Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # $RCSFile$ |
2 | # | |
3 | # Complex numbers and associated mathematical functions | |
4 | # -- Raphael Manfredi, Sept 1996 | |
a0d0e21e LW |
5 | |
6 | require Exporter; | |
66730be0 | 7 | package Math::Complex; @ISA = qw(Exporter); |
a0d0e21e | 8 | |
66730be0 RM |
9 | @EXPORT = qw( |
10 | pi i Re Im arg | |
11 | log10 logn cbrt root | |
12 | tan cotan asin acos atan acotan | |
13 | sinh cosh tanh cotanh asinh acosh atanh acotanh | |
14 | cplx cplxe | |
15 | ); | |
a0d0e21e | 16 | |
a5f75d66 | 17 | use overload |
66730be0 RM |
18 | '+' => \&plus, |
19 | '-' => \&minus, | |
20 | '*' => \&multiply, | |
21 | '/' => \÷, | |
22 | '**' => \&power, | |
23 | '<=>' => \&spaceship, | |
24 | 'neg' => \&negate, | |
25 | '~' => \&conjugate, | |
26 | 'abs' => \&abs, | |
27 | 'sqrt' => \&sqrt, | |
28 | 'exp' => \&exp, | |
29 | 'log' => \&log, | |
30 | 'sin' => \&sin, | |
31 | 'cos' => \&cos, | |
32 | 'atan2' => \&atan2, | |
33 | qw("" stringify); | |
34 | ||
35 | # | |
36 | # Package globals | |
37 | # | |
38 | ||
39 | $package = 'Math::Complex'; # Package name | |
40 | $display = 'cartesian'; # Default display format | |
41 | ||
42 | # | |
43 | # Object attributes (internal): | |
44 | # cartesian [real, imaginary] -- cartesian form | |
45 | # polar [rho, theta] -- polar form | |
46 | # c_dirty cartesian form not up-to-date | |
47 | # p_dirty polar form not up-to-date | |
48 | # display display format (package's global when not set) | |
49 | # | |
50 | ||
51 | # | |
52 | # ->make | |
53 | # | |
54 | # Create a new complex number (cartesian form) | |
55 | # | |
56 | sub make { | |
57 | my $self = bless {}, shift; | |
58 | my ($re, $im) = @_; | |
40da2db3 | 59 | $self->{'cartesian'} = [$re, $im]; |
66730be0 RM |
60 | $self->{c_dirty} = 0; |
61 | $self->{p_dirty} = 1; | |
62 | return $self; | |
63 | } | |
64 | ||
65 | # | |
66 | # ->emake | |
67 | # | |
68 | # Create a new complex number (exponential form) | |
69 | # | |
70 | sub emake { | |
71 | my $self = bless {}, shift; | |
72 | my ($rho, $theta) = @_; | |
73 | $theta += pi() if $rho < 0; | |
40da2db3 | 74 | $self->{'polar'} = [abs($rho), $theta]; |
66730be0 RM |
75 | $self->{p_dirty} = 0; |
76 | $self->{c_dirty} = 1; | |
77 | return $self; | |
78 | } | |
79 | ||
80 | sub new { &make } # For backward compatibility only. | |
81 | ||
82 | # | |
83 | # cplx | |
84 | # | |
85 | # Creates a complex number from a (re, im) tuple. | |
86 | # This avoids the burden of writing Math::Complex->make(re, im). | |
87 | # | |
88 | sub cplx { | |
89 | my ($re, $im) = @_; | |
90 | return $package->make($re, $im); | |
91 | } | |
92 | ||
93 | # | |
94 | # cplxe | |
95 | # | |
96 | # Creates a complex number from a (rho, theta) tuple. | |
97 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
98 | # | |
99 | sub cplxe { | |
100 | my ($rho, $theta) = @_; | |
101 | return $package->emake($rho, $theta); | |
102 | } | |
103 | ||
104 | # | |
105 | # pi | |
106 | # | |
107 | # The number defined as 2 * pi = 360 degrees | |
108 | # | |
109 | sub pi () { | |
110 | $pi = 4 * atan2(1, 1) unless $pi; | |
111 | return $pi; | |
112 | } | |
113 | ||
114 | # | |
115 | # i | |
116 | # | |
117 | # The number defined as i*i = -1; | |
118 | # | |
119 | sub i () { | |
120 | $i = bless {} unless $i; # There can be only one i | |
40da2db3 JH |
121 | $i->{'cartesian'} = [0, 1]; |
122 | $i->{'polar'} = [1, pi/2]; | |
66730be0 RM |
123 | $i->{c_dirty} = 0; |
124 | $i->{p_dirty} = 0; | |
125 | return $i; | |
126 | } | |
127 | ||
128 | # | |
129 | # Attribute access/set routines | |
130 | # | |
131 | ||
40da2db3 JH |
132 | sub cartesian {$_[0]->{c_dirty} ? $_[0]->update_cartesian : $_[0]->{'cartesian'}} |
133 | sub polar {$_[0]->{p_dirty} ? $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 134 | |
40da2db3 JH |
135 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
136 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
137 | |
138 | # | |
139 | # ->update_cartesian | |
140 | # | |
141 | # Recompute and return the cartesian form, given accurate polar form. | |
142 | # | |
143 | sub update_cartesian { | |
144 | my $self = shift; | |
40da2db3 | 145 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 146 | $self->{c_dirty} = 0; |
40da2db3 | 147 | return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; |
66730be0 RM |
148 | } |
149 | ||
150 | # | |
151 | # | |
152 | # ->update_polar | |
153 | # | |
154 | # Recompute and return the polar form, given accurate cartesian form. | |
155 | # | |
156 | sub update_polar { | |
157 | my $self = shift; | |
40da2db3 | 158 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 159 | $self->{p_dirty} = 0; |
40da2db3 JH |
160 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
161 | return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; | |
66730be0 RM |
162 | } |
163 | ||
164 | # | |
165 | # (plus) | |
166 | # | |
167 | # Computes z1+z2. | |
168 | # | |
169 | sub plus { | |
170 | my ($z1, $z2, $regular) = @_; | |
171 | my ($re1, $im1) = @{$z1->cartesian}; | |
172 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); | |
173 | unless (defined $regular) { | |
174 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
175 | return $z1; | |
176 | } | |
177 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
178 | } | |
179 | ||
180 | # | |
181 | # (minus) | |
182 | # | |
183 | # Computes z1-z2. | |
184 | # | |
185 | sub minus { | |
186 | my ($z1, $z2, $inverted) = @_; | |
187 | my ($re1, $im1) = @{$z1->cartesian}; | |
188 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); | |
189 | unless (defined $inverted) { | |
190 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
191 | return $z1; | |
192 | } | |
193 | return $inverted ? | |
194 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
195 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
196 | } | |
197 | ||
198 | # | |
199 | # (multiply) | |
200 | # | |
201 | # Computes z1*z2. | |
202 | # | |
203 | sub multiply { | |
204 | my ($z1, $z2, $regular) = @_; | |
205 | my ($r1, $t1) = @{$z1->polar}; | |
206 | my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); | |
207 | unless (defined $regular) { | |
208 | $z1->set_polar([$r1 * $r2, $t1 + $t2]); | |
209 | return $z1; | |
210 | } | |
211 | return (ref $z1)->emake($r1 * $r2, $t1 + $t2); | |
212 | } | |
213 | ||
214 | # | |
215 | # (divide) | |
216 | # | |
217 | # Computes z1/z2. | |
218 | # | |
219 | sub divide { | |
220 | my ($z1, $z2, $inverted) = @_; | |
221 | my ($r1, $t1) = @{$z1->polar}; | |
222 | my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); | |
223 | unless (defined $inverted) { | |
224 | $z1->set_polar([$r1 / $r2, $t1 - $t2]); | |
225 | return $z1; | |
226 | } | |
227 | return $inverted ? | |
228 | (ref $z1)->emake($r2 / $r1, $t2 - $t1) : | |
229 | (ref $z1)->emake($r1 / $r2, $t1 - $t2); | |
230 | } | |
231 | ||
232 | # | |
233 | # (power) | |
234 | # | |
235 | # Computes z1**z2 = exp(z2 * log z1)). | |
236 | # | |
237 | sub power { | |
238 | my ($z1, $z2, $inverted) = @_; | |
239 | return exp($z1 * log $z2) if defined $inverted && $inverted; | |
240 | return exp($z2 * log $z1); | |
241 | } | |
242 | ||
243 | # | |
244 | # (spaceship) | |
245 | # | |
246 | # Computes z1 <=> z2. | |
247 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. | |
248 | # | |
249 | sub spaceship { | |
250 | my ($z1, $z2, $inverted) = @_; | |
251 | my ($re1, $im1) = @{$z1->cartesian}; | |
252 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); | |
253 | my $sgn = $inverted ? -1 : 1; | |
254 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
255 | return $sgn * ($im1 <=> $im2); | |
256 | } | |
257 | ||
258 | # | |
259 | # (negate) | |
260 | # | |
261 | # Computes -z. | |
262 | # | |
263 | sub negate { | |
264 | my ($z) = @_; | |
265 | if ($z->{c_dirty}) { | |
266 | my ($r, $t) = @{$z->polar}; | |
267 | return (ref $z)->emake($r, pi + $t); | |
268 | } | |
269 | my ($re, $im) = @{$z->cartesian}; | |
270 | return (ref $z)->make(-$re, -$im); | |
271 | } | |
272 | ||
273 | # | |
274 | # (conjugate) | |
275 | # | |
276 | # Compute complex's conjugate. | |
277 | # | |
278 | sub conjugate { | |
279 | my ($z) = @_; | |
280 | if ($z->{c_dirty}) { | |
281 | my ($r, $t) = @{$z->polar}; | |
282 | return (ref $z)->emake($r, -$t); | |
283 | } | |
284 | my ($re, $im) = @{$z->cartesian}; | |
285 | return (ref $z)->make($re, -$im); | |
286 | } | |
287 | ||
288 | # | |
289 | # (abs) | |
290 | # | |
291 | # Compute complex's norm (rho). | |
292 | # | |
293 | sub abs { | |
294 | my ($z) = @_; | |
295 | my ($r, $t) = @{$z->polar}; | |
296 | return abs($r); | |
297 | } | |
298 | ||
299 | # | |
300 | # arg | |
301 | # | |
302 | # Compute complex's argument (theta). | |
303 | # | |
304 | sub arg { | |
305 | my ($z) = @_; | |
306 | return 0 unless ref $z; | |
307 | my ($r, $t) = @{$z->polar}; | |
308 | return $t; | |
309 | } | |
310 | ||
311 | # | |
312 | # (sqrt) | |
313 | # | |
314 | # Compute sqrt(z) (positive only). | |
315 | # | |
316 | sub sqrt { | |
317 | my ($z) = @_; | |
318 | my ($r, $t) = @{$z->polar}; | |
319 | return (ref $z)->emake(sqrt($r), $t/2); | |
320 | } | |
321 | ||
322 | # | |
323 | # cbrt | |
324 | # | |
325 | # Compute cbrt(z) (cubic root, primary only). | |
326 | # | |
327 | sub cbrt { | |
328 | my ($z) = @_; | |
329 | return $z ** (1/3) unless ref $z; | |
330 | my ($r, $t) = @{$z->polar}; | |
331 | return (ref $z)->emake($r**(1/3), $t/3); | |
332 | } | |
333 | ||
334 | # | |
335 | # root | |
336 | # | |
337 | # Computes all nth root for z, returning an array whose size is n. | |
338 | # `n' must be a positive integer. | |
339 | # | |
340 | # The roots are given by (for k = 0..n-1): | |
341 | # | |
342 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
343 | # | |
344 | sub root { | |
345 | my ($z, $n) = @_; | |
346 | $n = int($n + 0.5); | |
347 | return undef unless $n > 0; | |
348 | my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); | |
349 | my @root; | |
350 | my $k; | |
351 | my $theta_inc = 2 * pi / $n; | |
352 | my $rho = $r ** (1/$n); | |
353 | my $theta; | |
354 | my $complex = ref($z) || $package; | |
355 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { | |
356 | push(@root, $complex->emake($rho, $theta)); | |
a0d0e21e | 357 | } |
66730be0 | 358 | return @root; |
a0d0e21e LW |
359 | } |
360 | ||
66730be0 RM |
361 | # |
362 | # Re | |
363 | # | |
364 | # Return Re(z). | |
365 | # | |
a0d0e21e | 366 | sub Re { |
66730be0 RM |
367 | my ($z) = @_; |
368 | return $z unless ref $z; | |
369 | my ($re, $im) = @{$z->cartesian}; | |
370 | return $re; | |
a0d0e21e LW |
371 | } |
372 | ||
66730be0 RM |
373 | # |
374 | # Im | |
375 | # | |
376 | # Return Im(z). | |
377 | # | |
a0d0e21e | 378 | sub Im { |
66730be0 RM |
379 | my ($z) = @_; |
380 | return 0 unless ref $z; | |
381 | my ($re, $im) = @{$z->cartesian}; | |
382 | return $im; | |
a0d0e21e LW |
383 | } |
384 | ||
66730be0 RM |
385 | # |
386 | # (exp) | |
387 | # | |
388 | # Computes exp(z). | |
389 | # | |
390 | sub exp { | |
391 | my ($z) = @_; | |
392 | my ($x, $y) = @{$z->cartesian}; | |
393 | return (ref $z)->emake(exp($x), $y); | |
394 | } | |
395 | ||
396 | # | |
397 | # (log) | |
398 | # | |
399 | # Compute log(z). | |
400 | # | |
401 | sub log { | |
402 | my ($z) = @_; | |
403 | my ($r, $t) = @{$z->polar}; | |
404 | return (ref $z)->make(log($r), $t); | |
405 | } | |
406 | ||
407 | # | |
408 | # log10 | |
409 | # | |
410 | # Compute log10(z). | |
411 | # | |
412 | sub log10 { | |
413 | my ($z) = @_; | |
414 | $log10 = log(10) unless defined $log10; | |
415 | return log($z) / $log10 unless ref $z; | |
416 | my ($r, $t) = @{$z->polar}; | |
417 | return (ref $z)->make(log($r) / $log10, $t / $log10); | |
418 | } | |
419 | ||
420 | # | |
421 | # logn | |
422 | # | |
423 | # Compute logn(z,n) = log(z) / log(n) | |
424 | # | |
425 | sub logn { | |
426 | my ($z, $n) = @_; | |
427 | my $logn = $logn{$n}; | |
428 | $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) | |
429 | return log($z) / log($n); | |
430 | } | |
431 | ||
432 | # | |
433 | # (cos) | |
434 | # | |
435 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
436 | # | |
437 | sub cos { | |
438 | my ($z) = @_; | |
439 | my ($x, $y) = @{$z->cartesian}; | |
440 | my $ey = exp($y); | |
441 | my $ey_1 = 1 / $ey; | |
442 | return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, sin($x) * ($ey_1 - $ey)/2); | |
443 | } | |
444 | ||
445 | # | |
446 | # (sin) | |
447 | # | |
448 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
449 | # | |
450 | sub sin { | |
451 | my ($z) = @_; | |
452 | my ($x, $y) = @{$z->cartesian}; | |
453 | my $ey = exp($y); | |
454 | my $ey_1 = 1 / $ey; | |
455 | return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, cos($x) * ($ey - $ey_1)/2); | |
456 | } | |
457 | ||
458 | # | |
459 | # tan | |
460 | # | |
461 | # Compute tan(z) = sin(z) / cos(z). | |
462 | # | |
463 | sub tan { | |
464 | my ($z) = @_; | |
465 | return sin($z) / cos($z); | |
466 | } | |
467 | ||
468 | # | |
469 | # cotan | |
470 | # | |
471 | # Computes cotan(z) = 1 / tan(z). | |
472 | # | |
473 | sub cotan { | |
474 | my ($z) = @_; | |
475 | return cos($z) / sin($z); | |
476 | } | |
477 | ||
478 | # | |
479 | # acos | |
480 | # | |
481 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
482 | # | |
483 | sub acos { | |
484 | my ($z) = @_; | |
485 | my $cz = $z*$z - 1; | |
486 | $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 | |
487 | return ~i * log($z + sqrt $cz); # ~i is -i | |
488 | } | |
489 | ||
490 | # | |
491 | # asin | |
492 | # | |
493 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
494 | # | |
495 | sub asin { | |
496 | my ($z) = @_; | |
497 | my $cz = 1 - $z*$z; | |
498 | $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 | |
499 | return ~i * log(i * $z + sqrt $cz); # ~i is -i | |
500 | } | |
501 | ||
502 | # | |
503 | # atan | |
504 | # | |
505 | # Computes the arc tagent atan(z) = i/2 log((i+z) / (i-z)). | |
506 | # | |
507 | sub atan { | |
508 | my ($z) = @_; | |
509 | return i/2 * log((i + $z) / (i - $z)); | |
a0d0e21e LW |
510 | } |
511 | ||
66730be0 RM |
512 | # |
513 | # acotan | |
514 | # | |
515 | # Computes the arc cotangent acotan(z) = -i/2 log((i+z) / (z-i)) | |
516 | # | |
517 | sub acotan { | |
518 | my ($z) = @_; | |
519 | return i/-2 * log((i + $z) / ($z - i)); | |
520 | } | |
521 | ||
522 | # | |
523 | # cosh | |
524 | # | |
525 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
526 | # | |
527 | sub cosh { | |
528 | my ($z) = @_; | |
529 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z); | |
530 | my $ex = exp($x); | |
531 | my $ex_1 = 1 / $ex; | |
532 | return ($ex + $ex_1)/2 unless ref $z; | |
533 | return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2); | |
534 | } | |
535 | ||
536 | # | |
537 | # sinh | |
538 | # | |
539 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
540 | # | |
541 | sub sinh { | |
542 | my ($z) = @_; | |
543 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z); | |
544 | my $ex = exp($x); | |
545 | my $ex_1 = 1 / $ex; | |
546 | return ($ex - $ex_1)/2 unless ref $z; | |
547 | return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2); | |
548 | } | |
549 | ||
550 | # | |
551 | # tanh | |
552 | # | |
553 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
554 | # | |
555 | sub tanh { | |
556 | my ($z) = @_; | |
557 | return sinh($z) / cosh($z); | |
558 | } | |
559 | ||
560 | # | |
561 | # cotanh | |
562 | # | |
563 | # Comptutes the hyperbolic cotangent cotanh(z) = cosh(z) / sinh(z). | |
564 | # | |
565 | sub cotanh { | |
566 | my ($z) = @_; | |
567 | return cosh($z) / sinh($z); | |
568 | } | |
569 | ||
570 | # | |
571 | # acosh | |
572 | # | |
573 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). | |
574 | # | |
575 | sub acosh { | |
576 | my ($z) = @_; | |
577 | my $cz = $z*$z - 1; | |
578 | $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 | |
579 | return log($z + sqrt $cz); | |
580 | } | |
581 | ||
582 | # | |
583 | # asinh | |
584 | # | |
585 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
586 | # | |
587 | sub asinh { | |
588 | my ($z) = @_; | |
589 | my $cz = $z*$z + 1; # Already complex if <0 | |
590 | return log($z + sqrt $cz); | |
591 | } | |
592 | ||
593 | # | |
594 | # atanh | |
595 | # | |
596 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
597 | # | |
598 | sub atanh { | |
599 | my ($z) = @_; | |
600 | my $cz = (1 + $z) / (1 - $z); | |
601 | $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 | |
602 | return log($cz) / 2; | |
603 | } | |
604 | ||
605 | # | |
606 | # acotanh | |
607 | # | |
608 | # Computes the arc hyperbolic cotangent acotanh(z) = 1/2 log((1+z) / (z-1)). | |
609 | # | |
610 | sub acotanh { | |
611 | my ($z) = @_; | |
612 | my $cz = (1 + $z) / ($z - 1); | |
613 | $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 | |
614 | return log($cz) / 2; | |
615 | } | |
616 | ||
617 | # | |
618 | # (atan2) | |
619 | # | |
620 | # Compute atan(z1/z2). | |
621 | # | |
622 | sub atan2 { | |
623 | my ($z1, $z2, $inverted) = @_; | |
624 | my ($re1, $im1) = @{$z1->cartesian}; | |
625 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); | |
626 | my $tan; | |
627 | if (defined $inverted && $inverted) { # atan(z2/z1) | |
628 | return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; | |
629 | $tan = $z2 / $z1; | |
630 | } else { | |
631 | return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; | |
632 | $tan = $z1 / $z2; | |
633 | } | |
634 | return atan($tan); | |
635 | } | |
636 | ||
637 | # | |
638 | # display_format | |
639 | # ->display_format | |
640 | # | |
641 | # Set (fetch if no argument) display format for all complex numbers that | |
642 | # don't happen to have overrriden it via ->display_format | |
643 | # | |
644 | # When called as a method, this actually sets the display format for | |
645 | # the current object. | |
646 | # | |
647 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
648 | # letter is used actually, so the type can be fully spelled out for clarity. | |
649 | # | |
650 | sub display_format { | |
651 | my $self = shift; | |
652 | my $format = undef; | |
653 | ||
654 | if (ref $self) { # Called as a method | |
655 | $format = shift; | |
656 | } else { # Regular procedure call | |
657 | $format = $self; | |
658 | undef $self; | |
659 | } | |
660 | ||
661 | if (defined $self) { | |
662 | return defined $self->{display} ? $self->{display} : $display | |
663 | unless defined $format; | |
664 | return $self->{display} = $format; | |
665 | } | |
666 | ||
667 | return $display unless defined $format; | |
668 | return $display = $format; | |
669 | } | |
670 | ||
671 | # | |
672 | # (stringify) | |
673 | # | |
674 | # Show nicely formatted complex number under its cartesian or polar form, | |
675 | # depending on the current display format: | |
676 | # | |
677 | # . If a specific display format has been recorded for this object, use it. | |
678 | # . Otherwise, use the generic current default for all complex numbers, | |
679 | # which is a package global variable. | |
680 | # | |
a0d0e21e | 681 | sub stringify { |
66730be0 RM |
682 | my ($z) = shift; |
683 | my $format; | |
684 | ||
685 | $format = $display; | |
686 | $format = $z->{display} if defined $z->{display}; | |
687 | ||
688 | return $z->stringify_polar if $format =~ /^p/i; | |
689 | return $z->stringify_cartesian; | |
690 | } | |
691 | ||
692 | # | |
693 | # ->stringify_cartesian | |
694 | # | |
695 | # Stringify as a cartesian representation 'a+bi'. | |
696 | # | |
697 | sub stringify_cartesian { | |
698 | my $z = shift; | |
699 | my ($x, $y) = @{$z->cartesian}; | |
700 | my ($re, $im); | |
701 | ||
55497cff | 702 | $x = int($x + ($x < 0 ? -1 : 1) * 1e-14) |
703 | if int(abs($x)) != int(abs($x) + 1e-14); | |
704 | $y = int($y + ($y < 0 ? -1 : 1) * 1e-14) | |
705 | if int(abs($y)) != int(abs($y) + 1e-14); | |
706 | ||
66730be0 RM |
707 | $re = "$x" if abs($x) >= 1e-14; |
708 | if ($y == 1) { $im = 'i' } | |
709 | elsif ($y == -1) { $im = '-i' } | |
40da2db3 | 710 | elsif (abs($y) >= 1e-14) { $im = $y . "i" } |
66730be0 RM |
711 | |
712 | my $str; | |
713 | $str = $re if defined $re; | |
714 | $str .= "+$im" if defined $im; | |
715 | $str =~ s/\+-/-/; | |
716 | $str =~ s/^\+//; | |
717 | $str = '0' unless $str; | |
718 | ||
719 | return $str; | |
720 | } | |
721 | ||
722 | # | |
723 | # ->stringify_polar | |
724 | # | |
725 | # Stringify as a polar representation '[r,t]'. | |
726 | # | |
727 | sub stringify_polar { | |
728 | my $z = shift; | |
729 | my ($r, $t) = @{$z->polar}; | |
730 | my $theta; | |
731 | ||
732 | return '[0,0]' if $r <= 1e-14; | |
a0d0e21e | 733 | |
66730be0 RM |
734 | my $tpi = 2 * pi; |
735 | my $nt = $t / $tpi; | |
736 | $nt = ($nt - int($nt)) * $tpi; | |
737 | $nt += $tpi if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 738 | |
66730be0 RM |
739 | if (abs($nt) <= 1e-14) { $theta = 0 } |
740 | elsif (abs(pi-$nt) <= 1e-14) { $theta = 'pi' } | |
741 | ||
55497cff | 742 | if (defined $theta) { |
743 | $r = int($r + ($r < 0 ? -1 : 1) * 1e-14) | |
744 | if int(abs($r)) != int(abs($r) + 1e-14); | |
745 | $theta = int($theta + ($theta < 0 ? -1 : 1) * 1e-14) | |
746 | if int(abs($theta)) != int(abs($theta) + 1e-14); | |
747 | return "\[$r,$theta\]"; | |
748 | } | |
66730be0 RM |
749 | |
750 | # | |
751 | # Okay, number is not a real. Try to identify pi/n and friends... | |
752 | # | |
753 | ||
754 | $nt -= $tpi if $nt > pi; | |
755 | my ($n, $k, $kpi); | |
756 | ||
757 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { | |
758 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); | |
759 | if (abs($kpi/$n - $nt) <= 1e-14) { | |
760 | $theta = ($nt < 0 ? '-':'').($k == 1 ? 'pi':"${k}pi").'/'.abs($n); | |
761 | last; | |
762 | } | |
763 | } | |
764 | ||
765 | $theta = $nt unless defined $theta; | |
766 | ||
55497cff | 767 | $r = int($r + ($r < 0 ? -1 : 1) * 1e-14) |
768 | if int(abs($r)) != int(abs($r) + 1e-14); | |
769 | $theta = int($theta + ($theta < 0 ? -1 : 1) * 1e-14) | |
770 | if int(abs($theta)) != int(abs($theta) + 1e-14); | |
771 | ||
66730be0 | 772 | return "\[$r,$theta\]"; |
a0d0e21e | 773 | } |
a5f75d66 AD |
774 | |
775 | 1; | |
776 | __END__ | |
777 | ||
778 | =head1 NAME | |
779 | ||
66730be0 | 780 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
781 | |
782 | =head1 SYNOPSIS | |
783 | ||
66730be0 RM |
784 | use Math::Complex; |
785 | $z = Math::Complex->make(5, 6); | |
786 | $t = 4 - 3*i + $z; | |
787 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
788 | |
789 | =head1 DESCRIPTION | |
790 | ||
66730be0 RM |
791 | This package lets you create and manipulate complex numbers. By default, |
792 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
793 | full complex support, along with a full set of mathematical functions | |
794 | typically associated with and/or extended to complex numbers. | |
795 | ||
796 | If you wonder what complex numbers are, they were invented to be able to solve | |
797 | the following equation: | |
798 | ||
799 | x*x = -1 | |
800 | ||
801 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
802 | I<i> usually denotes an intensity, but the name does not matter). The number | |
803 | I<i> is a pure I<imaginary> number. | |
804 | ||
805 | The arithmetics with pure imaginary numbers works just like you would expect | |
806 | it with real numbers... you just have to remember that | |
807 | ||
808 | i*i = -1 | |
809 | ||
810 | so you have: | |
811 | ||
812 | 5i + 7i = i * (5 + 7) = 12i | |
813 | 4i - 3i = i * (4 - 3) = i | |
814 | 4i * 2i = -8 | |
815 | 6i / 2i = 3 | |
816 | 1 / i = -i | |
817 | ||
818 | Complex numbers are numbers that have both a real part and an imaginary | |
819 | part, and are usually noted: | |
820 | ||
821 | a + bi | |
822 | ||
823 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
824 | arithmetic with complex numbers is straightforward. You have to | |
825 | keep track of the real and the imaginary parts, but otherwise the | |
826 | rules used for real numbers just apply: | |
827 | ||
828 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
829 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
830 | ||
831 | A graphical representation of complex numbers is possible in a plane | |
832 | (also called the I<complex plane>, but it's really a 2D plane). | |
833 | The number | |
834 | ||
835 | z = a + bi | |
836 | ||
837 | is the point whose coordinates are (a, b). Actually, it would | |
838 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
839 | of two complex numbers is a vectorial addition. | |
840 | ||
841 | Since there is a bijection between a point in the 2D plane and a complex | |
842 | number (i.e. the mapping is unique and reciprocal), a complex number | |
843 | can also be uniquely identified with polar coordinates: | |
844 | ||
845 | [rho, theta] | |
846 | ||
847 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
848 | the vector and the I<x> axis. There is a notation for this using the | |
849 | exponential form, which is: | |
850 | ||
851 | rho * exp(i * theta) | |
852 | ||
853 | where I<i> is the famous imaginary number introduced above. Conversion | |
854 | between this form and the cartesian form C<a + bi> is immediate: | |
855 | ||
856 | a = rho * cos(theta) | |
857 | b = rho * sin(theta) | |
858 | ||
859 | which is also expressed by this formula: | |
860 | ||
861 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) | |
862 | ||
863 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
864 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
865 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
866 | noted C<abs(z)>. | |
867 | ||
868 | The polar notation (also known as the trigonometric | |
869 | representation) is much more handy for performing multiplications and | |
870 | divisions of complex numbers, whilst the cartesian notation is better | |
871 | suited for additions and substractions. Real numbers are on the I<x> | |
872 | axis, and therefore I<theta> is zero. | |
873 | ||
874 | All the common operations that can be performed on a real number have | |
875 | been defined to work on complex numbers as well, and are merely | |
876 | I<extensions> of the operations defined on real numbers. This means | |
877 | they keep their natural meaning when there is no imaginary part, provided | |
878 | the number is within their definition set. | |
879 | ||
880 | For instance, the C<sqrt> routine which computes the square root of | |
881 | its argument is only defined for positive real numbers and yields a | |
882 | positive real number (it is an application from B<R+> to B<R+>). | |
883 | If we allow it to return a complex number, then it can be extended to | |
884 | negative real numbers to become an application from B<R> to B<C> (the | |
885 | set of complex numbers): | |
886 | ||
887 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
888 | ||
889 | It can also be extended to be an application from B<C> to B<C>, | |
890 | whilst its restriction to B<R> behaves as defined above by using | |
891 | the following definition: | |
892 | ||
893 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
894 | ||
895 | Indeed, a negative real number can be noted C<[x,pi]> | |
896 | (the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a | |
897 | negative number) | |
898 | and the above definition states that | |
899 | ||
900 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
901 | ||
902 | which is exactly what we had defined for negative real numbers above. | |
a5f75d66 | 903 | |
66730be0 RM |
904 | All the common mathematical functions defined on real numbers that |
905 | are extended to complex numbers share that same property of working | |
906 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
907 | be called an extension, would it?). | |
a5f75d66 | 908 | |
66730be0 RM |
909 | A I<new> operation possible on a complex number that is |
910 | the identity for real numbers is called the I<conjugate>, and is noted | |
911 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 912 | |
66730be0 RM |
913 | z = a + bi |
914 | ~z = a - bi | |
a5f75d66 | 915 | |
66730be0 | 916 | Simple... Now look: |
a5f75d66 | 917 | |
66730be0 | 918 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 919 | |
66730be0 RM |
920 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
921 | distance to the origin, also known as: | |
a5f75d66 | 922 | |
66730be0 | 923 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 924 | |
66730be0 RM |
925 | so |
926 | ||
927 | z * ~z = abs(z) ** 2 | |
928 | ||
929 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
930 | ||
931 | a * a = abs(a) ** 2 | |
932 | ||
933 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
934 | for the absolute value). This example explains why the norm of C<z> is | |
935 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
936 | is the regular C<abs> we know when the complex number actually has no | |
937 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
938 | notation for the norm. | |
939 | ||
940 | =head1 OPERATIONS | |
941 | ||
942 | Given the following notations: | |
943 | ||
944 | z1 = a + bi = r1 * exp(i * t1) | |
945 | z2 = c + di = r2 * exp(i * t2) | |
946 | z = <any complex or real number> | |
947 | ||
948 | the following (overloaded) operations are supported on complex numbers: | |
949 | ||
950 | z1 + z2 = (a + c) + i(b + d) | |
951 | z1 - z2 = (a - c) + i(b - d) | |
952 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
953 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
954 | z1 ** z2 = exp(z2 * log z1) | |
955 | ~z1 = a - bi | |
956 | abs(z1) = r1 = sqrt(a*a + b*b) | |
957 | sqrt(z1) = sqrt(r1) * exp(i * t1/2) | |
958 | exp(z1) = exp(a) * exp(i * b) | |
959 | log(z1) = log(r1) + i*t1 | |
960 | sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) | |
961 | cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) | |
962 | abs(z1) = r1 | |
963 | atan2(z1, z2) = atan(z1/z2) | |
964 | ||
965 | The following extra operations are supported on both real and complex | |
966 | numbers: | |
967 | ||
968 | Re(z) = a | |
969 | Im(z) = b | |
970 | arg(z) = t | |
971 | ||
972 | cbrt(z) = z ** (1/3) | |
973 | log10(z) = log(z) / log(10) | |
974 | logn(z, n) = log(z) / log(n) | |
975 | ||
976 | tan(z) = sin(z) / cos(z) | |
977 | cotan(z) = 1 / tan(z) | |
978 | ||
979 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
980 | acos(z) = -i * log(z + sqrt(z*z-1)) | |
981 | atan(z) = i/2 * log((i+z) / (i-z)) | |
982 | acotan(z) = -i/2 * log((i+z) / (z-i)) | |
983 | ||
984 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
985 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
986 | tanh(z) = sinh(z) / cosh(z) | |
987 | cotanh(z) = 1 / tanh(z) | |
988 | ||
989 | asinh(z) = log(z + sqrt(z*z+1)) | |
990 | acosh(z) = log(z + sqrt(z*z-1)) | |
991 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
992 | acotanh(z) = 1/2 * log((1+z) / (z-1)) | |
993 | ||
994 | The I<root> function is available to compute all the I<n>th | |
995 | roots of some complex, where I<n> is a strictly positive integer. | |
996 | There are exactly I<n> such roots, returned as a list. Getting the | |
997 | number mathematicians call C<j> such that: | |
998 | ||
999 | 1 + j + j*j = 0; | |
1000 | ||
1001 | is a simple matter of writing: | |
1002 | ||
1003 | $j = ((root(1, 3))[1]; | |
1004 | ||
1005 | The I<k>th root for C<z = [r,t]> is given by: | |
1006 | ||
1007 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1008 | ||
1009 | The I<spaceshift> operation is also defined. In order to ensure its | |
1010 | restriction to real numbers is conform to what you would expect, the | |
1011 | comparison is run on the real part of the complex number first, | |
1012 | and imaginary parts are compared only when the real parts match. | |
1013 | ||
1014 | =head1 CREATION | |
1015 | ||
1016 | To create a complex number, use either: | |
1017 | ||
1018 | $z = Math::Complex->make(3, 4); | |
1019 | $z = cplx(3, 4); | |
1020 | ||
1021 | if you know the cartesian form of the number, or | |
1022 | ||
1023 | $z = 3 + 4*i; | |
1024 | ||
1025 | if you like. To create a number using the trigonometric form, use either: | |
1026 | ||
1027 | $z = Math::Complex->emake(5, pi/3); | |
1028 | $x = cplxe(5, pi/3); | |
1029 | ||
1030 | instead. The first argument is the modulus, the second is the angle (in radians). | |
1031 | (Mnmemonic: C<e> is used as a notation for complex numbers in the trigonometric | |
1032 | form). | |
1033 | ||
1034 | It is possible to write: | |
1035 | ||
1036 | $x = cplxe(-3, pi/4); | |
1037 | ||
1038 | but that will be silently converted into C<[3,-3pi/4]>, since the modulus | |
1039 | must be positive (it represents the distance to the origin in the complex | |
1040 | plane). | |
1041 | ||
1042 | =head1 STRINGIFICATION | |
1043 | ||
1044 | When printed, a complex number is usually shown under its cartesian | |
1045 | form I<a+bi>, but there are legitimate cases where the polar format | |
1046 | I<[r,t]> is more appropriate. | |
1047 | ||
1048 | By calling the routine C<Math::Complex::display_format> and supplying either | |
1049 | C<"polar"> or C<"cartesian">, you override the default display format, | |
1050 | which is C<"cartesian">. Not supplying any argument returns the current | |
1051 | setting. | |
1052 | ||
1053 | This default can be overridden on a per-number basis by calling the | |
1054 | C<display_format> method instead. As before, not supplying any argument | |
1055 | returns the current display format for this number. Otherwise whatever you | |
1056 | specify will be the new display format for I<this> particular number. | |
1057 | ||
1058 | For instance: | |
1059 | ||
1060 | use Math::Complex; | |
1061 | ||
1062 | Math::Complex::display_format('polar'); | |
1063 | $j = ((root(1, 3))[1]; | |
1064 | print "j = $j\n"; # Prints "j = [1,2pi/3] | |
1065 | $j->display_format('cartesian'); | |
1066 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1067 | ||
1068 | The polar format attempts to emphasize arguments like I<k*pi/n> | |
1069 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]). | |
1070 | ||
1071 | =head1 USAGE | |
1072 | ||
1073 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1074 | is simple and almost transparent. | |
1075 | ||
1076 | Here are some examples: | |
1077 | ||
1078 | use Math::Complex; | |
1079 | ||
1080 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1081 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1082 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1083 | ||
1084 | $z = -16 + 0*i; # Force it to be a complex | |
1085 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1086 | ||
1087 | $k = exp(i * 2*pi/3); | |
1088 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 AD |
1089 | |
1090 | =head1 BUGS | |
1091 | ||
66730be0 RM |
1092 | Saying C<use Math::Complex;> exports many mathematical routines in the caller |
1093 | environment. This is construed as a feature by the Author, actually... ;-) | |
1094 | ||
1095 | The code is not optimized for speed, although we try to use the cartesian | |
1096 | form for addition-like operators and the trigonometric form for all | |
1097 | multiplication-like operators. | |
1098 | ||
1099 | The arg() routine does not ensure the angle is within the range [-pi,+pi] | |
1100 | (a side effect caused by multiplication and division using the trigonometric | |
1101 | representation). | |
a5f75d66 | 1102 | |
66730be0 RM |
1103 | All routines expect to be given real or complex numbers. Don't attempt to |
1104 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1105 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1106 | |
66730be0 | 1107 | =head1 AUTHOR |
a5f75d66 | 1108 | |
66730be0 | 1109 | Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> |