Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
b42d0ec9 JH |
3 | # -- Raphael Manfredi Since Sep 1996 |
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |
5 | # -- Daniel S. Lewart Since Sep 1997 | |
fb73857a | 6 | # |
a0d0e21e LW |
7 | |
8 | require Exporter; | |
5aabfad6 | 9 | package Math::Complex; |
a0d0e21e | 10 | |
17f410f9 | 11 | use 5.005_64; |
b42d0ec9 | 12 | use strict; |
fb73857a | 13 | |
17f410f9 | 14 | our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS); |
fb73857a | 15 | |
b42d0ec9 | 16 | my ( $i, $ip2, %logn ); |
0c721ce2 | 17 | |
2820d885 | 18 | $VERSION = sprintf("%s", q$Id: Complex.pm,v 1.26 1998/11/01 00:00:00 dsl Exp $ =~ /(\d+\.\d+)/); |
0c721ce2 | 19 | |
5aabfad6 | 20 | @ISA = qw(Exporter); |
21 | ||
5aabfad6 | 22 | my @trig = qw( |
23 | pi | |
fb73857a | 24 | tan |
5aabfad6 | 25 | csc cosec sec cot cotan |
26 | asin acos atan | |
27 | acsc acosec asec acot acotan | |
28 | sinh cosh tanh | |
29 | csch cosech sech coth cotanh | |
30 | asinh acosh atanh | |
31 | acsch acosech asech acoth acotanh | |
32 | ); | |
33 | ||
34 | @EXPORT = (qw( | |
b42d0ec9 | 35 | i Re Im rho theta arg |
fb73857a | 36 | sqrt log ln |
5aabfad6 | 37 | log10 logn cbrt root |
38 | cplx cplxe | |
39 | ), | |
40 | @trig); | |
41 | ||
42 | %EXPORT_TAGS = ( | |
43 | 'trig' => [@trig], | |
66730be0 | 44 | ); |
a0d0e21e | 45 | |
a5f75d66 | 46 | use overload |
0c721ce2 JH |
47 | '+' => \&plus, |
48 | '-' => \&minus, | |
49 | '*' => \&multiply, | |
50 | '/' => \÷, | |
66730be0 RM |
51 | '**' => \&power, |
52 | '<=>' => \&spaceship, | |
53 | 'neg' => \&negate, | |
0c721ce2 | 54 | '~' => \&conjugate, |
66730be0 RM |
55 | 'abs' => \&abs, |
56 | 'sqrt' => \&sqrt, | |
57 | 'exp' => \&exp, | |
58 | 'log' => \&log, | |
59 | 'sin' => \&sin, | |
60 | 'cos' => \&cos, | |
0c721ce2 | 61 | 'tan' => \&tan, |
66730be0 RM |
62 | 'atan2' => \&atan2, |
63 | qw("" stringify); | |
64 | ||
65 | # | |
b42d0ec9 | 66 | # Package "privates" |
66730be0 RM |
67 | # |
68 | ||
16357284 JH |
69 | my $package = 'Math::Complex'; # Package name |
70 | my %DISPLAY_FORMAT = ('style' => 'cartesian', | |
71 | 'polar_pretty_print' => 1); | |
72 | my $eps = 1e-14; # Epsilon | |
66730be0 RM |
73 | |
74 | # | |
75 | # Object attributes (internal): | |
76 | # cartesian [real, imaginary] -- cartesian form | |
77 | # polar [rho, theta] -- polar form | |
78 | # c_dirty cartesian form not up-to-date | |
79 | # p_dirty polar form not up-to-date | |
80 | # display display format (package's global when not set) | |
81 | # | |
82 | ||
b42d0ec9 JH |
83 | # Die on bad *make() arguments. |
84 | ||
85 | sub _cannot_make { | |
86 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n"; | |
87 | } | |
88 | ||
66730be0 RM |
89 | # |
90 | # ->make | |
91 | # | |
92 | # Create a new complex number (cartesian form) | |
93 | # | |
94 | sub make { | |
95 | my $self = bless {}, shift; | |
96 | my ($re, $im) = @_; | |
b42d0ec9 JH |
97 | my $rre = ref $re; |
98 | if ( $rre ) { | |
99 | if ( $rre eq ref $self ) { | |
100 | $re = Re($re); | |
101 | } else { | |
102 | _cannot_make("real part", $rre); | |
103 | } | |
104 | } | |
105 | my $rim = ref $im; | |
106 | if ( $rim ) { | |
107 | if ( $rim eq ref $self ) { | |
108 | $im = Im($im); | |
109 | } else { | |
110 | _cannot_make("imaginary part", $rim); | |
111 | } | |
112 | } | |
113 | $self->{'cartesian'} = [ $re, $im ]; | |
66730be0 RM |
114 | $self->{c_dirty} = 0; |
115 | $self->{p_dirty} = 1; | |
b42d0ec9 | 116 | $self->display_format('cartesian'); |
66730be0 RM |
117 | return $self; |
118 | } | |
119 | ||
120 | # | |
121 | # ->emake | |
122 | # | |
123 | # Create a new complex number (exponential form) | |
124 | # | |
125 | sub emake { | |
126 | my $self = bless {}, shift; | |
127 | my ($rho, $theta) = @_; | |
b42d0ec9 JH |
128 | my $rrh = ref $rho; |
129 | if ( $rrh ) { | |
130 | if ( $rrh eq ref $self ) { | |
131 | $rho = rho($rho); | |
132 | } else { | |
133 | _cannot_make("rho", $rrh); | |
134 | } | |
135 | } | |
136 | my $rth = ref $theta; | |
137 | if ( $rth ) { | |
138 | if ( $rth eq ref $self ) { | |
139 | $theta = theta($theta); | |
140 | } else { | |
141 | _cannot_make("theta", $rth); | |
142 | } | |
143 | } | |
fb73857a | 144 | if ($rho < 0) { |
145 | $rho = -$rho; | |
146 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
147 | } | |
148 | $self->{'polar'} = [$rho, $theta]; | |
66730be0 RM |
149 | $self->{p_dirty} = 0; |
150 | $self->{c_dirty} = 1; | |
b42d0ec9 | 151 | $self->display_format('polar'); |
66730be0 RM |
152 | return $self; |
153 | } | |
154 | ||
155 | sub new { &make } # For backward compatibility only. | |
156 | ||
157 | # | |
158 | # cplx | |
159 | # | |
160 | # Creates a complex number from a (re, im) tuple. | |
161 | # This avoids the burden of writing Math::Complex->make(re, im). | |
162 | # | |
163 | sub cplx { | |
164 | my ($re, $im) = @_; | |
16357284 | 165 | return __PACKAGE__->make($re, defined $im ? $im : 0); |
66730be0 RM |
166 | } |
167 | ||
168 | # | |
169 | # cplxe | |
170 | # | |
171 | # Creates a complex number from a (rho, theta) tuple. | |
172 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
173 | # | |
174 | sub cplxe { | |
175 | my ($rho, $theta) = @_; | |
16357284 | 176 | return __PACKAGE__->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
177 | } |
178 | ||
179 | # | |
180 | # pi | |
181 | # | |
fb73857a | 182 | # The number defined as pi = 180 degrees |
66730be0 | 183 | # |
6570f784 | 184 | sub pi () { 4 * CORE::atan2(1, 1) } |
5cd24f17 | 185 | |
186 | # | |
fb73857a | 187 | # pit2 |
5cd24f17 | 188 | # |
fb73857a | 189 | # The full circle |
190 | # | |
6570f784 | 191 | sub pit2 () { 2 * pi } |
fb73857a | 192 | |
5cd24f17 | 193 | # |
fb73857a | 194 | # pip2 |
195 | # | |
196 | # The quarter circle | |
197 | # | |
6570f784 | 198 | sub pip2 () { pi / 2 } |
5cd24f17 | 199 | |
fb73857a | 200 | # |
d09ae4e6 JH |
201 | # deg1 |
202 | # | |
203 | # One degree in radians, used in stringify_polar. | |
204 | # | |
205 | ||
6570f784 | 206 | sub deg1 () { pi / 180 } |
d09ae4e6 JH |
207 | |
208 | # | |
fb73857a | 209 | # uplog10 |
210 | # | |
211 | # Used in log10(). | |
212 | # | |
6570f784 | 213 | sub uplog10 () { 1 / CORE::log(10) } |
66730be0 RM |
214 | |
215 | # | |
216 | # i | |
217 | # | |
218 | # The number defined as i*i = -1; | |
219 | # | |
220 | sub i () { | |
5cd24f17 | 221 | return $i if ($i); |
222 | $i = bless {}; | |
40da2db3 | 223 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 224 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
225 | $i->{c_dirty} = 0; |
226 | $i->{p_dirty} = 0; | |
227 | return $i; | |
228 | } | |
229 | ||
230 | # | |
231 | # Attribute access/set routines | |
232 | # | |
233 | ||
0c721ce2 JH |
234 | sub cartesian {$_[0]->{c_dirty} ? |
235 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
236 | sub polar {$_[0]->{p_dirty} ? | |
237 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 238 | |
40da2db3 JH |
239 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
240 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
241 | |
242 | # | |
243 | # ->update_cartesian | |
244 | # | |
245 | # Recompute and return the cartesian form, given accurate polar form. | |
246 | # | |
247 | sub update_cartesian { | |
248 | my $self = shift; | |
40da2db3 | 249 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 250 | $self->{c_dirty} = 0; |
a8693bd3 | 251 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
66730be0 RM |
252 | } |
253 | ||
254 | # | |
255 | # | |
256 | # ->update_polar | |
257 | # | |
258 | # Recompute and return the polar form, given accurate cartesian form. | |
259 | # | |
260 | sub update_polar { | |
261 | my $self = shift; | |
40da2db3 | 262 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 263 | $self->{p_dirty} = 0; |
40da2db3 | 264 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
a8693bd3 | 265 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)]; |
66730be0 RM |
266 | } |
267 | ||
268 | # | |
269 | # (plus) | |
270 | # | |
271 | # Computes z1+z2. | |
272 | # | |
273 | sub plus { | |
274 | my ($z1, $z2, $regular) = @_; | |
275 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 276 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 277 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
278 | unless (defined $regular) { |
279 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
280 | return $z1; | |
281 | } | |
282 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
283 | } | |
284 | ||
285 | # | |
286 | # (minus) | |
287 | # | |
288 | # Computes z1-z2. | |
289 | # | |
290 | sub minus { | |
291 | my ($z1, $z2, $inverted) = @_; | |
292 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
293 | $z2 = cplx($z2) unless ref $z2; |
294 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
295 | unless (defined $inverted) { |
296 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
297 | return $z1; | |
298 | } | |
299 | return $inverted ? | |
300 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
301 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 302 | |
66730be0 RM |
303 | } |
304 | ||
305 | # | |
306 | # (multiply) | |
307 | # | |
308 | # Computes z1*z2. | |
309 | # | |
310 | sub multiply { | |
fb73857a | 311 | my ($z1, $z2, $regular) = @_; |
312 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
313 | # if both polar better use polar to avoid rounding errors | |
314 | my ($r1, $t1) = @{$z1->polar}; | |
315 | my ($r2, $t2) = @{$z2->polar}; | |
316 | my $t = $t1 + $t2; | |
317 | if ($t > pi()) { $t -= pit2 } | |
318 | elsif ($t <= -pi()) { $t += pit2 } | |
319 | unless (defined $regular) { | |
320 | $z1->set_polar([$r1 * $r2, $t]); | |
66730be0 | 321 | return $z1; |
fb73857a | 322 | } |
323 | return (ref $z1)->emake($r1 * $r2, $t); | |
324 | } else { | |
325 | my ($x1, $y1) = @{$z1->cartesian}; | |
326 | if (ref $z2) { | |
327 | my ($x2, $y2) = @{$z2->cartesian}; | |
328 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
329 | } else { | |
330 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
331 | } | |
66730be0 | 332 | } |
66730be0 RM |
333 | } |
334 | ||
335 | # | |
0e505df1 | 336 | # _divbyzero |
0c721ce2 JH |
337 | # |
338 | # Die on division by zero. | |
339 | # | |
0e505df1 | 340 | sub _divbyzero { |
5cd24f17 | 341 | my $mess = "$_[0]: Division by zero.\n"; |
342 | ||
343 | if (defined $_[1]) { | |
344 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
345 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
346 | $mess .= "is 0)\n"; | |
347 | } | |
348 | ||
0c721ce2 | 349 | my @up = caller(1); |
fb73857a | 350 | |
5cd24f17 | 351 | $mess .= "Died at $up[1] line $up[2].\n"; |
352 | ||
353 | die $mess; | |
0c721ce2 JH |
354 | } |
355 | ||
356 | # | |
66730be0 RM |
357 | # (divide) |
358 | # | |
359 | # Computes z1/z2. | |
360 | # | |
361 | sub divide { | |
362 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 363 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
364 | # if both polar better use polar to avoid rounding errors | |
365 | my ($r1, $t1) = @{$z1->polar}; | |
366 | my ($r2, $t2) = @{$z2->polar}; | |
367 | my $t; | |
368 | if ($inverted) { | |
0e505df1 | 369 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 370 | $t = $t2 - $t1; |
371 | if ($t > pi()) { $t -= pit2 } | |
372 | elsif ($t <= -pi()) { $t += pit2 } | |
373 | return (ref $z1)->emake($r2 / $r1, $t); | |
374 | } else { | |
0e505df1 | 375 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 376 | $t = $t1 - $t2; |
377 | if ($t > pi()) { $t -= pit2 } | |
378 | elsif ($t <= -pi()) { $t += pit2 } | |
379 | return (ref $z1)->emake($r1 / $r2, $t); | |
380 | } | |
381 | } else { | |
382 | my ($d, $x2, $y2); | |
383 | if ($inverted) { | |
384 | ($x2, $y2) = @{$z1->cartesian}; | |
385 | $d = $x2*$x2 + $y2*$y2; | |
386 | _divbyzero "$z2/0" if $d == 0; | |
387 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
388 | } else { | |
389 | my ($x1, $y1) = @{$z1->cartesian}; | |
390 | if (ref $z2) { | |
391 | ($x2, $y2) = @{$z2->cartesian}; | |
392 | $d = $x2*$x2 + $y2*$y2; | |
393 | _divbyzero "$z1/0" if $d == 0; | |
394 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
395 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
396 | return (ref $z1)->make($u, $v); | |
397 | } else { | |
398 | _divbyzero "$z1/0" if $z2 == 0; | |
399 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
400 | } | |
401 | } | |
0c721ce2 | 402 | } |
66730be0 RM |
403 | } |
404 | ||
405 | # | |
406 | # (power) | |
407 | # | |
408 | # Computes z1**z2 = exp(z2 * log z1)). | |
409 | # | |
410 | sub power { | |
411 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 | 412 | if ($inverted) { |
2820d885 DL |
413 | return 1 if $z1 == 0 || $z2 == 1; |
414 | return 0 if $z2 == 0 && Re($z1) > 0; | |
ace5de91 | 415 | } else { |
2820d885 DL |
416 | return 1 if $z2 == 0 || $z1 == 1; |
417 | return 0 if $z1 == 0 && Re($z2) > 0; | |
ace5de91 | 418 | } |
2820d885 DL |
419 | my $w = $inverted ? CORE::exp($z1 * CORE::log($z2)) |
420 | : CORE::exp($z2 * CORE::log($z1)); | |
d09ae4e6 JH |
421 | # If both arguments cartesian, return cartesian, else polar. |
422 | return $z1->{c_dirty} == 0 && | |
423 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |
424 | cplx(@{$w->cartesian}) : $w; | |
66730be0 RM |
425 | } |
426 | ||
427 | # | |
428 | # (spaceship) | |
429 | # | |
430 | # Computes z1 <=> z2. | |
2820d885 | 431 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
66730be0 RM |
432 | # |
433 | sub spaceship { | |
434 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 435 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
436 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
437 | my $sgn = $inverted ? -1 : 1; |
438 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
439 | return $sgn * ($im1 <=> $im2); | |
440 | } | |
441 | ||
442 | # | |
443 | # (negate) | |
444 | # | |
445 | # Computes -z. | |
446 | # | |
447 | sub negate { | |
448 | my ($z) = @_; | |
449 | if ($z->{c_dirty}) { | |
450 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 451 | $t = ($t <= 0) ? $t + pi : $t - pi; |
452 | return (ref $z)->emake($r, $t); | |
66730be0 RM |
453 | } |
454 | my ($re, $im) = @{$z->cartesian}; | |
455 | return (ref $z)->make(-$re, -$im); | |
456 | } | |
457 | ||
458 | # | |
459 | # (conjugate) | |
460 | # | |
461 | # Compute complex's conjugate. | |
462 | # | |
463 | sub conjugate { | |
464 | my ($z) = @_; | |
465 | if ($z->{c_dirty}) { | |
466 | my ($r, $t) = @{$z->polar}; | |
467 | return (ref $z)->emake($r, -$t); | |
468 | } | |
469 | my ($re, $im) = @{$z->cartesian}; | |
470 | return (ref $z)->make($re, -$im); | |
471 | } | |
472 | ||
473 | # | |
474 | # (abs) | |
475 | # | |
b42d0ec9 | 476 | # Compute or set complex's norm (rho). |
66730be0 RM |
477 | # |
478 | sub abs { | |
b42d0ec9 JH |
479 | my ($z, $rho) = @_; |
480 | return $z unless ref $z; | |
481 | if (defined $rho) { | |
482 | $z->{'polar'} = [ $rho, ${$z->polar}[1] ]; | |
483 | $z->{p_dirty} = 0; | |
484 | $z->{c_dirty} = 1; | |
485 | return $rho; | |
486 | } else { | |
487 | return ${$z->polar}[0]; | |
488 | } | |
489 | } | |
490 | ||
491 | sub _theta { | |
492 | my $theta = $_[0]; | |
493 | ||
494 | if ($$theta > pi()) { $$theta -= pit2 } | |
495 | elsif ($$theta <= -pi()) { $$theta += pit2 } | |
66730be0 RM |
496 | } |
497 | ||
498 | # | |
499 | # arg | |
500 | # | |
b42d0ec9 | 501 | # Compute or set complex's argument (theta). |
66730be0 RM |
502 | # |
503 | sub arg { | |
b42d0ec9 JH |
504 | my ($z, $theta) = @_; |
505 | return $z unless ref $z; | |
506 | if (defined $theta) { | |
507 | _theta(\$theta); | |
508 | $z->{'polar'} = [ ${$z->polar}[0], $theta ]; | |
509 | $z->{p_dirty} = 0; | |
510 | $z->{c_dirty} = 1; | |
511 | } else { | |
512 | $theta = ${$z->polar}[1]; | |
513 | _theta(\$theta); | |
514 | } | |
515 | return $theta; | |
66730be0 RM |
516 | } |
517 | ||
518 | # | |
519 | # (sqrt) | |
520 | # | |
0c721ce2 | 521 | # Compute sqrt(z). |
66730be0 | 522 | # |
b42d0ec9 JH |
523 | # It is quite tempting to use wantarray here so that in list context |
524 | # sqrt() would return the two solutions. This, however, would | |
525 | # break things like | |
526 | # | |
527 | # print "sqrt(z) = ", sqrt($z), "\n"; | |
528 | # | |
529 | # The two values would be printed side by side without no intervening | |
530 | # whitespace, quite confusing. | |
531 | # Therefore if you want the two solutions use the root(). | |
532 | # | |
66730be0 RM |
533 | sub sqrt { |
534 | my ($z) = @_; | |
b42d0ec9 | 535 | my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 | 536 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0; |
66730be0 | 537 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 538 | return (ref $z)->emake(CORE::sqrt($r), $t/2); |
66730be0 RM |
539 | } |
540 | ||
541 | # | |
542 | # cbrt | |
543 | # | |
0c721ce2 | 544 | # Compute cbrt(z) (cubic root). |
66730be0 | 545 | # |
b42d0ec9 JH |
546 | # Why are we not returning three values? The same answer as for sqrt(). |
547 | # | |
66730be0 RM |
548 | sub cbrt { |
549 | my ($z) = @_; | |
a8693bd3 | 550 | return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) |
fb73857a | 551 | unless ref $z; |
66730be0 | 552 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 553 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
66730be0 RM |
554 | } |
555 | ||
556 | # | |
0e505df1 JH |
557 | # _rootbad |
558 | # | |
559 | # Die on bad root. | |
560 | # | |
561 | sub _rootbad { | |
562 | my $mess = "Root $_[0] not defined, root must be positive integer.\n"; | |
563 | ||
564 | my @up = caller(1); | |
fb73857a | 565 | |
0e505df1 JH |
566 | $mess .= "Died at $up[1] line $up[2].\n"; |
567 | ||
568 | die $mess; | |
569 | } | |
570 | ||
571 | # | |
66730be0 RM |
572 | # root |
573 | # | |
574 | # Computes all nth root for z, returning an array whose size is n. | |
575 | # `n' must be a positive integer. | |
576 | # | |
577 | # The roots are given by (for k = 0..n-1): | |
578 | # | |
579 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
580 | # | |
581 | sub root { | |
582 | my ($z, $n) = @_; | |
0e505df1 | 583 | _rootbad($n) if ($n < 1 or int($n) != $n); |
a8693bd3 | 584 | my ($r, $t) = ref $z ? @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); |
66730be0 RM |
585 | my @root; |
586 | my $k; | |
fb73857a | 587 | my $theta_inc = pit2 / $n; |
66730be0 RM |
588 | my $rho = $r ** (1/$n); |
589 | my $theta; | |
d09ae4e6 | 590 | my $cartesian = ref $z && $z->{c_dirty} == 0; |
66730be0 | 591 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { |
d09ae4e6 JH |
592 | my $w = cplxe($rho, $theta); |
593 | # Yes, $cartesian is loop invariant. | |
594 | push @root, $cartesian ? cplx(@{$w->cartesian}) : $w; | |
a0d0e21e | 595 | } |
66730be0 | 596 | return @root; |
a0d0e21e LW |
597 | } |
598 | ||
66730be0 RM |
599 | # |
600 | # Re | |
601 | # | |
b42d0ec9 | 602 | # Return or set Re(z). |
66730be0 | 603 | # |
a0d0e21e | 604 | sub Re { |
b42d0ec9 | 605 | my ($z, $Re) = @_; |
66730be0 | 606 | return $z unless ref $z; |
b42d0ec9 JH |
607 | if (defined $Re) { |
608 | $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ]; | |
609 | $z->{c_dirty} = 0; | |
610 | $z->{p_dirty} = 1; | |
611 | } else { | |
612 | return ${$z->cartesian}[0]; | |
613 | } | |
a0d0e21e LW |
614 | } |
615 | ||
66730be0 RM |
616 | # |
617 | # Im | |
618 | # | |
b42d0ec9 | 619 | # Return or set Im(z). |
66730be0 | 620 | # |
a0d0e21e | 621 | sub Im { |
b42d0ec9 JH |
622 | my ($z, $Im) = @_; |
623 | return $z unless ref $z; | |
624 | if (defined $Im) { | |
625 | $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ]; | |
626 | $z->{c_dirty} = 0; | |
627 | $z->{p_dirty} = 1; | |
628 | } else { | |
629 | return ${$z->cartesian}[1]; | |
630 | } | |
631 | } | |
632 | ||
633 | # | |
634 | # rho | |
635 | # | |
636 | # Return or set rho(w). | |
637 | # | |
638 | sub rho { | |
639 | Math::Complex::abs(@_); | |
640 | } | |
641 | ||
642 | # | |
643 | # theta | |
644 | # | |
645 | # Return or set theta(w). | |
646 | # | |
647 | sub theta { | |
648 | Math::Complex::arg(@_); | |
a0d0e21e LW |
649 | } |
650 | ||
66730be0 RM |
651 | # |
652 | # (exp) | |
653 | # | |
654 | # Computes exp(z). | |
655 | # | |
656 | sub exp { | |
657 | my ($z) = @_; | |
658 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 659 | return (ref $z)->emake(CORE::exp($x), $y); |
66730be0 RM |
660 | } |
661 | ||
662 | # | |
8c03c583 JH |
663 | # _logofzero |
664 | # | |
fb73857a | 665 | # Die on logarithm of zero. |
8c03c583 JH |
666 | # |
667 | sub _logofzero { | |
668 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
669 | ||
670 | if (defined $_[1]) { | |
671 | $mess .= "(Because in the definition of $_[0], the argument "; | |
672 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
673 | $mess .= "is 0)\n"; | |
674 | } | |
675 | ||
676 | my @up = caller(1); | |
fb73857a | 677 | |
8c03c583 JH |
678 | $mess .= "Died at $up[1] line $up[2].\n"; |
679 | ||
680 | die $mess; | |
681 | } | |
682 | ||
683 | # | |
66730be0 RM |
684 | # (log) |
685 | # | |
686 | # Compute log(z). | |
687 | # | |
688 | sub log { | |
689 | my ($z) = @_; | |
fb73857a | 690 | unless (ref $z) { |
691 | _logofzero("log") if $z == 0; | |
a8693bd3 | 692 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
fb73857a | 693 | } |
5cd24f17 | 694 | my ($r, $t) = @{$z->polar}; |
fb73857a | 695 | _logofzero("log") if $r == 0; |
696 | if ($t > pi()) { $t -= pit2 } | |
697 | elsif ($t <= -pi()) { $t += pit2 } | |
a8693bd3 | 698 | return (ref $z)->make(CORE::log($r), $t); |
66730be0 RM |
699 | } |
700 | ||
701 | # | |
0c721ce2 JH |
702 | # ln |
703 | # | |
704 | # Alias for log(). | |
705 | # | |
706 | sub ln { Math::Complex::log(@_) } | |
707 | ||
708 | # | |
66730be0 RM |
709 | # log10 |
710 | # | |
711 | # Compute log10(z). | |
712 | # | |
5cd24f17 | 713 | |
66730be0 | 714 | sub log10 { |
fb73857a | 715 | return Math::Complex::log($_[0]) * uplog10; |
66730be0 RM |
716 | } |
717 | ||
718 | # | |
719 | # logn | |
720 | # | |
721 | # Compute logn(z,n) = log(z) / log(n) | |
722 | # | |
723 | sub logn { | |
724 | my ($z, $n) = @_; | |
0c721ce2 | 725 | $z = cplx($z, 0) unless ref $z; |
66730be0 | 726 | my $logn = $logn{$n}; |
a8693bd3 NIS |
727 | $logn = $logn{$n} = CORE::log($n) unless defined $logn; # Cache log(n) |
728 | return CORE::log($z) / $logn; | |
66730be0 RM |
729 | } |
730 | ||
731 | # | |
732 | # (cos) | |
733 | # | |
734 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
735 | # | |
736 | sub cos { | |
737 | my ($z) = @_; | |
738 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 739 | my $ey = CORE::exp($y); |
66730be0 | 740 | my $ey_1 = 1 / $ey; |
a8693bd3 NIS |
741 | return (ref $z)->make(CORE::cos($x) * ($ey + $ey_1)/2, |
742 | CORE::sin($x) * ($ey_1 - $ey)/2); | |
66730be0 RM |
743 | } |
744 | ||
745 | # | |
746 | # (sin) | |
747 | # | |
748 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
749 | # | |
750 | sub sin { | |
751 | my ($z) = @_; | |
752 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 753 | my $ey = CORE::exp($y); |
66730be0 | 754 | my $ey_1 = 1 / $ey; |
a8693bd3 NIS |
755 | return (ref $z)->make(CORE::sin($x) * ($ey + $ey_1)/2, |
756 | CORE::cos($x) * ($ey - $ey_1)/2); | |
66730be0 RM |
757 | } |
758 | ||
759 | # | |
760 | # tan | |
761 | # | |
762 | # Compute tan(z) = sin(z) / cos(z). | |
763 | # | |
764 | sub tan { | |
765 | my ($z) = @_; | |
a8693bd3 NIS |
766 | my $cz = CORE::cos($z); |
767 | _divbyzero "tan($z)", "cos($z)" if (CORE::abs($cz) < $eps); | |
768 | return CORE::sin($z) / $cz; | |
66730be0 RM |
769 | } |
770 | ||
771 | # | |
0c721ce2 JH |
772 | # sec |
773 | # | |
774 | # Computes the secant sec(z) = 1 / cos(z). | |
775 | # | |
776 | sub sec { | |
777 | my ($z) = @_; | |
a8693bd3 | 778 | my $cz = CORE::cos($z); |
0e505df1 | 779 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
780 | return 1 / $cz; |
781 | } | |
782 | ||
783 | # | |
784 | # csc | |
785 | # | |
786 | # Computes the cosecant csc(z) = 1 / sin(z). | |
787 | # | |
788 | sub csc { | |
789 | my ($z) = @_; | |
a8693bd3 | 790 | my $sz = CORE::sin($z); |
0e505df1 | 791 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
792 | return 1 / $sz; |
793 | } | |
794 | ||
66730be0 | 795 | # |
0c721ce2 | 796 | # cosec |
66730be0 | 797 | # |
0c721ce2 JH |
798 | # Alias for csc(). |
799 | # | |
800 | sub cosec { Math::Complex::csc(@_) } | |
801 | ||
802 | # | |
803 | # cot | |
804 | # | |
fb73857a | 805 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
806 | # |
807 | sub cot { | |
66730be0 | 808 | my ($z) = @_; |
a8693bd3 | 809 | my $sz = CORE::sin($z); |
0e505df1 | 810 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
a8693bd3 | 811 | return CORE::cos($z) / $sz; |
66730be0 RM |
812 | } |
813 | ||
814 | # | |
0c721ce2 JH |
815 | # cotan |
816 | # | |
817 | # Alias for cot(). | |
818 | # | |
819 | sub cotan { Math::Complex::cot(@_) } | |
820 | ||
821 | # | |
66730be0 RM |
822 | # acos |
823 | # | |
824 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
825 | # | |
826 | sub acos { | |
fb73857a | 827 | my $z = $_[0]; |
a8693bd3 | 828 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1; |
fb73857a | 829 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 NIS |
830 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
831 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 832 | my $alpha = ($t1 + $t2)/2; |
833 | my $beta = ($t1 - $t2)/2; | |
834 | $alpha = 1 if $alpha < 1; | |
835 | if ($beta > 1) { $beta = 1 } | |
836 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
837 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
838 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 839 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
16357284 | 840 | return __PACKAGE__->make($u, $v); |
66730be0 RM |
841 | } |
842 | ||
843 | # | |
844 | # asin | |
845 | # | |
846 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
847 | # | |
848 | sub asin { | |
fb73857a | 849 | my $z = $_[0]; |
a8693bd3 | 850 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1; |
fb73857a | 851 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 NIS |
852 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
853 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 854 | my $alpha = ($t1 + $t2)/2; |
855 | my $beta = ($t1 - $t2)/2; | |
856 | $alpha = 1 if $alpha < 1; | |
857 | if ($beta > 1) { $beta = 1 } | |
858 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
859 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
860 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 861 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
16357284 | 862 | return __PACKAGE__->make($u, $v); |
66730be0 RM |
863 | } |
864 | ||
865 | # | |
866 | # atan | |
867 | # | |
0c721ce2 | 868 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
869 | # |
870 | sub atan { | |
871 | my ($z) = @_; | |
a8693bd3 | 872 | return CORE::atan2($z, 1) unless ref $z; |
8c03c583 JH |
873 | _divbyzero "atan(i)" if ( $z == i); |
874 | _divbyzero "atan(-i)" if (-$z == i); | |
a8693bd3 | 875 | my $log = CORE::log((i + $z) / (i - $z)); |
fb73857a | 876 | $ip2 = 0.5 * i unless defined $ip2; |
877 | return $ip2 * $log; | |
a0d0e21e LW |
878 | } |
879 | ||
66730be0 | 880 | # |
0c721ce2 JH |
881 | # asec |
882 | # | |
883 | # Computes the arc secant asec(z) = acos(1 / z). | |
884 | # | |
885 | sub asec { | |
886 | my ($z) = @_; | |
0e505df1 | 887 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 888 | return acos(1 / $z); |
0c721ce2 JH |
889 | } |
890 | ||
891 | # | |
5cd24f17 | 892 | # acsc |
0c721ce2 | 893 | # |
8c03c583 | 894 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 895 | # |
5cd24f17 | 896 | sub acsc { |
0c721ce2 | 897 | my ($z) = @_; |
0e505df1 | 898 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 899 | return asin(1 / $z); |
0c721ce2 JH |
900 | } |
901 | ||
902 | # | |
5cd24f17 | 903 | # acosec |
66730be0 | 904 | # |
5cd24f17 | 905 | # Alias for acsc(). |
0c721ce2 | 906 | # |
5cd24f17 | 907 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 908 | |
66730be0 | 909 | # |
0c721ce2 JH |
910 | # acot |
911 | # | |
8c03c583 | 912 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
913 | # |
914 | sub acot { | |
66730be0 | 915 | my ($z) = @_; |
a8693bd3 NIS |
916 | _divbyzero "acot(0)" if (CORE::abs($z) < $eps); |
917 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z; | |
918 | _divbyzero "acot(i)" if (CORE::abs($z - i) < $eps); | |
919 | _logofzero "acot(-i)" if (CORE::abs($z + i) < $eps); | |
8c03c583 | 920 | return atan(1 / $z); |
66730be0 RM |
921 | } |
922 | ||
923 | # | |
0c721ce2 JH |
924 | # acotan |
925 | # | |
926 | # Alias for acot(). | |
927 | # | |
928 | sub acotan { Math::Complex::acot(@_) } | |
929 | ||
930 | # | |
66730be0 RM |
931 | # cosh |
932 | # | |
933 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
934 | # | |
935 | sub cosh { | |
936 | my ($z) = @_; | |
fb73857a | 937 | my $ex; |
0e505df1 | 938 | unless (ref $z) { |
a8693bd3 | 939 | $ex = CORE::exp($z); |
fb73857a | 940 | return ($ex + 1/$ex)/2; |
0e505df1 JH |
941 | } |
942 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 943 | $ex = CORE::exp($x); |
66730be0 | 944 | my $ex_1 = 1 / $ex; |
a8693bd3 NIS |
945 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
946 | CORE::sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
947 | } |
948 | ||
949 | # | |
950 | # sinh | |
951 | # | |
952 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
953 | # | |
954 | sub sinh { | |
955 | my ($z) = @_; | |
fb73857a | 956 | my $ex; |
0e505df1 | 957 | unless (ref $z) { |
a8693bd3 | 958 | $ex = CORE::exp($z); |
fb73857a | 959 | return ($ex - 1/$ex)/2; |
0e505df1 JH |
960 | } |
961 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 962 | $ex = CORE::exp($x); |
66730be0 | 963 | my $ex_1 = 1 / $ex; |
a8693bd3 NIS |
964 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
965 | CORE::sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
966 | } |
967 | ||
968 | # | |
969 | # tanh | |
970 | # | |
971 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
972 | # | |
973 | sub tanh { | |
974 | my ($z) = @_; | |
0c721ce2 | 975 | my $cz = cosh($z); |
0e505df1 | 976 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 977 | return sinh($z) / $cz; |
66730be0 RM |
978 | } |
979 | ||
980 | # | |
0c721ce2 JH |
981 | # sech |
982 | # | |
983 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
984 | # | |
985 | sub sech { | |
986 | my ($z) = @_; | |
987 | my $cz = cosh($z); | |
0e505df1 | 988 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
989 | return 1 / $cz; |
990 | } | |
991 | ||
992 | # | |
993 | # csch | |
994 | # | |
995 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 996 | # |
0c721ce2 JH |
997 | sub csch { |
998 | my ($z) = @_; | |
999 | my $sz = sinh($z); | |
0e505df1 | 1000 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
1001 | return 1 / $sz; |
1002 | } | |
1003 | ||
1004 | # | |
1005 | # cosech | |
1006 | # | |
1007 | # Alias for csch(). | |
1008 | # | |
1009 | sub cosech { Math::Complex::csch(@_) } | |
1010 | ||
66730be0 | 1011 | # |
0c721ce2 JH |
1012 | # coth |
1013 | # | |
1014 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
1015 | # | |
1016 | sub coth { | |
66730be0 | 1017 | my ($z) = @_; |
0c721ce2 | 1018 | my $sz = sinh($z); |
0e505df1 | 1019 | _divbyzero "coth($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 | 1020 | return cosh($z) / $sz; |
66730be0 RM |
1021 | } |
1022 | ||
1023 | # | |
0c721ce2 JH |
1024 | # cotanh |
1025 | # | |
1026 | # Alias for coth(). | |
1027 | # | |
1028 | sub cotanh { Math::Complex::coth(@_) } | |
1029 | ||
1030 | # | |
66730be0 RM |
1031 | # acosh |
1032 | # | |
fb73857a | 1033 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
1034 | # |
1035 | sub acosh { | |
1036 | my ($z) = @_; | |
fb73857a | 1037 | unless (ref $z) { |
a8693bd3 | 1038 | return CORE::log($z + CORE::sqrt($z*$z-1)) if $z >= 1; |
fb73857a | 1039 | $z = cplx($z, 0); |
1040 | } | |
8c03c583 | 1041 | my ($re, $im) = @{$z->cartesian}; |
fb73857a | 1042 | if ($im == 0) { |
a8693bd3 NIS |
1043 | return cplx(CORE::log($re + CORE::sqrt($re*$re - 1)), 0) if $re >= 1; |
1044 | return cplx(0, CORE::atan2(CORE::sqrt(1-$re*$re), $re)) if CORE::abs($re) <= 1; | |
fb73857a | 1045 | } |
a8693bd3 | 1046 | return CORE::log($z + CORE::sqrt($z*$z - 1)); |
66730be0 RM |
1047 | } |
1048 | ||
1049 | # | |
1050 | # asinh | |
1051 | # | |
1052 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
1053 | # | |
1054 | sub asinh { | |
1055 | my ($z) = @_; | |
a8693bd3 | 1056 | return CORE::log($z + CORE::sqrt($z*$z + 1)); |
66730be0 RM |
1057 | } |
1058 | ||
1059 | # | |
1060 | # atanh | |
1061 | # | |
1062 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
1063 | # | |
1064 | sub atanh { | |
1065 | my ($z) = @_; | |
fb73857a | 1066 | unless (ref $z) { |
a8693bd3 | 1067 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
fb73857a | 1068 | $z = cplx($z, 0); |
1069 | } | |
8c03c583 JH |
1070 | _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); |
1071 | _logofzero 'atanh(-1)' if ($z == -1); | |
a8693bd3 | 1072 | return 0.5 * CORE::log((1 + $z) / (1 - $z)); |
66730be0 RM |
1073 | } |
1074 | ||
1075 | # | |
0c721ce2 JH |
1076 | # asech |
1077 | # | |
1078 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
1079 | # | |
1080 | sub asech { | |
1081 | my ($z) = @_; | |
0e505df1 | 1082 | _divbyzero 'asech(0)', $z if ($z == 0); |
0c721ce2 JH |
1083 | return acosh(1 / $z); |
1084 | } | |
1085 | ||
1086 | # | |
1087 | # acsch | |
66730be0 | 1088 | # |
0c721ce2 | 1089 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 1090 | # |
0c721ce2 | 1091 | sub acsch { |
66730be0 | 1092 | my ($z) = @_; |
0e505df1 | 1093 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
1094 | return asinh(1 / $z); |
1095 | } | |
1096 | ||
1097 | # | |
1098 | # acosech | |
1099 | # | |
1100 | # Alias for acosh(). | |
1101 | # | |
1102 | sub acosech { Math::Complex::acsch(@_) } | |
1103 | ||
1104 | # | |
1105 | # acoth | |
1106 | # | |
1107 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1108 | # | |
1109 | sub acoth { | |
1110 | my ($z) = @_; | |
a8693bd3 | 1111 | _divbyzero 'acoth(0)' if (CORE::abs($z) < $eps); |
fb73857a | 1112 | unless (ref $z) { |
a8693bd3 | 1113 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
fb73857a | 1114 | $z = cplx($z, 0); |
1115 | } | |
a8693bd3 NIS |
1116 | _divbyzero 'acoth(1)', "$z - 1" if (CORE::abs($z - 1) < $eps); |
1117 | _logofzero 'acoth(-1)', "1 / $z" if (CORE::abs($z + 1) < $eps); | |
1118 | return CORE::log((1 + $z) / ($z - 1)) / 2; | |
66730be0 RM |
1119 | } |
1120 | ||
1121 | # | |
0c721ce2 JH |
1122 | # acotanh |
1123 | # | |
1124 | # Alias for acot(). | |
1125 | # | |
1126 | sub acotanh { Math::Complex::acoth(@_) } | |
1127 | ||
1128 | # | |
66730be0 RM |
1129 | # (atan2) |
1130 | # | |
1131 | # Compute atan(z1/z2). | |
1132 | # | |
1133 | sub atan2 { | |
1134 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1135 | my ($re1, $im1, $re2, $im2); |
1136 | if ($inverted) { | |
1137 | ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1138 | ($re2, $im2) = @{$z1->cartesian}; | |
66730be0 | 1139 | } else { |
fb73857a | 1140 | ($re1, $im1) = @{$z1->cartesian}; |
1141 | ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1142 | } | |
1143 | if ($im2 == 0) { | |
a8693bd3 | 1144 | return cplx(CORE::atan2($re1, $re2), 0) if $im1 == 0; |
fb73857a | 1145 | return cplx(($im1<=>0) * pip2, 0) if $re2 == 0; |
66730be0 | 1146 | } |
fb73857a | 1147 | my $w = atan($z1/$z2); |
1148 | my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); | |
1149 | $u += pi if $re2 < 0; | |
1150 | $u -= pit2 if $u > pi; | |
1151 | return cplx($u, $v); | |
66730be0 RM |
1152 | } |
1153 | ||
1154 | # | |
1155 | # display_format | |
1156 | # ->display_format | |
1157 | # | |
16357284 | 1158 | # Set (get if no argument) the display format for all complex numbers that |
fb73857a | 1159 | # don't happen to have overridden it via ->display_format |
66730be0 | 1160 | # |
16357284 | 1161 | # When called as an object method, this actually sets the display format for |
66730be0 RM |
1162 | # the current object. |
1163 | # | |
1164 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1165 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1166 | # | |
1167 | sub display_format { | |
16357284 JH |
1168 | my $self = shift; |
1169 | my %display_format = %DISPLAY_FORMAT; | |
66730be0 | 1170 | |
16357284 JH |
1171 | if (ref $self) { # Called as an object method |
1172 | if (exists $self->{display_format}) { | |
1173 | my %obj = %{$self->{display_format}}; | |
1174 | @display_format{keys %obj} = values %obj; | |
1175 | } | |
1176 | if (@_ == 1) { | |
1177 | $display_format{style} = shift; | |
1178 | } else { | |
1179 | my %new = @_; | |
1180 | @display_format{keys %new} = values %new; | |
1181 | } | |
1182 | } else { # Called as a class method | |
1183 | if (@_ = 1) { | |
1184 | $display_format{style} = $self; | |
1185 | } else { | |
1186 | my %new = @_; | |
1187 | @display_format{keys %new} = values %new; | |
1188 | } | |
1189 | undef $self; | |
66730be0 RM |
1190 | } |
1191 | ||
1192 | if (defined $self) { | |
16357284 JH |
1193 | $self->{display_format} = { %display_format }; |
1194 | return | |
1195 | wantarray ? | |
1196 | %{$self->{display_format}} : | |
1197 | $self->{display_format}->{style}; | |
66730be0 RM |
1198 | } |
1199 | ||
16357284 JH |
1200 | %DISPLAY_FORMAT = %display_format; |
1201 | return | |
1202 | wantarray ? | |
1203 | %DISPLAY_FORMAT : | |
1204 | $DISPLAY_FORMAT{style}; | |
66730be0 RM |
1205 | } |
1206 | ||
1207 | # | |
1208 | # (stringify) | |
1209 | # | |
1210 | # Show nicely formatted complex number under its cartesian or polar form, | |
1211 | # depending on the current display format: | |
1212 | # | |
1213 | # . If a specific display format has been recorded for this object, use it. | |
1214 | # . Otherwise, use the generic current default for all complex numbers, | |
1215 | # which is a package global variable. | |
1216 | # | |
a0d0e21e | 1217 | sub stringify { |
66730be0 | 1218 | my ($z) = shift; |
66730be0 | 1219 | |
16357284 JH |
1220 | my $style = $z->display_format; |
1221 | ||
1222 | $style = $DISPLAY_FORMAT{style} unless defined $style; | |
66730be0 | 1223 | |
16357284 | 1224 | return $z->stringify_polar if $style =~ /^p/i; |
66730be0 RM |
1225 | return $z->stringify_cartesian; |
1226 | } | |
1227 | ||
1228 | # | |
1229 | # ->stringify_cartesian | |
1230 | # | |
1231 | # Stringify as a cartesian representation 'a+bi'. | |
1232 | # | |
1233 | sub stringify_cartesian { | |
1234 | my $z = shift; | |
1235 | my ($x, $y) = @{$z->cartesian}; | |
1236 | my ($re, $im); | |
1237 | ||
fb73857a | 1238 | $x = int($x + ($x < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1239 | if int(CORE::abs($x)) != int(CORE::abs($x) + $eps); |
fb73857a | 1240 | $y = int($y + ($y < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1241 | if int(CORE::abs($y)) != int(CORE::abs($y) + $eps); |
55497cff | 1242 | |
a8693bd3 | 1243 | $re = "$x" if CORE::abs($x) >= $eps; |
16357284 JH |
1244 | |
1245 | my %format = $z->display_format; | |
1246 | my $format = $format{format}; | |
1247 | ||
1248 | if ($y == 1) { $im = 'i' } | |
1249 | elsif ($y == -1) { $im = '-i' } | |
1250 | elsif (CORE::abs($y) >= $eps) { | |
1251 | $im = (defined $format ? sprintf($format, $y) : $y) . "i"; | |
1252 | } | |
66730be0 | 1253 | |
0c721ce2 | 1254 | my $str = ''; |
16357284 JH |
1255 | $str = defined $format ? sprintf($format, $re) : $re |
1256 | if defined $re; | |
1257 | if (defined $im) { | |
1258 | if ($y < 0) { | |
1259 | $str .= $im; | |
1260 | } elsif ($y > 0) { | |
1261 | $str .= "+" if defined $re; | |
1262 | $str .= $im; | |
1263 | } | |
1264 | } | |
66730be0 RM |
1265 | |
1266 | return $str; | |
1267 | } | |
1268 | ||
d09ae4e6 JH |
1269 | |
1270 | # Helper for stringify_polar, a Greatest Common Divisor with a memory. | |
1271 | ||
1272 | sub _gcd { | |
1273 | my ($a, $b) = @_; | |
1274 | ||
1275 | use integer; | |
1276 | ||
1277 | # Loops forever if given negative inputs. | |
1278 | ||
1279 | if ($b and $a > $b) { return gcd($a % $b, $b) } | |
1280 | elsif ($a and $b > $a) { return gcd($b % $a, $a) } | |
1281 | else { return $a ? $a : $b } | |
1282 | } | |
1283 | ||
1284 | my %gcd; | |
1285 | ||
1286 | sub gcd { | |
1287 | my ($a, $b) = @_; | |
1288 | ||
1289 | my $id = "$a $b"; | |
2820d885 | 1290 | |
d09ae4e6 JH |
1291 | unless (exists $gcd{$id}) { |
1292 | $gcd{$id} = _gcd($a, $b); | |
1293 | $gcd{"$b $a"} = $gcd{$id}; | |
1294 | } | |
1295 | ||
1296 | return $gcd{$id}; | |
1297 | } | |
1298 | ||
66730be0 RM |
1299 | # |
1300 | # ->stringify_polar | |
1301 | # | |
1302 | # Stringify as a polar representation '[r,t]'. | |
1303 | # | |
1304 | sub stringify_polar { | |
1305 | my $z = shift; | |
1306 | my ($r, $t) = @{$z->polar}; | |
1307 | my $theta; | |
1308 | ||
0c721ce2 | 1309 | return '[0,0]' if $r <= $eps; |
a0d0e21e | 1310 | |
16357284 JH |
1311 | my %format = $z->display_format; |
1312 | ||
fb73857a | 1313 | my $nt = $t / pit2; |
1314 | $nt = ($nt - int($nt)) * pit2; | |
1315 | $nt += pit2 if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 1316 | |
a8693bd3 NIS |
1317 | if (CORE::abs($nt) <= $eps) { $theta = 0 } |
1318 | elsif (CORE::abs(pi-$nt) <= $eps) { $theta = 'pi' } | |
66730be0 | 1319 | |
55497cff | 1320 | if (defined $theta) { |
0c721ce2 | 1321 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1322 | if int(CORE::abs($r)) != int(CORE::abs($r) + $eps); |
0c721ce2 JH |
1323 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) |
1324 | if ($theta ne 'pi' and | |
a8693bd3 | 1325 | int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps)); |
55497cff | 1326 | return "\[$r,$theta\]"; |
1327 | } | |
66730be0 RM |
1328 | |
1329 | # | |
1330 | # Okay, number is not a real. Try to identify pi/n and friends... | |
1331 | # | |
1332 | ||
fb73857a | 1333 | $nt -= pit2 if $nt > pi; |
fb73857a | 1334 | |
16357284 | 1335 | if ($format{polar_pretty_print} && CORE::abs($nt) >= deg1) { |
d09ae4e6 JH |
1336 | my ($n, $k, $kpi); |
1337 | ||
1338 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { | |
66730be0 | 1339 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); |
a8693bd3 NIS |
1340 | if (CORE::abs($kpi/$n - $nt) <= $eps) { |
1341 | $n = CORE::abs($n); | |
d09ae4e6 JH |
1342 | my $gcd = gcd($k, $n); |
1343 | if ($gcd > 1) { | |
1344 | $k /= $gcd; | |
1345 | $n /= $gcd; | |
1346 | } | |
1347 | next if $n > 360; | |
1348 | $theta = ($nt < 0 ? '-':''). | |
1349 | ($k == 1 ? 'pi':"${k}pi"); | |
1350 | $theta .= '/'.$n if $n > 1; | |
1351 | last; | |
66730be0 | 1352 | } |
d09ae4e6 | 1353 | } |
66730be0 RM |
1354 | } |
1355 | ||
1356 | $theta = $nt unless defined $theta; | |
1357 | ||
0c721ce2 | 1358 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1359 | if int(CORE::abs($r)) != int(CORE::abs($r) + $eps); |
0c721ce2 JH |
1360 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) |
1361 | if ($theta !~ m(^-?\d*pi/\d+$) and | |
a8693bd3 | 1362 | int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps)); |
55497cff | 1363 | |
16357284 JH |
1364 | my $format = $format{format}; |
1365 | if (defined $format) { | |
1366 | $r = sprintf($format, $r); | |
1367 | $theta = sprintf($format, $theta); | |
1368 | } | |
1369 | ||
66730be0 | 1370 | return "\[$r,$theta\]"; |
a0d0e21e | 1371 | } |
a5f75d66 AD |
1372 | |
1373 | 1; | |
1374 | __END__ | |
1375 | ||
5287f86b | 1376 | =pod |
a5f75d66 AD |
1377 | =head1 NAME |
1378 | ||
66730be0 | 1379 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1380 | |
1381 | =head1 SYNOPSIS | |
1382 | ||
66730be0 | 1383 | use Math::Complex; |
fb73857a | 1384 | |
66730be0 RM |
1385 | $z = Math::Complex->make(5, 6); |
1386 | $t = 4 - 3*i + $z; | |
1387 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1388 | |
1389 | =head1 DESCRIPTION | |
1390 | ||
66730be0 RM |
1391 | This package lets you create and manipulate complex numbers. By default, |
1392 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1393 | full complex support, along with a full set of mathematical functions | |
1394 | typically associated with and/or extended to complex numbers. | |
1395 | ||
1396 | If you wonder what complex numbers are, they were invented to be able to solve | |
1397 | the following equation: | |
1398 | ||
1399 | x*x = -1 | |
1400 | ||
1401 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1402 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1403 | I<i> is a pure I<imaginary> number. | |
1404 | ||
1405 | The arithmetics with pure imaginary numbers works just like you would expect | |
1406 | it with real numbers... you just have to remember that | |
1407 | ||
1408 | i*i = -1 | |
1409 | ||
1410 | so you have: | |
1411 | ||
1412 | 5i + 7i = i * (5 + 7) = 12i | |
1413 | 4i - 3i = i * (4 - 3) = i | |
1414 | 4i * 2i = -8 | |
1415 | 6i / 2i = 3 | |
1416 | 1 / i = -i | |
1417 | ||
1418 | Complex numbers are numbers that have both a real part and an imaginary | |
1419 | part, and are usually noted: | |
1420 | ||
1421 | a + bi | |
1422 | ||
1423 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1424 | arithmetic with complex numbers is straightforward. You have to | |
1425 | keep track of the real and the imaginary parts, but otherwise the | |
1426 | rules used for real numbers just apply: | |
1427 | ||
1428 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1429 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1430 | ||
1431 | A graphical representation of complex numbers is possible in a plane | |
1432 | (also called the I<complex plane>, but it's really a 2D plane). | |
1433 | The number | |
1434 | ||
1435 | z = a + bi | |
1436 | ||
1437 | is the point whose coordinates are (a, b). Actually, it would | |
1438 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1439 | of two complex numbers is a vectorial addition. | |
1440 | ||
1441 | Since there is a bijection between a point in the 2D plane and a complex | |
1442 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1443 | can also be uniquely identified with polar coordinates: | |
1444 | ||
1445 | [rho, theta] | |
1446 | ||
1447 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1448 | the vector and the I<x> axis. There is a notation for this using the | |
1449 | exponential form, which is: | |
1450 | ||
1451 | rho * exp(i * theta) | |
1452 | ||
1453 | where I<i> is the famous imaginary number introduced above. Conversion | |
1454 | between this form and the cartesian form C<a + bi> is immediate: | |
1455 | ||
1456 | a = rho * cos(theta) | |
1457 | b = rho * sin(theta) | |
1458 | ||
1459 | which is also expressed by this formula: | |
1460 | ||
fb73857a | 1461 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1462 | |
1463 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1464 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1465 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1466 | noted C<abs(z)>. | |
1467 | ||
1468 | The polar notation (also known as the trigonometric | |
1469 | representation) is much more handy for performing multiplications and | |
1470 | divisions of complex numbers, whilst the cartesian notation is better | |
fb73857a | 1471 | suited for additions and subtractions. Real numbers are on the I<x> |
1472 | axis, and therefore I<theta> is zero or I<pi>. | |
66730be0 RM |
1473 | |
1474 | All the common operations that can be performed on a real number have | |
1475 | been defined to work on complex numbers as well, and are merely | |
1476 | I<extensions> of the operations defined on real numbers. This means | |
1477 | they keep their natural meaning when there is no imaginary part, provided | |
1478 | the number is within their definition set. | |
1479 | ||
1480 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1481 | its argument is only defined for non-negative real numbers and yields a |
1482 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1483 | If we allow it to return a complex number, then it can be extended to |
1484 | negative real numbers to become an application from B<R> to B<C> (the | |
1485 | set of complex numbers): | |
1486 | ||
1487 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1488 | ||
1489 | It can also be extended to be an application from B<C> to B<C>, | |
1490 | whilst its restriction to B<R> behaves as defined above by using | |
1491 | the following definition: | |
1492 | ||
1493 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1494 | ||
fb73857a | 1495 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1496 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1497 | number) and the above definition states that | |
66730be0 RM |
1498 | |
1499 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1500 | ||
1501 | which is exactly what we had defined for negative real numbers above. | |
b42d0ec9 JH |
1502 | The C<sqrt> returns only one of the solutions: if you want the both, |
1503 | use the C<root> function. | |
a5f75d66 | 1504 | |
66730be0 RM |
1505 | All the common mathematical functions defined on real numbers that |
1506 | are extended to complex numbers share that same property of working | |
1507 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1508 | be called an extension, would it?). | |
a5f75d66 | 1509 | |
66730be0 RM |
1510 | A I<new> operation possible on a complex number that is |
1511 | the identity for real numbers is called the I<conjugate>, and is noted | |
1512 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1513 | |
66730be0 RM |
1514 | z = a + bi |
1515 | ~z = a - bi | |
a5f75d66 | 1516 | |
66730be0 | 1517 | Simple... Now look: |
a5f75d66 | 1518 | |
66730be0 | 1519 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1520 | |
66730be0 RM |
1521 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1522 | distance to the origin, also known as: | |
a5f75d66 | 1523 | |
66730be0 | 1524 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1525 | |
66730be0 RM |
1526 | so |
1527 | ||
1528 | z * ~z = abs(z) ** 2 | |
1529 | ||
1530 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1531 | ||
1532 | a * a = abs(a) ** 2 | |
1533 | ||
1534 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1535 | for the absolute value). This example explains why the norm of C<z> is | |
1536 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1537 | is the regular C<abs> we know when the complex number actually has no | |
1538 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1539 | notation for the norm. | |
1540 | ||
1541 | =head1 OPERATIONS | |
1542 | ||
1543 | Given the following notations: | |
1544 | ||
1545 | z1 = a + bi = r1 * exp(i * t1) | |
1546 | z2 = c + di = r2 * exp(i * t2) | |
1547 | z = <any complex or real number> | |
1548 | ||
1549 | the following (overloaded) operations are supported on complex numbers: | |
1550 | ||
1551 | z1 + z2 = (a + c) + i(b + d) | |
1552 | z1 - z2 = (a - c) + i(b - d) | |
1553 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1554 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1555 | z1 ** z2 = exp(z2 * log z1) | |
b42d0ec9 JH |
1556 | ~z = a - bi |
1557 | abs(z) = r1 = sqrt(a*a + b*b) | |
1558 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |
1559 | exp(z) = exp(a) * exp(i * b) | |
1560 | log(z) = log(r1) + i*t | |
1561 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
1562 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
66730be0 RM |
1563 | atan2(z1, z2) = atan(z1/z2) |
1564 | ||
1565 | The following extra operations are supported on both real and complex | |
1566 | numbers: | |
1567 | ||
1568 | Re(z) = a | |
1569 | Im(z) = b | |
1570 | arg(z) = t | |
b42d0ec9 | 1571 | abs(z) = r |
66730be0 RM |
1572 | |
1573 | cbrt(z) = z ** (1/3) | |
1574 | log10(z) = log(z) / log(10) | |
1575 | logn(z, n) = log(z) / log(n) | |
1576 | ||
1577 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1578 | |
5aabfad6 | 1579 | csc(z) = 1 / sin(z) |
1580 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1581 | cot(z) = 1 / tan(z) |
66730be0 RM |
1582 | |
1583 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1584 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1585 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1586 | |
5aabfad6 | 1587 | acsc(z) = asin(1 / z) |
1588 | asec(z) = acos(1 / z) | |
8c03c583 | 1589 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1590 | |
1591 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1592 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1593 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1594 | ||
5aabfad6 | 1595 | csch(z) = 1 / sinh(z) |
1596 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1597 | coth(z) = 1 / tanh(z) |
fb73857a | 1598 | |
66730be0 RM |
1599 | asinh(z) = log(z + sqrt(z*z+1)) |
1600 | acosh(z) = log(z + sqrt(z*z-1)) | |
1601 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1602 | |
5aabfad6 | 1603 | acsch(z) = asinh(1 / z) |
1604 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1605 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1606 | ||
b42d0ec9 JH |
1607 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, |
1608 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
1609 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
1610 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
1611 | C<rho>, and C<theta> can be used also also mutators. The C<cbrt> | |
1612 | returns only one of the solutions: if you want all three, use the | |
1613 | C<root> function. | |
0c721ce2 JH |
1614 | |
1615 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1616 | roots of some complex, where I<n> is a strictly positive integer. |
1617 | There are exactly I<n> such roots, returned as a list. Getting the | |
1618 | number mathematicians call C<j> such that: | |
1619 | ||
1620 | 1 + j + j*j = 0; | |
1621 | ||
1622 | is a simple matter of writing: | |
1623 | ||
1624 | $j = ((root(1, 3))[1]; | |
1625 | ||
1626 | The I<k>th root for C<z = [r,t]> is given by: | |
1627 | ||
1628 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1629 | ||
f4837644 JH |
1630 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1631 | order to ensure its restriction to real numbers is conform to what you | |
1632 | would expect, the comparison is run on the real part of the complex | |
1633 | number first, and imaginary parts are compared only when the real | |
1634 | parts match. | |
66730be0 RM |
1635 | |
1636 | =head1 CREATION | |
1637 | ||
1638 | To create a complex number, use either: | |
1639 | ||
1640 | $z = Math::Complex->make(3, 4); | |
1641 | $z = cplx(3, 4); | |
1642 | ||
1643 | if you know the cartesian form of the number, or | |
1644 | ||
1645 | $z = 3 + 4*i; | |
1646 | ||
fb73857a | 1647 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1648 | |
1649 | $z = Math::Complex->emake(5, pi/3); | |
1650 | $x = cplxe(5, pi/3); | |
1651 | ||
0c721ce2 | 1652 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1653 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1654 | notation for complex numbers in the polar form). | |
66730be0 RM |
1655 | |
1656 | It is possible to write: | |
1657 | ||
1658 | $x = cplxe(-3, pi/4); | |
1659 | ||
16357284 JH |
1660 | but that will be silently converted into C<[3,-3pi/4]>, since the |
1661 | modulus must be non-negative (it represents the distance to the origin | |
1662 | in the complex plane). | |
66730be0 | 1663 | |
b42d0ec9 JH |
1664 | It is also possible to have a complex number as either argument of |
1665 | either the C<make> or C<emake>: the appropriate component of | |
1666 | the argument will be used. | |
1667 | ||
1668 | $z1 = cplx(-2, 1); | |
1669 | $z2 = cplx($z1, 4); | |
1670 | ||
66730be0 RM |
1671 | =head1 STRINGIFICATION |
1672 | ||
1673 | When printed, a complex number is usually shown under its cartesian | |
16357284 | 1674 | style I<a+bi>, but there are legitimate cases where the polar style |
66730be0 RM |
1675 | I<[r,t]> is more appropriate. |
1676 | ||
16357284 JH |
1677 | By calling the class method C<Math::Complex::display_format> and |
1678 | supplying either C<"polar"> or C<"cartesian"> as an argument, you | |
5287f86b | 1679 | override the default display style, which is C<"cartesian">. Not |
16357284 | 1680 | supplying any argument returns the current settings. |
66730be0 RM |
1681 | |
1682 | This default can be overridden on a per-number basis by calling the | |
1683 | C<display_format> method instead. As before, not supplying any argument | |
5287f86b JH |
1684 | returns the current display style for this number. Otherwise whatever you |
1685 | specify will be the new display style for I<this> particular number. | |
66730be0 RM |
1686 | |
1687 | For instance: | |
1688 | ||
1689 | use Math::Complex; | |
1690 | ||
1691 | Math::Complex::display_format('polar'); | |
16357284 JH |
1692 | $j = (root(1, 3))[1]; |
1693 | print "j = $j\n"; # Prints "j = [1,2pi/3]" | |
66730be0 RM |
1694 | $j->display_format('cartesian'); |
1695 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1696 | ||
5287f86b JH |
1697 | The polar style attempts to emphasize arguments like I<k*pi/n> |
1698 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]), | |
1699 | this is called I<polar pretty-printing>. | |
66730be0 | 1700 | |
16357284 JH |
1701 | =head2 CHANGED IN PERL 5.6 |
1702 | ||
1703 | The C<display_format> class method and the corresponding | |
1704 | C<display_format> object method can now be called using | |
1705 | a parameter hash instead of just a one parameter. | |
1706 | ||
1707 | The old display format style, which can have values C<"cartesian"> or | |
1708 | C<"polar">, can be changed using the C<"style"> parameter. (The one | |
1709 | parameter calling convention also still works.) | |
1710 | ||
1711 | There are two new display parameters. | |
1712 | ||
1713 | The first one is C<"format">, which is a sprintf()-style format | |
1714 | string to be used for both parts of the complex number(s). The | |
1715 | default is C<undef>, which corresponds usually (this is somewhat | |
1716 | system-dependent) to C<"%.15g">. You can revert to the default by | |
1717 | setting the format string to C<undef>. | |
1718 | ||
1719 | # the $j from the above example | |
1720 | ||
1721 | $j->display_format('format' => '%.5f'); | |
1722 | print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |
1723 | $j->display_format('format' => '%.6f'); | |
1724 | print "j = $j\n"; # Prints "j = -0.5+0.86603i" | |
1725 | ||
1726 | Notice that this affects also the return values of the | |
1727 | C<display_format> methods: in list context the whole parameter hash | |
1728 | will be returned, as opposed to only the style parameter value. If | |
1729 | you want to know the whole truth for a complex number, you must call | |
1730 | both the class method and the object method: | |
1731 | ||
5287f86b JH |
1732 | The second new display parameter is C<"polar_pretty_print">, which can |
1733 | be set to true or false, the default being true. See the previous | |
1734 | section for what this means. | |
16357284 | 1735 | |
66730be0 RM |
1736 | =head1 USAGE |
1737 | ||
1738 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1739 | is simple and almost transparent. | |
1740 | ||
1741 | Here are some examples: | |
1742 | ||
1743 | use Math::Complex; | |
1744 | ||
1745 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1746 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1747 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1748 | ||
1749 | $z = -16 + 0*i; # Force it to be a complex | |
1750 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1751 | ||
1752 | $k = exp(i * 2*pi/3); | |
1753 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1754 | |
b42d0ec9 JH |
1755 | $z->Re(3); # Re, Im, arg, abs, |
1756 | $j->arg(2); # (the last two aka rho, theta) | |
1757 | # can be used also as mutators. | |
1758 | ||
1759 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |
5aabfad6 | 1760 | |
1761 | The division (/) and the following functions | |
1762 | ||
b42d0ec9 | 1763 | log ln log10 logn |
2820d885 | 1764 | tan sec csc cot |
b42d0ec9 JH |
1765 | atan asec acsc acot |
1766 | tanh sech csch coth | |
1767 | atanh asech acsch acoth | |
5aabfad6 | 1768 | |
1769 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1770 | by zero or taking logarithm of zero. These situations cause fatal |
1771 | runtime errors looking like this | |
5aabfad6 | 1772 | |
1773 | cot(0): Division by zero. | |
5cd24f17 | 1774 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1775 | Died at ... |
1776 | ||
8c03c583 JH |
1777 | or |
1778 | ||
1779 | atanh(-1): Logarithm of zero. | |
1780 | Died at... | |
1781 | ||
1782 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
b42d0ec9 JH |
1783 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the the |
1784 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot | |
1785 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
1786 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
1787 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
1788 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
1789 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
1790 | is any integer. | |
1791 | ||
1792 | Note that because we are operating on approximations of real numbers, | |
1793 | these errors can happen when merely `too close' to the singularities | |
1794 | listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of | |
1795 | division by zero. | |
1796 | ||
1797 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
1798 | ||
1799 | The C<make> and C<emake> accept both real and complex arguments. | |
1800 | When they cannot recognize the arguments they will die with error | |
1801 | messages like the following | |
1802 | ||
1803 | Math::Complex::make: Cannot take real part of ... | |
1804 | Math::Complex::make: Cannot take real part of ... | |
1805 | Math::Complex::emake: Cannot take rho of ... | |
1806 | Math::Complex::emake: Cannot take theta of ... | |
5cd24f17 | 1807 | |
a5f75d66 AD |
1808 | =head1 BUGS |
1809 | ||
5cd24f17 | 1810 | Saying C<use Math::Complex;> exports many mathematical routines in the |
fb73857a | 1811 | caller environment and even overrides some (C<sqrt>, C<log>). |
1812 | This is construed as a feature by the Authors, actually... ;-) | |
a5f75d66 | 1813 | |
66730be0 RM |
1814 | All routines expect to be given real or complex numbers. Don't attempt to |
1815 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1816 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1817 | |
d09ae4e6 JH |
1818 | In Cray UNICOS there is some strange numerical instability that results |
1819 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
1820 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
1821 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
1822 | ||
0c721ce2 | 1823 | =head1 AUTHORS |
a5f75d66 | 1824 | |
6e238990 | 1825 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and |
ace5de91 | 1826 | Jarkko Hietaniemi <F<jhi@iki.fi>>. |
5cd24f17 | 1827 | |
fb73857a | 1828 | Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. |
1829 | ||
5cd24f17 | 1830 | =cut |
1831 | ||
b42d0ec9 JH |
1832 | 1; |
1833 | ||
5cd24f17 | 1834 | # eof |