Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
b42d0ec9 JH |
3 | # -- Raphael Manfredi Since Sep 1996 |
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |
5 | # -- Daniel S. Lewart Since Sep 1997 | |
fb73857a | 6 | # |
a0d0e21e | 7 | |
5aabfad6 | 8 | package Math::Complex; |
a0d0e21e | 9 | |
bf5f1b4c | 10 | use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf); |
9fbe1b12 | 11 | |
b57c8994 | 12 | $VERSION = 1.48; |
476757f7 | 13 | |
9fbe1b12 | 14 | BEGIN { |
036846d3 | 15 | # For 64-bit doubles, anyway. |
1515bec6 SP |
16 | my $IEEE_DBL_MAX = eval "1.7976931348623157e+308"; |
17 | if ($^O eq 'unicosmk') { | |
18 | $Inf = $IEEE_DBL_MAX; | |
19 | } else { | |
618e05e9 | 20 | local $!; |
830ec763 | 21 | # We do want an arithmetic overflow, Inf INF inf Infinity:. |
1515bec6 SP |
22 | for my $t ( |
23 | 'exp(999)', | |
24 | '9**9**9', | |
25 | '1e999', | |
26 | 'inf', | |
27 | 'Inf', | |
28 | 'INF', | |
29 | 'infinity', | |
30 | 'Infinity', | |
31 | 'INFINITY', | |
32 | ) { | |
33 | local $SIG{FPE} = { }; | |
34 | local $^W = 0; | |
35 | my $i = eval "$t+1.0"; | |
36 | if ($i =~ /inf/i && $i > 1e+99) { | |
37 | $Inf = $i; | |
38 | last; | |
39 | } | |
830ec763 | 40 | } |
1515bec6 SP |
41 | $Inf = $IEEE_DBL_MAX unless defined $Inf; # Oh well, close enough. |
42 | die "Could not get Infinity" unless $Inf > 1e99; | |
ffb4440d | 43 | } |
b57c8994 | 44 | print "# On this machine, Inf = '$Inf'\n"; |
9fbe1b12 | 45 | } |
fb73857a | 46 | |
9fbe1b12 | 47 | use strict; |
fb73857a | 48 | |
9fbe1b12 JH |
49 | my $i; |
50 | my %LOGN; | |
0c721ce2 | 51 | |
91cb744f | 52 | # Regular expression for floating point numbers. |
bf5f1b4c JH |
53 | # These days we could use Scalar::Util::lln(), I guess. |
54 | my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; | |
91cb744f | 55 | |
9fbe1b12 | 56 | require Exporter; |
0c721ce2 | 57 | |
5aabfad6 | 58 | @ISA = qw(Exporter); |
59 | ||
5aabfad6 | 60 | my @trig = qw( |
61 | pi | |
fb73857a | 62 | tan |
5aabfad6 | 63 | csc cosec sec cot cotan |
64 | asin acos atan | |
65 | acsc acosec asec acot acotan | |
66 | sinh cosh tanh | |
67 | csch cosech sech coth cotanh | |
68 | asinh acosh atanh | |
69 | acsch acosech asech acoth acotanh | |
70 | ); | |
71 | ||
72 | @EXPORT = (qw( | |
b42d0ec9 | 73 | i Re Im rho theta arg |
fb73857a | 74 | sqrt log ln |
5aabfad6 | 75 | log10 logn cbrt root |
76 | cplx cplxe | |
bf5f1b4c | 77 | atan2 |
5aabfad6 | 78 | ), |
79 | @trig); | |
80 | ||
1515bec6 | 81 | my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); |
affad850 SP |
82 | |
83 | @EXPORT_OK = @pi; | |
bf5f1b4c | 84 | |
5aabfad6 | 85 | %EXPORT_TAGS = ( |
86 | 'trig' => [@trig], | |
affad850 | 87 | 'pi' => [@pi], |
66730be0 | 88 | ); |
a0d0e21e | 89 | |
a5f75d66 | 90 | use overload |
affad850 SP |
91 | '+' => \&_plus, |
92 | '-' => \&_minus, | |
93 | '*' => \&_multiply, | |
94 | '/' => \&_divide, | |
95 | '**' => \&_power, | |
96 | '==' => \&_numeq, | |
97 | '<=>' => \&_spaceship, | |
98 | 'neg' => \&_negate, | |
99 | '~' => \&_conjugate, | |
66730be0 RM |
100 | 'abs' => \&abs, |
101 | 'sqrt' => \&sqrt, | |
102 | 'exp' => \&exp, | |
103 | 'log' => \&log, | |
104 | 'sin' => \&sin, | |
105 | 'cos' => \&cos, | |
0c721ce2 | 106 | 'tan' => \&tan, |
66730be0 | 107 | 'atan2' => \&atan2, |
affad850 | 108 | '""' => \&_stringify; |
66730be0 RM |
109 | |
110 | # | |
b42d0ec9 | 111 | # Package "privates" |
66730be0 RM |
112 | # |
113 | ||
16357284 JH |
114 | my %DISPLAY_FORMAT = ('style' => 'cartesian', |
115 | 'polar_pretty_print' => 1); | |
116 | my $eps = 1e-14; # Epsilon | |
66730be0 RM |
117 | |
118 | # | |
119 | # Object attributes (internal): | |
120 | # cartesian [real, imaginary] -- cartesian form | |
121 | # polar [rho, theta] -- polar form | |
122 | # c_dirty cartesian form not up-to-date | |
123 | # p_dirty polar form not up-to-date | |
124 | # display display format (package's global when not set) | |
125 | # | |
126 | ||
b42d0ec9 JH |
127 | # Die on bad *make() arguments. |
128 | ||
129 | sub _cannot_make { | |
bf5f1b4c | 130 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; |
b42d0ec9 JH |
131 | } |
132 | ||
bf5f1b4c | 133 | sub _make { |
91cb744f | 134 | my $arg = shift; |
bf5f1b4c | 135 | my ($p, $q); |
91cb744f | 136 | |
bf5f1b4c JH |
137 | if ($arg =~ /^$gre$/) { |
138 | ($p, $q) = ($1, 0); | |
139 | } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { | |
91cb744f | 140 | ($p, $q) = ($1 || 0, $2); |
bf5f1b4c | 141 | } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { |
91cb744f | 142 | ($p, $q) = ($1, $2 || 0); |
91cb744f JH |
143 | } |
144 | ||
bf5f1b4c | 145 | if (defined $p) { |
91cb744f | 146 | $p =~ s/^\+//; |
bf5f1b4c | 147 | $p =~ s/^(-?)inf$/"${1}9**9**9"/e; |
91cb744f | 148 | $q =~ s/^\+//; |
bf5f1b4c | 149 | $q =~ s/^(-?)inf$/"${1}9**9**9"/e; |
91cb744f JH |
150 | } |
151 | ||
bf5f1b4c JH |
152 | return ($p, $q); |
153 | } | |
154 | ||
155 | sub _emake { | |
156 | my $arg = shift; | |
157 | my ($p, $q); | |
158 | ||
159 | if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { | |
160 | ($p, $q) = ($1, $2 || 0); | |
161 | } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { | |
162 | ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); | |
163 | } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { | |
164 | ($p, $q) = ($1, 0); | |
165 | } elsif ($arg =~ /^\s*$gre\s*$/) { | |
166 | ($p, $q) = ($1, 0); | |
167 | } | |
168 | ||
169 | if (defined $p) { | |
170 | $p =~ s/^\+//; | |
171 | $q =~ s/^\+//; | |
172 | $p =~ s/^(-?)inf$/"${1}9**9**9"/e; | |
173 | $q =~ s/^(-?)inf$/"${1}9**9**9"/e; | |
174 | } | |
175 | ||
176 | return ($p, $q); | |
91cb744f JH |
177 | } |
178 | ||
66730be0 RM |
179 | # |
180 | # ->make | |
181 | # | |
182 | # Create a new complex number (cartesian form) | |
183 | # | |
184 | sub make { | |
bf5f1b4c JH |
185 | my $self = bless {}, shift; |
186 | my ($re, $im); | |
187 | if (@_ == 0) { | |
188 | ($re, $im) = (0, 0); | |
189 | } elsif (@_ == 1) { | |
190 | return (ref $self)->emake($_[0]) | |
191 | if ($_[0] =~ /^\s*\[/); | |
192 | ($re, $im) = _make($_[0]); | |
193 | } elsif (@_ == 2) { | |
194 | ($re, $im) = @_; | |
195 | } | |
196 | if (defined $re) { | |
91cb744f | 197 | _cannot_make("real part", $re) unless $re =~ /^$gre$/; |
bf5f1b4c JH |
198 | } |
199 | $im ||= 0; | |
200 | _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; | |
affad850 | 201 | $self->_set_cartesian([$re, $im ]); |
bf5f1b4c JH |
202 | $self->display_format('cartesian'); |
203 | ||
204 | return $self; | |
66730be0 RM |
205 | } |
206 | ||
207 | # | |
208 | # ->emake | |
209 | # | |
210 | # Create a new complex number (exponential form) | |
211 | # | |
212 | sub emake { | |
bf5f1b4c JH |
213 | my $self = bless {}, shift; |
214 | my ($rho, $theta); | |
215 | if (@_ == 0) { | |
216 | ($rho, $theta) = (0, 0); | |
217 | } elsif (@_ == 1) { | |
218 | return (ref $self)->make($_[0]) | |
219 | if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); | |
220 | ($rho, $theta) = _emake($_[0]); | |
221 | } elsif (@_ == 2) { | |
222 | ($rho, $theta) = @_; | |
223 | } | |
224 | if (defined $rho && defined $theta) { | |
fb73857a | 225 | if ($rho < 0) { |
226 | $rho = -$rho; | |
227 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
228 | } | |
bf5f1b4c JH |
229 | } |
230 | if (defined $rho) { | |
91cb744f | 231 | _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; |
bf5f1b4c JH |
232 | } |
233 | $theta ||= 0; | |
234 | _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; | |
affad850 | 235 | $self->_set_polar([$rho, $theta]); |
bf5f1b4c JH |
236 | $self->display_format('polar'); |
237 | ||
238 | return $self; | |
66730be0 RM |
239 | } |
240 | ||
241 | sub new { &make } # For backward compatibility only. | |
242 | ||
243 | # | |
244 | # cplx | |
245 | # | |
246 | # Creates a complex number from a (re, im) tuple. | |
247 | # This avoids the burden of writing Math::Complex->make(re, im). | |
248 | # | |
249 | sub cplx { | |
91cb744f | 250 | return __PACKAGE__->make(@_); |
66730be0 RM |
251 | } |
252 | ||
253 | # | |
254 | # cplxe | |
255 | # | |
256 | # Creates a complex number from a (rho, theta) tuple. | |
257 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
258 | # | |
259 | sub cplxe { | |
91cb744f | 260 | return __PACKAGE__->emake(@_); |
66730be0 RM |
261 | } |
262 | ||
263 | # | |
264 | # pi | |
265 | # | |
fb73857a | 266 | # The number defined as pi = 180 degrees |
66730be0 | 267 | # |
6570f784 | 268 | sub pi () { 4 * CORE::atan2(1, 1) } |
5cd24f17 | 269 | |
270 | # | |
affad850 | 271 | # pi2 |
5cd24f17 | 272 | # |
fb73857a | 273 | # The full circle |
274 | # | |
affad850 SP |
275 | sub pi2 () { 2 * pi } |
276 | ||
277 | # | |
278 | # pi4 | |
279 | # | |
280 | # The full circle twice. | |
281 | # | |
282 | sub pi4 () { 4 * pi } | |
fb73857a | 283 | |
5cd24f17 | 284 | # |
fb73857a | 285 | # pip2 |
286 | # | |
287 | # The quarter circle | |
288 | # | |
6570f784 | 289 | sub pip2 () { pi / 2 } |
5cd24f17 | 290 | |
fb73857a | 291 | # |
affad850 | 292 | # pip4 |
d09ae4e6 | 293 | # |
affad850 | 294 | # The eighth circle. |
d09ae4e6 | 295 | # |
affad850 | 296 | sub pip4 () { pi / 4 } |
d09ae4e6 JH |
297 | |
298 | # | |
affad850 | 299 | # _uplog10 |
fb73857a | 300 | # |
301 | # Used in log10(). | |
302 | # | |
affad850 | 303 | sub _uplog10 () { 1 / CORE::log(10) } |
66730be0 RM |
304 | |
305 | # | |
306 | # i | |
307 | # | |
308 | # The number defined as i*i = -1; | |
309 | # | |
310 | sub i () { | |
5cd24f17 | 311 | return $i if ($i); |
312 | $i = bless {}; | |
40da2db3 | 313 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 314 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
315 | $i->{c_dirty} = 0; |
316 | $i->{p_dirty} = 0; | |
317 | return $i; | |
318 | } | |
319 | ||
320 | # | |
affad850 | 321 | # _ip2 |
1fa12f56 JH |
322 | # |
323 | # Half of i. | |
324 | # | |
affad850 | 325 | sub _ip2 () { i / 2 } |
1fa12f56 JH |
326 | |
327 | # | |
66730be0 RM |
328 | # Attribute access/set routines |
329 | # | |
330 | ||
affad850 SP |
331 | sub _cartesian {$_[0]->{c_dirty} ? |
332 | $_[0]->_update_cartesian : $_[0]->{'cartesian'}} | |
333 | sub _polar {$_[0]->{p_dirty} ? | |
334 | $_[0]->_update_polar : $_[0]->{'polar'}} | |
66730be0 | 335 | |
affad850 SP |
336 | sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; |
337 | $_[0]->{'cartesian'} = $_[1] } | |
338 | sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; | |
339 | $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
340 | |
341 | # | |
affad850 | 342 | # ->_update_cartesian |
66730be0 RM |
343 | # |
344 | # Recompute and return the cartesian form, given accurate polar form. | |
345 | # | |
affad850 | 346 | sub _update_cartesian { |
66730be0 | 347 | my $self = shift; |
40da2db3 | 348 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 349 | $self->{c_dirty} = 0; |
a8693bd3 | 350 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
66730be0 RM |
351 | } |
352 | ||
353 | # | |
354 | # | |
affad850 | 355 | # ->_update_polar |
66730be0 RM |
356 | # |
357 | # Recompute and return the polar form, given accurate cartesian form. | |
358 | # | |
affad850 | 359 | sub _update_polar { |
66730be0 | 360 | my $self = shift; |
40da2db3 | 361 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 362 | $self->{p_dirty} = 0; |
40da2db3 | 363 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
1fa12f56 JH |
364 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), |
365 | CORE::atan2($y, $x)]; | |
66730be0 RM |
366 | } |
367 | ||
368 | # | |
affad850 | 369 | # (_plus) |
66730be0 RM |
370 | # |
371 | # Computes z1+z2. | |
372 | # | |
affad850 | 373 | sub _plus { |
66730be0 | 374 | my ($z1, $z2, $regular) = @_; |
affad850 | 375 | my ($re1, $im1) = @{$z1->_cartesian}; |
0e505df1 | 376 | $z2 = cplx($z2) unless ref $z2; |
affad850 | 377 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
66730be0 | 378 | unless (defined $regular) { |
affad850 | 379 | $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); |
66730be0 RM |
380 | return $z1; |
381 | } | |
382 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
383 | } | |
384 | ||
385 | # | |
affad850 | 386 | # (_minus) |
66730be0 RM |
387 | # |
388 | # Computes z1-z2. | |
389 | # | |
affad850 | 390 | sub _minus { |
66730be0 | 391 | my ($z1, $z2, $inverted) = @_; |
affad850 | 392 | my ($re1, $im1) = @{$z1->_cartesian}; |
0e505df1 | 393 | $z2 = cplx($z2) unless ref $z2; |
affad850 | 394 | my ($re2, $im2) = @{$z2->_cartesian}; |
66730be0 | 395 | unless (defined $inverted) { |
affad850 | 396 | $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); |
66730be0 RM |
397 | return $z1; |
398 | } | |
399 | return $inverted ? | |
400 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
401 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 402 | |
66730be0 RM |
403 | } |
404 | ||
405 | # | |
affad850 | 406 | # (_multiply) |
66730be0 RM |
407 | # |
408 | # Computes z1*z2. | |
409 | # | |
affad850 | 410 | sub _multiply { |
fb73857a | 411 | my ($z1, $z2, $regular) = @_; |
412 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
413 | # if both polar better use polar to avoid rounding errors | |
affad850 SP |
414 | my ($r1, $t1) = @{$z1->_polar}; |
415 | my ($r2, $t2) = @{$z2->_polar}; | |
fb73857a | 416 | my $t = $t1 + $t2; |
affad850 SP |
417 | if ($t > pi()) { $t -= pi2 } |
418 | elsif ($t <= -pi()) { $t += pi2 } | |
fb73857a | 419 | unless (defined $regular) { |
affad850 | 420 | $z1->_set_polar([$r1 * $r2, $t]); |
66730be0 | 421 | return $z1; |
fb73857a | 422 | } |
423 | return (ref $z1)->emake($r1 * $r2, $t); | |
424 | } else { | |
affad850 | 425 | my ($x1, $y1) = @{$z1->_cartesian}; |
fb73857a | 426 | if (ref $z2) { |
affad850 | 427 | my ($x2, $y2) = @{$z2->_cartesian}; |
fb73857a | 428 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); |
429 | } else { | |
430 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
431 | } | |
66730be0 | 432 | } |
66730be0 RM |
433 | } |
434 | ||
435 | # | |
0e505df1 | 436 | # _divbyzero |
0c721ce2 JH |
437 | # |
438 | # Die on division by zero. | |
439 | # | |
0e505df1 | 440 | sub _divbyzero { |
5cd24f17 | 441 | my $mess = "$_[0]: Division by zero.\n"; |
442 | ||
443 | if (defined $_[1]) { | |
444 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
1fa12f56 | 445 | $mess .= "$_[1] " unless ("$_[1]" eq '0'); |
5cd24f17 | 446 | $mess .= "is 0)\n"; |
447 | } | |
448 | ||
0c721ce2 | 449 | my @up = caller(1); |
fb73857a | 450 | |
5cd24f17 | 451 | $mess .= "Died at $up[1] line $up[2].\n"; |
452 | ||
453 | die $mess; | |
0c721ce2 JH |
454 | } |
455 | ||
456 | # | |
affad850 | 457 | # (_divide) |
66730be0 RM |
458 | # |
459 | # Computes z1/z2. | |
460 | # | |
affad850 | 461 | sub _divide { |
66730be0 | 462 | my ($z1, $z2, $inverted) = @_; |
fb73857a | 463 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
464 | # if both polar better use polar to avoid rounding errors | |
affad850 SP |
465 | my ($r1, $t1) = @{$z1->_polar}; |
466 | my ($r2, $t2) = @{$z2->_polar}; | |
fb73857a | 467 | my $t; |
468 | if ($inverted) { | |
0e505df1 | 469 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 470 | $t = $t2 - $t1; |
affad850 SP |
471 | if ($t > pi()) { $t -= pi2 } |
472 | elsif ($t <= -pi()) { $t += pi2 } | |
fb73857a | 473 | return (ref $z1)->emake($r2 / $r1, $t); |
474 | } else { | |
0e505df1 | 475 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 476 | $t = $t1 - $t2; |
affad850 SP |
477 | if ($t > pi()) { $t -= pi2 } |
478 | elsif ($t <= -pi()) { $t += pi2 } | |
fb73857a | 479 | return (ref $z1)->emake($r1 / $r2, $t); |
480 | } | |
481 | } else { | |
482 | my ($d, $x2, $y2); | |
483 | if ($inverted) { | |
affad850 | 484 | ($x2, $y2) = @{$z1->_cartesian}; |
fb73857a | 485 | $d = $x2*$x2 + $y2*$y2; |
486 | _divbyzero "$z2/0" if $d == 0; | |
487 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
488 | } else { | |
affad850 | 489 | my ($x1, $y1) = @{$z1->_cartesian}; |
fb73857a | 490 | if (ref $z2) { |
affad850 | 491 | ($x2, $y2) = @{$z2->_cartesian}; |
fb73857a | 492 | $d = $x2*$x2 + $y2*$y2; |
493 | _divbyzero "$z1/0" if $d == 0; | |
494 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
495 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
496 | return (ref $z1)->make($u, $v); | |
497 | } else { | |
498 | _divbyzero "$z1/0" if $z2 == 0; | |
499 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
500 | } | |
501 | } | |
0c721ce2 | 502 | } |
66730be0 RM |
503 | } |
504 | ||
505 | # | |
affad850 | 506 | # (_power) |
66730be0 RM |
507 | # |
508 | # Computes z1**z2 = exp(z2 * log z1)). | |
509 | # | |
affad850 | 510 | sub _power { |
66730be0 | 511 | my ($z1, $z2, $inverted) = @_; |
ace5de91 | 512 | if ($inverted) { |
2820d885 DL |
513 | return 1 if $z1 == 0 || $z2 == 1; |
514 | return 0 if $z2 == 0 && Re($z1) > 0; | |
ace5de91 | 515 | } else { |
2820d885 DL |
516 | return 1 if $z2 == 0 || $z1 == 1; |
517 | return 0 if $z1 == 0 && Re($z2) > 0; | |
ace5de91 | 518 | } |
1fa12f56 JH |
519 | my $w = $inverted ? &exp($z1 * &log($z2)) |
520 | : &exp($z2 * &log($z1)); | |
d09ae4e6 JH |
521 | # If both arguments cartesian, return cartesian, else polar. |
522 | return $z1->{c_dirty} == 0 && | |
523 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |
affad850 | 524 | cplx(@{$w->_cartesian}) : $w; |
66730be0 RM |
525 | } |
526 | ||
527 | # | |
affad850 | 528 | # (_spaceship) |
66730be0 RM |
529 | # |
530 | # Computes z1 <=> z2. | |
2820d885 | 531 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
66730be0 | 532 | # |
affad850 | 533 | sub _spaceship { |
66730be0 | 534 | my ($z1, $z2, $inverted) = @_; |
affad850 SP |
535 | my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
536 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
66730be0 RM |
537 | my $sgn = $inverted ? -1 : 1; |
538 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
539 | return $sgn * ($im1 <=> $im2); | |
540 | } | |
541 | ||
542 | # | |
affad850 | 543 | # (_numeq) |
1fa12f56 JH |
544 | # |
545 | # Computes z1 == z2. | |
546 | # | |
affad850 SP |
547 | # (Required in addition to _spaceship() because of NaNs.) |
548 | sub _numeq { | |
1fa12f56 | 549 | my ($z1, $z2, $inverted) = @_; |
affad850 SP |
550 | my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
551 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
1fa12f56 JH |
552 | return $re1 == $re2 && $im1 == $im2 ? 1 : 0; |
553 | } | |
554 | ||
555 | # | |
affad850 | 556 | # (_negate) |
66730be0 RM |
557 | # |
558 | # Computes -z. | |
559 | # | |
affad850 | 560 | sub _negate { |
66730be0 RM |
561 | my ($z) = @_; |
562 | if ($z->{c_dirty}) { | |
affad850 | 563 | my ($r, $t) = @{$z->_polar}; |
fb73857a | 564 | $t = ($t <= 0) ? $t + pi : $t - pi; |
565 | return (ref $z)->emake($r, $t); | |
66730be0 | 566 | } |
affad850 | 567 | my ($re, $im) = @{$z->_cartesian}; |
66730be0 RM |
568 | return (ref $z)->make(-$re, -$im); |
569 | } | |
570 | ||
571 | # | |
affad850 | 572 | # (_conjugate) |
66730be0 | 573 | # |
affad850 | 574 | # Compute complex's _conjugate. |
66730be0 | 575 | # |
affad850 | 576 | sub _conjugate { |
66730be0 RM |
577 | my ($z) = @_; |
578 | if ($z->{c_dirty}) { | |
affad850 | 579 | my ($r, $t) = @{$z->_polar}; |
66730be0 RM |
580 | return (ref $z)->emake($r, -$t); |
581 | } | |
affad850 | 582 | my ($re, $im) = @{$z->_cartesian}; |
66730be0 RM |
583 | return (ref $z)->make($re, -$im); |
584 | } | |
585 | ||
586 | # | |
587 | # (abs) | |
588 | # | |
b42d0ec9 | 589 | # Compute or set complex's norm (rho). |
66730be0 RM |
590 | # |
591 | sub abs { | |
b42d0ec9 | 592 | my ($z, $rho) = @_; |
1fa12f56 JH |
593 | unless (ref $z) { |
594 | if (@_ == 2) { | |
595 | $_[0] = $_[1]; | |
596 | } else { | |
597 | return CORE::abs($z); | |
598 | } | |
599 | } | |
b42d0ec9 | 600 | if (defined $rho) { |
affad850 | 601 | $z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; |
b42d0ec9 JH |
602 | $z->{p_dirty} = 0; |
603 | $z->{c_dirty} = 1; | |
604 | return $rho; | |
605 | } else { | |
affad850 | 606 | return ${$z->_polar}[0]; |
b42d0ec9 JH |
607 | } |
608 | } | |
609 | ||
610 | sub _theta { | |
611 | my $theta = $_[0]; | |
612 | ||
affad850 SP |
613 | if ($$theta > pi()) { $$theta -= pi2 } |
614 | elsif ($$theta <= -pi()) { $$theta += pi2 } | |
66730be0 RM |
615 | } |
616 | ||
617 | # | |
618 | # arg | |
619 | # | |
b42d0ec9 | 620 | # Compute or set complex's argument (theta). |
66730be0 RM |
621 | # |
622 | sub arg { | |
b42d0ec9 JH |
623 | my ($z, $theta) = @_; |
624 | return $z unless ref $z; | |
625 | if (defined $theta) { | |
626 | _theta(\$theta); | |
affad850 | 627 | $z->{'polar'} = [ ${$z->_polar}[0], $theta ]; |
b42d0ec9 JH |
628 | $z->{p_dirty} = 0; |
629 | $z->{c_dirty} = 1; | |
630 | } else { | |
affad850 | 631 | $theta = ${$z->_polar}[1]; |
b42d0ec9 JH |
632 | _theta(\$theta); |
633 | } | |
634 | return $theta; | |
66730be0 RM |
635 | } |
636 | ||
637 | # | |
638 | # (sqrt) | |
639 | # | |
0c721ce2 | 640 | # Compute sqrt(z). |
66730be0 | 641 | # |
b42d0ec9 JH |
642 | # It is quite tempting to use wantarray here so that in list context |
643 | # sqrt() would return the two solutions. This, however, would | |
644 | # break things like | |
645 | # | |
646 | # print "sqrt(z) = ", sqrt($z), "\n"; | |
647 | # | |
648 | # The two values would be printed side by side without no intervening | |
649 | # whitespace, quite confusing. | |
650 | # Therefore if you want the two solutions use the root(). | |
651 | # | |
66730be0 RM |
652 | sub sqrt { |
653 | my ($z) = @_; | |
affad850 | 654 | my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); |
1fa12f56 JH |
655 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) |
656 | if $im == 0; | |
affad850 | 657 | my ($r, $t) = @{$z->_polar}; |
a8693bd3 | 658 | return (ref $z)->emake(CORE::sqrt($r), $t/2); |
66730be0 RM |
659 | } |
660 | ||
661 | # | |
662 | # cbrt | |
663 | # | |
0c721ce2 | 664 | # Compute cbrt(z) (cubic root). |
66730be0 | 665 | # |
b42d0ec9 JH |
666 | # Why are we not returning three values? The same answer as for sqrt(). |
667 | # | |
66730be0 RM |
668 | sub cbrt { |
669 | my ($z) = @_; | |
1fa12f56 JH |
670 | return $z < 0 ? |
671 | -CORE::exp(CORE::log(-$z)/3) : | |
672 | ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) | |
fb73857a | 673 | unless ref $z; |
affad850 | 674 | my ($r, $t) = @{$z->_polar}; |
1fa12f56 | 675 | return 0 if $r == 0; |
a8693bd3 | 676 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
66730be0 RM |
677 | } |
678 | ||
679 | # | |
0e505df1 JH |
680 | # _rootbad |
681 | # | |
682 | # Die on bad root. | |
683 | # | |
684 | sub _rootbad { | |
bf5f1b4c | 685 | my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; |
0e505df1 JH |
686 | |
687 | my @up = caller(1); | |
fb73857a | 688 | |
0e505df1 JH |
689 | $mess .= "Died at $up[1] line $up[2].\n"; |
690 | ||
691 | die $mess; | |
692 | } | |
693 | ||
694 | # | |
66730be0 RM |
695 | # root |
696 | # | |
697 | # Computes all nth root for z, returning an array whose size is n. | |
698 | # `n' must be a positive integer. | |
699 | # | |
700 | # The roots are given by (for k = 0..n-1): | |
701 | # | |
702 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
703 | # | |
704 | sub root { | |
bf5f1b4c | 705 | my ($z, $n, $k) = @_; |
0e505df1 | 706 | _rootbad($n) if ($n < 1 or int($n) != $n); |
1fa12f56 | 707 | my ($r, $t) = ref $z ? |
affad850 SP |
708 | @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); |
709 | my $theta_inc = pi2 / $n; | |
66730be0 | 710 | my $rho = $r ** (1/$n); |
d09ae4e6 | 711 | my $cartesian = ref $z && $z->{c_dirty} == 0; |
bf5f1b4c JH |
712 | if (@_ == 2) { |
713 | my @root; | |
714 | for (my $i = 0, my $theta = $t / $n; | |
715 | $i < $n; | |
716 | $i++, $theta += $theta_inc) { | |
717 | my $w = cplxe($rho, $theta); | |
718 | # Yes, $cartesian is loop invariant. | |
affad850 | 719 | push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; |
bf5f1b4c JH |
720 | } |
721 | return @root; | |
722 | } elsif (@_ == 3) { | |
723 | my $w = cplxe($rho, $t / $n + $k * $theta_inc); | |
affad850 | 724 | return $cartesian ? cplx(@{$w->_cartesian}) : $w; |
a0d0e21e | 725 | } |
a0d0e21e LW |
726 | } |
727 | ||
66730be0 RM |
728 | # |
729 | # Re | |
730 | # | |
b42d0ec9 | 731 | # Return or set Re(z). |
66730be0 | 732 | # |
a0d0e21e | 733 | sub Re { |
b42d0ec9 | 734 | my ($z, $Re) = @_; |
66730be0 | 735 | return $z unless ref $z; |
b42d0ec9 | 736 | if (defined $Re) { |
affad850 | 737 | $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; |
b42d0ec9 JH |
738 | $z->{c_dirty} = 0; |
739 | $z->{p_dirty} = 1; | |
740 | } else { | |
affad850 | 741 | return ${$z->_cartesian}[0]; |
b42d0ec9 | 742 | } |
a0d0e21e LW |
743 | } |
744 | ||
66730be0 RM |
745 | # |
746 | # Im | |
747 | # | |
b42d0ec9 | 748 | # Return or set Im(z). |
66730be0 | 749 | # |
a0d0e21e | 750 | sub Im { |
b42d0ec9 | 751 | my ($z, $Im) = @_; |
178326e7 | 752 | return 0 unless ref $z; |
b42d0ec9 | 753 | if (defined $Im) { |
affad850 | 754 | $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; |
b42d0ec9 JH |
755 | $z->{c_dirty} = 0; |
756 | $z->{p_dirty} = 1; | |
757 | } else { | |
affad850 | 758 | return ${$z->_cartesian}[1]; |
b42d0ec9 JH |
759 | } |
760 | } | |
761 | ||
762 | # | |
763 | # rho | |
764 | # | |
765 | # Return or set rho(w). | |
766 | # | |
767 | sub rho { | |
768 | Math::Complex::abs(@_); | |
769 | } | |
770 | ||
771 | # | |
772 | # theta | |
773 | # | |
774 | # Return or set theta(w). | |
775 | # | |
776 | sub theta { | |
777 | Math::Complex::arg(@_); | |
a0d0e21e LW |
778 | } |
779 | ||
66730be0 RM |
780 | # |
781 | # (exp) | |
782 | # | |
783 | # Computes exp(z). | |
784 | # | |
785 | sub exp { | |
786 | my ($z) = @_; | |
affad850 | 787 | my ($x, $y) = @{$z->_cartesian}; |
a8693bd3 | 788 | return (ref $z)->emake(CORE::exp($x), $y); |
66730be0 RM |
789 | } |
790 | ||
791 | # | |
8c03c583 JH |
792 | # _logofzero |
793 | # | |
fb73857a | 794 | # Die on logarithm of zero. |
8c03c583 JH |
795 | # |
796 | sub _logofzero { | |
797 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
798 | ||
799 | if (defined $_[1]) { | |
800 | $mess .= "(Because in the definition of $_[0], the argument "; | |
801 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
802 | $mess .= "is 0)\n"; | |
803 | } | |
804 | ||
805 | my @up = caller(1); | |
fb73857a | 806 | |
8c03c583 JH |
807 | $mess .= "Died at $up[1] line $up[2].\n"; |
808 | ||
809 | die $mess; | |
810 | } | |
811 | ||
812 | # | |
66730be0 RM |
813 | # (log) |
814 | # | |
815 | # Compute log(z). | |
816 | # | |
817 | sub log { | |
818 | my ($z) = @_; | |
fb73857a | 819 | unless (ref $z) { |
820 | _logofzero("log") if $z == 0; | |
a8693bd3 | 821 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
fb73857a | 822 | } |
affad850 | 823 | my ($r, $t) = @{$z->_polar}; |
fb73857a | 824 | _logofzero("log") if $r == 0; |
affad850 SP |
825 | if ($t > pi()) { $t -= pi2 } |
826 | elsif ($t <= -pi()) { $t += pi2 } | |
a8693bd3 | 827 | return (ref $z)->make(CORE::log($r), $t); |
66730be0 RM |
828 | } |
829 | ||
830 | # | |
0c721ce2 JH |
831 | # ln |
832 | # | |
833 | # Alias for log(). | |
834 | # | |
835 | sub ln { Math::Complex::log(@_) } | |
836 | ||
837 | # | |
66730be0 RM |
838 | # log10 |
839 | # | |
840 | # Compute log10(z). | |
841 | # | |
5cd24f17 | 842 | |
66730be0 | 843 | sub log10 { |
affad850 | 844 | return Math::Complex::log($_[0]) * _uplog10; |
66730be0 RM |
845 | } |
846 | ||
847 | # | |
848 | # logn | |
849 | # | |
850 | # Compute logn(z,n) = log(z) / log(n) | |
851 | # | |
852 | sub logn { | |
853 | my ($z, $n) = @_; | |
0c721ce2 | 854 | $z = cplx($z, 0) unless ref $z; |
9fbe1b12 JH |
855 | my $logn = $LOGN{$n}; |
856 | $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) | |
1fa12f56 | 857 | return &log($z) / $logn; |
66730be0 RM |
858 | } |
859 | ||
860 | # | |
861 | # (cos) | |
862 | # | |
863 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
864 | # | |
865 | sub cos { | |
866 | my ($z) = @_; | |
1fa12f56 | 867 | return CORE::cos($z) unless ref $z; |
affad850 | 868 | my ($x, $y) = @{$z->_cartesian}; |
a8693bd3 | 869 | my $ey = CORE::exp($y); |
1fa12f56 JH |
870 | my $sx = CORE::sin($x); |
871 | my $cx = CORE::cos($x); | |
1515bec6 | 872 | my $ey_1 = $ey ? 1 / $ey : Inf(); |
1fa12f56 JH |
873 | return (ref $z)->make($cx * ($ey + $ey_1)/2, |
874 | $sx * ($ey_1 - $ey)/2); | |
66730be0 RM |
875 | } |
876 | ||
877 | # | |
878 | # (sin) | |
879 | # | |
880 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
881 | # | |
882 | sub sin { | |
883 | my ($z) = @_; | |
1fa12f56 | 884 | return CORE::sin($z) unless ref $z; |
affad850 | 885 | my ($x, $y) = @{$z->_cartesian}; |
a8693bd3 | 886 | my $ey = CORE::exp($y); |
1fa12f56 JH |
887 | my $sx = CORE::sin($x); |
888 | my $cx = CORE::cos($x); | |
1515bec6 | 889 | my $ey_1 = $ey ? 1 / $ey : Inf(); |
1fa12f56 JH |
890 | return (ref $z)->make($sx * ($ey + $ey_1)/2, |
891 | $cx * ($ey - $ey_1)/2); | |
66730be0 RM |
892 | } |
893 | ||
894 | # | |
895 | # tan | |
896 | # | |
897 | # Compute tan(z) = sin(z) / cos(z). | |
898 | # | |
899 | sub tan { | |
900 | my ($z) = @_; | |
1fa12f56 JH |
901 | my $cz = &cos($z); |
902 | _divbyzero "tan($z)", "cos($z)" if $cz == 0; | |
903 | return &sin($z) / $cz; | |
66730be0 RM |
904 | } |
905 | ||
906 | # | |
0c721ce2 JH |
907 | # sec |
908 | # | |
909 | # Computes the secant sec(z) = 1 / cos(z). | |
910 | # | |
911 | sub sec { | |
912 | my ($z) = @_; | |
1fa12f56 | 913 | my $cz = &cos($z); |
0e505df1 | 914 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
915 | return 1 / $cz; |
916 | } | |
917 | ||
918 | # | |
919 | # csc | |
920 | # | |
921 | # Computes the cosecant csc(z) = 1 / sin(z). | |
922 | # | |
923 | sub csc { | |
924 | my ($z) = @_; | |
1fa12f56 | 925 | my $sz = &sin($z); |
0e505df1 | 926 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
927 | return 1 / $sz; |
928 | } | |
929 | ||
66730be0 | 930 | # |
0c721ce2 | 931 | # cosec |
66730be0 | 932 | # |
0c721ce2 JH |
933 | # Alias for csc(). |
934 | # | |
935 | sub cosec { Math::Complex::csc(@_) } | |
936 | ||
937 | # | |
938 | # cot | |
939 | # | |
fb73857a | 940 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
941 | # |
942 | sub cot { | |
66730be0 | 943 | my ($z) = @_; |
1fa12f56 | 944 | my $sz = &sin($z); |
0e505df1 | 945 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
1fa12f56 | 946 | return &cos($z) / $sz; |
66730be0 RM |
947 | } |
948 | ||
949 | # | |
0c721ce2 JH |
950 | # cotan |
951 | # | |
952 | # Alias for cot(). | |
953 | # | |
954 | sub cotan { Math::Complex::cot(@_) } | |
955 | ||
956 | # | |
66730be0 RM |
957 | # acos |
958 | # | |
959 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
960 | # | |
961 | sub acos { | |
fb73857a | 962 | my $z = $_[0]; |
1fa12f56 JH |
963 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) |
964 | if (! ref $z) && CORE::abs($z) <= 1; | |
40b904b7 | 965 | $z = cplx($z, 0) unless ref $z; |
affad850 | 966 | my ($x, $y) = @{$z->_cartesian}; |
1fa12f56 | 967 | return 0 if $x == 1 && $y == 0; |
a8693bd3 NIS |
968 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
969 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 970 | my $alpha = ($t1 + $t2)/2; |
971 | my $beta = ($t1 - $t2)/2; | |
972 | $alpha = 1 if $alpha < 1; | |
973 | if ($beta > 1) { $beta = 1 } | |
974 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
975 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
976 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 977 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
40b904b7 | 978 | return (ref $z)->make($u, $v); |
66730be0 RM |
979 | } |
980 | ||
981 | # | |
982 | # asin | |
983 | # | |
984 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
985 | # | |
986 | sub asin { | |
fb73857a | 987 | my $z = $_[0]; |
1fa12f56 JH |
988 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) |
989 | if (! ref $z) && CORE::abs($z) <= 1; | |
40b904b7 | 990 | $z = cplx($z, 0) unless ref $z; |
affad850 | 991 | my ($x, $y) = @{$z->_cartesian}; |
1fa12f56 | 992 | return 0 if $x == 0 && $y == 0; |
a8693bd3 NIS |
993 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
994 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 995 | my $alpha = ($t1 + $t2)/2; |
996 | my $beta = ($t1 - $t2)/2; | |
997 | $alpha = 1 if $alpha < 1; | |
998 | if ($beta > 1) { $beta = 1 } | |
999 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
1000 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
1001 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 1002 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
40b904b7 | 1003 | return (ref $z)->make($u, $v); |
66730be0 RM |
1004 | } |
1005 | ||
1006 | # | |
1007 | # atan | |
1008 | # | |
0c721ce2 | 1009 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
1010 | # |
1011 | sub atan { | |
1012 | my ($z) = @_; | |
a8693bd3 | 1013 | return CORE::atan2($z, 1) unless ref $z; |
affad850 | 1014 | my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); |
1fa12f56 | 1015 | return 0 if $x == 0 && $y == 0; |
8c03c583 | 1016 | _divbyzero "atan(i)" if ( $z == i); |
1fa12f56 JH |
1017 | _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... |
1018 | my $log = &log((i + $z) / (i - $z)); | |
affad850 | 1019 | return _ip2 * $log; |
a0d0e21e LW |
1020 | } |
1021 | ||
66730be0 | 1022 | # |
0c721ce2 JH |
1023 | # asec |
1024 | # | |
1025 | # Computes the arc secant asec(z) = acos(1 / z). | |
1026 | # | |
1027 | sub asec { | |
1028 | my ($z) = @_; | |
0e505df1 | 1029 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 1030 | return acos(1 / $z); |
0c721ce2 JH |
1031 | } |
1032 | ||
1033 | # | |
5cd24f17 | 1034 | # acsc |
0c721ce2 | 1035 | # |
8c03c583 | 1036 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 1037 | # |
5cd24f17 | 1038 | sub acsc { |
0c721ce2 | 1039 | my ($z) = @_; |
0e505df1 | 1040 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 1041 | return asin(1 / $z); |
0c721ce2 JH |
1042 | } |
1043 | ||
1044 | # | |
5cd24f17 | 1045 | # acosec |
66730be0 | 1046 | # |
5cd24f17 | 1047 | # Alias for acsc(). |
0c721ce2 | 1048 | # |
5cd24f17 | 1049 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 1050 | |
66730be0 | 1051 | # |
0c721ce2 JH |
1052 | # acot |
1053 | # | |
8c03c583 | 1054 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
1055 | # |
1056 | sub acot { | |
66730be0 | 1057 | my ($z) = @_; |
1fa12f56 JH |
1058 | _divbyzero "acot(0)" if $z == 0; |
1059 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) | |
1060 | unless ref $z; | |
1061 | _divbyzero "acot(i)" if ($z - i == 0); | |
1062 | _logofzero "acot(-i)" if ($z + i == 0); | |
8c03c583 | 1063 | return atan(1 / $z); |
66730be0 RM |
1064 | } |
1065 | ||
1066 | # | |
0c721ce2 JH |
1067 | # acotan |
1068 | # | |
1069 | # Alias for acot(). | |
1070 | # | |
1071 | sub acotan { Math::Complex::acot(@_) } | |
1072 | ||
1073 | # | |
66730be0 RM |
1074 | # cosh |
1075 | # | |
1076 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
1077 | # | |
1078 | sub cosh { | |
1079 | my ($z) = @_; | |
fb73857a | 1080 | my $ex; |
0e505df1 | 1081 | unless (ref $z) { |
a8693bd3 | 1082 | $ex = CORE::exp($z); |
1515bec6 | 1083 | return $ex ? ($ex + 1/$ex)/2 : Inf(); |
0e505df1 | 1084 | } |
affad850 | 1085 | my ($x, $y) = @{$z->_cartesian}; |
a8693bd3 | 1086 | $ex = CORE::exp($x); |
1515bec6 | 1087 | my $ex_1 = $ex ? 1 / $ex : Inf(); |
a8693bd3 NIS |
1088 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
1089 | CORE::sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
1090 | } |
1091 | ||
1092 | # | |
1093 | # sinh | |
1094 | # | |
1095 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
1096 | # | |
1097 | sub sinh { | |
1098 | my ($z) = @_; | |
fb73857a | 1099 | my $ex; |
0e505df1 | 1100 | unless (ref $z) { |
1fa12f56 | 1101 | return 0 if $z == 0; |
a8693bd3 | 1102 | $ex = CORE::exp($z); |
1515bec6 | 1103 | return $ex ? ($ex - 1/$ex)/2 : -Inf(); |
0e505df1 | 1104 | } |
affad850 | 1105 | my ($x, $y) = @{$z->_cartesian}; |
1fa12f56 JH |
1106 | my $cy = CORE::cos($y); |
1107 | my $sy = CORE::sin($y); | |
a8693bd3 | 1108 | $ex = CORE::exp($x); |
1515bec6 | 1109 | my $ex_1 = $ex ? 1 / $ex : Inf(); |
5240e574 JH |
1110 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
1111 | CORE::sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
1112 | } |
1113 | ||
1114 | # | |
1115 | # tanh | |
1116 | # | |
1117 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
1118 | # | |
1119 | sub tanh { | |
1120 | my ($z) = @_; | |
0c721ce2 | 1121 | my $cz = cosh($z); |
0e505df1 | 1122 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
1515bec6 SP |
1123 | my $sz = sinh($z); |
1124 | return 1 if $cz == $sz; | |
1125 | return -1 if $cz == -$sz; | |
1126 | return $sz / $cz; | |
66730be0 RM |
1127 | } |
1128 | ||
1129 | # | |
0c721ce2 JH |
1130 | # sech |
1131 | # | |
1132 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
1133 | # | |
1134 | sub sech { | |
1135 | my ($z) = @_; | |
1136 | my $cz = cosh($z); | |
0e505df1 | 1137 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
1138 | return 1 / $cz; |
1139 | } | |
1140 | ||
1141 | # | |
1142 | # csch | |
1143 | # | |
1144 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 1145 | # |
0c721ce2 JH |
1146 | sub csch { |
1147 | my ($z) = @_; | |
1148 | my $sz = sinh($z); | |
0e505df1 | 1149 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
1150 | return 1 / $sz; |
1151 | } | |
1152 | ||
1153 | # | |
1154 | # cosech | |
1155 | # | |
1156 | # Alias for csch(). | |
1157 | # | |
1158 | sub cosech { Math::Complex::csch(@_) } | |
1159 | ||
66730be0 | 1160 | # |
0c721ce2 JH |
1161 | # coth |
1162 | # | |
1163 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
1164 | # | |
1165 | sub coth { | |
66730be0 | 1166 | my ($z) = @_; |
0c721ce2 | 1167 | my $sz = sinh($z); |
1fa12f56 | 1168 | _divbyzero "coth($z)", "sinh($z)" if $sz == 0; |
1515bec6 SP |
1169 | my $cz = cosh($z); |
1170 | return 1 if $cz == $sz; | |
1171 | return -1 if $cz == -$sz; | |
1172 | return $cz / $sz; | |
66730be0 RM |
1173 | } |
1174 | ||
1175 | # | |
0c721ce2 JH |
1176 | # cotanh |
1177 | # | |
1178 | # Alias for coth(). | |
1179 | # | |
1180 | sub cotanh { Math::Complex::coth(@_) } | |
1181 | ||
1182 | # | |
66730be0 RM |
1183 | # acosh |
1184 | # | |
fb73857a | 1185 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
1186 | # |
1187 | sub acosh { | |
1188 | my ($z) = @_; | |
fb73857a | 1189 | unless (ref $z) { |
fb73857a | 1190 | $z = cplx($z, 0); |
1191 | } | |
affad850 | 1192 | my ($re, $im) = @{$z->_cartesian}; |
fb73857a | 1193 | if ($im == 0) { |
1fa12f56 JH |
1194 | return CORE::log($re + CORE::sqrt($re*$re - 1)) |
1195 | if $re >= 1; | |
1196 | return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) | |
1197 | if CORE::abs($re) < 1; | |
fb73857a | 1198 | } |
9bc5fa8d | 1199 | my $t = &sqrt($z * $z - 1) + $z; |
40b904b7 JH |
1200 | # Try Taylor if looking bad (this usually means that |
1201 | # $z was large negative, therefore the sqrt is really | |
1202 | # close to abs(z), summing that with z...) | |
9bc5fa8d JH |
1203 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
1204 | if $t == 0; | |
1205 | my $u = &log($t); | |
40b904b7 | 1206 | $u->Im(-$u->Im) if $re < 0 && $im == 0; |
9bc5fa8d | 1207 | return $re < 0 ? -$u : $u; |
66730be0 RM |
1208 | } |
1209 | ||
1210 | # | |
1211 | # asinh | |
1212 | # | |
1fa12f56 | 1213 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) |
66730be0 RM |
1214 | # |
1215 | sub asinh { | |
1216 | my ($z) = @_; | |
1fa12f56 JH |
1217 | unless (ref $z) { |
1218 | my $t = $z + CORE::sqrt($z*$z + 1); | |
1219 | return CORE::log($t) if $t; | |
1220 | } | |
9bc5fa8d | 1221 | my $t = &sqrt($z * $z + 1) + $z; |
40b904b7 JH |
1222 | # Try Taylor if looking bad (this usually means that |
1223 | # $z was large negative, therefore the sqrt is really | |
1224 | # close to abs(z), summing that with z...) | |
9bc5fa8d JH |
1225 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
1226 | if $t == 0; | |
1fa12f56 | 1227 | return &log($t); |
66730be0 RM |
1228 | } |
1229 | ||
1230 | # | |
1231 | # atanh | |
1232 | # | |
1233 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
1234 | # | |
1235 | sub atanh { | |
1236 | my ($z) = @_; | |
fb73857a | 1237 | unless (ref $z) { |
a8693bd3 | 1238 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
fb73857a | 1239 | $z = cplx($z, 0); |
1240 | } | |
1fa12f56 JH |
1241 | _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); |
1242 | _logofzero 'atanh(-1)' if (1 + $z == 0); | |
1243 | return 0.5 * &log((1 + $z) / (1 - $z)); | |
66730be0 RM |
1244 | } |
1245 | ||
1246 | # | |
0c721ce2 JH |
1247 | # asech |
1248 | # | |
1249 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
1250 | # | |
1251 | sub asech { | |
1252 | my ($z) = @_; | |
1fa12f56 | 1253 | _divbyzero 'asech(0)', "$z" if ($z == 0); |
0c721ce2 JH |
1254 | return acosh(1 / $z); |
1255 | } | |
1256 | ||
1257 | # | |
1258 | # acsch | |
66730be0 | 1259 | # |
0c721ce2 | 1260 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 1261 | # |
0c721ce2 | 1262 | sub acsch { |
66730be0 | 1263 | my ($z) = @_; |
0e505df1 | 1264 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
1265 | return asinh(1 / $z); |
1266 | } | |
1267 | ||
1268 | # | |
1269 | # acosech | |
1270 | # | |
1271 | # Alias for acosh(). | |
1272 | # | |
1273 | sub acosech { Math::Complex::acsch(@_) } | |
1274 | ||
1275 | # | |
1276 | # acoth | |
1277 | # | |
1278 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1279 | # | |
1280 | sub acoth { | |
1281 | my ($z) = @_; | |
1fa12f56 | 1282 | _divbyzero 'acoth(0)' if ($z == 0); |
fb73857a | 1283 | unless (ref $z) { |
a8693bd3 | 1284 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
fb73857a | 1285 | $z = cplx($z, 0); |
1286 | } | |
1fa12f56 JH |
1287 | _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); |
1288 | _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); | |
1289 | return &log((1 + $z) / ($z - 1)) / 2; | |
66730be0 RM |
1290 | } |
1291 | ||
1292 | # | |
0c721ce2 JH |
1293 | # acotanh |
1294 | # | |
1295 | # Alias for acot(). | |
1296 | # | |
1297 | sub acotanh { Math::Complex::acoth(@_) } | |
1298 | ||
1299 | # | |
66730be0 RM |
1300 | # (atan2) |
1301 | # | |
bf5f1b4c | 1302 | # Compute atan(z1/z2), minding the right quadrant. |
66730be0 RM |
1303 | # |
1304 | sub atan2 { | |
1305 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1306 | my ($re1, $im1, $re2, $im2); |
1307 | if ($inverted) { | |
affad850 SP |
1308 | ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
1309 | ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |
66730be0 | 1310 | } else { |
affad850 SP |
1311 | ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
1312 | ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
fb73857a | 1313 | } |
bf5f1b4c JH |
1314 | if ($im1 || $im2) { |
1315 | # In MATLAB the imaginary parts are ignored. | |
1316 | # warn "atan2: Imaginary parts ignored"; | |
1317 | # http://documents.wolfram.com/mathematica/functions/ArcTan | |
1318 | # NOTE: Mathematica ArcTan[x,y] while atan2(y,x) | |
1319 | my $s = $z1 * $z1 + $z2 * $z2; | |
1320 | _divbyzero("atan2") if $s == 0; | |
1321 | my $i = &i; | |
1322 | my $r = $z2 + $z1 * $i; | |
1323 | return -$i * &log($r / &sqrt( $s )); | |
66730be0 | 1324 | } |
bf5f1b4c | 1325 | return CORE::atan2($re1, $re2); |
66730be0 RM |
1326 | } |
1327 | ||
1328 | # | |
1329 | # display_format | |
1330 | # ->display_format | |
1331 | # | |
16357284 | 1332 | # Set (get if no argument) the display format for all complex numbers that |
fb73857a | 1333 | # don't happen to have overridden it via ->display_format |
66730be0 | 1334 | # |
16357284 | 1335 | # When called as an object method, this actually sets the display format for |
66730be0 RM |
1336 | # the current object. |
1337 | # | |
1338 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1339 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1340 | # | |
1341 | sub display_format { | |
16357284 JH |
1342 | my $self = shift; |
1343 | my %display_format = %DISPLAY_FORMAT; | |
66730be0 | 1344 | |
16357284 JH |
1345 | if (ref $self) { # Called as an object method |
1346 | if (exists $self->{display_format}) { | |
1347 | my %obj = %{$self->{display_format}}; | |
1348 | @display_format{keys %obj} = values %obj; | |
1349 | } | |
476757f7 YN |
1350 | } |
1351 | if (@_ == 1) { | |
1352 | $display_format{style} = shift; | |
1353 | } else { | |
1354 | my %new = @_; | |
1355 | @display_format{keys %new} = values %new; | |
66730be0 RM |
1356 | } |
1357 | ||
476757f7 | 1358 | if (ref $self) { # Called as an object method |
16357284 JH |
1359 | $self->{display_format} = { %display_format }; |
1360 | return | |
1361 | wantarray ? | |
1362 | %{$self->{display_format}} : | |
1363 | $self->{display_format}->{style}; | |
66730be0 RM |
1364 | } |
1365 | ||
476757f7 | 1366 | # Called as a class method |
16357284 JH |
1367 | %DISPLAY_FORMAT = %display_format; |
1368 | return | |
1369 | wantarray ? | |
1370 | %DISPLAY_FORMAT : | |
1371 | $DISPLAY_FORMAT{style}; | |
66730be0 RM |
1372 | } |
1373 | ||
1374 | # | |
affad850 | 1375 | # (_stringify) |
66730be0 RM |
1376 | # |
1377 | # Show nicely formatted complex number under its cartesian or polar form, | |
1378 | # depending on the current display format: | |
1379 | # | |
1380 | # . If a specific display format has been recorded for this object, use it. | |
1381 | # . Otherwise, use the generic current default for all complex numbers, | |
1382 | # which is a package global variable. | |
1383 | # | |
affad850 | 1384 | sub _stringify { |
66730be0 | 1385 | my ($z) = shift; |
66730be0 | 1386 | |
16357284 JH |
1387 | my $style = $z->display_format; |
1388 | ||
1389 | $style = $DISPLAY_FORMAT{style} unless defined $style; | |
66730be0 | 1390 | |
affad850 SP |
1391 | return $z->_stringify_polar if $style =~ /^p/i; |
1392 | return $z->_stringify_cartesian; | |
66730be0 RM |
1393 | } |
1394 | ||
1395 | # | |
affad850 | 1396 | # ->_stringify_cartesian |
66730be0 RM |
1397 | # |
1398 | # Stringify as a cartesian representation 'a+bi'. | |
1399 | # | |
affad850 | 1400 | sub _stringify_cartesian { |
66730be0 | 1401 | my $z = shift; |
affad850 | 1402 | my ($x, $y) = @{$z->_cartesian}; |
66730be0 RM |
1403 | my ($re, $im); |
1404 | ||
16357284 JH |
1405 | my %format = $z->display_format; |
1406 | my $format = $format{format}; | |
1407 | ||
1fa12f56 JH |
1408 | if ($x) { |
1409 | if ($x =~ /^NaN[QS]?$/i) { | |
1410 | $re = $x; | |
1411 | } else { | |
b57c8994 | 1412 | if ($x =~ /^-?\Q$Inf\E$/oi) { |
1fa12f56 JH |
1413 | $re = $x; |
1414 | } else { | |
1415 | $re = defined $format ? sprintf($format, $x) : $x; | |
1416 | } | |
1417 | } | |
1418 | } else { | |
1419 | undef $re; | |
1420 | } | |
1421 | ||
1422 | if ($y) { | |
40b904b7 | 1423 | if ($y =~ /^(NaN[QS]?)$/i) { |
1fa12f56 JH |
1424 | $im = $y; |
1425 | } else { | |
b57c8994 | 1426 | if ($y =~ /^-?\Q$Inf\E$/oi) { |
1fa12f56 JH |
1427 | $im = $y; |
1428 | } else { | |
40b904b7 JH |
1429 | $im = |
1430 | defined $format ? | |
1431 | sprintf($format, $y) : | |
1432 | ($y == 1 ? "" : ($y == -1 ? "-" : $y)); | |
1fa12f56 JH |
1433 | } |
1434 | } | |
1435 | $im .= "i"; | |
1436 | } else { | |
1437 | undef $im; | |
16357284 | 1438 | } |
66730be0 | 1439 | |
1fa12f56 JH |
1440 | my $str = $re; |
1441 | ||
16357284 JH |
1442 | if (defined $im) { |
1443 | if ($y < 0) { | |
1444 | $str .= $im; | |
1fa12f56 | 1445 | } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { |
16357284 JH |
1446 | $str .= "+" if defined $re; |
1447 | $str .= $im; | |
1448 | } | |
1fa12f56 JH |
1449 | } elsif (!defined $re) { |
1450 | $str = "0"; | |
16357284 | 1451 | } |
66730be0 RM |
1452 | |
1453 | return $str; | |
1454 | } | |
1455 | ||
d09ae4e6 | 1456 | |
66730be0 | 1457 | # |
affad850 | 1458 | # ->_stringify_polar |
66730be0 RM |
1459 | # |
1460 | # Stringify as a polar representation '[r,t]'. | |
1461 | # | |
affad850 | 1462 | sub _stringify_polar { |
66730be0 | 1463 | my $z = shift; |
affad850 | 1464 | my ($r, $t) = @{$z->_polar}; |
66730be0 RM |
1465 | my $theta; |
1466 | ||
16357284 | 1467 | my %format = $z->display_format; |
1fa12f56 | 1468 | my $format = $format{format}; |
16357284 | 1469 | |
b57c8994 | 1470 | if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { |
1fa12f56 JH |
1471 | $theta = $t; |
1472 | } elsif ($t == pi) { | |
1473 | $theta = "pi"; | |
1474 | } elsif ($r == 0 || $t == 0) { | |
1475 | $theta = defined $format ? sprintf($format, $t) : $t; | |
55497cff | 1476 | } |
66730be0 | 1477 | |
1fa12f56 JH |
1478 | return "[$r,$theta]" if defined $theta; |
1479 | ||
66730be0 | 1480 | # |
1fa12f56 | 1481 | # Try to identify pi/n and friends. |
66730be0 RM |
1482 | # |
1483 | ||
affad850 | 1484 | $t -= int(CORE::abs($t) / pi2) * pi2; |
1fa12f56 | 1485 | |
e97e26fa | 1486 | if ($format{polar_pretty_print} && $t) { |
1fa12f56 | 1487 | my ($a, $b); |
9bc5fa8d | 1488 | for $a (2..9) { |
1fa12f56 | 1489 | $b = $t * $a / pi; |
e97e26fa | 1490 | if ($b =~ /^-?\d+$/) { |
1fa12f56 JH |
1491 | $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; |
1492 | $theta = "${b}pi/$a"; | |
d09ae4e6 | 1493 | last; |
66730be0 | 1494 | } |
d09ae4e6 | 1495 | } |
66730be0 RM |
1496 | } |
1497 | ||
16357284 JH |
1498 | if (defined $format) { |
1499 | $r = sprintf($format, $r); | |
1fa12f56 JH |
1500 | $theta = sprintf($format, $theta) unless defined $theta; |
1501 | } else { | |
1502 | $theta = $t unless defined $theta; | |
16357284 JH |
1503 | } |
1504 | ||
1fa12f56 | 1505 | return "[$r,$theta]"; |
a0d0e21e | 1506 | } |
a5f75d66 | 1507 | |
1515bec6 SP |
1508 | sub Inf { |
1509 | return $Inf; | |
1510 | } | |
1511 | ||
a5f75d66 AD |
1512 | 1; |
1513 | __END__ | |
1514 | ||
1cf6bcb8 JH |
1515 | =pod |
1516 | ||
a5f75d66 AD |
1517 | =head1 NAME |
1518 | ||
66730be0 | 1519 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1520 | |
1521 | =head1 SYNOPSIS | |
1522 | ||
66730be0 | 1523 | use Math::Complex; |
fb73857a | 1524 | |
66730be0 RM |
1525 | $z = Math::Complex->make(5, 6); |
1526 | $t = 4 - 3*i + $z; | |
1527 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1528 | |
1529 | =head1 DESCRIPTION | |
1530 | ||
66730be0 RM |
1531 | This package lets you create and manipulate complex numbers. By default, |
1532 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1533 | full complex support, along with a full set of mathematical functions | |
1534 | typically associated with and/or extended to complex numbers. | |
1535 | ||
1536 | If you wonder what complex numbers are, they were invented to be able to solve | |
1537 | the following equation: | |
1538 | ||
1539 | x*x = -1 | |
1540 | ||
1541 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1542 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1543 | I<i> is a pure I<imaginary> number. | |
1544 | ||
1545 | The arithmetics with pure imaginary numbers works just like you would expect | |
1546 | it with real numbers... you just have to remember that | |
1547 | ||
1548 | i*i = -1 | |
1549 | ||
1550 | so you have: | |
1551 | ||
1552 | 5i + 7i = i * (5 + 7) = 12i | |
1553 | 4i - 3i = i * (4 - 3) = i | |
1554 | 4i * 2i = -8 | |
1555 | 6i / 2i = 3 | |
1556 | 1 / i = -i | |
1557 | ||
1558 | Complex numbers are numbers that have both a real part and an imaginary | |
1559 | part, and are usually noted: | |
1560 | ||
1561 | a + bi | |
1562 | ||
1563 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1564 | arithmetic with complex numbers is straightforward. You have to | |
1565 | keep track of the real and the imaginary parts, but otherwise the | |
1566 | rules used for real numbers just apply: | |
1567 | ||
1568 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1569 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1570 | ||
1571 | A graphical representation of complex numbers is possible in a plane | |
1572 | (also called the I<complex plane>, but it's really a 2D plane). | |
1573 | The number | |
1574 | ||
1575 | z = a + bi | |
1576 | ||
1577 | is the point whose coordinates are (a, b). Actually, it would | |
1578 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1579 | of two complex numbers is a vectorial addition. | |
1580 | ||
1581 | Since there is a bijection between a point in the 2D plane and a complex | |
1582 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1583 | can also be uniquely identified with polar coordinates: | |
1584 | ||
1585 | [rho, theta] | |
1586 | ||
1587 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1588 | the vector and the I<x> axis. There is a notation for this using the | |
1589 | exponential form, which is: | |
1590 | ||
1591 | rho * exp(i * theta) | |
1592 | ||
1593 | where I<i> is the famous imaginary number introduced above. Conversion | |
1594 | between this form and the cartesian form C<a + bi> is immediate: | |
1595 | ||
1596 | a = rho * cos(theta) | |
1597 | b = rho * sin(theta) | |
1598 | ||
1599 | which is also expressed by this formula: | |
1600 | ||
fb73857a | 1601 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1602 | |
1603 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1604 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
affad850 SP |
1605 | the I<argument> of the complex number. The I<norm> of C<z> is |
1606 | marked here as C<abs(z)>. | |
66730be0 | 1607 | |
affad850 SP |
1608 | The polar notation (also known as the trigonometric representation) is |
1609 | much more handy for performing multiplications and divisions of | |
1610 | complex numbers, whilst the cartesian notation is better suited for | |
1611 | additions and subtractions. Real numbers are on the I<x> axis, and | |
1612 | therefore I<y> or I<theta> is zero or I<pi>. | |
66730be0 RM |
1613 | |
1614 | All the common operations that can be performed on a real number have | |
1615 | been defined to work on complex numbers as well, and are merely | |
1616 | I<extensions> of the operations defined on real numbers. This means | |
1617 | they keep their natural meaning when there is no imaginary part, provided | |
1618 | the number is within their definition set. | |
1619 | ||
1620 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1621 | its argument is only defined for non-negative real numbers and yields a |
1622 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1623 | If we allow it to return a complex number, then it can be extended to |
1624 | negative real numbers to become an application from B<R> to B<C> (the | |
1625 | set of complex numbers): | |
1626 | ||
1627 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1628 | ||
1629 | It can also be extended to be an application from B<C> to B<C>, | |
1630 | whilst its restriction to B<R> behaves as defined above by using | |
1631 | the following definition: | |
1632 | ||
1633 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1634 | ||
fb73857a | 1635 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1636 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1637 | number) and the above definition states that | |
66730be0 RM |
1638 | |
1639 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1640 | ||
1641 | which is exactly what we had defined for negative real numbers above. | |
b42d0ec9 JH |
1642 | The C<sqrt> returns only one of the solutions: if you want the both, |
1643 | use the C<root> function. | |
a5f75d66 | 1644 | |
66730be0 RM |
1645 | All the common mathematical functions defined on real numbers that |
1646 | are extended to complex numbers share that same property of working | |
1647 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1648 | be called an extension, would it?). | |
a5f75d66 | 1649 | |
66730be0 RM |
1650 | A I<new> operation possible on a complex number that is |
1651 | the identity for real numbers is called the I<conjugate>, and is noted | |
d1be9408 | 1652 | with a horizontal bar above the number, or C<~z> here. |
a5f75d66 | 1653 | |
66730be0 RM |
1654 | z = a + bi |
1655 | ~z = a - bi | |
a5f75d66 | 1656 | |
66730be0 | 1657 | Simple... Now look: |
a5f75d66 | 1658 | |
66730be0 | 1659 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1660 | |
66730be0 RM |
1661 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1662 | distance to the origin, also known as: | |
a5f75d66 | 1663 | |
66730be0 | 1664 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1665 | |
66730be0 RM |
1666 | so |
1667 | ||
1668 | z * ~z = abs(z) ** 2 | |
1669 | ||
1670 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1671 | ||
1672 | a * a = abs(a) ** 2 | |
1673 | ||
1674 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1675 | for the absolute value). This example explains why the norm of C<z> is | |
1676 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1677 | is the regular C<abs> we know when the complex number actually has no | |
1678 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1679 | notation for the norm. | |
1680 | ||
1681 | =head1 OPERATIONS | |
1682 | ||
1683 | Given the following notations: | |
1684 | ||
1685 | z1 = a + bi = r1 * exp(i * t1) | |
1686 | z2 = c + di = r2 * exp(i * t2) | |
1687 | z = <any complex or real number> | |
1688 | ||
1689 | the following (overloaded) operations are supported on complex numbers: | |
1690 | ||
1691 | z1 + z2 = (a + c) + i(b + d) | |
1692 | z1 - z2 = (a - c) + i(b - d) | |
1693 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1694 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1695 | z1 ** z2 = exp(z2 * log z1) | |
b42d0ec9 JH |
1696 | ~z = a - bi |
1697 | abs(z) = r1 = sqrt(a*a + b*b) | |
1698 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |
1699 | exp(z) = exp(a) * exp(i * b) | |
1700 | log(z) = log(r1) + i*t | |
1701 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
1702 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
bf5f1b4c JH |
1703 | atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. |
1704 | ||
1705 | The definition used for complex arguments of atan2() is | |
1706 | ||
1707 | -i log((x + iy)/sqrt(x*x+y*y)) | |
66730be0 | 1708 | |
affad850 SP |
1709 | Note that atan2(0, 0) is not well-defined. |
1710 | ||
66730be0 RM |
1711 | The following extra operations are supported on both real and complex |
1712 | numbers: | |
1713 | ||
1714 | Re(z) = a | |
1715 | Im(z) = b | |
1716 | arg(z) = t | |
b42d0ec9 | 1717 | abs(z) = r |
66730be0 RM |
1718 | |
1719 | cbrt(z) = z ** (1/3) | |
1720 | log10(z) = log(z) / log(10) | |
1721 | logn(z, n) = log(z) / log(n) | |
1722 | ||
1723 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1724 | |
5aabfad6 | 1725 | csc(z) = 1 / sin(z) |
1726 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1727 | cot(z) = 1 / tan(z) |
66730be0 RM |
1728 | |
1729 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1730 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1731 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1732 | |
5aabfad6 | 1733 | acsc(z) = asin(1 / z) |
1734 | asec(z) = acos(1 / z) | |
8c03c583 | 1735 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1736 | |
1737 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1738 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1739 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1740 | ||
5aabfad6 | 1741 | csch(z) = 1 / sinh(z) |
1742 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1743 | coth(z) = 1 / tanh(z) |
fb73857a | 1744 | |
66730be0 RM |
1745 | asinh(z) = log(z + sqrt(z*z+1)) |
1746 | acosh(z) = log(z + sqrt(z*z-1)) | |
1747 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1748 | |
5aabfad6 | 1749 | acsch(z) = asinh(1 / z) |
1750 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1751 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1752 | ||
b42d0ec9 JH |
1753 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, |
1754 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
1755 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
1756 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
d1be9408 | 1757 | C<rho>, and C<theta> can be used also as mutators. The C<cbrt> |
b42d0ec9 JH |
1758 | returns only one of the solutions: if you want all three, use the |
1759 | C<root> function. | |
0c721ce2 JH |
1760 | |
1761 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1762 | roots of some complex, where I<n> is a strictly positive integer. |
1763 | There are exactly I<n> such roots, returned as a list. Getting the | |
1764 | number mathematicians call C<j> such that: | |
1765 | ||
1766 | 1 + j + j*j = 0; | |
1767 | ||
1768 | is a simple matter of writing: | |
1769 | ||
1770 | $j = ((root(1, 3))[1]; | |
1771 | ||
1772 | The I<k>th root for C<z = [r,t]> is given by: | |
1773 | ||
1774 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1775 | ||
bf5f1b4c JH |
1776 | You can return the I<k>th root directly by C<root(z, n, k)>, |
1777 | indexing starting from I<zero> and ending at I<n - 1>. | |
1778 | ||
1515bec6 SP |
1779 | The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also |
1780 | defined. In order to ensure its restriction to real numbers is conform | |
1781 | to what you would expect, the comparison is run on the real part of | |
1782 | the complex number first, and imaginary parts are compared only when | |
1783 | the real parts match. | |
66730be0 RM |
1784 | |
1785 | =head1 CREATION | |
1786 | ||
1787 | To create a complex number, use either: | |
1788 | ||
1789 | $z = Math::Complex->make(3, 4); | |
1790 | $z = cplx(3, 4); | |
1791 | ||
1792 | if you know the cartesian form of the number, or | |
1793 | ||
1794 | $z = 3 + 4*i; | |
1795 | ||
fb73857a | 1796 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1797 | |
1798 | $z = Math::Complex->emake(5, pi/3); | |
1799 | $x = cplxe(5, pi/3); | |
1800 | ||
0c721ce2 | 1801 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1802 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1803 | notation for complex numbers in the polar form). | |
66730be0 RM |
1804 | |
1805 | It is possible to write: | |
1806 | ||
1807 | $x = cplxe(-3, pi/4); | |
1808 | ||
16357284 JH |
1809 | but that will be silently converted into C<[3,-3pi/4]>, since the |
1810 | modulus must be non-negative (it represents the distance to the origin | |
1811 | in the complex plane). | |
66730be0 | 1812 | |
91cb744f JH |
1813 | It is also possible to have a complex number as either argument of the |
1814 | C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of | |
b42d0ec9 JH |
1815 | the argument will be used. |
1816 | ||
1817 | $z1 = cplx(-2, 1); | |
1818 | $z2 = cplx($z1, 4); | |
1819 | ||
91cb744f JH |
1820 | The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also |
1821 | understand a single (string) argument of the forms | |
1822 | ||
1823 | 2-3i | |
1824 | -3i | |
1825 | [2,3] | |
bf5f1b4c | 1826 | [2,-3pi/4] |
91cb744f JH |
1827 | [2] |
1828 | ||
1829 | in which case the appropriate cartesian and exponential components | |
1830 | will be parsed from the string and used to create new complex numbers. | |
1831 | The imaginary component and the theta, respectively, will default to zero. | |
1832 | ||
bf5f1b4c JH |
1833 | The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also |
1834 | understand the case of no arguments: this means plain zero or (0, 0). | |
1835 | ||
1836 | =head1 DISPLAYING | |
66730be0 RM |
1837 | |
1838 | When printed, a complex number is usually shown under its cartesian | |
16357284 | 1839 | style I<a+bi>, but there are legitimate cases where the polar style |
bf5f1b4c JH |
1840 | I<[r,t]> is more appropriate. The process of converting the complex |
1841 | number into a string that can be displayed is known as I<stringification>. | |
66730be0 | 1842 | |
16357284 JH |
1843 | By calling the class method C<Math::Complex::display_format> and |
1844 | supplying either C<"polar"> or C<"cartesian"> as an argument, you | |
5287f86b | 1845 | override the default display style, which is C<"cartesian">. Not |
16357284 | 1846 | supplying any argument returns the current settings. |
66730be0 RM |
1847 | |
1848 | This default can be overridden on a per-number basis by calling the | |
1849 | C<display_format> method instead. As before, not supplying any argument | |
5287f86b JH |
1850 | returns the current display style for this number. Otherwise whatever you |
1851 | specify will be the new display style for I<this> particular number. | |
66730be0 RM |
1852 | |
1853 | For instance: | |
1854 | ||
1855 | use Math::Complex; | |
1856 | ||
1857 | Math::Complex::display_format('polar'); | |
16357284 JH |
1858 | $j = (root(1, 3))[1]; |
1859 | print "j = $j\n"; # Prints "j = [1,2pi/3]" | |
66730be0 RM |
1860 | $j->display_format('cartesian'); |
1861 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1862 | ||
5287f86b | 1863 | The polar style attempts to emphasize arguments like I<k*pi/n> |
9bc5fa8d | 1864 | (where I<n> is a positive integer and I<k> an integer within [-9, +9]), |
5287f86b | 1865 | this is called I<polar pretty-printing>. |
66730be0 | 1866 | |
bf5f1b4c JH |
1867 | For the reverse of stringifying, see the C<make> and C<emake>. |
1868 | ||
16357284 JH |
1869 | =head2 CHANGED IN PERL 5.6 |
1870 | ||
1871 | The C<display_format> class method and the corresponding | |
1872 | C<display_format> object method can now be called using | |
1873 | a parameter hash instead of just a one parameter. | |
1874 | ||
1875 | The old display format style, which can have values C<"cartesian"> or | |
40b904b7 JH |
1876 | C<"polar">, can be changed using the C<"style"> parameter. |
1877 | ||
1878 | $j->display_format(style => "polar"); | |
1879 | ||
1880 | The one parameter calling convention also still works. | |
1881 | ||
1882 | $j->display_format("polar"); | |
16357284 JH |
1883 | |
1884 | There are two new display parameters. | |
1885 | ||
40b904b7 JH |
1886 | The first one is C<"format">, which is a sprintf()-style format string |
1887 | to be used for both numeric parts of the complex number(s). The is | |
1888 | somewhat system-dependent but most often it corresponds to C<"%.15g">. | |
1889 | You can revert to the default by setting the C<format> to C<undef>. | |
16357284 JH |
1890 | |
1891 | # the $j from the above example | |
1892 | ||
1893 | $j->display_format('format' => '%.5f'); | |
1894 | print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |
40b904b7 | 1895 | $j->display_format('format' => undef); |
16357284 JH |
1896 | print "j = $j\n"; # Prints "j = -0.5+0.86603i" |
1897 | ||
1898 | Notice that this affects also the return values of the | |
1899 | C<display_format> methods: in list context the whole parameter hash | |
40b904b7 JH |
1900 | will be returned, as opposed to only the style parameter value. |
1901 | This is a potential incompatibility with earlier versions if you | |
1902 | have been calling the C<display_format> method in list context. | |
16357284 | 1903 | |
5287f86b JH |
1904 | The second new display parameter is C<"polar_pretty_print">, which can |
1905 | be set to true or false, the default being true. See the previous | |
1906 | section for what this means. | |
16357284 | 1907 | |
66730be0 RM |
1908 | =head1 USAGE |
1909 | ||
1910 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1911 | is simple and almost transparent. | |
1912 | ||
1913 | Here are some examples: | |
1914 | ||
1915 | use Math::Complex; | |
1916 | ||
1917 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1918 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1919 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1920 | ||
1921 | $z = -16 + 0*i; # Force it to be a complex | |
1922 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1923 | ||
1924 | $k = exp(i * 2*pi/3); | |
1925 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1926 | |
b42d0ec9 JH |
1927 | $z->Re(3); # Re, Im, arg, abs, |
1928 | $j->arg(2); # (the last two aka rho, theta) | |
1929 | # can be used also as mutators. | |
1930 | ||
7637cd07 SP |
1931 | =head1 CONSTANTS |
1932 | ||
affad850 SP |
1933 | =head2 PI |
1934 | ||
1935 | The constant C<pi> and some handy multiples of it (pi2, pi4, | |
1936 | and pip2 (pi/2) and pip4 (pi/4)) are also available if separately | |
1937 | exported: | |
1938 | ||
1939 | use Math::Complex ':pi'; | |
1940 | $third_of_circle = pi2 / 3; | |
1941 | ||
1515bec6 SP |
1942 | =head2 Inf |
1943 | ||
1944 | The floating point infinity can be exported as a subroutine Inf(): | |
1945 | ||
1946 | use Math::Complex qw(Inf sinh); | |
1947 | my $AlsoInf = Inf() + 42; | |
1948 | my $AnotherInf = sinh(1e42); | |
1949 | print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf; | |
1950 | ||
1951 | Note that the stringified form of infinity varies between platforms: | |
1952 | it can be for example any of | |
1953 | ||
1954 | inf | |
1955 | infinity | |
1956 | INF | |
1957 | 1.#INF | |
1958 | ||
1959 | or it can be something else. | |
1960 | ||
7637cd07 SP |
1961 | Also note that in some platforms trying to use the infinity in |
1962 | arithmetic operations may result in Perl crashing because using | |
1963 | an infinity causes SIGFPE or its moral equivalent to be sent. | |
1964 | The way to ignore this is | |
1965 | ||
1966 | local $SIG{FPE} = sub { }; | |
1967 | ||
b42d0ec9 | 1968 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO |
5aabfad6 | 1969 | |
1970 | The division (/) and the following functions | |
1971 | ||
b42d0ec9 | 1972 | log ln log10 logn |
2820d885 | 1973 | tan sec csc cot |
b42d0ec9 JH |
1974 | atan asec acsc acot |
1975 | tanh sech csch coth | |
1976 | atanh asech acsch acoth | |
5aabfad6 | 1977 | |
1978 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1979 | by zero or taking logarithm of zero. These situations cause fatal |
1980 | runtime errors looking like this | |
5aabfad6 | 1981 | |
1982 | cot(0): Division by zero. | |
5cd24f17 | 1983 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1984 | Died at ... |
1985 | ||
8c03c583 JH |
1986 | or |
1987 | ||
1988 | atanh(-1): Logarithm of zero. | |
1989 | Died at... | |
1990 | ||
1991 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
d1be9408 | 1992 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the |
b42d0ec9 JH |
1993 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot |
1994 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
1995 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
1996 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
1997 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
1998 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
bf5f1b4c JH |
1999 | is any integer. atan2(0, 0) is undefined, and if the complex arguments |
2000 | are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. | |
b42d0ec9 JH |
2001 | |
2002 | Note that because we are operating on approximations of real numbers, | |
2003 | these errors can happen when merely `too close' to the singularities | |
40b904b7 | 2004 | listed above. |
b42d0ec9 JH |
2005 | |
2006 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
2007 | ||
2008 | The C<make> and C<emake> accept both real and complex arguments. | |
2009 | When they cannot recognize the arguments they will die with error | |
2010 | messages like the following | |
2011 | ||
2012 | Math::Complex::make: Cannot take real part of ... | |
2013 | Math::Complex::make: Cannot take real part of ... | |
2014 | Math::Complex::emake: Cannot take rho of ... | |
2015 | Math::Complex::emake: Cannot take theta of ... | |
5cd24f17 | 2016 | |
a5f75d66 AD |
2017 | =head1 BUGS |
2018 | ||
5cd24f17 | 2019 | Saying C<use Math::Complex;> exports many mathematical routines in the |
bf5f1b4c | 2020 | caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>). |
fb73857a | 2021 | This is construed as a feature by the Authors, actually... ;-) |
a5f75d66 | 2022 | |
66730be0 RM |
2023 | All routines expect to be given real or complex numbers. Don't attempt to |
2024 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
2025 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 2026 | |
d09ae4e6 JH |
2027 | In Cray UNICOS there is some strange numerical instability that results |
2028 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
2029 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
2030 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
2031 | ||
7637cd07 SP |
2032 | =head1 SEE ALSO |
2033 | ||
2034 | L<Math::Trig> | |
2035 | ||
0c721ce2 | 2036 | =head1 AUTHORS |
a5f75d66 | 2037 | |
affad850 SP |
2038 | Daniel S. Lewart <F<lewart!at!uiuc.edu>> |
2039 | Jarkko Hietaniemi <F<jhi!at!iki.fi>> | |
2040 | Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>> | |
fb73857a | 2041 | |
1515bec6 SP |
2042 | =head1 LICENSE |
2043 | ||
2044 | This library is free software; you can redistribute it and/or modify | |
2045 | it under the same terms as Perl itself. | |
2046 | ||
5cd24f17 | 2047 | =cut |
2048 | ||
b42d0ec9 JH |
2049 | 1; |
2050 | ||
5cd24f17 | 2051 | # eof |