This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Re: [REPATCH MANIFEST ext/B/t/o.t] Add tests for O
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
be3c0a43 3 * Copyright (c) 1991-2002, Larry Wall
84d4ea48
JH
4 *
5 * You may distribute under the terms of either the GNU General Public
6 * License or the Artistic License, as specified in the README file.
7 *
8 */
9
10/*
11 * ...they shuffled back towards the rear of the line. 'No, not at the
12 * rear!' the slave-driver shouted. 'Three files up. And stay there...
13 */
14
15#include "EXTERN.h"
16#define PERL_IN_PP_SORT_C
17#include "perl.h"
18
42165d27
VK
19#if defined(UNDER_CE)
20/* looks like 'small' is reserved word for WINCE (or somesuch)*/
21#define small xsmall
22#endif
23
84d4ea48
JH
24static I32 sortcv(pTHX_ SV *a, SV *b);
25static I32 sortcv_stacked(pTHX_ SV *a, SV *b);
26static I32 sortcv_xsub(pTHX_ SV *a, SV *b);
27static I32 sv_ncmp(pTHX_ SV *a, SV *b);
28static I32 sv_i_ncmp(pTHX_ SV *a, SV *b);
29static I32 amagic_ncmp(pTHX_ SV *a, SV *b);
30static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b);
31static I32 amagic_cmp(pTHX_ SV *a, SV *b);
32static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b);
33
34#define sv_cmp_static Perl_sv_cmp
35#define sv_cmp_locale_static Perl_sv_cmp_locale
36
045ac317
RGS
37#define SORTHINTS(hintsv) \
38 (((hintsv) = GvSV(gv_fetchpv("sort::hints", GV_ADDMULTI, SVt_IV))), \
39 (SvIOK(hintsv) ? ((I32)SvIV(hintsv)) : 0))
84d4ea48 40
c53fc8a6
JH
41#ifndef SMALLSORT
42#define SMALLSORT (200)
43#endif
44
84d4ea48
JH
45/*
46 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
47 *
48 * The original code was written in conjunction with BSD Computer Software
49 * Research Group at University of California, Berkeley.
50 *
51 * See also: "Optimistic Merge Sort" (SODA '92)
52 *
53 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
54 *
55 * The code can be distributed under the same terms as Perl itself.
56 *
57 */
58
84d4ea48
JH
59
60typedef char * aptr; /* pointer for arithmetic on sizes */
61typedef SV * gptr; /* pointers in our lists */
62
63/* Binary merge internal sort, with a few special mods
64** for the special perl environment it now finds itself in.
65**
66** Things that were once options have been hotwired
67** to values suitable for this use. In particular, we'll always
68** initialize looking for natural runs, we'll always produce stable
69** output, and we'll always do Peter McIlroy's binary merge.
70*/
71
72/* Pointer types for arithmetic and storage and convenience casts */
73
74#define APTR(P) ((aptr)(P))
75#define GPTP(P) ((gptr *)(P))
76#define GPPP(P) ((gptr **)(P))
77
78
79/* byte offset from pointer P to (larger) pointer Q */
80#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
81
82#define PSIZE sizeof(gptr)
83
84/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
85
86#ifdef PSHIFT
87#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
88#define PNBYTE(N) ((N) << (PSHIFT))
89#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
90#else
91/* Leave optimization to compiler */
92#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
93#define PNBYTE(N) ((N) * (PSIZE))
94#define PINDEX(P, N) (GPTP(P) + (N))
95#endif
96
97/* Pointer into other corresponding to pointer into this */
98#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
99
100#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
101
102
103/* Runs are identified by a pointer in the auxilliary list.
104** The pointer is at the start of the list,
105** and it points to the start of the next list.
106** NEXT is used as an lvalue, too.
107*/
108
109#define NEXT(P) (*GPPP(P))
110
111
112/* PTHRESH is the minimum number of pairs with the same sense to justify
113** checking for a run and extending it. Note that PTHRESH counts PAIRS,
114** not just elements, so PTHRESH == 8 means a run of 16.
115*/
116
117#define PTHRESH (8)
118
119/* RTHRESH is the number of elements in a run that must compare low
120** to the low element from the opposing run before we justify
121** doing a binary rampup instead of single stepping.
122** In random input, N in a row low should only happen with
123** probability 2^(1-N), so we can risk that we are dealing
124** with orderly input without paying much when we aren't.
125*/
126
127#define RTHRESH (6)
128
129
130/*
131** Overview of algorithm and variables.
132** The array of elements at list1 will be organized into runs of length 2,
133** or runs of length >= 2 * PTHRESH. We only try to form long runs when
134** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
135**
136** Unless otherwise specified, pair pointers address the first of two elements.
137**
138** b and b+1 are a pair that compare with sense ``sense''.
139** b is the ``bottom'' of adjacent pairs that might form a longer run.
140**
141** p2 parallels b in the list2 array, where runs are defined by
142** a pointer chain.
143**
144** t represents the ``top'' of the adjacent pairs that might extend
145** the run beginning at b. Usually, t addresses a pair
146** that compares with opposite sense from (b,b+1).
147** However, it may also address a singleton element at the end of list1,
148** or it may be equal to ``last'', the first element beyond list1.
149**
150** r addresses the Nth pair following b. If this would be beyond t,
151** we back it off to t. Only when r is less than t do we consider the
152** run long enough to consider checking.
153**
154** q addresses a pair such that the pairs at b through q already form a run.
155** Often, q will equal b, indicating we only are sure of the pair itself.
156** However, a search on the previous cycle may have revealed a longer run,
157** so q may be greater than b.
158**
159** p is used to work back from a candidate r, trying to reach q,
160** which would mean b through r would be a run. If we discover such a run,
161** we start q at r and try to push it further towards t.
162** If b through r is NOT a run, we detect the wrong order at (p-1,p).
163** In any event, after the check (if any), we have two main cases.
164**
165** 1) Short run. b <= q < p <= r <= t.
166** b through q is a run (perhaps trivial)
167** q through p are uninteresting pairs
168** p through r is a run
169**
170** 2) Long run. b < r <= q < t.
171** b through q is a run (of length >= 2 * PTHRESH)
172**
173** Note that degenerate cases are not only possible, but likely.
174** For example, if the pair following b compares with opposite sense,
175** then b == q < p == r == t.
176*/
177
178
957d8989 179static IV
84d4ea48
JH
180dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
181{
957d8989 182 I32 sense;
84d4ea48
JH
183 register gptr *b, *p, *q, *t, *p2;
184 register gptr c, *last, *r;
185 gptr *savep;
957d8989 186 IV runs = 0;
84d4ea48
JH
187
188 b = list1;
189 last = PINDEX(b, nmemb);
190 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
191 for (p2 = list2; b < last; ) {
192 /* We just started, or just reversed sense.
193 ** Set t at end of pairs with the prevailing sense.
194 */
195 for (p = b+2, t = p; ++p < last; t = ++p) {
196 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
197 }
198 q = b;
199 /* Having laid out the playing field, look for long runs */
200 do {
201 p = r = b + (2 * PTHRESH);
202 if (r >= t) p = r = t; /* too short to care about */
203 else {
204 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
205 ((p -= 2) > q));
206 if (p <= q) {
207 /* b through r is a (long) run.
208 ** Extend it as far as possible.
209 */
210 p = q = r;
211 while (((p += 2) < t) &&
212 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
213 r = p = q + 2; /* no simple pairs, no after-run */
214 }
215 }
216 if (q > b) { /* run of greater than 2 at b */
217 savep = p;
218 p = q += 2;
219 /* pick up singleton, if possible */
220 if ((p == t) &&
221 ((t + 1) == last) &&
222 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
223 savep = r = p = q = last;
957d8989 224 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48
JH
225 if (sense) while (b < --p) {
226 c = *b;
227 *b++ = *p;
228 *p = c;
229 }
230 p = savep;
231 }
232 while (q < p) { /* simple pairs */
957d8989 233 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48
JH
234 if (sense) {
235 c = *q++;
236 *(q-1) = *q;
237 *q++ = c;
238 } else q += 2;
239 }
240 if (((b = p) == t) && ((t+1) == last)) {
957d8989 241 NEXT(p2) = p2 + 1; ++runs;
84d4ea48
JH
242 b++;
243 }
244 q = r;
245 } while (b < t);
246 sense = !sense;
247 }
957d8989 248 return runs;
84d4ea48
JH
249}
250
251
3fe0b9a9 252/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 253 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 254 * on others. The most likely explanation was platform-specific
957d8989
JL
255 * differences in cache sizes and relative speeds.
256 *
257 * The quicksort divide-and-conquer algorithm guarantees that, as the
258 * problem is subdivided into smaller and smaller parts, the parts
259 * fit into smaller (and faster) caches. So it doesn't matter how
260 * many levels of cache exist, quicksort will "find" them, and,
261 * as long as smaller is faster, take advanatge of them.
262 *
3fe0b9a9 263 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
264 * Suppose we have five runs (each typically of length 2 after dynprep).
265 *
266 * pass base aux
267 * 0 1 2 3 4 5
268 * 1 12 34 5
269 * 2 1234 5
270 * 3 12345
271 * 4 12345
272 *
273 * Adjacent pairs are merged in "grand sweeps" through the input.
274 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
275 * runs 3 and 4 are merged and the runs from run 5 have been copied.
276 * The only cache that matters is one large enough to hold *all* the input.
277 * On some platforms, this may be many times slower than smaller caches.
278 *
279 * The following pseudo-code uses the same basic merge algorithm,
280 * but in a divide-and-conquer way.
281 *
282 * # merge $runs runs at offset $offset of list $list1 into $list2.
283 * # all unmerged runs ($runs == 1) originate in list $base.
284 * sub mgsort2 {
285 * my ($offset, $runs, $base, $list1, $list2) = @_;
286 *
287 * if ($runs == 1) {
288 * if ($list1 is $base) copy run to $list2
289 * return offset of end of list (or copy)
290 * } else {
291 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
292 * mgsort2($off2, $runs/2, $base, $list2, $list1)
293 * merge the adjacent runs at $offset of $list1 into $list2
294 * return the offset of the end of the merged runs
295 * }
296 * }
297 * mgsort2(0, $runs, $base, $aux, $base);
298 *
299 * For our 5 runs, the tree of calls looks like
300 *
301 * 5
302 * 3 2
303 * 2 1 1 1
304 * 1 1
305 *
306 * 1 2 3 4 5
307 *
308 * and the corresponding activity looks like
309 *
310 * copy runs 1 and 2 from base to aux
311 * merge runs 1 and 2 from aux to base
312 * (run 3 is where it belongs, no copy needed)
313 * merge runs 12 and 3 from base to aux
314 * (runs 4 and 5 are where they belong, no copy needed)
315 * merge runs 4 and 5 from base to aux
316 * merge runs 123 and 45 from aux to base
317 *
318 * Note that we merge runs 1 and 2 immediately after copying them,
319 * while they are still likely to be in fast cache. Similarly,
320 * run 3 is merged with run 12 while it still may be lingering in cache.
321 * This implementation should therefore enjoy much of the cache-friendly
322 * behavior that quicksort does. In addition, it does less copying
323 * than the original mergesort implementation (only runs 1 and 2 are copied)
324 * and the "balancing" of merges is better (merged runs comprise more nearly
325 * equal numbers of original runs).
326 *
327 * The actual cache-friendly implementation will use a pseudo-stack
328 * to avoid recursion, and will unroll processing of runs of length 2,
329 * but it is otherwise similar to the recursive implementation.
957d8989
JL
330 */
331
332typedef struct {
333 IV offset; /* offset of 1st of 2 runs at this level */
334 IV runs; /* how many runs must be combined into 1 */
335} off_runs; /* pseudo-stack element */
336
337STATIC void
3fe0b9a9 338S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp)
957d8989
JL
339{
340 IV i, run, runs, offset;
341 I32 sense, level;
342 int iwhich;
343 register gptr *f1, *f2, *t, *b, *p, *tp2, *l1, *l2, *q;
344 gptr *aux, *list1, *list2;
345 gptr *p1;
346 gptr small[SMALLSORT];
347 gptr *which[3];
348 off_runs stack[60], *stackp;
349
350 if (nmemb <= 1) return; /* sorted trivially */
351 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
352 else { New(799,aux,nmemb,gptr); } /* allocate auxilliary array */
353 level = 0;
354 stackp = stack;
355 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
356 stackp->offset = offset = 0;
357 which[0] = which[2] = base;
358 which[1] = aux;
359 for (;;) {
360 /* On levels where both runs have be constructed (stackp->runs == 0),
361 * merge them, and note the offset of their end, in case the offset
362 * is needed at the next level up. Hop up a level, and,
363 * as long as stackp->runs is 0, keep merging.
364 */
365 if ((runs = stackp->runs) == 0) {
366 iwhich = level & 1;
367 list1 = which[iwhich]; /* area where runs are now */
368 list2 = which[++iwhich]; /* area for merged runs */
369 do {
370 offset = stackp->offset;
371 f1 = p1 = list1 + offset; /* start of first run */
372 p = tp2 = list2 + offset; /* where merged run will go */
373 t = NEXT(p); /* where first run ends */
374 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
375 t = NEXT(t); /* where second runs ends */
376 l2 = POTHER(t, list2, list1); /* ... on the other side */
377 offset = PNELEM(list2, t);
378 while (f1 < l1 && f2 < l2) {
379 /* If head 1 is larger than head 2, find ALL the elements
380 ** in list 2 strictly less than head1, write them all,
381 ** then head 1. Then compare the new heads, and repeat,
382 ** until one or both lists are exhausted.
383 **
384 ** In all comparisons (after establishing
385 ** which head to merge) the item to merge
386 ** (at pointer q) is the first operand of
387 ** the comparison. When we want to know
388 ** if ``q is strictly less than the other'',
389 ** we can't just do
390 ** cmp(q, other) < 0
391 ** because stability demands that we treat equality
392 ** as high when q comes from l2, and as low when
393 ** q was from l1. So we ask the question by doing
394 ** cmp(q, other) <= sense
395 ** and make sense == 0 when equality should look low,
396 ** and -1 when equality should look high.
397 */
398
399
400 if (cmp(aTHX_ *f1, *f2) <= 0) {
401 q = f2; b = f1; t = l1;
402 sense = -1;
403 } else {
404 q = f1; b = f2; t = l2;
405 sense = 0;
406 }
407
408
409 /* ramp up
410 **
411 ** Leave t at something strictly
412 ** greater than q (or at the end of the list),
413 ** and b at something strictly less than q.
414 */
415 for (i = 1, run = 0 ;;) {
416 if ((p = PINDEX(b, i)) >= t) {
417 /* off the end */
418 if (((p = PINDEX(t, -1)) > b) &&
419 (cmp(aTHX_ *q, *p) <= sense))
420 t = p;
421 else b = p;
422 break;
423 } else if (cmp(aTHX_ *q, *p) <= sense) {
424 t = p;
425 break;
426 } else b = p;
427 if (++run >= RTHRESH) i += i;
428 }
429
430
431 /* q is known to follow b and must be inserted before t.
432 ** Increment b, so the range of possibilities is [b,t).
433 ** Round binary split down, to favor early appearance.
434 ** Adjust b and t until q belongs just before t.
435 */
436
437 b++;
438 while (b < t) {
439 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
440 if (cmp(aTHX_ *q, *p) <= sense) {
441 t = p;
442 } else b = p + 1;
443 }
444
445
446 /* Copy all the strictly low elements */
447
448 if (q == f1) {
449 FROMTOUPTO(f2, tp2, t);
450 *tp2++ = *f1++;
451 } else {
452 FROMTOUPTO(f1, tp2, t);
453 *tp2++ = *f2++;
454 }
455 }
456
457
458 /* Run out remaining list */
459 if (f1 == l1) {
460 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
461 } else FROMTOUPTO(f1, tp2, l1);
462 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
463
464 if (--level == 0) goto done;
465 --stackp;
466 t = list1; list1 = list2; list2 = t; /* swap lists */
467 } while ((runs = stackp->runs) == 0);
468 }
469
470
471 stackp->runs = 0; /* current run will finish level */
472 /* While there are more than 2 runs remaining,
473 * turn them into exactly 2 runs (at the "other" level),
474 * each made up of approximately half the runs.
475 * Stack the second half for later processing,
476 * and set about producing the first half now.
477 */
478 while (runs > 2) {
479 ++level;
480 ++stackp;
481 stackp->offset = offset;
482 runs -= stackp->runs = runs / 2;
483 }
484 /* We must construct a single run from 1 or 2 runs.
485 * All the original runs are in which[0] == base.
486 * The run we construct must end up in which[level&1].
487 */
488 iwhich = level & 1;
489 if (runs == 1) {
490 /* Constructing a single run from a single run.
491 * If it's where it belongs already, there's nothing to do.
492 * Otherwise, copy it to where it belongs.
493 * A run of 1 is either a singleton at level 0,
494 * or the second half of a split 3. In neither event
495 * is it necessary to set offset. It will be set by the merge
496 * that immediately follows.
497 */
498 if (iwhich) { /* Belongs in aux, currently in base */
499 f1 = b = PINDEX(base, offset); /* where list starts */
500 f2 = PINDEX(aux, offset); /* where list goes */
501 t = NEXT(f2); /* where list will end */
502 offset = PNELEM(aux, t); /* offset thereof */
503 t = PINDEX(base, offset); /* where it currently ends */
504 FROMTOUPTO(f1, f2, t); /* copy */
505 NEXT(b) = t; /* set up parallel pointer */
506 } else if (level == 0) goto done; /* single run at level 0 */
507 } else {
508 /* Constructing a single run from two runs.
509 * The merge code at the top will do that.
510 * We need only make sure the two runs are in the "other" array,
511 * so they'll end up in the correct array after the merge.
512 */
513 ++level;
514 ++stackp;
515 stackp->offset = offset;
516 stackp->runs = 0; /* take care of both runs, trigger merge */
517 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
518 f1 = b = PINDEX(base, offset); /* where first run starts */
519 f2 = PINDEX(aux, offset); /* where it will be copied */
520 t = NEXT(f2); /* where first run will end */
521 offset = PNELEM(aux, t); /* offset thereof */
522 p = PINDEX(base, offset); /* end of first run */
523 t = NEXT(t); /* where second run will end */
524 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
525 FROMTOUPTO(f1, f2, t); /* copy both runs */
526 NEXT(b) = p; /* paralled pointer for 1st */
527 NEXT(p) = t; /* ... and for second */
528 }
529 }
530 }
531done:
532 if (aux != small) Safefree(aux); /* free iff allocated */
533 return;
534}
535
84d4ea48
JH
536/*
537 * The quicksort implementation was derived from source code contributed
538 * by Tom Horsley.
539 *
540 * NOTE: this code was derived from Tom Horsley's qsort replacement
541 * and should not be confused with the original code.
542 */
543
544/* Copyright (C) Tom Horsley, 1997. All rights reserved.
545
546 Permission granted to distribute under the same terms as perl which are
547 (briefly):
548
549 This program is free software; you can redistribute it and/or modify
550 it under the terms of either:
551
552 a) the GNU General Public License as published by the Free
553 Software Foundation; either version 1, or (at your option) any
554 later version, or
555
556 b) the "Artistic License" which comes with this Kit.
557
558 Details on the perl license can be found in the perl source code which
559 may be located via the www.perl.com web page.
560
561 This is the most wonderfulest possible qsort I can come up with (and
562 still be mostly portable) My (limited) tests indicate it consistently
563 does about 20% fewer calls to compare than does the qsort in the Visual
564 C++ library, other vendors may vary.
565
566 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
567 others I invented myself (or more likely re-invented since they seemed
568 pretty obvious once I watched the algorithm operate for a while).
569
570 Most of this code was written while watching the Marlins sweep the Giants
571 in the 1997 National League Playoffs - no Braves fans allowed to use this
572 code (just kidding :-).
573
574 I realize that if I wanted to be true to the perl tradition, the only
575 comment in this file would be something like:
576
577 ...they shuffled back towards the rear of the line. 'No, not at the
578 rear!' the slave-driver shouted. 'Three files up. And stay there...
579
580 However, I really needed to violate that tradition just so I could keep
581 track of what happens myself, not to mention some poor fool trying to
582 understand this years from now :-).
583*/
584
585/* ********************************************************** Configuration */
586
587#ifndef QSORT_ORDER_GUESS
588#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
589#endif
590
591/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
592 future processing - a good max upper bound is log base 2 of memory size
593 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
594 safely be smaller than that since the program is taking up some space and
595 most operating systems only let you grab some subset of contiguous
596 memory (not to mention that you are normally sorting data larger than
597 1 byte element size :-).
598*/
599#ifndef QSORT_MAX_STACK
600#define QSORT_MAX_STACK 32
601#endif
602
603/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
604 Anything bigger and we use qsort. If you make this too small, the qsort
605 will probably break (or become less efficient), because it doesn't expect
606 the middle element of a partition to be the same as the right or left -
607 you have been warned).
608*/
609#ifndef QSORT_BREAK_EVEN
610#define QSORT_BREAK_EVEN 6
611#endif
612
4eb872f6
JL
613/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
614 to go quadratic on. We innoculate larger partitions against
615 quadratic behavior by shuffling them before sorting. This is not
616 an absolute guarantee of non-quadratic behavior, but it would take
617 staggeringly bad luck to pick extreme elements as the pivot
618 from randomized data.
619*/
620#ifndef QSORT_PLAY_SAFE
621#define QSORT_PLAY_SAFE 255
622#endif
623
84d4ea48
JH
624/* ************************************************************* Data Types */
625
626/* hold left and right index values of a partition waiting to be sorted (the
627 partition includes both left and right - right is NOT one past the end or
628 anything like that).
629*/
630struct partition_stack_entry {
631 int left;
632 int right;
633#ifdef QSORT_ORDER_GUESS
634 int qsort_break_even;
635#endif
636};
637
638/* ******************************************************* Shorthand Macros */
639
640/* Note that these macros will be used from inside the qsort function where
641 we happen to know that the variable 'elt_size' contains the size of an
642 array element and the variable 'temp' points to enough space to hold a
643 temp element and the variable 'array' points to the array being sorted
644 and 'compare' is the pointer to the compare routine.
645
646 Also note that there are very many highly architecture specific ways
647 these might be sped up, but this is simply the most generally portable
648 code I could think of.
649*/
650
651/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
652*/
653#define qsort_cmp(elt1, elt2) \
654 ((*compare)(aTHX_ array[elt1], array[elt2]))
655
656#ifdef QSORT_ORDER_GUESS
657#define QSORT_NOTICE_SWAP swapped++;
658#else
659#define QSORT_NOTICE_SWAP
660#endif
661
662/* swaps contents of array elements elt1, elt2.
663*/
664#define qsort_swap(elt1, elt2) \
665 STMT_START { \
666 QSORT_NOTICE_SWAP \
667 temp = array[elt1]; \
668 array[elt1] = array[elt2]; \
669 array[elt2] = temp; \
670 } STMT_END
671
672/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
673 elt3 and elt3 gets elt1.
674*/
675#define qsort_rotate(elt1, elt2, elt3) \
676 STMT_START { \
677 QSORT_NOTICE_SWAP \
678 temp = array[elt1]; \
679 array[elt1] = array[elt2]; \
680 array[elt2] = array[elt3]; \
681 array[elt3] = temp; \
682 } STMT_END
683
684/* ************************************************************ Debug stuff */
685
686#ifdef QSORT_DEBUG
687
688static void
689break_here()
690{
691 return; /* good place to set a breakpoint */
692}
693
694#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
695
696static void
697doqsort_all_asserts(
698 void * array,
699 size_t num_elts,
700 size_t elt_size,
701 int (*compare)(const void * elt1, const void * elt2),
702 int pc_left, int pc_right, int u_left, int u_right)
703{
704 int i;
705
706 qsort_assert(pc_left <= pc_right);
707 qsort_assert(u_right < pc_left);
708 qsort_assert(pc_right < u_left);
709 for (i = u_right + 1; i < pc_left; ++i) {
710 qsort_assert(qsort_cmp(i, pc_left) < 0);
711 }
712 for (i = pc_left; i < pc_right; ++i) {
713 qsort_assert(qsort_cmp(i, pc_right) == 0);
714 }
715 for (i = pc_right + 1; i < u_left; ++i) {
716 qsort_assert(qsort_cmp(pc_right, i) < 0);
717 }
718}
719
720#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
721 doqsort_all_asserts(array, num_elts, elt_size, compare, \
722 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
723
724#else
725
726#define qsort_assert(t) ((void)0)
727
728#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
729
730#endif
731
732/* ****************************************************************** qsort */
733
734STATIC void /* the standard unstable (u) quicksort (qsort) */
735S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
736{
737 register SV * temp;
738
739 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
740 int next_stack_entry = 0;
741
742 int part_left;
743 int part_right;
744#ifdef QSORT_ORDER_GUESS
745 int qsort_break_even;
746 int swapped;
747#endif
748
749 /* Make sure we actually have work to do.
750 */
751 if (num_elts <= 1) {
752 return;
753 }
754
4eb872f6
JL
755 /* Innoculate large partitions against quadratic behavior */
756 if (num_elts > QSORT_PLAY_SAFE) {
757 register size_t n, j;
758 register SV **q;
759 for (n = num_elts, q = array; n > 1; ) {
eb160463 760 j = (size_t)(n-- * Drand01());
4eb872f6
JL
761 temp = q[j];
762 q[j] = q[n];
763 q[n] = temp;
764 }
765 }
766
84d4ea48
JH
767 /* Setup the initial partition definition and fall into the sorting loop
768 */
769 part_left = 0;
770 part_right = (int)(num_elts - 1);
771#ifdef QSORT_ORDER_GUESS
772 qsort_break_even = QSORT_BREAK_EVEN;
773#else
774#define qsort_break_even QSORT_BREAK_EVEN
775#endif
776 for ( ; ; ) {
777 if ((part_right - part_left) >= qsort_break_even) {
778 /* OK, this is gonna get hairy, so lets try to document all the
779 concepts and abbreviations and variables and what they keep
780 track of:
781
782 pc: pivot chunk - the set of array elements we accumulate in the
783 middle of the partition, all equal in value to the original
784 pivot element selected. The pc is defined by:
785
786 pc_left - the leftmost array index of the pc
787 pc_right - the rightmost array index of the pc
788
789 we start with pc_left == pc_right and only one element
790 in the pivot chunk (but it can grow during the scan).
791
792 u: uncompared elements - the set of elements in the partition
793 we have not yet compared to the pivot value. There are two
794 uncompared sets during the scan - one to the left of the pc
795 and one to the right.
796
797 u_right - the rightmost index of the left side's uncompared set
798 u_left - the leftmost index of the right side's uncompared set
799
800 The leftmost index of the left sides's uncompared set
801 doesn't need its own variable because it is always defined
802 by the leftmost edge of the whole partition (part_left). The
803 same goes for the rightmost edge of the right partition
804 (part_right).
805
806 We know there are no uncompared elements on the left once we
807 get u_right < part_left and no uncompared elements on the
808 right once u_left > part_right. When both these conditions
809 are met, we have completed the scan of the partition.
810
811 Any elements which are between the pivot chunk and the
812 uncompared elements should be less than the pivot value on
813 the left side and greater than the pivot value on the right
814 side (in fact, the goal of the whole algorithm is to arrange
815 for that to be true and make the groups of less-than and
816 greater-then elements into new partitions to sort again).
817
818 As you marvel at the complexity of the code and wonder why it
819 has to be so confusing. Consider some of the things this level
820 of confusion brings:
821
822 Once I do a compare, I squeeze every ounce of juice out of it. I
823 never do compare calls I don't have to do, and I certainly never
824 do redundant calls.
825
826 I also never swap any elements unless I can prove there is a
827 good reason. Many sort algorithms will swap a known value with
828 an uncompared value just to get things in the right place (or
829 avoid complexity :-), but that uncompared value, once it gets
830 compared, may then have to be swapped again. A lot of the
831 complexity of this code is due to the fact that it never swaps
832 anything except compared values, and it only swaps them when the
833 compare shows they are out of position.
834 */
835 int pc_left, pc_right;
836 int u_right, u_left;
837
838 int s;
839
840 pc_left = ((part_left + part_right) / 2);
841 pc_right = pc_left;
842 u_right = pc_left - 1;
843 u_left = pc_right + 1;
844
845 /* Qsort works best when the pivot value is also the median value
846 in the partition (unfortunately you can't find the median value
847 without first sorting :-), so to give the algorithm a helping
848 hand, we pick 3 elements and sort them and use the median value
849 of that tiny set as the pivot value.
850
851 Some versions of qsort like to use the left middle and right as
852 the 3 elements to sort so they can insure the ends of the
853 partition will contain values which will stop the scan in the
854 compare loop, but when you have to call an arbitrarily complex
855 routine to do a compare, its really better to just keep track of
856 array index values to know when you hit the edge of the
857 partition and avoid the extra compare. An even better reason to
858 avoid using a compare call is the fact that you can drop off the
859 edge of the array if someone foolishly provides you with an
860 unstable compare function that doesn't always provide consistent
861 results.
862
863 So, since it is simpler for us to compare the three adjacent
864 elements in the middle of the partition, those are the ones we
865 pick here (conveniently pointed at by u_right, pc_left, and
866 u_left). The values of the left, center, and right elements
867 are refered to as l c and r in the following comments.
868 */
869
870#ifdef QSORT_ORDER_GUESS
871 swapped = 0;
872#endif
873 s = qsort_cmp(u_right, pc_left);
874 if (s < 0) {
875 /* l < c */
876 s = qsort_cmp(pc_left, u_left);
877 /* if l < c, c < r - already in order - nothing to do */
878 if (s == 0) {
879 /* l < c, c == r - already in order, pc grows */
880 ++pc_right;
881 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
882 } else if (s > 0) {
883 /* l < c, c > r - need to know more */
884 s = qsort_cmp(u_right, u_left);
885 if (s < 0) {
886 /* l < c, c > r, l < r - swap c & r to get ordered */
887 qsort_swap(pc_left, u_left);
888 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
889 } else if (s == 0) {
890 /* l < c, c > r, l == r - swap c&r, grow pc */
891 qsort_swap(pc_left, u_left);
892 --pc_left;
893 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
894 } else {
895 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
896 qsort_rotate(pc_left, u_right, u_left);
897 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
898 }
899 }
900 } else if (s == 0) {
901 /* l == c */
902 s = qsort_cmp(pc_left, u_left);
903 if (s < 0) {
904 /* l == c, c < r - already in order, grow pc */
905 --pc_left;
906 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
907 } else if (s == 0) {
908 /* l == c, c == r - already in order, grow pc both ways */
909 --pc_left;
910 ++pc_right;
911 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
912 } else {
913 /* l == c, c > r - swap l & r, grow pc */
914 qsort_swap(u_right, u_left);
915 ++pc_right;
916 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
917 }
918 } else {
919 /* l > c */
920 s = qsort_cmp(pc_left, u_left);
921 if (s < 0) {
922 /* l > c, c < r - need to know more */
923 s = qsort_cmp(u_right, u_left);
924 if (s < 0) {
925 /* l > c, c < r, l < r - swap l & c to get ordered */
926 qsort_swap(u_right, pc_left);
927 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
928 } else if (s == 0) {
929 /* l > c, c < r, l == r - swap l & c, grow pc */
930 qsort_swap(u_right, pc_left);
931 ++pc_right;
932 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
933 } else {
934 /* l > c, c < r, l > r - rotate lcr into crl to order */
935 qsort_rotate(u_right, pc_left, u_left);
936 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
937 }
938 } else if (s == 0) {
939 /* l > c, c == r - swap ends, grow pc */
940 qsort_swap(u_right, u_left);
941 --pc_left;
942 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
943 } else {
944 /* l > c, c > r - swap ends to get in order */
945 qsort_swap(u_right, u_left);
946 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
947 }
948 }
949 /* We now know the 3 middle elements have been compared and
950 arranged in the desired order, so we can shrink the uncompared
951 sets on both sides
952 */
953 --u_right;
954 ++u_left;
955 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
956
957 /* The above massive nested if was the simple part :-). We now have
958 the middle 3 elements ordered and we need to scan through the
959 uncompared sets on either side, swapping elements that are on
960 the wrong side or simply shuffling equal elements around to get
961 all equal elements into the pivot chunk.
962 */
963
964 for ( ; ; ) {
965 int still_work_on_left;
966 int still_work_on_right;
967
968 /* Scan the uncompared values on the left. If I find a value
969 equal to the pivot value, move it over so it is adjacent to
970 the pivot chunk and expand the pivot chunk. If I find a value
971 less than the pivot value, then just leave it - its already
972 on the correct side of the partition. If I find a greater
973 value, then stop the scan.
974 */
975 while ((still_work_on_left = (u_right >= part_left))) {
976 s = qsort_cmp(u_right, pc_left);
977 if (s < 0) {
978 --u_right;
979 } else if (s == 0) {
980 --pc_left;
981 if (pc_left != u_right) {
982 qsort_swap(u_right, pc_left);
983 }
984 --u_right;
985 } else {
986 break;
987 }
988 qsort_assert(u_right < pc_left);
989 qsort_assert(pc_left <= pc_right);
990 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
991 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
992 }
993
994 /* Do a mirror image scan of uncompared values on the right
995 */
996 while ((still_work_on_right = (u_left <= part_right))) {
997 s = qsort_cmp(pc_right, u_left);
998 if (s < 0) {
999 ++u_left;
1000 } else if (s == 0) {
1001 ++pc_right;
1002 if (pc_right != u_left) {
1003 qsort_swap(pc_right, u_left);
1004 }
1005 ++u_left;
1006 } else {
1007 break;
1008 }
1009 qsort_assert(u_left > pc_right);
1010 qsort_assert(pc_left <= pc_right);
1011 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1012 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1013 }
1014
1015 if (still_work_on_left) {
1016 /* I know I have a value on the left side which needs to be
1017 on the right side, but I need to know more to decide
1018 exactly the best thing to do with it.
1019 */
1020 if (still_work_on_right) {
1021 /* I know I have values on both side which are out of
1022 position. This is a big win because I kill two birds
1023 with one swap (so to speak). I can advance the
1024 uncompared pointers on both sides after swapping both
1025 of them into the right place.
1026 */
1027 qsort_swap(u_right, u_left);
1028 --u_right;
1029 ++u_left;
1030 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1031 } else {
1032 /* I have an out of position value on the left, but the
1033 right is fully scanned, so I "slide" the pivot chunk
1034 and any less-than values left one to make room for the
1035 greater value over on the right. If the out of position
1036 value is immediately adjacent to the pivot chunk (there
1037 are no less-than values), I can do that with a swap,
1038 otherwise, I have to rotate one of the less than values
1039 into the former position of the out of position value
1040 and the right end of the pivot chunk into the left end
1041 (got all that?).
1042 */
1043 --pc_left;
1044 if (pc_left == u_right) {
1045 qsort_swap(u_right, pc_right);
1046 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1047 } else {
1048 qsort_rotate(u_right, pc_left, pc_right);
1049 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1050 }
1051 --pc_right;
1052 --u_right;
1053 }
1054 } else if (still_work_on_right) {
1055 /* Mirror image of complex case above: I have an out of
1056 position value on the right, but the left is fully
1057 scanned, so I need to shuffle things around to make room
1058 for the right value on the left.
1059 */
1060 ++pc_right;
1061 if (pc_right == u_left) {
1062 qsort_swap(u_left, pc_left);
1063 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1064 } else {
1065 qsort_rotate(pc_right, pc_left, u_left);
1066 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1067 }
1068 ++pc_left;
1069 ++u_left;
1070 } else {
1071 /* No more scanning required on either side of partition,
1072 break out of loop and figure out next set of partitions
1073 */
1074 break;
1075 }
1076 }
1077
1078 /* The elements in the pivot chunk are now in the right place. They
1079 will never move or be compared again. All I have to do is decide
1080 what to do with the stuff to the left and right of the pivot
1081 chunk.
1082
1083 Notes on the QSORT_ORDER_GUESS ifdef code:
1084
1085 1. If I just built these partitions without swapping any (or
1086 very many) elements, there is a chance that the elements are
1087 already ordered properly (being properly ordered will
1088 certainly result in no swapping, but the converse can't be
1089 proved :-).
1090
1091 2. A (properly written) insertion sort will run faster on
1092 already ordered data than qsort will.
1093
1094 3. Perhaps there is some way to make a good guess about
1095 switching to an insertion sort earlier than partition size 6
1096 (for instance - we could save the partition size on the stack
1097 and increase the size each time we find we didn't swap, thus
1098 switching to insertion sort earlier for partitions with a
1099 history of not swapping).
1100
1101 4. Naturally, if I just switch right away, it will make
1102 artificial benchmarks with pure ascending (or descending)
1103 data look really good, but is that a good reason in general?
1104 Hard to say...
1105 */
1106
1107#ifdef QSORT_ORDER_GUESS
1108 if (swapped < 3) {
1109#if QSORT_ORDER_GUESS == 1
1110 qsort_break_even = (part_right - part_left) + 1;
1111#endif
1112#if QSORT_ORDER_GUESS == 2
1113 qsort_break_even *= 2;
1114#endif
1115#if QSORT_ORDER_GUESS == 3
1116 int prev_break = qsort_break_even;
1117 qsort_break_even *= qsort_break_even;
1118 if (qsort_break_even < prev_break) {
1119 qsort_break_even = (part_right - part_left) + 1;
1120 }
1121#endif
1122 } else {
1123 qsort_break_even = QSORT_BREAK_EVEN;
1124 }
1125#endif
1126
1127 if (part_left < pc_left) {
1128 /* There are elements on the left which need more processing.
1129 Check the right as well before deciding what to do.
1130 */
1131 if (pc_right < part_right) {
1132 /* We have two partitions to be sorted. Stack the biggest one
1133 and process the smallest one on the next iteration. This
1134 minimizes the stack height by insuring that any additional
1135 stack entries must come from the smallest partition which
1136 (because it is smallest) will have the fewest
1137 opportunities to generate additional stack entries.
1138 */
1139 if ((part_right - pc_right) > (pc_left - part_left)) {
1140 /* stack the right partition, process the left */
1141 partition_stack[next_stack_entry].left = pc_right + 1;
1142 partition_stack[next_stack_entry].right = part_right;
1143#ifdef QSORT_ORDER_GUESS
1144 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1145#endif
1146 part_right = pc_left - 1;
1147 } else {
1148 /* stack the left partition, process the right */
1149 partition_stack[next_stack_entry].left = part_left;
1150 partition_stack[next_stack_entry].right = pc_left - 1;
1151#ifdef QSORT_ORDER_GUESS
1152 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1153#endif
1154 part_left = pc_right + 1;
1155 }
1156 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1157 ++next_stack_entry;
1158 } else {
1159 /* The elements on the left are the only remaining elements
1160 that need sorting, arrange for them to be processed as the
1161 next partition.
1162 */
1163 part_right = pc_left - 1;
1164 }
1165 } else if (pc_right < part_right) {
1166 /* There is only one chunk on the right to be sorted, make it
1167 the new partition and loop back around.
1168 */
1169 part_left = pc_right + 1;
1170 } else {
1171 /* This whole partition wound up in the pivot chunk, so
1172 we need to get a new partition off the stack.
1173 */
1174 if (next_stack_entry == 0) {
1175 /* the stack is empty - we are done */
1176 break;
1177 }
1178 --next_stack_entry;
1179 part_left = partition_stack[next_stack_entry].left;
1180 part_right = partition_stack[next_stack_entry].right;
1181#ifdef QSORT_ORDER_GUESS
1182 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1183#endif
1184 }
1185 } else {
1186 /* This partition is too small to fool with qsort complexity, just
1187 do an ordinary insertion sort to minimize overhead.
1188 */
1189 int i;
1190 /* Assume 1st element is in right place already, and start checking
1191 at 2nd element to see where it should be inserted.
1192 */
1193 for (i = part_left + 1; i <= part_right; ++i) {
1194 int j;
1195 /* Scan (backwards - just in case 'i' is already in right place)
1196 through the elements already sorted to see if the ith element
1197 belongs ahead of one of them.
1198 */
1199 for (j = i - 1; j >= part_left; --j) {
1200 if (qsort_cmp(i, j) >= 0) {
1201 /* i belongs right after j
1202 */
1203 break;
1204 }
1205 }
1206 ++j;
1207 if (j != i) {
1208 /* Looks like we really need to move some things
1209 */
1210 int k;
1211 temp = array[i];
1212 for (k = i - 1; k >= j; --k)
1213 array[k + 1] = array[k];
1214 array[j] = temp;
1215 }
1216 }
1217
1218 /* That partition is now sorted, grab the next one, or get out
1219 of the loop if there aren't any more.
1220 */
1221
1222 if (next_stack_entry == 0) {
1223 /* the stack is empty - we are done */
1224 break;
1225 }
1226 --next_stack_entry;
1227 part_left = partition_stack[next_stack_entry].left;
1228 part_right = partition_stack[next_stack_entry].right;
1229#ifdef QSORT_ORDER_GUESS
1230 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1231#endif
1232 }
1233 }
1234
1235 /* Believe it or not, the array is sorted at this point! */
1236}
1237
84d4ea48
JH
1238/* Stabilize what is, presumably, an otherwise unstable sort method.
1239 * We do that by allocating (or having on hand) an array of pointers
1240 * that is the same size as the original array of elements to be sorted.
1241 * We initialize this parallel array with the addresses of the original
1242 * array elements. This indirection can make you crazy.
1243 * Some pictures can help. After initializing, we have
1244 *
1245 * indir list1
1246 * +----+ +----+
1247 * | | --------------> | | ------> first element to be sorted
1248 * +----+ +----+
1249 * | | --------------> | | ------> second element to be sorted
1250 * +----+ +----+
1251 * | | --------------> | | ------> third element to be sorted
1252 * +----+ +----+
1253 * ...
1254 * +----+ +----+
1255 * | | --------------> | | ------> n-1st element to be sorted
1256 * +----+ +----+
1257 * | | --------------> | | ------> n-th element to be sorted
1258 * +----+ +----+
1259 *
1260 * During the sort phase, we leave the elements of list1 where they are,
1261 * and sort the pointers in the indirect array in the same order determined
1262 * by the original comparison routine on the elements pointed to.
1263 * Because we don't move the elements of list1 around through
1264 * this phase, we can break ties on elements that compare equal
1265 * using their address in the list1 array, ensuring stabilty.
1266 * This leaves us with something looking like
1267 *
1268 * indir list1
1269 * +----+ +----+
1270 * | | --+ +---> | | ------> first element to be sorted
1271 * +----+ | | +----+
1272 * | | --|-------|---> | | ------> second element to be sorted
1273 * +----+ | | +----+
1274 * | | --|-------+ +-> | | ------> third element to be sorted
1275 * +----+ | | +----+
1276 * ...
1277 * +----+ | | | | +----+
1278 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1279 * +----+ | | +----+
1280 * | | ---+ +----> | | ------> n-th element to be sorted
1281 * +----+ +----+
1282 *
1283 * where the i-th element of the indirect array points to the element
1284 * that should be i-th in the sorted array. After the sort phase,
1285 * we have to put the elements of list1 into the places
1286 * dictated by the indirect array.
1287 */
1288
1289static SVCOMPARE_t RealCmp;
1290
1291static I32
1292cmpindir(pTHX_ gptr a, gptr b)
1293{
1294 I32 sense;
1295 gptr *ap = (gptr *)a;
1296 gptr *bp = (gptr *)b;
1297
1298 if ((sense = RealCmp(aTHX_ *ap, *bp)) == 0)
1299 sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1300 return sense;
1301}
1302
1303STATIC void
1304S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp)
1305{
045ac317 1306 SV *hintsv;
84d4ea48 1307
045ac317 1308 if (SORTHINTS(hintsv) & HINT_SORT_STABLE) {
84d4ea48
JH
1309 register gptr **pp, *q;
1310 register size_t n, j, i;
1311 gptr *small[SMALLSORT], **indir, tmp;
1312 SVCOMPARE_t savecmp;
1313 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1314
84d4ea48
JH
1315 /* Small arrays can use the stack, big ones must be allocated */
1316 if (nmemb <= SMALLSORT) indir = small;
1317 else { New(1799, indir, nmemb, gptr *); }
4eb872f6 1318
84d4ea48
JH
1319 /* Copy pointers to original array elements into indirect array */
1320 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1321
84d4ea48
JH
1322 savecmp = RealCmp; /* Save current comparison routine, if any */
1323 RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1324
84d4ea48
JH
1325 /* sort, with indirection */
1326 S_qsortsvu(aTHX_ (gptr *)indir, nmemb, cmpindir);
4eb872f6 1327
84d4ea48
JH
1328 pp = indir;
1329 q = list1;
1330 for (n = nmemb; n--; ) {
1331 /* Assert A: all elements of q with index > n are already
1332 * in place. This is vacuosly true at the start, and we
1333 * put element n where it belongs below (if it wasn't
1334 * already where it belonged). Assert B: we only move
1335 * elements that aren't where they belong,
1336 * so, by A, we never tamper with elements above n.
1337 */
1338 j = pp[n] - q; /* This sets j so that q[j] is
1339 * at pp[n]. *pp[j] belongs in
1340 * q[j], by construction.
1341 */
1342 if (n != j) { /* all's well if n == j */
1343 tmp = q[j]; /* save what's in q[j] */
1344 do {
1345 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1346 i = pp[j] - q; /* the index in q of the element
1347 * just moved */
1348 pp[j] = q + j; /* this is ok now */
1349 } while ((j = i) != n);
1350 /* There are only finitely many (nmemb) addresses
1351 * in the pp array.
1352 * So we must eventually revisit an index we saw before.
1353 * Suppose the first revisited index is k != n.
1354 * An index is visited because something else belongs there.
1355 * If we visit k twice, then two different elements must
1356 * belong in the same place, which cannot be.
1357 * So j must get back to n, the loop terminates,
1358 * and we put the saved element where it belongs.
1359 */
1360 q[n] = tmp; /* put what belongs into
1361 * the n-th element */
1362 }
1363 }
1364
1365 /* free iff allocated */
1366 if (indir != small) { Safefree(indir); }
1367 /* restore prevailing comparison routine */
1368 RealCmp = savecmp;
c53fc8a6
JH
1369 } else {
1370 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48
JH
1371 }
1372}
4eb872f6
JL
1373
1374/*
ccfc67b7
JH
1375=head1 Array Manipulation Functions
1376
84d4ea48
JH
1377=for apidoc sortsv
1378
1379Sort an array. Here is an example:
1380
4eb872f6 1381 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1382
78210658
AD
1383See lib/sort.pm for details about controlling the sorting algorithm.
1384
84d4ea48
JH
1385=cut
1386*/
4eb872f6 1387
84d4ea48
JH
1388void
1389Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1390{
1391 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) =
1392 S_mergesortsv;
045ac317 1393 SV *hintsv;
84d4ea48 1394 I32 hints;
4eb872f6 1395
78210658
AD
1396 /* Sun's Compiler (cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2) used
1397 to miscompile this function under optimization -O. If you get test
1398 errors related to picking the correct sort() function, try recompiling
1399 this file without optimiziation. -- A.D. 4/2002.
1400 */
045ac317 1401 hints = SORTHINTS(hintsv);
78210658
AD
1402 if (hints & HINT_SORT_QUICKSORT) {
1403 sortsvp = S_qsortsv;
1404 }
1405 else {
1406 /* The default as of 5.8.0 is mergesort */
1407 sortsvp = S_mergesortsv;
84d4ea48 1408 }
4eb872f6 1409
84d4ea48
JH
1410 sortsvp(aTHX_ array, nmemb, cmp);
1411}
1412
1413PP(pp_sort)
1414{
1415 dSP; dMARK; dORIGMARK;
1416 register SV **up;
1417 SV **myorigmark = ORIGMARK;
1418 register I32 max;
1419 HV *stash;
1420 GV *gv;
1421 CV *cv = 0;
1422 I32 gimme = GIMME;
1423 OP* nextop = PL_op->op_next;
1424 I32 overloading = 0;
1425 bool hasargs = FALSE;
1426 I32 is_xsub = 0;
1427
1428 if (gimme != G_ARRAY) {
1429 SP = MARK;
1430 RETPUSHUNDEF;
1431 }
1432
1433 ENTER;
1434 SAVEVPTR(PL_sortcop);
1435 if (PL_op->op_flags & OPf_STACKED) {
1436 if (PL_op->op_flags & OPf_SPECIAL) {
1437 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1438 kid = kUNOP->op_first; /* pass rv2gv */
1439 kid = kUNOP->op_first; /* pass leave */
1440 PL_sortcop = kid->op_next;
1441 stash = CopSTASH(PL_curcop);
1442 }
1443 else {
1444 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1445 if (cv && SvPOK(cv)) {
1446 STRLEN n_a;
1447 char *proto = SvPV((SV*)cv, n_a);
1448 if (proto && strEQ(proto, "$$")) {
1449 hasargs = TRUE;
1450 }
1451 }
1452 if (!(cv && CvROOT(cv))) {
1453 if (cv && CvXSUB(cv)) {
1454 is_xsub = 1;
1455 }
1456 else if (gv) {
1457 SV *tmpstr = sv_newmortal();
1458 gv_efullname3(tmpstr, gv, Nullch);
1459 DIE(aTHX_ "Undefined sort subroutine \"%s\" called",
1460 SvPVX(tmpstr));
1461 }
1462 else {
1463 DIE(aTHX_ "Undefined subroutine in sort");
1464 }
1465 }
1466
1467 if (is_xsub)
1468 PL_sortcop = (OP*)cv;
1469 else {
1470 PL_sortcop = CvSTART(cv);
1471 SAVEVPTR(CvROOT(cv)->op_ppaddr);
1472 CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL];
1473
1474 SAVEVPTR(PL_curpad);
1475 PL_curpad = AvARRAY((AV*)AvARRAY(CvPADLIST(cv))[1]);
1476 }
1477 }
1478 }
1479 else {
1480 PL_sortcop = Nullop;
1481 stash = CopSTASH(PL_curcop);
1482 }
1483
1484 up = myorigmark + 1;
1485 while (MARK < SP) { /* This may or may not shift down one here. */
1486 /*SUPPRESS 560*/
1487 if ((*up = *++MARK)) { /* Weed out nulls. */
1488 SvTEMP_off(*up);
1489 if (!PL_sortcop && !SvPOK(*up)) {
1490 STRLEN n_a;
1491 if (SvAMAGIC(*up))
1492 overloading = 1;
1493 else
1494 (void)sv_2pv(*up, &n_a);
1495 }
1496 up++;
1497 }
1498 }
1499 max = --up - myorigmark;
1500 if (PL_sortcop) {
1501 if (max > 1) {
1502 PERL_CONTEXT *cx;
1503 SV** newsp;
1504 bool oldcatch = CATCH_GET;
1505
1506 SAVETMPS;
1507 SAVEOP();
1508
1509 CATCH_SET(TRUE);
1510 PUSHSTACKi(PERLSI_SORT);
1511 if (!hasargs && !is_xsub) {
1512 if (PL_sortstash != stash || !PL_firstgv || !PL_secondgv) {
1513 SAVESPTR(PL_firstgv);
1514 SAVESPTR(PL_secondgv);
1515 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1516 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1517 PL_sortstash = stash;
1518 }
1519#ifdef USE_5005THREADS
1520 sv_lock((SV *)PL_firstgv);
1521 sv_lock((SV *)PL_secondgv);
1522#endif
1523 SAVESPTR(GvSV(PL_firstgv));
1524 SAVESPTR(GvSV(PL_secondgv));
1525 }
1526
1527 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1528 if (!(PL_op->op_flags & OPf_SPECIAL)) {
1529 cx->cx_type = CXt_SUB;
1530 cx->blk_gimme = G_SCALAR;
1531 PUSHSUB(cx);
1532 if (!CvDEPTH(cv))
1533 (void)SvREFCNT_inc(cv); /* in preparation for POPSUB */
1534 }
1535 PL_sortcxix = cxstack_ix;
1536
1537 if (hasargs && !is_xsub) {
1538 /* This is mostly copied from pp_entersub */
1539 AV *av = (AV*)PL_curpad[0];
1540
1541#ifndef USE_5005THREADS
1542 cx->blk_sub.savearray = GvAV(PL_defgv);
1543 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
1544#endif /* USE_5005THREADS */
1545 cx->blk_sub.oldcurpad = PL_curpad;
1546 cx->blk_sub.argarray = av;
1547 }
1548 sortsv((myorigmark+1), max,
1549 is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv);
1550
1551 POPBLOCK(cx,PL_curpm);
1552 PL_stack_sp = newsp;
1553 POPSTACK;
1554 CATCH_SET(oldcatch);
1555 }
1556 }
1557 else {
1558 if (max > 1) {
1559 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1560 sortsv(ORIGMARK+1, max,
1561 (PL_op->op_private & OPpSORT_NUMERIC)
1562 ? ( (PL_op->op_private & OPpSORT_INTEGER)
1563 ? ( overloading ? amagic_i_ncmp : sv_i_ncmp)
1564 : ( overloading ? amagic_ncmp : sv_ncmp))
1565 : ( IN_LOCALE_RUNTIME
1566 ? ( overloading
1567 ? amagic_cmp_locale
1568 : sv_cmp_locale_static)
1569 : ( overloading ? amagic_cmp : sv_cmp_static)));
1570 if (PL_op->op_private & OPpSORT_REVERSE) {
1571 SV **p = ORIGMARK+1;
1572 SV **q = ORIGMARK+max;
1573 while (p < q) {
1574 SV *tmp = *p;
1575 *p++ = *q;
1576 *q-- = tmp;
1577 }
1578 }
1579 }
1580 }
1581 LEAVE;
1582 PL_stack_sp = ORIGMARK + max;
1583 return nextop;
1584}
1585
1586static I32
1587sortcv(pTHX_ SV *a, SV *b)
1588{
1589 I32 oldsaveix = PL_savestack_ix;
1590 I32 oldscopeix = PL_scopestack_ix;
1591 I32 result;
1592 GvSV(PL_firstgv) = a;
1593 GvSV(PL_secondgv) = b;
1594 PL_stack_sp = PL_stack_base;
1595 PL_op = PL_sortcop;
1596 CALLRUNOPS(aTHX);
1597 if (PL_stack_sp != PL_stack_base + 1)
1598 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1599 if (!SvNIOKp(*PL_stack_sp))
1600 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1601 result = SvIV(*PL_stack_sp);
1602 while (PL_scopestack_ix > oldscopeix) {
1603 LEAVE;
1604 }
1605 leave_scope(oldsaveix);
1606 return result;
1607}
1608
1609static I32
1610sortcv_stacked(pTHX_ SV *a, SV *b)
1611{
1612 I32 oldsaveix = PL_savestack_ix;
1613 I32 oldscopeix = PL_scopestack_ix;
1614 I32 result;
1615 AV *av;
1616
1617#ifdef USE_5005THREADS
1618 av = (AV*)PL_curpad[0];
1619#else
1620 av = GvAV(PL_defgv);
1621#endif
1622
1623 if (AvMAX(av) < 1) {
1624 SV** ary = AvALLOC(av);
1625 if (AvARRAY(av) != ary) {
1626 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1627 SvPVX(av) = (char*)ary;
1628 }
1629 if (AvMAX(av) < 1) {
1630 AvMAX(av) = 1;
1631 Renew(ary,2,SV*);
1632 SvPVX(av) = (char*)ary;
1633 }
1634 }
1635 AvFILLp(av) = 1;
1636
1637 AvARRAY(av)[0] = a;
1638 AvARRAY(av)[1] = b;
1639 PL_stack_sp = PL_stack_base;
1640 PL_op = PL_sortcop;
1641 CALLRUNOPS(aTHX);
1642 if (PL_stack_sp != PL_stack_base + 1)
1643 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1644 if (!SvNIOKp(*PL_stack_sp))
1645 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1646 result = SvIV(*PL_stack_sp);
1647 while (PL_scopestack_ix > oldscopeix) {
1648 LEAVE;
1649 }
1650 leave_scope(oldsaveix);
1651 return result;
1652}
1653
1654static I32
1655sortcv_xsub(pTHX_ SV *a, SV *b)
1656{
1657 dSP;
1658 I32 oldsaveix = PL_savestack_ix;
1659 I32 oldscopeix = PL_scopestack_ix;
1660 I32 result;
1661 CV *cv=(CV*)PL_sortcop;
1662
1663 SP = PL_stack_base;
1664 PUSHMARK(SP);
1665 EXTEND(SP, 2);
1666 *++SP = a;
1667 *++SP = b;
1668 PUTBACK;
1669 (void)(*CvXSUB(cv))(aTHX_ cv);
1670 if (PL_stack_sp != PL_stack_base + 1)
1671 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1672 if (!SvNIOKp(*PL_stack_sp))
1673 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1674 result = SvIV(*PL_stack_sp);
1675 while (PL_scopestack_ix > oldscopeix) {
1676 LEAVE;
1677 }
1678 leave_scope(oldsaveix);
1679 return result;
1680}
1681
1682
1683static I32
1684sv_ncmp(pTHX_ SV *a, SV *b)
1685{
1686 NV nv1 = SvNV(a);
1687 NV nv2 = SvNV(b);
1688 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1689}
1690
1691static I32
1692sv_i_ncmp(pTHX_ SV *a, SV *b)
1693{
1694 IV iv1 = SvIV(a);
1695 IV iv2 = SvIV(b);
1696 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1697}
1698#define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \
1699 *svp = Nullsv; \
1700 if (PL_amagic_generation) { \
1701 if (SvAMAGIC(left)||SvAMAGIC(right))\
1702 *svp = amagic_call(left, \
1703 right, \
1704 CAT2(meth,_amg), \
1705 0); \
1706 } \
1707 } STMT_END
1708
1709static I32
1710amagic_ncmp(pTHX_ register SV *a, register SV *b)
1711{
1712 SV *tmpsv;
1713 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1714 if (tmpsv) {
1715 NV d;
4eb872f6 1716
84d4ea48
JH
1717 if (SvIOK(tmpsv)) {
1718 I32 i = SvIVX(tmpsv);
1719 if (i > 0)
1720 return 1;
1721 return i? -1 : 0;
1722 }
1723 d = SvNV(tmpsv);
1724 if (d > 0)
1725 return 1;
1726 return d? -1 : 0;
1727 }
1728 return sv_ncmp(aTHX_ a, b);
1729}
1730
1731static I32
1732amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
1733{
1734 SV *tmpsv;
1735 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1736 if (tmpsv) {
1737 NV d;
4eb872f6 1738
84d4ea48
JH
1739 if (SvIOK(tmpsv)) {
1740 I32 i = SvIVX(tmpsv);
1741 if (i > 0)
1742 return 1;
1743 return i? -1 : 0;
1744 }
1745 d = SvNV(tmpsv);
1746 if (d > 0)
1747 return 1;
1748 return d? -1 : 0;
1749 }
1750 return sv_i_ncmp(aTHX_ a, b);
1751}
1752
1753static I32
1754amagic_cmp(pTHX_ register SV *str1, register SV *str2)
1755{
1756 SV *tmpsv;
1757 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1758 if (tmpsv) {
1759 NV d;
4eb872f6 1760
84d4ea48
JH
1761 if (SvIOK(tmpsv)) {
1762 I32 i = SvIVX(tmpsv);
1763 if (i > 0)
1764 return 1;
1765 return i? -1 : 0;
1766 }
1767 d = SvNV(tmpsv);
1768 if (d > 0)
1769 return 1;
1770 return d? -1 : 0;
1771 }
1772 return sv_cmp(str1, str2);
1773}
1774
1775static I32
1776amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
1777{
1778 SV *tmpsv;
1779 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1780 if (tmpsv) {
1781 NV d;
4eb872f6 1782
84d4ea48
JH
1783 if (SvIOK(tmpsv)) {
1784 I32 i = SvIVX(tmpsv);
1785 if (i > 0)
1786 return 1;
1787 return i? -1 : 0;
1788 }
1789 d = SvNV(tmpsv);
1790 if (d > 0)
1791 return 1;
1792 return d? -1 : 0;
1793 }
1794 return sv_cmp_locale(str1, str2);
1795}