); | |
2262 | } | |
2263 | ||
2264 | /* | |
2265 | * store_other | |
2266 | * | |
2267 | * We don't know how to store the item we reached, so return an error condition. | |
2268 | * (it's probably a GLOB, some CODE reference, etc...) | |
2269 | * | |
2270 | * If they defined the `forgive_me' variable at the Perl level to some | |
2271 | * true value, then don't croak, just warn, and store a placeholder string | |
2272 | * instead. | |
2273 | */ | |
2274 | static int store_other(cxt, sv) | |
2275 | stcxt_t *cxt; | |
2276 | SV *sv; | |
2277 | { | |
2278 | STRLEN len; | |
2279 | static char buf[80]; | |
2280 | ||
2281 | TRACEME(("store_other")); | |
2282 | ||
2283 | /* | |
2284 | * Fetch the value from perl only once per store() operation. | |
2285 | */ | |
2286 | ||
2287 | if ( | |
2288 | cxt->forgive_me == 0 || | |
2289 | (cxt->forgive_me < 0 && !(cxt->forgive_me = | |
2290 | SvTRUE(perl_get_sv("Storable::forgive_me", TRUE)) ? 1 : 0)) | |
2291 | ) | |
2292 | CROAK(("Can't store %s items", sv_reftype(sv, FALSE))); | |
2293 | ||
2294 | warn("Can't store item %s(0x%lx)", | |
2295 | sv_reftype(sv, FALSE), (unsigned long) sv); | |
2296 | ||
2297 | /* | |
2298 | * Store placeholder string as a scalar instead... | |
2299 | */ | |
2300 | ||
2301 | (void) sprintf(buf, "You lost %s(0x%lx)\0", sv_reftype(sv, FALSE), | |
2302 | (unsigned long) sv); | |
2303 | ||
2304 | len = strlen(buf); | |
2305 | STORE_SCALAR(buf, len); | |
2306 | TRACEME(("ok (dummy \"%s\", length = %d)", buf, len)); | |
2307 | ||
2308 | return 0; | |
2309 | } | |
2310 | ||
2311 | /*** | |
2312 | *** Store driving routines | |
2313 | ***/ | |
2314 | ||
2315 | /* | |
2316 | * sv_type | |
2317 | * | |
2318 | * WARNING: partially duplicates Perl's sv_reftype for speed. | |
2319 | * | |
2320 | * Returns the type of the SV, identified by an integer. That integer | |
2321 | * may then be used to index the dynamic routine dispatch table. | |
2322 | */ | |
2323 | static int sv_type(sv) | |
2324 | SV *sv; | |
2325 | { | |
2326 | switch (SvTYPE(sv)) { | |
2327 | case SVt_NULL: | |
2328 | case SVt_IV: | |
2329 | case SVt_NV: | |
2330 | /* | |
2331 | * No need to check for ROK, that can't be set here since there | |
2332 | * is no field capable of hodling the xrv_rv reference. | |
2333 | */ | |
2334 | return svis_SCALAR; | |
2335 | case SVt_PV: | |
2336 | case SVt_RV: | |
2337 | case SVt_PVIV: | |
2338 | case SVt_PVNV: | |
2339 | /* | |
2340 | * Starting from SVt_PV, it is possible to have the ROK flag | |
2341 | * set, the pointer to the other SV being either stored in | |
2342 | * the xrv_rv (in the case of a pure SVt_RV), or as the | |
2343 | * xpv_pv field of an SVt_PV and its heirs. | |
2344 | * | |
2345 | * However, those SV cannot be magical or they would be an | |
2346 | * SVt_PVMG at least. | |
2347 | */ | |
2348 | return SvROK(sv) ? svis_REF : svis_SCALAR; | |
2349 | case SVt_PVMG: | |
2350 | case SVt_PVLV: /* Workaround for perl5.004_04 "LVALUE" bug */ | |
2351 | if (SvRMAGICAL(sv) && (mg_find(sv, 'p'))) | |
2352 | return svis_TIED_ITEM; | |
2353 | /* FALL THROUGH */ | |
2354 | case SVt_PVBM: | |
2355 | if (SvRMAGICAL(sv) && (mg_find(sv, 'q'))) | |
2356 | return svis_TIED; | |
2357 | return SvROK(sv) ? svis_REF : svis_SCALAR; | |
2358 | case SVt_PVAV: | |
2359 | if (SvRMAGICAL(sv) && (mg_find(sv, 'P'))) | |
2360 | return svis_TIED; | |
2361 | return svis_ARRAY; | |
2362 | case SVt_PVHV: | |
2363 | if (SvRMAGICAL(sv) && (mg_find(sv, 'P'))) | |
2364 | return svis_TIED; | |
2365 | return svis_HASH; | |
2366 | default: | |
2367 | break; | |
2368 | } | |
2369 | ||
2370 | return svis_OTHER; | |
2371 | } | |
2372 | ||
2373 | /* | |
2374 | * store | |
2375 | * | |
2376 | * Recursively store objects pointed to by the sv to the specified file. | |
2377 | * | |
2378 | * Layout is <content> or SX_OBJECT <tagnum> if we reach an already stored | |
2379 | * object (one for which storage has started -- it may not be over if we have | |
2380 | * a self-referenced structure). This data set forms a stored <object>. | |
2381 | */ | |
2382 | static int store(cxt, sv) | |
2383 | stcxt_t *cxt; | |
2384 | SV *sv; | |
2385 | { | |
2386 | SV **svh; | |
2387 | int ret; | |
2388 | SV *tag; | |
2389 | int type; | |
2390 | HV *hseen = cxt->hseen; | |
2391 | ||
2392 | TRACEME(("store (0x%lx)", (unsigned long) sv)); | |
2393 | ||
2394 | /* | |
2395 | * If object has already been stored, do not duplicate data. | |
2396 | * Simply emit the SX_OBJECT marker followed by its tag data. | |
2397 | * The tag is always written in network order. | |
2398 | * | |
2399 | * NOTA BENE, for 64-bit machines: the "*svh" below does not yield a | |
2400 | * real pointer, rather a tag number (watch the insertion code below). | |
2401 | * That means it pobably safe to assume it is well under the 32-bit limit, | |
2402 | * and makes the truncation safe. | |
2403 | * -- RAM, 14/09/1999 | |
2404 | */ | |
2405 | ||
2406 | svh = hv_fetch(hseen, (char *) &sv, sizeof(sv), FALSE); | |
2407 | if (svh) { | |
2408 | I32 tagval = htonl(LOW_32BITS(*svh)); | |
2409 | ||
2410 | TRACEME(("object 0x%lx seen as #%d", | |
2411 | (unsigned long) sv, ntohl(tagval))); | |
2412 | ||
2413 | PUTMARK(SX_OBJECT); | |
2414 | WRITE(&tagval, sizeof(I32)); | |
2415 | return 0; | |
2416 | } | |
2417 | ||
2418 | /* | |
2419 | * Allocate a new tag and associate it with the address of the sv being | |
2420 | * stored, before recursing... | |
2421 | * | |
2422 | * In order to avoid creating new SvIVs to hold the tagnum we just | |
2423 | * cast the tagnum to a SV pointer and store that in the hash. This | |
2424 | * means that we must clean up the hash manually afterwards, but gives | |
2425 | * us a 15% throughput increase. | |
2426 | * | |
7a6a85bf RG |
2427 | */ |
2428 | ||
2429 | cxt->tagnum++; | |
2430 | if (!hv_store(hseen, | |
3341c981 | 2431 | (char *) &sv, sizeof(sv), INT2PTR(SV*, cxt->tagnum), 0)) |
7a6a85bf RG |
2432 | return -1; |
2433 | ||
2434 | /* | |
2435 | * Store `sv' and everything beneath it, using appropriate routine. | |
2436 | * Abort immediately if we get a non-zero status back. | |
2437 | */ | |
2438 | ||
2439 | type = sv_type(sv); | |
2440 | ||
2441 | TRACEME(("storing 0x%lx tag #%d, type %d...", | |
2442 | (unsigned long) sv, cxt->tagnum, type)); | |
2443 | ||
2444 | if (SvOBJECT(sv)) { | |
2445 | HV *pkg = SvSTASH(sv); | |
2446 | ret = store_blessed(cxt, sv, type, pkg); | |
2447 | } else | |
2448 | ret = SV_STORE(type)(cxt, sv); | |
2449 | ||
2450 | TRACEME(("%s (stored 0x%lx, refcnt=%d, %s)", | |
2451 | ret ? "FAILED" : "ok", (unsigned long) sv, | |
2452 | SvREFCNT(sv), sv_reftype(sv, FALSE))); | |
2453 | ||
2454 | return ret; | |
2455 | } | |
2456 | ||
2457 | /* | |
2458 | * magic_write | |
2459 | * | |
2460 | * Write magic number and system information into the file. | |
2461 | * Layout is <magic> <network> [<len> <byteorder> <sizeof int> <sizeof long> | |
2462 | * <sizeof ptr>] where <len> is the length of the byteorder hexa string. | |
2463 | * All size and lenghts are written as single characters here. | |
2464 | * | |
2465 | * Note that no byte ordering info is emitted when <network> is true, since | |
2466 | * integers will be emitted in network order in that case. | |
2467 | */ | |
2468 | static int magic_write(cxt) | |
2469 | stcxt_t *cxt; | |
2470 | { | |
2471 | char buf[256]; /* Enough room for 256 hexa digits */ | |
2472 | unsigned char c; | |
2473 | int use_network_order = cxt->netorder; | |
2474 | ||
2475 | TRACEME(("magic_write on fd=%d", cxt->fio ? fileno(cxt->fio) : -1)); | |
2476 | ||
2477 | if (cxt->fio) | |
2478 | WRITE(magicstr, strlen(magicstr)); /* Don't write final \0 */ | |
2479 | ||
2480 | /* | |
2481 | * Starting with 0.6, the "use_network_order" byte flag is also used to | |
2482 | * indicate the version number of the binary image, encoded in the upper | |
2483 | * bits. The bit 0 is always used to indicate network order. | |
2484 | */ | |
2485 | ||
2486 | c = (unsigned char) | |
2487 | ((use_network_order ? 0x1 : 0x0) | (STORABLE_BIN_MAJOR << 1)); | |
2488 | PUTMARK(c); | |
2489 | ||
2490 | /* | |
2491 | * Starting with 0.7, a full byte is dedicated to the minor version of | |
2492 | * the binary format, which is incremented only when new markers are | |
2493 | * introduced, for instance, but when backward compatibility is preserved. | |
2494 | */ | |
2495 | ||
2496 | PUTMARK((unsigned char) STORABLE_BIN_MINOR); | |
2497 | ||
2498 | if (use_network_order) | |
2499 | return 0; /* Don't bother with byte ordering */ | |
2500 | ||
2501 | sprintf(buf, "%lx", (unsigned long) BYTEORDER); | |
2502 | c = (unsigned char) strlen(buf); | |
2503 | PUTMARK(c); | |
2504 | WRITE(buf, (unsigned int) c); /* Don't write final \0 */ | |
2505 | PUTMARK((unsigned char) sizeof(int)); | |
2506 | PUTMARK((unsigned char) sizeof(long)); | |
2507 | PUTMARK((unsigned char) sizeof(char *)); | |
2508 | ||
2509 | TRACEME(("ok (magic_write byteorder = 0x%lx [%d], I%d L%d P%d)", | |
2510 | (unsigned long) BYTEORDER, (int) c, | |
2511 | sizeof(int), sizeof(long), sizeof(char *))); | |
2512 | ||
2513 | return 0; | |
2514 | } | |
2515 | ||
2516 | /* | |
2517 | * do_store | |
2518 | * | |
2519 | * Common code for store operations. | |
2520 | * | |
2521 | * When memory store is requested (f = NULL) and a non null SV* is given in | |
2522 | * `res', it is filled with a new SV created out of the memory buffer. | |
2523 | * | |
2524 | * It is required to provide a non-null `res' when the operation type is not | |
2525 | * dclone() and store() is performed to memory. | |
2526 | */ | |
2527 | static int do_store(f, sv, optype, network_order, res) | |
2528 | PerlIO *f; | |
2529 | SV *sv; | |
2530 | int optype; | |
2531 | int network_order; | |
2532 | SV **res; | |
2533 | { | |
2534 | dSTCXT; | |
2535 | int status; | |
2536 | ||
2537 | ASSERT(!(f == 0 && !(optype & ST_CLONE)) || res, | |
2538 | ("must supply result SV pointer for real recursion to memory")); | |
2539 | ||
2540 | TRACEME(("do_store (optype=%d, netorder=%d)", | |
2541 | optype, network_order)); | |
2542 | ||
2543 | optype |= ST_STORE; | |
2544 | ||
2545 | /* | |
2546 | * Workaround for CROAK leak: if they enter with a "dirty" context, | |
2547 | * free up memory for them now. | |
2548 | */ | |
2549 | ||
2550 | if (cxt->dirty) | |
2551 | clean_context(cxt); | |
2552 | ||
2553 | /* | |
2554 | * Now that STORABLE_xxx hooks exist, it is possible that they try to | |
2555 | * re-enter store() via the hooks. We need to stack contexts. | |
2556 | */ | |
2557 | ||
2558 | if (cxt->entry) | |
2559 | cxt = allocate_context(cxt); | |
2560 | ||
2561 | cxt->entry++; | |
2562 | ||
2563 | ASSERT(cxt->entry == 1, ("starting new recursion")); | |
2564 | ASSERT(!cxt->dirty, ("clean context")); | |
2565 | ||
2566 | /* | |
2567 | * Ensure sv is actually a reference. From perl, we called something | |
2568 | * like: | |
2569 | * pstore(FILE, \@array); | |
2570 | * so we must get the scalar value behing that reference. | |
2571 | */ | |
2572 | ||
2573 | if (!SvROK(sv)) | |
2574 | CROAK(("Not a reference")); | |
2575 | sv = SvRV(sv); /* So follow it to know what to store */ | |
2576 | ||
2577 | /* | |
2578 | * If we're going to store to memory, reset the buffer. | |
2579 | */ | |
2580 | ||
2581 | if (!f) | |
2582 | MBUF_INIT(0); | |
2583 | ||
2584 | /* | |
2585 | * Prepare context and emit headers. | |
2586 | */ | |
2587 | ||
2588 | init_store_context(cxt, f, optype, network_order); | |
2589 | ||
2590 | if (-1 == magic_write(cxt)) /* Emit magic and ILP info */ | |
2591 | return 0; /* Error */ | |
2592 | ||
2593 | /* | |
2594 | * Recursively store object... | |
2595 | */ | |
2596 | ||
2597 | ASSERT(is_storing(), ("within store operation")); | |
2598 | ||
2599 | status = store(cxt, sv); /* Just do it! */ | |
2600 | ||
2601 | /* | |
2602 | * If they asked for a memory store and they provided an SV pointer, | |
2603 | * make an SV string out of the buffer and fill their pointer. | |
2604 | * | |
2605 | * When asking for ST_REAL, it's MANDATORY for the caller to provide | |
2606 | * an SV, since context cleanup might free the buffer if we did recurse. | |
2607 | * (unless caller is dclone(), which is aware of that). | |
2608 | */ | |
2609 | ||
2610 | if (!cxt->fio && res) | |
2611 | *res = mbuf2sv(); | |
2612 | ||
2613 | /* | |
2614 | * Final cleanup. | |
2615 | * | |
2616 | * The "root" context is never freed, since it is meant to be always | |
2617 | * handy for the common case where no recursion occurs at all (i.e. | |
2618 | * we enter store() outside of any Storable code and leave it, period). | |
2619 | * We know it's the "root" context because there's nothing stacked | |
2620 | * underneath it. | |
2621 | * | |
2622 | * OPTIMIZATION: | |
2623 | * | |
2624 | * When deep cloning, we don't free the context: doing so would force | |
2625 | * us to copy the data in the memory buffer. Sicne we know we're | |
2626 | * about to enter do_retrieve... | |
2627 | */ | |
2628 | ||
2629 | clean_store_context(cxt); | |
2630 | if (cxt->prev && !(cxt->optype & ST_CLONE)) | |
2631 | free_context(cxt); | |
2632 | ||
2633 | TRACEME(("do_store returns %d", status)); | |
2634 | ||
2635 | return status == 0; | |
2636 | } | |
2637 | ||
2638 | /* | |
2639 | * pstore | |
2640 | * | |
2641 | * Store the transitive data closure of given object to disk. | |
2642 | * Returns 0 on error, a true value otherwise. | |
2643 | */ | |
2644 | int pstore(f, sv) | |
2645 | PerlIO *f; | |
2646 | SV *sv; | |
2647 | { | |
2648 | TRACEME(("pstore")); | |
72171c1f | 2649 | return do_store(f, sv, 0, FALSE, (SV**)0); |
7a6a85bf RG |
2650 | |
2651 | } | |
2652 | ||
2653 | /* | |
2654 | * net_pstore | |
2655 | * | |
2656 | * Same as pstore(), but network order is used for integers and doubles are | |
2657 | * emitted as strings. | |
2658 | */ | |
2659 | int net_pstore(f, sv) | |
2660 | PerlIO *f; | |
2661 | SV *sv; | |
2662 | { | |
2663 | TRACEME(("net_pstore")); | |
72171c1f | 2664 | return do_store(f, sv, 0, TRUE, (SV**)0); |
7a6a85bf RG |
2665 | } |
2666 | ||
2667 | /*** | |
2668 | *** Memory stores. | |
2669 | ***/ | |
2670 | ||
2671 | /* | |
2672 | * mbuf2sv | |
2673 | * | |
2674 | * Build a new SV out of the content of the internal memory buffer. | |
2675 | */ | |
2676 | static SV *mbuf2sv() | |
2677 | { | |
2678 | dSTCXT; | |
2679 | ||
2680 | return newSVpv(mbase, MBUF_SIZE()); | |
2681 | } | |
2682 | ||
2683 | /* | |
2684 | * mstore | |
2685 | * | |
2686 | * Store the transitive data closure of given object to memory. | |
2687 | * Returns undef on error, a scalar value containing the data otherwise. | |
2688 | */ | |
2689 | SV *mstore(sv) | |
2690 | SV *sv; | |
2691 | { | |
2692 | dSTCXT; | |
2693 | SV *out; | |
2694 | ||
2695 | TRACEME(("mstore")); | |
2696 | ||
72171c1f | 2697 | if (!do_store((PerlIO*)0, sv, 0, FALSE, &out)) |
7a6a85bf RG |
2698 | return &PL_sv_undef; |
2699 | ||
2700 | return out; | |
2701 | } | |
2702 | ||
2703 | /* | |
2704 | * net_mstore | |
2705 | * | |
2706 | * Same as mstore(), but network order is used for integers and doubles are | |
2707 | * emitted as strings. | |
2708 | */ | |
2709 | SV *net_mstore(sv) | |
2710 | SV *sv; | |
2711 | { | |
2712 | dSTCXT; | |
2713 | SV *out; | |
2714 | ||
2715 | TRACEME(("net_mstore")); | |
2716 | ||
72171c1f | 2717 | if (!do_store((PerlIO*)0, sv, 0, TRUE, &out)) |
7a6a85bf RG |
2718 | return &PL_sv_undef; |
2719 | ||
2720 | return out; | |
2721 | } | |
2722 | ||
2723 | /*** | |
2724 | *** Specific retrieve callbacks. | |
2725 | ***/ | |
2726 | ||
2727 | /* | |
2728 | * retrieve_other | |
2729 | * | |
2730 | * Return an error via croak, since it is not possible that we get here | |
2731 | * under normal conditions, when facing a file produced via pstore(). | |
2732 | */ | |
2733 | static SV *retrieve_other(cxt) | |
2734 | stcxt_t *cxt; | |
2735 | { | |
2736 | if ( | |
2737 | cxt->ver_major != STORABLE_BIN_MAJOR && | |
2738 | cxt->ver_minor != STORABLE_BIN_MINOR | |
2739 | ) { | |
2740 | CROAK(("Corrupted storable %s (binary v%d.%d), current is v%d.%d", | |
2741 | cxt->fio ? "file" : "string", | |
2742 | cxt->ver_major, cxt->ver_minor, | |
2743 | STORABLE_BIN_MAJOR, STORABLE_BIN_MINOR)); | |
2744 | } else { | |
2745 | CROAK(("Corrupted storable %s (binary v%d.%d)", | |
2746 | cxt->fio ? "file" : "string", | |
2747 | cxt->ver_major, cxt->ver_minor)); | |
2748 | } | |
2749 | ||
2750 | return (SV *) 0; /* Just in case */ | |
2751 | } | |
2752 | ||
2753 | /* | |
2754 | * retrieve_idx_blessed | |
2755 | * | |
2756 | * Layout is SX_IX_BLESS <index> <object> with SX_IX_BLESS already read. | |
2757 | * <index> can be coded on either 1 or 5 bytes. | |
2758 | */ | |
2759 | static SV *retrieve_idx_blessed(cxt) | |
2760 | stcxt_t *cxt; | |
2761 | { | |
2762 | I32 idx; | |
2763 | char *class; | |
2764 | SV **sva; | |
2765 | SV *sv; | |
2766 | ||
2767 | TRACEME(("retrieve_idx_blessed (#%d)", cxt->tagnum)); | |
2768 | ||
2769 | GETMARK(idx); /* Index coded on a single char? */ | |
2770 | if (idx & 0x80) | |
2771 | RLEN(idx); | |
2772 | ||
2773 | /* | |
2774 | * Fetch classname in `aclass' | |
2775 | */ | |
2776 | ||
2777 | sva = av_fetch(cxt->aclass, idx, FALSE); | |
2778 | if (!sva) | |
2779 | CROAK(("Class name #%d should have been seen already", idx)); | |
2780 | ||
2781 | class = SvPVX(*sva); /* We know it's a PV, by construction */ | |
2782 | ||
2783 | TRACEME(("class ID %d => %s", idx, class)); | |
2784 | ||
2785 | /* | |
2786 | * Retrieve object and bless it. | |
2787 | */ | |
2788 | ||
2789 | sv = retrieve(cxt); | |
2790 | if (sv) | |
2791 | BLESS(sv, class); | |
2792 | ||
2793 | return sv; | |
2794 | } | |
2795 | ||
2796 | /* | |
2797 | * retrieve_blessed | |
2798 | * | |
2799 | * Layout is SX_BLESS <len> <classname> <object> with SX_BLESS already read. | |
2800 | * <len> can be coded on either 1 or 5 bytes. | |
2801 | */ | |
2802 | static SV *retrieve_blessed(cxt) | |
2803 | stcxt_t *cxt; | |
2804 | { | |
2805 | I32 len; | |
2806 | SV *sv; | |
2807 | char buf[LG_BLESS + 1]; /* Avoid malloc() if possible */ | |
2808 | char *class = buf; | |
2809 | ||
2810 | TRACEME(("retrieve_blessed (#%d)", cxt->tagnum)); | |
2811 | ||
2812 | /* | |
2813 | * Decode class name length and read that name. | |
2814 | * | |
2815 | * Short classnames have two advantages: their length is stored on one | |
2816 | * single byte, and the string can be read on the stack. | |
2817 | */ | |
2818 | ||
2819 | GETMARK(len); /* Length coded on a single char? */ | |
2820 | if (len & 0x80) { | |
2821 | RLEN(len); | |
2822 | TRACEME(("** allocating %d bytes for class name", len+1)); | |
2823 | New(10003, class, len+1, char); | |
2824 | } | |
2825 | READ(class, len); | |
2826 | class[len] = '\0'; /* Mark string end */ | |
2827 | ||
2828 | /* | |
2829 | * It's a new classname, otherwise it would have been an SX_IX_BLESS. | |
2830 | */ | |
2831 | ||
2832 | if (!av_store(cxt->aclass, cxt->classnum++, newSVpvn(class, len))) | |
2833 | return (SV *) 0; | |
2834 | ||
2835 | /* | |
2836 | * Retrieve object and bless it. | |
2837 | */ | |
2838 | ||
2839 | sv = retrieve(cxt); | |
2840 | if (sv) { | |
2841 | BLESS(sv, class); | |
2842 | if (class != buf) | |
2843 | Safefree(class); | |
2844 | } | |
2845 | ||
2846 | return sv; | |
2847 | } | |
2848 | ||
2849 | /* | |
2850 | * retrieve_hook | |
2851 | * | |
2852 | * Layout: SX_HOOK <flags> <len> <classname> <len2> <str> [<len3> <object-IDs>] | |
2853 | * with leading mark already read, as usual. | |
2854 | * | |
2855 | * When recursion was involved during serialization of the object, there | |
2856 | * is an unknown amount of serialized objects after the SX_HOOK mark. Until | |
2857 | * we reach a <flags> marker with the recursion bit cleared. | |
2858 | */ | |
2859 | static SV *retrieve_hook(cxt) | |
2860 | stcxt_t *cxt; | |
2861 | { | |
2862 | I32 len; | |
2863 | char buf[LG_BLESS + 1]; /* Avoid malloc() if possible */ | |
2864 | char *class = buf; | |
2865 | unsigned int flags; | |
2866 | I32 len2; | |
2867 | SV *frozen; | |
2868 | I32 len3 = 0; | |
2869 | AV *av = 0; | |
2870 | SV *hook; | |
2871 | SV *sv; | |
2872 | SV *rv; | |
2873 | int obj_type; | |
2874 | I32 classname; | |
2875 | int clone = cxt->optype & ST_CLONE; | |
2876 | ||
2877 | TRACEME(("retrieve_hook (#%d)", cxt->tagnum)); | |
2878 | ||
2879 | /* | |
2880 | * Read flags, which tell us about the type, and whether we need to recurse. | |
2881 | */ | |
2882 | ||
2883 | GETMARK(flags); | |
2884 | ||
2885 | /* | |
2886 | * Create the (empty) object, and mark it as seen. | |
2887 | * | |
2888 | * This must be done now, because tags are incremented, and during | |
2889 | * serialization, the object tag was affected before recursion could | |
2890 | * take place. | |
2891 | */ | |
2892 | ||
2893 | obj_type = flags & SHF_TYPE_MASK; | |
2894 | switch (obj_type) { | |
2895 | case SHT_SCALAR: | |
2896 | sv = newSV(0); | |
2897 | break; | |
2898 | case SHT_ARRAY: | |
2899 | sv = (SV *) newAV(); | |
2900 | break; | |
2901 | case SHT_HASH: | |
2902 | sv = (SV *) newHV(); | |
2903 | break; | |
2904 | default: | |
2905 | return retrieve_other(cxt); /* Let it croak */ | |
2906 | } | |
2907 | SEEN(sv); | |
2908 | ||
2909 | /* | |
2910 | * Whilst flags tell us to recurse, do so. | |
2911 | * | |
2912 | * We don't need to remember the addresses returned by retrieval, because | |
2913 | * all the references will be obtained through indirection via the object | |
2914 | * tags in the object-ID list. | |
2915 | */ | |
2916 | ||
2917 | while (flags & SHF_NEED_RECURSE) { | |
2918 | TRACEME(("retrieve_hook recursing...")); | |
2919 | rv = retrieve(cxt); | |
2920 | if (!rv) | |
2921 | return (SV *) 0; | |
2922 | TRACEME(("retrieve_hook back with rv=0x%lx", (unsigned long) rv)); | |
2923 | GETMARK(flags); | |
2924 | } | |
2925 | ||
2926 | if (flags & SHF_IDX_CLASSNAME) { | |
2927 | SV **sva; | |
2928 | I32 idx; | |
2929 | ||
2930 | /* | |
2931 | * Fetch index from `aclass' | |
2932 | */ | |
2933 | ||
2934 | if (flags & SHF_LARGE_CLASSLEN) | |
2935 | RLEN(idx); | |
2936 | else | |
2937 | GETMARK(idx); | |
2938 | ||
2939 | sva = av_fetch(cxt->aclass, idx, FALSE); | |
2940 | if (!sva) | |
2941 | CROAK(("Class name #%d should have been seen already", idx)); | |
2942 | ||
2943 | class = SvPVX(*sva); /* We know it's a PV, by construction */ | |
2944 | TRACEME(("class ID %d => %s", idx, class)); | |
2945 | ||
2946 | } else { | |
2947 | /* | |
2948 | * Decode class name length and read that name. | |
2949 | * | |
2950 | * NOTA BENE: even if the length is stored on one byte, we don't read | |
2951 | * on the stack. Just like retrieve_blessed(), we limit the name to | |
2952 | * LG_BLESS bytes. This is an arbitrary decision. | |
2953 | */ | |
2954 | ||
2955 | if (flags & SHF_LARGE_CLASSLEN) | |
2956 | RLEN(len); | |
2957 | else | |
2958 | GETMARK(len); | |
2959 | ||
2960 | if (len > LG_BLESS) { | |
2961 | TRACEME(("** allocating %d bytes for class name", len+1)); | |
2962 | New(10003, class, len+1, char); | |
2963 | } | |
2964 | ||
2965 | READ(class, len); | |
2966 | class[len] = '\0'; /* Mark string end */ | |
2967 | ||
2968 | /* | |
2969 | * Record new classname. | |
2970 | */ | |
2971 | ||
2972 | if (!av_store(cxt->aclass, cxt->classnum++, newSVpvn(class, len))) | |
2973 | return (SV *) 0; | |
2974 | } | |
2975 | ||
2976 | TRACEME(("class name: %s", class)); | |
2977 | ||
2978 | /* | |
2979 | * Decode user-frozen string length and read it in a SV. | |
2980 | * | |
2981 | * For efficiency reasons, we read data directly into the SV buffer. | |
2982 | * To understand that code, read retrieve_scalar() | |
2983 | */ | |
2984 | ||
2985 | if (flags & SHF_LARGE_STRLEN) | |
2986 | RLEN(len2); | |
2987 | else | |
2988 | GETMARK(len2); | |
2989 | ||
2990 | frozen = NEWSV(10002, len2); | |
2991 | if (len2) { | |
2992 | SAFEREAD(SvPVX(frozen), len2, frozen); | |
2993 | SvCUR_set(frozen, len2); | |
2994 | *SvEND(frozen) = '\0'; | |
2995 | } | |
2996 | (void) SvPOK_only(frozen); /* Validates string pointer */ | |
2997 | SvTAINT(frozen); | |
2998 | ||
2999 | TRACEME(("frozen string: %d bytes", len2)); | |
3000 | ||
3001 | /* | |
3002 | * Decode object-ID list length, if present. | |
3003 | */ | |
3004 | ||
3005 | if (flags & SHF_HAS_LIST) { | |
3006 | if (flags & SHF_LARGE_LISTLEN) | |
3007 | RLEN(len3); | |
3008 | else | |
3009 | GETMARK(len3); | |
3010 | if (len3) { | |
3011 | av = newAV(); | |
3012 | av_extend(av, len3 + 1); /* Leave room for [0] */ | |
3013 | AvFILLp(av) = len3; /* About to be filled anyway */ | |
3014 | } | |
3015 | } | |
3016 | ||
3017 | TRACEME(("has %d object IDs to link", len3)); | |
3018 | ||
3019 | /* | |
3020 | * Read object-ID list into array. | |
3021 | * Because we pre-extended it, we can cheat and fill it manually. | |
3022 | * | |
3023 | * We read object tags and we can convert them into SV* on the fly | |
3024 | * because we know all the references listed in there (as tags) | |
3025 | * have been already serialized, hence we have a valid correspondance | |
3026 | * between each of those tags and the recreated SV. | |
3027 | */ | |
3028 | ||
3029 | if (av) { | |
3030 | SV **ary = AvARRAY(av); | |
3031 | int i; | |
3032 | for (i = 1; i <= len3; i++) { /* We leave [0] alone */ | |
3033 | I32 tag; | |
3034 | SV **svh; | |
3035 | SV *xsv; | |
3036 | ||
3037 | READ(&tag, sizeof(I32)); | |
3038 | tag = ntohl(tag); | |
3039 | svh = av_fetch(cxt->aseen, tag, FALSE); | |
3040 | if (!svh) | |
3041 | CROAK(("Object #%d should have been retrieved already", tag)); | |
3042 | xsv = *svh; | |
3043 | ary[i] = SvREFCNT_inc(xsv); | |
3044 | } | |
3045 | } | |
3046 | ||
3047 | /* | |
3048 | * Bless the object and look up the STORABLE_thaw hook. | |
3049 | */ | |
3050 | ||
3051 | BLESS(sv, class); | |
3052 | hook = pkg_can(cxt->hook, SvSTASH(sv), "STORABLE_thaw"); | |
3053 | if (!hook) | |
3054 | CROAK(("No STORABLE_thaw defined for objects of class %s", class)); | |
3055 | ||
3056 | /* | |
3057 | * If we don't have an `av' yet, prepare one. | |
3058 | * Then insert the frozen string as item [0]. | |
3059 | */ | |
3060 | ||
3061 | if (!av) { | |
3062 | av = newAV(); | |
3063 | av_extend(av, 1); | |
3064 | AvFILLp(av) = 0; | |
3065 | } | |
3066 | AvARRAY(av)[0] = SvREFCNT_inc(frozen); | |
3067 | ||
3068 | /* | |
3069 | * Call the hook as: | |
3070 | * | |
3071 | * $object->STORABLE_thaw($cloning, $frozen, @refs); | |
3072 | * | |
3073 | * where $object is our blessed (empty) object, $cloning is a boolean | |
3074 | * telling whether we're running a deep clone, $frozen is the frozen | |
3075 | * string the user gave us in his serializing hook, and @refs, which may | |
3076 | * be empty, is the list of extra references he returned along for us | |
3077 | * to serialize. | |
3078 | * | |
3079 | * In effect, the hook is an alternate creation routine for the class, | |
3080 | * the object itself being already created by the runtime. | |
3081 | */ | |
3082 | ||
3083 | TRACEME(("calling STORABLE_thaw on %s at 0x%lx (%d args)", | |
3084 | class, (unsigned long) sv, AvFILLp(av) + 1)); | |
3085 | ||
3086 | rv = newRV(sv); | |
3087 | (void) scalar_call(rv, hook, clone, av, G_SCALAR|G_DISCARD); | |
3088 | SvREFCNT_dec(rv); | |
3089 | ||
3090 | /* | |
3091 | * Final cleanup. | |
3092 | */ | |
3093 | ||
3094 | SvREFCNT_dec(frozen); | |
3095 | av_undef(av); | |
3096 | sv_free((SV *) av); | |
3097 | if (!(flags & SHF_IDX_CLASSNAME) && class != buf) | |
3098 | Safefree(class); | |
3099 | ||
3100 | return sv; | |
3101 | } | |
3102 | ||
3103 | /* | |
3104 | * retrieve_ref | |
3105 | * | |
3106 | * Retrieve reference to some other scalar. | |
3107 | * Layout is SX_REF <object>, with SX_REF already read. | |
3108 | */ | |
3109 | static SV *retrieve_ref(cxt) | |
3110 | stcxt_t *cxt; | |
3111 | { | |
3112 | SV *rv; | |
3113 | SV *sv; | |
3114 | ||
3115 | TRACEME(("retrieve_ref (#%d)", cxt->tagnum)); | |
3116 | ||
3117 | /* | |
3118 | * We need to create the SV that holds the reference to the yet-to-retrieve | |
3119 | * object now, so that we may record the address in the seen table. | |
3120 | * Otherwise, if the object to retrieve references us, we won't be able | |
3121 | * to resolve the SX_OBJECT we'll see at that point! Hence we cannot | |
3122 | * do the retrieve first and use rv = newRV(sv) since it will be too late | |
3123 | * for SEEN() recording. | |
3124 | */ | |
3125 | ||
3126 | rv = NEWSV(10002, 0); | |
3127 | SEEN(rv); /* Will return if rv is null */ | |
3128 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3129 | if (!sv) | |
3130 | return (SV *) 0; /* Failed */ | |
3131 | ||
3132 | /* | |
3133 | * WARNING: breaks RV encapsulation. | |
3134 | * | |
3135 | * Now for the tricky part. We have to upgrade our existing SV, so that | |
3136 | * it is now an RV on sv... Again, we cheat by duplicating the code | |
3137 | * held in newSVrv(), since we already got our SV from retrieve(). | |
3138 | * | |
3139 | * We don't say: | |
3140 | * | |
3141 | * SvRV(rv) = SvREFCNT_inc(sv); | |
3142 | * | |
3143 | * here because the reference count we got from retrieve() above is | |
3144 | * already correct: if the object was retrieved from the file, then | |
3145 | * its reference count is one. Otherwise, if it was retrieved via | |
3146 | * an SX_OBJECT indication, a ref count increment was done. | |
3147 | */ | |
3148 | ||
3149 | sv_upgrade(rv, SVt_RV); | |
3150 | SvRV(rv) = sv; /* $rv = \$sv */ | |
3151 | SvROK_on(rv); | |
3152 | ||
3153 | TRACEME(("ok (retrieve_ref at 0x%lx)", (unsigned long) rv)); | |
3154 | ||
3155 | return rv; | |
3156 | } | |
3157 | ||
3158 | /* | |
3159 | * retrieve_overloaded | |
3160 | * | |
3161 | * Retrieve reference to some other scalar with overloading. | |
3162 | * Layout is SX_OVERLOAD <object>, with SX_OVERLOAD already read. | |
3163 | */ | |
3164 | static SV *retrieve_overloaded(cxt) | |
3165 | stcxt_t *cxt; | |
3166 | { | |
3167 | SV *rv; | |
3168 | SV *sv; | |
3169 | HV *stash; | |
3170 | ||
3171 | TRACEME(("retrieve_overloaded (#%d)", cxt->tagnum)); | |
3172 | ||
3173 | /* | |
3174 | * Same code as retrieve_ref(), duplicated to avoid extra call. | |
3175 | */ | |
3176 | ||
3177 | rv = NEWSV(10002, 0); | |
3178 | SEEN(rv); /* Will return if rv is null */ | |
3179 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3180 | if (!sv) | |
3181 | return (SV *) 0; /* Failed */ | |
3182 | ||
3183 | /* | |
3184 | * WARNING: breaks RV encapsulation. | |
3185 | */ | |
3186 | ||
3187 | sv_upgrade(rv, SVt_RV); | |
3188 | SvRV(rv) = sv; /* $rv = \$sv */ | |
3189 | SvROK_on(rv); | |
3190 | ||
3191 | /* | |
3192 | * Restore overloading magic. | |
3193 | */ | |
3194 | ||
3195 | stash = (HV *) SvSTASH (sv); | |
3196 | if (!stash || !Gv_AMG(stash)) | |
3197 | CROAK(("Cannot restore overloading on %s(0x%lx)", sv_reftype(sv, FALSE), | |
3198 | (unsigned long) sv)); | |
3199 | ||
3200 | SvAMAGIC_on(rv); | |
3201 | ||
3202 | TRACEME(("ok (retrieve_overloaded at 0x%lx)", (unsigned long) rv)); | |
3203 | ||
3204 | return rv; | |
3205 | } | |
3206 | ||
3207 | /* | |
3208 | * retrieve_tied_array | |
3209 | * | |
3210 | * Retrieve tied array | |
3211 | * Layout is SX_TIED_ARRAY <object>, with SX_TIED_ARRAY already read. | |
3212 | */ | |
3213 | static SV *retrieve_tied_array(cxt) | |
3214 | stcxt_t *cxt; | |
3215 | { | |
3216 | SV *tv; | |
3217 | SV *sv; | |
3218 | ||
3219 | TRACEME(("retrieve_tied_array (#%d)", cxt->tagnum)); | |
3220 | ||
3221 | tv = NEWSV(10002, 0); | |
3222 | SEEN(tv); /* Will return if tv is null */ | |
3223 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3224 | if (!sv) | |
3225 | return (SV *) 0; /* Failed */ | |
3226 | ||
3227 | sv_upgrade(tv, SVt_PVAV); | |
3228 | AvREAL_off((AV *)tv); | |
3229 | sv_magic(tv, sv, 'P', Nullch, 0); | |
3230 | SvREFCNT_dec(sv); /* Undo refcnt inc from sv_magic() */ | |
3231 | ||
3232 | TRACEME(("ok (retrieve_tied_array at 0x%lx)", (unsigned long) tv)); | |
3233 | ||
3234 | return tv; | |
3235 | } | |
3236 | ||
3237 | /* | |
3238 | * retrieve_tied_hash | |
3239 | * | |
3240 | * Retrieve tied hash | |
3241 | * Layout is SX_TIED_HASH <object>, with SX_TIED_HASH already read. | |
3242 | */ | |
3243 | static SV *retrieve_tied_hash(cxt) | |
3244 | stcxt_t *cxt; | |
3245 | { | |
3246 | SV *tv; | |
3247 | SV *sv; | |
3248 | ||
3249 | TRACEME(("retrieve_tied_hash (#%d)", cxt->tagnum)); | |
3250 | ||
3251 | tv = NEWSV(10002, 0); | |
3252 | SEEN(tv); /* Will return if tv is null */ | |
3253 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3254 | if (!sv) | |
3255 | return (SV *) 0; /* Failed */ | |
3256 | ||
3257 | sv_upgrade(tv, SVt_PVHV); | |
3258 | sv_magic(tv, sv, 'P', Nullch, 0); | |
3259 | SvREFCNT_dec(sv); /* Undo refcnt inc from sv_magic() */ | |
3260 | ||
3261 | TRACEME(("ok (retrieve_tied_hash at 0x%lx)", (unsigned long) tv)); | |
3262 | ||
3263 | return tv; | |
3264 | } | |
3265 | ||
3266 | /* | |
3267 | * retrieve_tied_scalar | |
3268 | * | |
3269 | * Retrieve tied scalar | |
3270 | * Layout is SX_TIED_SCALAR <object>, with SX_TIED_SCALAR already read. | |
3271 | */ | |
3272 | static SV *retrieve_tied_scalar(cxt) | |
3273 | stcxt_t *cxt; | |
3274 | { | |
3275 | SV *tv; | |
3276 | SV *sv; | |
3277 | ||
3278 | TRACEME(("retrieve_tied_scalar (#%d)", cxt->tagnum)); | |
3279 | ||
3280 | tv = NEWSV(10002, 0); | |
3281 | SEEN(tv); /* Will return if rv is null */ | |
3282 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3283 | if (!sv) | |
3284 | return (SV *) 0; /* Failed */ | |
3285 | ||
3286 | sv_upgrade(tv, SVt_PVMG); | |
3287 | sv_magic(tv, sv, 'q', Nullch, 0); | |
3288 | SvREFCNT_dec(sv); /* Undo refcnt inc from sv_magic() */ | |
3289 | ||
3290 | TRACEME(("ok (retrieve_tied_scalar at 0x%lx)", (unsigned long) tv)); | |
3291 | ||
3292 | return tv; | |
3293 | } | |
3294 | ||
3295 | /* | |
3296 | * retrieve_tied_key | |
3297 | * | |
3298 | * Retrieve reference to value in a tied hash. | |
3299 | * Layout is SX_TIED_KEY <object> <key>, with SX_TIED_KEY already read. | |
3300 | */ | |
3301 | static SV *retrieve_tied_key(cxt) | |
3302 | stcxt_t *cxt; | |
3303 | { | |
3304 | SV *tv; | |
3305 | SV *sv; | |
3306 | SV *key; | |
3307 | ||
3308 | TRACEME(("retrieve_tied_key (#%d)", cxt->tagnum)); | |
3309 | ||
3310 | tv = NEWSV(10002, 0); | |
3311 | SEEN(tv); /* Will return if tv is null */ | |
3312 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3313 | if (!sv) | |
3314 | return (SV *) 0; /* Failed */ | |
3315 | ||
3316 | key = retrieve(cxt); /* Retrieve <key> */ | |
3317 | if (!key) | |
3318 | return (SV *) 0; /* Failed */ | |
3319 | ||
3320 | sv_upgrade(tv, SVt_PVMG); | |
3321 | sv_magic(tv, sv, 'p', (char *)key, HEf_SVKEY); | |
3322 | SvREFCNT_dec(key); /* Undo refcnt inc from sv_magic() */ | |
3323 | SvREFCNT_dec(sv); /* Undo refcnt inc from sv_magic() */ | |
3324 | ||
3325 | return tv; | |
3326 | } | |
3327 | ||
3328 | /* | |
3329 | * retrieve_tied_idx | |
3330 | * | |
3331 | * Retrieve reference to value in a tied array. | |
3332 | * Layout is SX_TIED_IDX <object> <idx>, with SX_TIED_IDX already read. | |
3333 | */ | |
3334 | static SV *retrieve_tied_idx(cxt) | |
3335 | stcxt_t *cxt; | |
3336 | { | |
3337 | SV *tv; | |
3338 | SV *sv; | |
3339 | I32 idx; | |
3340 | ||
3341 | TRACEME(("retrieve_tied_idx (#%d)", cxt->tagnum)); | |
3342 | ||
3343 | tv = NEWSV(10002, 0); | |
3344 | SEEN(tv); /* Will return if tv is null */ | |
3345 | sv = retrieve(cxt); /* Retrieve <object> */ | |
3346 | if (!sv) | |
3347 | return (SV *) 0; /* Failed */ | |
3348 | ||
3349 | RLEN(idx); /* Retrieve <idx> */ | |
3350 | ||
3351 | sv_upgrade(tv, SVt_PVMG); | |
3352 | sv_magic(tv, sv, 'p', Nullch, idx); | |
3353 | SvREFCNT_dec(sv); /* Undo refcnt inc from sv_magic() */ | |
3354 | ||
3355 | return tv; | |
3356 | } | |
3357 | ||
3358 | ||
3359 | /* | |
3360 | * retrieve_lscalar | |
3361 | * | |
3362 | * Retrieve defined long (string) scalar. | |
3363 | * | |
3364 | * Layout is SX_LSCALAR <length> <data>, with SX_LSCALAR already read. | |
3365 | * The scalar is "long" in that <length> is larger than LG_SCALAR so it | |
3366 | * was not stored on a single byte. | |
3367 | */ | |
3368 | static SV *retrieve_lscalar(cxt) | |
3369 | stcxt_t *cxt; | |
3370 | { | |
3371 | STRLEN len; | |
3372 | SV *sv; | |
3373 | ||
3374 | RLEN(len); | |
3375 | TRACEME(("retrieve_lscalar (#%d), len = %d", cxt->tagnum, len)); | |
3376 | ||
3377 | /* | |
3378 | * Allocate an empty scalar of the suitable length. | |
3379 | */ | |
3380 | ||
3381 | sv = NEWSV(10002, len); | |
3382 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3383 | ||
3384 | /* | |
3385 | * WARNING: duplicates parts of sv_setpv and breaks SV data encapsulation. | |
3386 | * | |
3387 | * Now, for efficiency reasons, read data directly inside the SV buffer, | |
3388 | * and perform the SV final settings directly by duplicating the final | |
3389 | * work done by sv_setpv. Since we're going to allocate lots of scalars | |
3390 | * this way, it's worth the hassle and risk. | |
3391 | */ | |
3392 | ||
3393 | SAFEREAD(SvPVX(sv), len, sv); | |
3394 | SvCUR_set(sv, len); /* Record C string length */ | |
3395 | *SvEND(sv) = '\0'; /* Ensure it's null terminated anyway */ | |
3396 | (void) SvPOK_only(sv); /* Validate string pointer */ | |
3397 | SvTAINT(sv); /* External data cannot be trusted */ | |
3398 | ||
3399 | TRACEME(("large scalar len %d '%s'", len, SvPVX(sv))); | |
3400 | TRACEME(("ok (retrieve_lscalar at 0x%lx)", (unsigned long) sv)); | |
3401 | ||
3402 | return sv; | |
3403 | } | |
3404 | ||
3405 | /* | |
3406 | * retrieve_scalar | |
3407 | * | |
3408 | * Retrieve defined short (string) scalar. | |
3409 | * | |
3410 | * Layout is SX_SCALAR <length> <data>, with SX_SCALAR already read. | |
3411 | * The scalar is "short" so <length> is single byte. If it is 0, there | |
3412 | * is no <data> section. | |
3413 | */ | |
3414 | static SV *retrieve_scalar(cxt) | |
3415 | stcxt_t *cxt; | |
3416 | { | |
3417 | int len; | |
3418 | SV *sv; | |
3419 | ||
3420 | GETMARK(len); | |
3421 | TRACEME(("retrieve_scalar (#%d), len = %d", cxt->tagnum, len)); | |
3422 | ||
3423 | /* | |
3424 | * Allocate an empty scalar of the suitable length. | |
3425 | */ | |
3426 | ||
3427 | sv = NEWSV(10002, len); | |
3428 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3429 | ||
3430 | /* | |
3431 | * WARNING: duplicates parts of sv_setpv and breaks SV data encapsulation. | |
3432 | */ | |
3433 | ||
3434 | if (len == 0) { | |
3435 | /* | |
3436 | * newSV did not upgrade to SVt_PV so the scalar is undefined. | |
3437 | * To make it defined with an empty length, upgrade it now... | |
3438 | */ | |
3439 | sv_upgrade(sv, SVt_PV); | |
3440 | SvGROW(sv, 1); | |
3441 | *SvEND(sv) = '\0'; /* Ensure it's null terminated anyway */ | |
3442 | TRACEME(("ok (retrieve_scalar empty at 0x%lx)", (unsigned long) sv)); | |
3443 | } else { | |
3444 | /* | |
3445 | * Now, for efficiency reasons, read data directly inside the SV buffer, | |
3446 | * and perform the SV final settings directly by duplicating the final | |
3447 | * work done by sv_setpv. Since we're going to allocate lots of scalars | |
3448 | * this way, it's worth the hassle and risk. | |
3449 | */ | |
3450 | SAFEREAD(SvPVX(sv), len, sv); | |
3451 | SvCUR_set(sv, len); /* Record C string length */ | |
3452 | *SvEND(sv) = '\0'; /* Ensure it's null terminated anyway */ | |
3453 | TRACEME(("small scalar len %d '%s'", len, SvPVX(sv))); | |
3454 | } | |
3455 | ||
3456 | (void) SvPOK_only(sv); /* Validate string pointer */ | |
3457 | SvTAINT(sv); /* External data cannot be trusted */ | |
3458 | ||
3459 | TRACEME(("ok (retrieve_scalar at 0x%lx)", (unsigned long) sv)); | |
3460 | return sv; | |
3461 | } | |
3462 | ||
3463 | /* | |
3464 | * retrieve_integer | |
3465 | * | |
3466 | * Retrieve defined integer. | |
3467 | * Layout is SX_INTEGER <data>, whith SX_INTEGER already read. | |
3468 | */ | |
3469 | static SV *retrieve_integer(cxt) | |
3470 | stcxt_t *cxt; | |
3471 | { | |
3472 | SV *sv; | |
3473 | IV iv; | |
3474 | ||
3475 | TRACEME(("retrieve_integer (#%d)", cxt->tagnum)); | |
3476 | ||
3477 | READ(&iv, sizeof(iv)); | |
3478 | sv = newSViv(iv); | |
3479 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3480 | ||
3481 | TRACEME(("integer %d", iv)); | |
3482 | TRACEME(("ok (retrieve_integer at 0x%lx)", (unsigned long) sv)); | |
3483 | ||
3484 | return sv; | |
3485 | } | |
3486 | ||
3487 | /* | |
3488 | * retrieve_netint | |
3489 | * | |
3490 | * Retrieve defined integer in network order. | |
3491 | * Layout is SX_NETINT <data>, whith SX_NETINT already read. | |
3492 | */ | |
3493 | static SV *retrieve_netint(cxt) | |
3494 | stcxt_t *cxt; | |
3495 | { | |
3496 | SV *sv; | |
3497 | int iv; | |
3498 | ||
3499 | TRACEME(("retrieve_netint (#%d)", cxt->tagnum)); | |
3500 | ||
3501 | READ(&iv, sizeof(iv)); | |
3502 | #ifdef HAS_NTOHL | |
3503 | sv = newSViv((int) ntohl(iv)); | |
3504 | TRACEME(("network integer %d", (int) ntohl(iv))); | |
3505 | #else | |
3506 | sv = newSViv(iv); | |
3507 | TRACEME(("network integer (as-is) %d", iv)); | |
3508 | #endif | |
3509 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3510 | ||
3511 | TRACEME(("ok (retrieve_netint at 0x%lx)", (unsigned long) sv)); | |
3512 | ||
3513 | return sv; | |
3514 | } | |
3515 | ||
3516 | /* | |
3517 | * retrieve_double | |
3518 | * | |
3519 | * Retrieve defined double. | |
3520 | * Layout is SX_DOUBLE <data>, whith SX_DOUBLE already read. | |
3521 | */ | |
3522 | static SV *retrieve_double(cxt) | |
3523 | stcxt_t *cxt; | |
3524 | { | |
3525 | SV *sv; | |
f27e1f0a | 3526 | NV nv; |
7a6a85bf RG |
3527 | |
3528 | TRACEME(("retrieve_double (#%d)", cxt->tagnum)); | |
3529 | ||
3530 | READ(&nv, sizeof(nv)); | |
3531 | sv = newSVnv(nv); | |
3532 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3533 | ||
3534 | TRACEME(("double %lf", nv)); | |
3535 | TRACEME(("ok (retrieve_double at 0x%lx)", (unsigned long) sv)); | |
3536 | ||
3537 | return sv; | |
3538 | } | |
3539 | ||
3540 | /* | |
3541 | * retrieve_byte | |
3542 | * | |
3543 | * Retrieve defined byte (small integer within the [-128, +127] range). | |
3544 | * Layout is SX_BYTE <data>, whith SX_BYTE already read. | |
3545 | */ | |
3546 | static SV *retrieve_byte(cxt) | |
3547 | stcxt_t *cxt; | |
3548 | { | |
3549 | SV *sv; | |
3550 | int siv; | |
3551 | ||
3552 | TRACEME(("retrieve_byte (#%d)", cxt->tagnum)); | |
3553 | ||
3554 | GETMARK(siv); | |
3555 | TRACEME(("small integer read as %d", (unsigned char) siv)); | |
3556 | sv = newSViv((unsigned char) siv - 128); | |
3557 | SEEN(sv); /* Associate this new scalar with tag "tagnum" */ | |
3558 | ||
3559 | TRACEME(("byte %d", (unsigned char) siv - 128)); | |
3560 | TRACEME(("ok (retrieve_byte at 0x%lx)", (unsigned long) sv)); | |
3561 | ||
3562 | return sv; | |
3563 | } | |
3564 | ||
3565 | /* | |
3566 | * retrieve_undef | |
3567 | * | |
3568 | * Return the undefined value. | |
3569 | */ | |
3570 | static SV *retrieve_undef(cxt) | |
3571 | stcxt_t *cxt; | |
3572 | { | |
3573 | SV* sv; | |
3574 | ||
3575 | TRACEME(("retrieve_undef")); | |
3576 | ||
3577 | sv = newSV(0); | |
3578 | SEEN(sv); | |
3579 | ||
3580 | return sv; | |
3581 | } | |
3582 | ||
3583 | /* | |
3584 | * retrieve_sv_undef | |
3585 | * | |
3586 | * Return the immortal undefined value. | |
3587 | */ | |
3588 | static SV *retrieve_sv_undef(cxt) | |
3589 | stcxt_t *cxt; | |
3590 | { | |
3591 | SV *sv = &PL_sv_undef; | |
3592 | ||
3593 | TRACEME(("retrieve_sv_undef")); | |
3594 | ||
3595 | SEEN(sv); | |
3596 | return sv; | |
3597 | } | |
3598 | ||
3599 | /* | |
3600 | * retrieve_sv_yes | |
3601 | * | |
3602 | * Return the immortal yes value. | |
3603 | */ | |
3604 | static SV *retrieve_sv_yes(cxt) | |
3605 | stcxt_t *cxt; | |
3606 | { | |
3607 | SV *sv = &PL_sv_yes; | |
3608 | ||
3609 | TRACEME(("retrieve_sv_yes")); | |
3610 | ||
3611 | SEEN(sv); | |
3612 | return sv; | |
3613 | } | |
3614 | ||
3615 | /* | |
3616 | * retrieve_sv_no | |
3617 | * | |
3618 | * Return the immortal no value. | |
3619 | */ | |
3620 | static SV *retrieve_sv_no(cxt) | |
3621 | stcxt_t *cxt; | |
3622 | { | |
3623 | SV *sv = &PL_sv_no; | |
3624 | ||
3625 | TRACEME(("retrieve_sv_no")); | |
3626 | ||
3627 | SEEN(sv); | |
3628 | return sv; | |
3629 | } | |
3630 | ||
3631 | /* | |
3632 | * retrieve_array | |
3633 | * | |
3634 | * Retrieve a whole array. | |
3635 | * Layout is SX_ARRAY <size> followed by each item, in increading index order. | |
3636 | * Each item is stored as <object>. | |
3637 | * | |
3638 | * When we come here, SX_ARRAY has been read already. | |
3639 | */ | |
3640 | static SV *retrieve_array(cxt) | |
3641 | stcxt_t *cxt; | |
3642 | { | |
3643 | I32 len; | |
3644 | I32 i; | |
3645 | AV *av; | |
3646 | SV *sv; | |
3647 | ||
3648 | TRACEME(("retrieve_array (#%d)", cxt->tagnum)); | |
3649 | ||
3650 | /* | |
3651 | * Read length, and allocate array, then pre-extend it. | |
3652 | */ | |
3653 | ||
3654 | RLEN(len); | |
3655 | TRACEME(("size = %d", len)); | |
3656 | av = newAV(); | |
3657 | SEEN(av); /* Will return if array not allocated nicely */ | |
3658 | if (len) | |
3659 | av_extend(av, len); | |
3660 | else | |
3661 | return (SV *) av; /* No data follow if array is empty */ | |
3662 | ||
3663 | /* | |
3664 | * Now get each item in turn... | |
3665 | */ | |
3666 | ||
3667 | for (i = 0; i < len; i++) { | |
3668 | TRACEME(("(#%d) item", i)); | |
3669 | sv = retrieve(cxt); /* Retrieve item */ | |
3670 | if (!sv) | |
3671 | return (SV *) 0; | |
3672 | if (av_store(av, i, sv) == 0) | |
3673 | return (SV *) 0; | |
3674 | } | |
3675 | ||
3676 | TRACEME(("ok (retrieve_array at 0x%lx)", (unsigned long) av)); | |
3677 | ||
3678 | return (SV *) av; | |
3679 | } | |
3680 | ||
3681 | /* | |
3682 | * retrieve_hash | |
3683 | * | |
3684 | * Retrieve a whole hash table. | |
3685 | * Layout is SX_HASH <size> followed by each key/value pair, in random order. | |
3686 | * Keys are stored as <length> <data>, the <data> section being omitted | |
3687 | * if length is 0. | |
3688 | * Values are stored as <object>. | |
3689 | * | |
3690 | * When we come here, SX_HASH has been read already. | |
3691 | */ | |
3692 | static SV *retrieve_hash(cxt) | |
3693 | stcxt_t *cxt; | |
3694 | { | |
3695 | I32 len; | |
3696 | I32 size; | |
3697 | I32 i; | |
3698 | HV *hv; | |
3699 | SV *sv; | |
3700 | static SV *sv_h_undef = (SV *) 0; /* hv_store() bug */ | |
3701 | ||
3702 | TRACEME(("retrieve_hash (#%d)", cxt->tagnum)); | |
3703 | ||
3704 | /* | |
3705 | * Read length, allocate table. | |
3706 | */ | |
3707 | ||
3708 | RLEN(len); | |
3709 | TRACEME(("size = %d", len)); | |
3710 | hv = newHV(); | |
3711 | SEEN(hv); /* Will return if table not allocated properly */ | |
3712 | if (len == 0) | |
3713 | return (SV *) hv; /* No data follow if table empty */ | |
3714 | ||
3715 | /* | |
3716 | * Now get each key/value pair in turn... | |
3717 | */ | |
3718 | ||
3719 | for (i = 0; i < len; i++) { | |
3720 | /* | |
3721 | * Get value first. | |
3722 | */ | |
3723 | ||
3724 | TRACEME(("(#%d) value", i)); | |
3725 | sv = retrieve(cxt); | |
3726 | if (!sv) | |
3727 | return (SV *) 0; | |
3728 | ||
3729 | /* | |
3730 | * Get key. | |
3731 | * Since we're reading into kbuf, we must ensure we're not | |
3732 | * recursing between the read and the hv_store() where it's used. | |
3733 | * Hence the key comes after the value. | |
3734 | */ | |
3735 | ||
3736 | RLEN(size); /* Get key size */ | |
3737 | KBUFCHK(size); /* Grow hash key read pool if needed */ | |
3738 | if (size) | |
3739 | READ(kbuf, size); | |
3740 | kbuf[size] = '\0'; /* Mark string end, just in case */ | |
3741 | TRACEME(("(#%d) key '%s'", i, kbuf)); | |
3742 | ||
3743 | /* | |
3744 | * Enter key/value pair into hash table. | |
3745 | */ | |
3746 | ||
3747 | if (hv_store(hv, kbuf, (U32) size, sv, 0) == 0) | |
3748 | return (SV *) 0; | |
3749 | } | |
3750 | ||
3751 | TRACEME(("ok (retrieve_hash at 0x%lx)", (unsigned long) hv)); | |
3752 | ||
3753 | return (SV *) hv; | |
3754 | } | |
3755 | ||
3756 | /* | |
3757 | * old_retrieve_array | |
3758 | * | |
3759 | * Retrieve a whole array in pre-0.6 binary format. | |
3760 | * | |
3761 | * Layout is SX_ARRAY <size> followed by each item, in increading index order. | |
3762 | * Each item is stored as SX_ITEM <object> or SX_IT_UNDEF for "holes". | |
3763 | * | |
3764 | * When we come here, SX_ARRAY has been read already. | |
3765 | */ | |
3766 | static SV *old_retrieve_array(cxt) | |
3767 | stcxt_t *cxt; | |
3768 | { | |
3769 | I32 len; | |
3770 | I32 i; | |
3771 | AV *av; | |
3772 | SV *sv; | |
3773 | int c; | |
3774 | ||
3775 | TRACEME(("old_retrieve_array (#%d)", cxt->tagnum)); | |
3776 | ||
3777 | /* | |
3778 | * Read length, and allocate array, then pre-extend it. | |
3779 | */ | |
3780 | ||
3781 | RLEN(len); | |
3782 | TRACEME(("size = %d", len)); | |
3783 | av = newAV(); | |
3784 | SEEN(av); /* Will return if array not allocated nicely */ | |
3785 | if (len) | |
3786 | av_extend(av, len); | |
3787 | else | |
3788 | return (SV *) av; /* No data follow if array is empty */ | |
3789 | ||
3790 | /* | |
3791 | * Now get each item in turn... | |
3792 | */ | |
3793 | ||
3794 | for (i = 0; i < len; i++) { | |
3795 | GETMARK(c); | |
3796 | if (c == SX_IT_UNDEF) { | |
3797 | TRACEME(("(#%d) undef item", i)); | |
3798 | continue; /* av_extend() already filled us with undef */ | |
3799 | } | |
3800 | if (c != SX_ITEM) | |
3801 | (void) retrieve_other(0); /* Will croak out */ | |
3802 | TRACEME(("(#%d) item", i)); | |
3803 | sv = retrieve(cxt); /* Retrieve item */ | |
3804 | if (!sv) | |
3805 | return (SV *) 0; | |
3806 | if (av_store(av, i, sv) == 0) | |
3807 | return (SV *) 0; | |
3808 | } | |
3809 | ||
3810 | TRACEME(("ok (old_retrieve_array at 0x%lx)", (unsigned long) av)); | |
3811 | ||
3812 | return (SV *) av; | |
3813 | } | |
3814 | ||
3815 | /* | |
3816 | * old_retrieve_hash | |
3817 | * | |
3818 | * Retrieve a whole hash table in pre-0.6 binary format. | |
3819 | * | |
3820 | * Layout is SX_HASH <size> followed by each key/value pair, in random order. | |
3821 | * Keys are stored as SX_KEY <length> <data>, the <data> section being omitted | |
3822 | * if length is 0. | |
3823 | * Values are stored as SX_VALUE <object> or SX_VL_UNDEF for "holes". | |
3824 | * | |
3825 | * When we come here, SX_HASH has been read already. | |
3826 | */ | |
3827 | static SV *old_retrieve_hash(cxt) | |
3828 | stcxt_t *cxt; | |
3829 | { | |
3830 | I32 len; | |
3831 | I32 size; | |
3832 | I32 i; | |
3833 | HV *hv; | |
3834 | SV *sv; | |
3835 | int c; | |
3836 | static SV *sv_h_undef = (SV *) 0; /* hv_store() bug */ | |
3837 | ||
3838 | TRACEME(("old_retrieve_hash (#%d)", cxt->tagnum)); | |
3839 | ||
3840 | /* | |
3841 | * Read length, allocate table. | |
3842 | */ | |
3843 | ||
3844 | RLEN(len); | |
3845 | TRACEME(("size = %d", len)); | |
3846 | hv = newHV(); | |
3847 | SEEN(hv); /* Will return if table not allocated properly */ | |
3848 | if (len == 0) | |
3849 | return (SV *) hv; /* No data follow if table empty */ | |
3850 | ||
3851 | /* | |
3852 | * Now get each key/value pair in turn... | |
3853 | */ | |
3854 | ||
3855 | for (i = 0; i < len; i++) { | |
3856 | /* | |
3857 | * Get value first. | |
3858 | */ | |
3859 | ||
3860 | GETMARK(c); | |
3861 | if (c == SX_VL_UNDEF) { | |
3862 | TRACEME(("(#%d) undef value", i)); | |
3863 | /* | |
3864 | * Due to a bug in hv_store(), it's not possible to pass | |
3865 | * &PL_sv_undef to hv_store() as a value, otherwise the | |
3866 | * associated key will not be creatable any more. -- RAM, 14/01/97 | |
3867 | */ | |
3868 | if (!sv_h_undef) | |
3869 | sv_h_undef = newSVsv(&PL_sv_undef); | |
3870 | sv = SvREFCNT_inc(sv_h_undef); | |
3871 | } else if (c == SX_VALUE) { | |
3872 | TRACEME(("(#%d) value", i)); | |
3873 | sv = retrieve(cxt); | |
3874 | if (!sv) | |
3875 | return (SV *) 0; | |
3876 | } else | |
3877 | (void) retrieve_other(0); /* Will croak out */ | |
3878 | ||
3879 | /* | |
3880 | * Get key. | |
3881 | * Since we're reading into kbuf, we must ensure we're not | |
3882 | * recursing between the read and the hv_store() where it's used. | |
3883 | * Hence the key comes after the value. | |
3884 | */ | |
3885 | ||
3886 | GETMARK(c); | |
3887 | if (c != SX_KEY) | |
3888 | (void) retrieve_other(0); /* Will croak out */ | |
3889 | RLEN(size); /* Get key size */ | |
3890 | KBUFCHK(size); /* Grow hash key read pool if needed */ | |
3891 | if (size) | |
3892 | READ(kbuf, size); | |
3893 | kbuf[size] = '\0'; /* Mark string end, just in case */ | |
3894 | TRACEME(("(#%d) key '%s'", i, kbuf)); | |
3895 | ||
3896 | /* | |
3897 | * Enter key/value pair into hash table. | |
3898 | */ | |
3899 | ||
3900 | if (hv_store(hv, kbuf, (U32) size, sv, 0) == 0) | |
3901 | return (SV *) 0; | |
3902 | } | |
3903 | ||
3904 | TRACEME(("ok (retrieve_hash at 0x%lx)", (unsigned long) hv)); | |
3905 | ||
3906 | return (SV *) hv; | |
3907 | } | |
3908 | ||
3909 | /*** | |
3910 | *** Retrieval engine. | |
3911 | ***/ | |
3912 | ||
3913 | /* | |
3914 | * magic_check | |
3915 | * | |
3916 | * Make sure the stored data we're trying to retrieve has been produced | |
3917 | * on an ILP compatible system with the same byteorder. It croaks out in | |
3918 | * case an error is detected. [ILP = integer-long-pointer sizes] | |
3919 | * Returns null if error is detected, &PL_sv_undef otherwise. | |
3920 | * | |
3921 | * Note that there's no byte ordering info emitted when network order was | |
3922 | * used at store time. | |
3923 | */ | |
3924 | static SV *magic_check(cxt) | |
3925 | stcxt_t *cxt; | |
3926 | { | |
3927 | char buf[256]; | |
3928 | char byteorder[256]; | |
3929 | int c; | |
3930 | int use_network_order; | |
3931 | int version_major; | |
3932 | int version_minor = 0; | |
3933 | ||
3934 | TRACEME(("magic_check")); | |
3935 | ||
3936 | /* | |
3937 | * The "magic number" is only for files, not when freezing in memory. | |
3938 | */ | |
3939 | ||
3940 | if (cxt->fio) { | |
3941 | STRLEN len = sizeof(magicstr) - 1; | |
3942 | STRLEN old_len; | |
3943 | ||
3944 | READ(buf, len); /* Not null-terminated */ | |
3945 | buf[len] = '\0'; /* Is now */ | |
3946 | ||
3947 | if (0 == strcmp(buf, magicstr)) | |
3948 | goto magic_ok; | |
3949 | ||
3950 | /* | |
3951 | * Try to read more bytes to check for the old magic number, which | |
3952 | * was longer. | |
3953 | */ | |
3954 | ||
3955 | old_len = sizeof(old_magicstr) - 1; | |
3956 | READ(&buf[len], old_len - len); | |
3957 | buf[old_len] = '\0'; /* Is now null-terminated */ | |
3958 | ||
3959 | if (strcmp(buf, old_magicstr)) | |
3960 | CROAK(("File is not a perl storable")); | |
3961 | } | |
3962 | ||
3963 | magic_ok: | |
3964 | /* | |
3965 | * Starting with 0.6, the "use_network_order" byte flag is also used to | |
3966 | * indicate the version number of the binary, and therefore governs the | |
3967 | * setting of sv_retrieve_vtbl. See magic_write(). | |
3968 | */ | |
3969 | ||
3970 | GETMARK(use_network_order); | |
3971 | version_major = use_network_order >> 1; | |
3972 | cxt->retrieve_vtbl = version_major ? sv_retrieve : sv_old_retrieve; | |
3973 | ||
3974 | TRACEME(("magic_check: netorder = 0x%x", use_network_order)); | |
3975 | ||
3976 | ||
3977 | /* | |
3978 | * Starting with 0.7 (binary major 2), a full byte is dedicated to the | |
3979 | * minor version of the protocol. See magic_write(). | |
3980 | */ | |
3981 | ||
3982 | if (version_major > 1) | |
3983 | GETMARK(version_minor); | |
3984 | ||
3985 | cxt->ver_major = version_major; | |
3986 | cxt->ver_minor = version_minor; | |
3987 | ||
3988 | TRACEME(("binary image version is %d.%d", version_major, version_minor)); | |
3989 | ||
3990 | /* | |
3991 | * Inter-operability sanity check: we can't retrieve something stored | |
3992 | * using a format more recent than ours, because we have no way to | |
3993 | * know what has changed, and letting retrieval go would mean a probable | |
3994 | * failure reporting a "corrupted" storable file. | |
3995 | */ | |
3996 | ||
3997 | if ( | |
3998 | version_major > STORABLE_BIN_MAJOR || | |
3999 | (version_major == STORABLE_BIN_MAJOR && | |
4000 | version_minor > STORABLE_BIN_MINOR) | |
4001 | ) | |
4002 | CROAK(("Storable binary image v%d.%d more recent than I am (v%d.%d)", | |
4003 | version_major, version_minor, | |
4004 | STORABLE_BIN_MAJOR, STORABLE_BIN_MINOR)); | |
4005 | ||
4006 | /* | |
4007 | * If they stored using network order, there's no byte ordering | |
4008 | * information to check. | |
4009 | */ | |
4010 | ||
4011 | if (cxt->netorder = (use_network_order & 0x1)) | |
4012 | return &PL_sv_undef; /* No byte ordering info */ | |
4013 | ||
4014 | sprintf(byteorder, "%lx", (unsigned long) BYTEORDER); | |
4015 | GETMARK(c); | |
4016 | READ(buf, c); /* Not null-terminated */ | |
4017 | buf[c] = '\0'; /* Is now */ | |
4018 | ||
4019 | if (strcmp(buf, byteorder)) | |
4020 | CROAK(("Byte order is not compatible")); | |
4021 | ||
4022 | GETMARK(c); /* sizeof(int) */ | |
4023 | if ((int) c != sizeof(int)) | |
4024 | CROAK(("Integer size is not compatible")); | |
4025 | ||
4026 | GETMARK(c); /* sizeof(long) */ | |
4027 | if ((int) c != sizeof(long)) | |
4028 | CROAK(("Long integer size is not compatible")); | |
4029 | ||
4030 | GETMARK(c); /* sizeof(char *) */ | |
4031 | if ((int) c != sizeof(char *)) | |
4032 | CROAK(("Pointer integer size is not compatible")); | |
4033 | ||
4034 | return &PL_sv_undef; /* OK */ | |
4035 | } | |
4036 | ||
4037 | /* | |
4038 | * retrieve | |
4039 | * | |
4040 | * Recursively retrieve objects from the specified file and return their | |
4041 | * root SV (which may be an AV or an HV for what we care). | |
4042 | * Returns null if there is a problem. | |
4043 | */ | |
4044 | static SV *retrieve(cxt) | |
4045 | stcxt_t *cxt; | |
4046 | { | |
4047 | int type; | |
4048 | SV **svh; | |
4049 | SV *sv; | |
4050 | ||
4051 | TRACEME(("retrieve")); | |
4052 | ||
4053 | /* | |
4054 | * Grab address tag which identifies the object if we are retrieving | |
4055 | * an older format. Since the new binary format counts objects and no | |
4056 | * longer explicitely tags them, we must keep track of the correspondance | |
4057 | * ourselves. | |
4058 | * | |
4059 | * The following section will disappear one day when the old format is | |
4060 | * no longer supported, hence the final "goto" in the "if" block. | |
4061 | */ | |
4062 | ||
4063 | if (cxt->hseen) { /* Retrieving old binary */ | |
4064 | stag_t tag; | |
4065 | if (cxt->netorder) { | |
4066 | I32 nettag; | |
4067 | READ(&nettag, sizeof(I32)); /* Ordered sequence of I32 */ | |
4068 | tag = (stag_t) nettag; | |
4069 | } else | |
4070 | READ(&tag, sizeof(stag_t)); /* Original address of the SV */ | |
4071 | ||
4072 | GETMARK(type); | |
4073 | if (type == SX_OBJECT) { | |
4074 | I32 tagn; | |
4075 | svh = hv_fetch(cxt->hseen, (char *) &tag, sizeof(tag), FALSE); | |
4076 | if (!svh) | |
4077 | CROAK(("Old tag 0x%x should have been mapped already", tag)); | |
4078 | tagn = SvIV(*svh); /* Mapped tag number computed earlier below */ | |
4079 | ||
4080 | /* | |
4081 | * The following code is common with the SX_OBJECT case below. | |
4082 | */ | |
4083 | ||
4084 | svh = av_fetch(cxt->aseen, tagn, FALSE); | |
4085 | if (!svh) | |
4086 | CROAK(("Object #%d should have been retrieved already", tagn)); | |
4087 | sv = *svh; | |
4088 | TRACEME(("has retrieved #%d at 0x%lx", tagn, (unsigned long) sv)); | |
4089 | SvREFCNT_inc(sv); /* One more reference to this same sv */ | |
4090 | return sv; /* The SV pointer where object was retrieved */ | |
4091 | } | |
4092 | ||
4093 | /* | |
4094 | * Map new object, but don't increase tagnum. This will be done | |
4095 | * by each of the retrieve_* functions when they call SEEN(). | |
4096 | * | |
4097 | * The mapping associates the "tag" initially present with a unique | |
4098 | * tag number. See test for SX_OBJECT above to see how this is perused. | |
4099 | */ | |
4100 | ||
4101 | if (!hv_store(cxt->hseen, (char *) &tag, sizeof(tag), | |
4102 | newSViv(cxt->tagnum), 0)) | |
4103 | return (SV *) 0; | |
4104 | ||
4105 | goto first_time; | |
4106 | } | |
4107 | ||
4108 | /* | |
4109 | * Regular post-0.6 binary format. | |
4110 | */ | |
4111 | ||
4112 | again: | |
4113 | GETMARK(type); | |
4114 | ||
4115 | TRACEME(("retrieve type = %d", type)); | |
4116 | ||
4117 | /* | |
4118 | * Are we dealing with an object we should have already retrieved? | |
4119 | */ | |
4120 | ||
4121 | if (type == SX_OBJECT) { | |
4122 | I32 tag; | |
4123 | READ(&tag, sizeof(I32)); | |
4124 | tag = ntohl(tag); | |
4125 | svh = av_fetch(cxt->aseen, tag, FALSE); | |
4126 | if (!svh) | |
4127 | CROAK(("Object #%d should have been retrieved already", tag)); | |
4128 | sv = *svh; | |
4129 | TRACEME(("had retrieved #%d at 0x%lx", tag, (unsigned long) sv)); | |
4130 | SvREFCNT_inc(sv); /* One more reference to this same sv */ | |
4131 | return sv; /* The SV pointer where object was retrieved */ | |
4132 | } | |
4133 | ||
4134 | first_time: /* Will disappear when support for old format is dropped */ | |
4135 | ||
4136 | /* | |
4137 | * Okay, first time through for this one. | |
4138 | */ | |
4139 | ||
4140 | sv = RETRIEVE(cxt, type)(cxt); | |
4141 | if (!sv) | |
4142 | return (SV *) 0; /* Failed */ | |
4143 | ||
4144 | /* | |
4145 | * Old binary formats (pre-0.7). | |
4146 | * | |
4147 | * Final notifications, ended by SX_STORED may now follow. | |
4148 | * Currently, the only pertinent notification to apply on the | |
4149 | * freshly retrieved object is either: | |
4150 | * SX_CLASS <char-len> <classname> for short classnames. | |
4151 | * SX_LG_CLASS <int-len> <classname> for larger one (rare!). | |
4152 | * Class name is then read into the key buffer pool used by | |
4153 | * hash table key retrieval. | |
4154 | */ | |
4155 | ||
4156 | if (cxt->ver_major < 2) { | |
4157 | while ((type = GETCHAR()) != SX_STORED) { | |
4158 | I32 len; | |
4159 | switch (type) { | |
4160 | case SX_CLASS: | |
4161 | GETMARK(len); /* Length coded on a single char */ | |
4162 | break; | |
4163 | case SX_LG_CLASS: /* Length coded on a regular integer */ | |
4164 | RLEN(len); | |
4165 | break; | |
4166 | case EOF: | |
4167 | default: | |
4168 | return (SV *) 0; /* Failed */ | |
4169 | } | |
4170 | KBUFCHK(len); /* Grow buffer as necessary */ | |
4171 | if (len) | |
4172 | READ(kbuf, len); | |
4173 | kbuf[len] = '\0'; /* Mark string end */ | |
4174 | BLESS(sv, kbuf); | |
4175 | } | |
4176 | } | |
4177 | ||
4178 | TRACEME(("ok (retrieved 0x%lx, refcnt=%d, %s)", (unsigned long) sv, | |
4179 | SvREFCNT(sv) - 1, sv_reftype(sv, FALSE))); | |
4180 | ||
4181 | return sv; /* Ok */ | |
4182 | } | |
4183 | ||
4184 | /* | |
4185 | * do_retrieve | |
4186 | * | |
4187 | * Retrieve data held in file and return the root object. | |
4188 | * Common routine for pretrieve and mretrieve. | |
4189 | */ | |
4190 | static SV *do_retrieve(f, in, optype) | |
4191 | PerlIO *f; | |
4192 | SV *in; | |
4193 | int optype; | |
4194 | { | |
4195 | dSTCXT; | |
4196 | SV *sv; | |
4197 | struct extendable msave; /* Where potentially valid mbuf is saved */ | |
4198 | ||
4199 | TRACEME(("do_retrieve (optype = 0x%x)", optype)); | |
4200 | ||
4201 | optype |= ST_RETRIEVE; | |
4202 | ||
4203 | /* | |
4204 | * Sanity assertions for retrieve dispatch tables. | |
4205 | */ | |
4206 | ||
4207 | ASSERT(sizeof(sv_old_retrieve) == sizeof(sv_retrieve), | |
4208 | ("old and new retrieve dispatch table have same size")); | |
4209 | ASSERT(sv_old_retrieve[SX_ERROR] == retrieve_other, | |
4210 | ("SX_ERROR entry correctly initialized in old dispatch table")); | |
4211 | ASSERT(sv_retrieve[SX_ERROR] == retrieve_other, | |
4212 | ("SX_ERROR entry correctly initialized in new dispatch table")); | |
4213 | ||
4214 | /* | |
4215 | * Workaround for CROAK leak: if they enter with a "dirty" context, | |
4216 | * free up memory for them now. | |
4217 | */ | |
4218 | ||
4219 | if (cxt->dirty) | |
4220 | clean_context(cxt); | |
4221 | ||
4222 | /* | |
4223 | * Now that STORABLE_xxx hooks exist, it is possible that they try to | |
4224 | * re-enter retrieve() via the hooks. | |
4225 | */ | |
4226 | ||
4227 | if (cxt->entry) | |
4228 | cxt = allocate_context(cxt); | |
4229 | ||
4230 | cxt->entry++; | |
4231 | ||
4232 | ASSERT(cxt->entry == 1, ("starting new recursion")); | |
4233 | ASSERT(!cxt->dirty, ("clean context")); | |
4234 | ||
4235 | /* | |
4236 | * Prepare context. | |
4237 | * | |
4238 | * Data is loaded into the memory buffer when f is NULL, unless `in' is | |
4239 | * also NULL, in which case we're expecting the data to already lie | |
4240 | * in the buffer (dclone case). | |
4241 | */ | |
4242 | ||
4243 | KBUFINIT(); /* Allocate hash key reading pool once */ | |
4244 | ||
4245 | if (!f && in) { | |
4246 | StructCopy(&cxt->membuf, &msave, struct extendable); | |
4247 | MBUF_LOAD(in); | |
4248 | } | |
4249 | ||
4250 | ||
4251 | /* | |
4252 | * Magic number verifications. | |
4253 | * | |
4254 | * This needs to be done before calling init_retrieve_context() | |
4255 | * since the format indication in the file are necessary to conduct | |
4256 | * some of the initializations. | |
4257 | */ | |
4258 | ||
4259 | cxt->fio = f; /* Where I/O are performed */ | |
4260 | ||
4261 | if (!magic_check(cxt)) | |
4262 | CROAK(("Magic number checking on storable %s failed", | |
4263 | cxt->fio ? "file" : "string")); | |
4264 | ||
4265 | TRACEME(("data stored in %s format", | |
4266 | cxt->netorder ? "net order" : "native")); | |
4267 | ||
4268 | init_retrieve_context(cxt, optype); | |
4269 | ||
4270 | ASSERT(is_retrieving(), ("within retrieve operation")); | |
4271 | ||
4272 | sv = retrieve(cxt); /* Recursively retrieve object, get root SV */ | |
4273 | ||
4274 | /* | |
4275 | * Final cleanup. | |
4276 | */ | |
4277 | ||
4278 | if (!f && in) | |
4279 | StructCopy(&msave, &cxt->membuf, struct extendable); | |
4280 | ||
4281 | /* | |
4282 | * The "root" context is never freed. | |
4283 | */ | |
4284 | ||
4285 | clean_retrieve_context(cxt); | |
4286 | if (cxt->prev) /* This context was stacked */ | |
4287 | free_context(cxt); /* It was not the "root" context */ | |
4288 | ||
4289 | /* | |
4290 | * Prepare returned value. | |
4291 | */ | |
4292 | ||
4293 | if (!sv) { | |
4294 | TRACEME(("retrieve ERROR")); | |
4295 | return &PL_sv_undef; /* Something went wrong, return undef */ | |
4296 | } | |
4297 | ||
4298 | TRACEME(("retrieve got %s(0x%lx)", | |
4299 | sv_reftype(sv, FALSE), (unsigned long) sv)); | |
4300 | ||
4301 | /* | |
4302 | * Backward compatibility with Storable-0.5@9 (which we know we | |
4303 | * are retrieving if hseen is non-null): don't create an extra RV | |
4304 | * for objects since we special-cased it at store time. | |
4305 | * | |
4306 | * Build a reference to the SV returned by pretrieve even if it is | |
4307 | * already one and not a scalar, for consistency reasons. | |
4308 | * | |
4309 | * NB: although context might have been cleaned, the value of `cxt->hseen' | |
4310 | * remains intact, and can be used as a flag. | |
4311 | */ | |
4312 | ||
4313 | if (cxt->hseen) { /* Was not handling overloading by then */ | |
4314 | SV *rv; | |
4315 | if (sv_type(sv) == svis_REF && (rv = SvRV(sv)) && SvOBJECT(rv)) | |
4316 | return sv; | |
4317 | } | |
4318 | ||
4319 | /* | |
4320 | * If reference is overloaded, restore behaviour. | |
4321 | * | |
4322 | * NB: minor glitch here: normally, overloaded refs are stored specially | |