This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
In the PERL_IMPLICIT_SYS section in perl_free(), use fewer CPP directives.
[perl5.git] / time64.c
CommitLineData
a272e669
MS
1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
7430375d 36S_localtime64_r() is a 64-bit equivalent of localtime_r().
a272e669 37
7430375d 38S_gmtime64_r() is a 64-bit equivalent of gmtime_r().
a272e669
MS
39
40*/
41
7643e68f 42#include "time64.h"
af9b2bf5 43
a272e669
MS
44static const int days_in_month[2][12] = {
45 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47};
48
49static const int julian_days_by_month[2][12] = {
50 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52};
53
54static const int length_of_year[2] = { 365, 366 };
55
56/* Number of days in a 400 year Gregorian cycle */
806a119a 57static const Year years_in_gregorian_cycle = 400;
a272e669
MS
58static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
59
60/* 28 year calendar cycle between 2010 and 2037 */
806a119a
MS
61#define SOLAR_CYCLE_LENGTH 28
62static const int safe_years[SOLAR_CYCLE_LENGTH] = {
a272e669
MS
63 2016, 2017, 2018, 2019,
64 2020, 2021, 2022, 2023,
65 2024, 2025, 2026, 2027,
66 2028, 2029, 2030, 2031,
67 2032, 2033, 2034, 2035,
68 2036, 2037, 2010, 2011,
69 2012, 2013, 2014, 2015
70};
71
ea722b76 72static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
003c3b95
MS
73 5, 0, 1, 2, /* 0 2016 - 2019 */
74 3, 5, 6, 0, /* 4 */
75 1, 3, 4, 5, /* 8 */
76 6, 1, 2, 3, /* 12 */
77 4, 6, 0, 1, /* 16 */
78 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
79 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
a272e669
MS
80};
81
9af24521
MS
82/* Let's assume people are going to be looking for dates in the future.
83 Let's provide some cheats so you can skip ahead.
84 This has a 4x speed boost when near 2008.
85*/
86/* Number of days since epoch on Jan 1st, 2008 GMT */
87#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
88#define CHEAT_YEARS 108
a272e669
MS
89
90#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
92
b86b480f
MS
93#ifdef USE_SYSTEM_LOCALTIME
94# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
7bda3dfc
MS
95 (a) <= SYSTEM_LOCALTIME_MAX && \
96 (a) >= SYSTEM_LOCALTIME_MIN \
97)
b86b480f
MS
98#else
99# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
100#endif
101
102#ifdef USE_SYSTEM_GMTIME
103# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
7bda3dfc
MS
104 (a) <= SYSTEM_GMTIME_MAX && \
105 (a) >= SYSTEM_GMTIME_MIN \
106)
b86b480f
MS
107#else
108# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
109#endif
a64acb40 110
d4fb0a1f 111/* Multi varadic macros are a C99 thing, alas */
461d5a49 112#ifdef TIME_64_DEBUG
7430375d
CB
113# define TIME64_TRACE(format) (fprintf(stderr, format))
114# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
115# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
116# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
461d5a49 117#else
7430375d
CB
118# define TIME64_TRACE(format) ((void)0)
119# define TIME64_TRACE1(format, var1) ((void)0)
120# define TIME64_TRACE2(format, var1, var2) ((void)0)
121# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
461d5a49 122#endif
a64acb40 123
7430375d 124static int S_is_exception_century(Year year)
a272e669
MS
125{
126 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
7430375d 127 TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
a272e669
MS
128
129 return(is_exception);
130}
131
9af24521 132
7430375d 133static Time64_T S_timegm64(struct TM *date) {
b86b480f
MS
134 int days = 0;
135 Time64_T seconds = 0;
136 Year year;
a272e669 137
9af24521
MS
138 if( date->tm_year > 70 ) {
139 year = 70;
140 while( year < date->tm_year ) {
141 days += length_of_year[IS_LEAP(year)];
142 year++;
a272e669
MS
143 }
144 }
9af24521
MS
145 else if ( date->tm_year < 70 ) {
146 year = 69;
147 do {
148 days -= length_of_year[IS_LEAP(year)];
149 year--;
150 } while( year >= date->tm_year );
151 }
152
153 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
154 days += date->tm_mday - 1;
155
ea722b76
MS
156 /* Avoid overflowing the days integer */
157 seconds = days;
158 seconds = seconds * 60 * 60 * 24;
159
9af24521
MS
160 seconds += date->tm_hour * 60 * 60;
161 seconds += date->tm_min * 60;
162 seconds += date->tm_sec;
163
b86b480f 164 return(seconds);
9af24521
MS
165}
166
167
554fcfb9 168#ifdef DEBUGGING
7430375d 169static int S_check_tm(struct TM *tm)
9af24521 170{
9af24521 171 /* Don't forget leap seconds */
af9b2bf5 172 assert(tm->tm_sec >= 0);
9af24521
MS
173 assert(tm->tm_sec <= 61);
174
af9b2bf5 175 assert(tm->tm_min >= 0);
9af24521
MS
176 assert(tm->tm_min <= 59);
177
178 assert(tm->tm_hour >= 0);
179 assert(tm->tm_hour <= 23);
180
181 assert(tm->tm_mday >= 1);
af9b2bf5 182 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
9af24521
MS
183
184 assert(tm->tm_mon >= 0);
185 assert(tm->tm_mon <= 11);
186
187 assert(tm->tm_wday >= 0);
188 assert(tm->tm_wday <= 6);
189
190 assert(tm->tm_yday >= 0);
af9b2bf5 191 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
9af24521
MS
192
193#ifdef HAS_TM_TM_GMTOFF
194 assert(tm->tm_gmtoff >= -24 * 60 * 60);
195 assert(tm->tm_gmtoff <= 24 * 60 * 60);
196#endif
af9b2bf5
MS
197
198 return 1;
a272e669 199}
554fcfb9 200#endif
a64acb40 201
a272e669
MS
202
203/* The exceptional centuries without leap years cause the cycle to
204 shift by 16
205*/
7430375d 206static Year S_cycle_offset(Year year)
a272e669 207{
750c447b
MS
208 const Year start_year = 2000;
209 Year year_diff = year - start_year;
210 Year exceptions;
003c3b95
MS
211
212 if( year > start_year )
213 year_diff--;
214
750c447b
MS
215 exceptions = year_diff / 100;
216 exceptions -= year_diff / 400;
a272e669 217
7430375d 218 TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
461d5a49 219 year, exceptions, year_diff);
a272e669
MS
220
221 return exceptions * 16;
222}
223
224/* For a given year after 2038, pick the latest possible matching
225 year in the 28 year calendar cycle.
ea722b76
MS
226
227 A matching year...
228 1) Starts on the same day of the week.
229 2) Has the same leap year status.
230
231 This is so the calendars match up.
232
233 Also the previous year must match. When doing Jan 1st you might
234 wind up on Dec 31st the previous year when doing a -UTC time zone.
003c3b95
MS
235
236 Finally, the next year must have the same start day of week. This
237 is for Dec 31st with a +UTC time zone.
238 It doesn't need the same leap year status since we only care about
239 January 1st.
a272e669 240*/
7430375d 241static int S_safe_year(Year year)
a272e669
MS
242{
243 int safe_year;
7430375d 244 Year year_cycle = year + S_cycle_offset(year);
a272e669
MS
245
246 /* Change non-leap xx00 years to an equivalent */
7430375d 247 if( S_is_exception_century(year) )
a272e669
MS
248 year_cycle += 11;
249
003c3b95 250 /* Also xx01 years, since the previous year will be wrong */
7430375d 251 if( S_is_exception_century(year - 1) )
003c3b95
MS
252 year_cycle += 17;
253
a272e669 254 year_cycle %= SOLAR_CYCLE_LENGTH;
ea722b76
MS
255 if( year_cycle < 0 )
256 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
a272e669 257
003c3b95
MS
258 assert( year_cycle >= 0 );
259 assert( year_cycle < SOLAR_CYCLE_LENGTH );
a272e669
MS
260 safe_year = safe_years[year_cycle];
261
262 assert(safe_year <= 2037 && safe_year >= 2010);
263
7430375d 264 TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
461d5a49 265 year, year_cycle, safe_year);
a272e669
MS
266
267 return safe_year;
268}
269
750c447b 270
7430375d 271static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
606599e1
AD
272 assert(src);
273 assert(dest);
55971e21
DD
274#ifdef USE_TM64
275 dest->tm_sec = src->tm_sec;
276 dest->tm_min = src->tm_min;
277 dest->tm_hour = src->tm_hour;
278 dest->tm_mday = src->tm_mday;
279 dest->tm_mon = src->tm_mon;
280 dest->tm_year = (Year)src->tm_year;
281 dest->tm_wday = src->tm_wday;
282 dest->tm_yday = src->tm_yday;
283 dest->tm_isdst = src->tm_isdst;
284
285# ifdef HAS_TM_TM_GMTOFF
286 dest->tm_gmtoff = src->tm_gmtoff;
287# endif
288
289# ifdef HAS_TM_TM_ZONE
290 dest->tm_zone = src->tm_zone;
291# endif
292
293#else
294 /* They're the same type */
295 memcpy(dest, src, sizeof(*dest));
296#endif
806a119a
MS
297}
298
299
7430375d 300#ifndef HAS_LOCALTIME_R
948ea7a9 301/* Simulate localtime_r() to the best of our ability */
7430375d 302static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
dbf7dff6 303#ifdef VMS
478780ab 304 dTHX; /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
dbf7dff6 305#endif
948ea7a9
MS
306 const struct tm *static_result = localtime(clock);
307
308 assert(result != NULL);
309
310 if( static_result == NULL ) {
311 memset(result, 0, sizeof(*result));
312 return NULL;
313 }
314 else {
315 memcpy(result, static_result, sizeof(*result));
316 return result;
317 }
318}
7430375d 319#endif
948ea7a9 320
7430375d 321#ifndef HAS_GMTIME_R
948ea7a9 322/* Simulate gmtime_r() to the best of our ability */
7430375d 323static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
478780ab 324 dTHX; /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
948ea7a9
MS
325 const struct tm *static_result = gmtime(clock);
326
327 assert(result != NULL);
328
329 if( static_result == NULL ) {
330 memset(result, 0, sizeof(*result));
331 return NULL;
332 }
333 else {
334 memcpy(result, static_result, sizeof(*result));
335 return result;
336 }
337}
7430375d 338#endif
948ea7a9 339
7430375d 340static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
a272e669
MS
341{
342 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
b86b480f 343 Time64_T v_tm_tday;
a272e669 344 int leap;
b86b480f 345 Time64_T m;
a272e669 346 Time64_T time = *in_time;
750c447b 347 Year year = 70;
806a119a 348 int cycles = 0;
a272e669 349
948ea7a9
MS
350 assert(p != NULL);
351
a64acb40
MS
352 /* Use the system gmtime() if time_t is small enough */
353 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
cd1759d8 354 time_t safe_time = (time_t)*in_time;
806a119a
MS
355 struct tm safe_date;
356 GMTIME_R(&safe_time, &safe_date);
357
7430375d
CB
358 S_copy_little_tm_to_big_TM(&safe_date, p);
359 assert(S_check_tm(p));
806a119a 360
a64acb40
MS
361 return p;
362 }
363
9af24521 364#ifdef HAS_TM_TM_GMTOFF
a272e669
MS
365 p->tm_gmtoff = 0;
366#endif
367 p->tm_isdst = 0;
368
9af24521 369#ifdef HAS_TM_TM_ZONE
1cefca6b 370 p->tm_zone = (char *)"UTC";
a272e669
MS
371#endif
372
d95a2ea5
CB
373 v_tm_sec = (int)fmod(time, 60.0);
374 time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
375 v_tm_min = (int)fmod(time, 60.0);
376 time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
377 v_tm_hour = (int)fmod(time, 24.0);
378 time = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0);
455f2c6c 379 v_tm_tday = time;
750c447b 380
a272e669
MS
381 WRAP (v_tm_sec, v_tm_min, 60);
382 WRAP (v_tm_min, v_tm_hour, 60);
383 WRAP (v_tm_hour, v_tm_tday, 24);
750c447b 384
d95a2ea5 385 v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0);
750c447b 386 if (v_tm_wday < 0)
a272e669
MS
387 v_tm_wday += 7;
388 m = v_tm_tday;
a272e669 389
9af24521
MS
390 if (m >= CHEAT_DAYS) {
391 year = CHEAT_YEARS;
392 m -= CHEAT_DAYS;
393 }
394
395 if (m >= 0) {
a272e669 396 /* Gregorian cycles, this is huge optimization for distant times */
d95a2ea5 397 cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle);
806a119a
MS
398 if( cycles ) {
399 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
400 year += (cycles * years_in_gregorian_cycle);
a272e669
MS
401 }
402
403 /* Years */
404 leap = IS_LEAP (year);
405 while (m >= (Time64_T) length_of_year[leap]) {
406 m -= (Time64_T) length_of_year[leap];
407 year++;
408 leap = IS_LEAP (year);
409 }
410
411 /* Months */
412 v_tm_mon = 0;
413 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
414 m -= (Time64_T) days_in_month[leap][v_tm_mon];
415 v_tm_mon++;
416 }
417 } else {
9af24521 418 year--;
a272e669
MS
419
420 /* Gregorian cycles */
d95a2ea5 421 cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
806a119a
MS
422 if( cycles ) {
423 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
424 year += (cycles * years_in_gregorian_cycle);
a272e669
MS
425 }
426
427 /* Years */
428 leap = IS_LEAP (year);
429 while (m < (Time64_T) -length_of_year[leap]) {
430 m += (Time64_T) length_of_year[leap];
431 year--;
432 leap = IS_LEAP (year);
433 }
434
435 /* Months */
436 v_tm_mon = 11;
437 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
438 m += (Time64_T) days_in_month[leap][v_tm_mon];
439 v_tm_mon--;
440 }
441 m += (Time64_T) days_in_month[leap][v_tm_mon];
442 }
443
444 p->tm_year = year;
445 if( p->tm_year != year ) {
9af24521 446#ifdef EOVERFLOW
a272e669 447 errno = EOVERFLOW;
9af24521 448#endif
a272e669
MS
449 return NULL;
450 }
451
b86b480f 452 /* At this point m is less than a year so casting to an int is safe */
a272e669 453 p->tm_mday = (int) m + 1;
b86b480f
MS
454 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
455 p->tm_sec = v_tm_sec;
456 p->tm_min = v_tm_min;
457 p->tm_hour = v_tm_hour;
458 p->tm_mon = v_tm_mon;
459 p->tm_wday = v_tm_wday;
a272e669 460
7430375d 461 assert(S_check_tm(p));
a272e669
MS
462
463 return p;
464}
465
466
673062a9 467static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
a272e669
MS
468{
469 time_t safe_time;
806a119a
MS
470 struct tm safe_date;
471 struct TM gm_tm;
750c447b 472 Year orig_year;
a272e669
MS
473 int month_diff;
474
948ea7a9
MS
475 assert(local_tm != NULL);
476
a64acb40
MS
477 /* Use the system localtime() if time_t is small enough */
478 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
cd1759d8 479 safe_time = (time_t)*time;
806a119a 480
7430375d 481 TIME64_TRACE1("Using system localtime for %lld\n", *time);
461d5a49 482
806a119a
MS
483 LOCALTIME_R(&safe_time, &safe_date);
484
7430375d
CB
485 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
486 assert(S_check_tm(local_tm));
806a119a 487
a64acb40
MS
488 return local_tm;
489 }
490
7430375d
CB
491 if( S_gmtime64_r(time, &gm_tm) == NULL ) {
492 TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
af832814 493 return NULL;
461d5a49 494 }
af832814 495
a272e669
MS
496 orig_year = gm_tm.tm_year;
497
c07fe26c 498 if (gm_tm.tm_year > (2037 - 1900) ||
461d5a49 499 gm_tm.tm_year < (1970 - 1900)
c07fe26c
MS
500 )
501 {
7430375d
CB
502 TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
503 gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
c07fe26c 504 }
a272e669 505
7430375d 506 safe_time = (time_t)S_timegm64(&gm_tm);
461d5a49 507 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
7430375d 508 TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
af832814 509 return NULL;
461d5a49 510 }
a272e669 511
7430375d 512 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
806a119a 513
a272e669 514 local_tm->tm_year = orig_year;
af832814 515 if( local_tm->tm_year != orig_year ) {
7430375d 516 TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
461d5a49
MS
517 (Year)local_tm->tm_year, (Year)orig_year);
518
af832814
MS
519#ifdef EOVERFLOW
520 errno = EOVERFLOW;
521#endif
522 return NULL;
523 }
524
525
a272e669
MS
526 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
527
528 /* When localtime is Dec 31st previous year and
529 gmtime is Jan 1st next year.
530 */
531 if( month_diff == 11 ) {
532 local_tm->tm_year--;
533 }
534
535 /* When localtime is Jan 1st, next year and
536 gmtime is Dec 31st, previous year.
537 */
538 if( month_diff == -11 ) {
539 local_tm->tm_year++;
540 }
541
542 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
543 in a non-leap xx00. There is one point in the cycle
544 we can't account for which the safe xx00 year is a leap
486ec47a 545 year. So we need to correct for Dec 31st coming out as
a272e669
MS
546 the 366th day of the year.
547 */
548 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
549 local_tm->tm_yday--;
550
7430375d 551 assert(S_check_tm(local_tm));
a272e669
MS
552
553 return local_tm;
554}