This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
regcomp.c: Simplify
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
1129b882
NC
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
4ac71550
TC
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
84d4ea48
JH
16 */
17
166f8a29
DM
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
84d4ea48
JH
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
c53fc8a6 33#ifndef SMALLSORT
7ea738a9 34#define SMALLSORT (200)
c53fc8a6
JH
35#endif
36
23a85c22 37/* Flags for sortsv_flags */
044d25c7
TK
38#define SORTf_STABLE 1
39#define SORTf_UNSTABLE 2
7b9ef140 40
84d4ea48
JH
41/*
42 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
43 *
44 * The original code was written in conjunction with BSD Computer Software
45 * Research Group at University of California, Berkeley.
46 *
393db44d
JL
47 * See also: "Optimistic Sorting and Information Theoretic Complexity"
48 * Peter McIlroy
49 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
50 * pp 467-474, Austin, Texas, 25-27 January 1993.
84d4ea48 51 *
393db44d 52 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
84d4ea48
JH
53 *
54 * The code can be distributed under the same terms as Perl itself.
55 *
56 */
57
84d4ea48 58
7ea738a9
TK
59typedef char * aptr; /* pointer for arithmetic on sizes */
60typedef SV * gptr; /* pointers in our lists */
84d4ea48
JH
61
62/* Binary merge internal sort, with a few special mods
63** for the special perl environment it now finds itself in.
64**
65** Things that were once options have been hotwired
66** to values suitable for this use. In particular, we'll always
67** initialize looking for natural runs, we'll always produce stable
68** output, and we'll always do Peter McIlroy's binary merge.
69*/
70
71/* Pointer types for arithmetic and storage and convenience casts */
72
7ea738a9
TK
73#define APTR(P) ((aptr)(P))
74#define GPTP(P) ((gptr *)(P))
84d4ea48
JH
75#define GPPP(P) ((gptr **)(P))
76
77
78/* byte offset from pointer P to (larger) pointer Q */
7ea738a9 79#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
84d4ea48
JH
80
81#define PSIZE sizeof(gptr)
82
83/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
84
7ea738a9
TK
85#ifdef PSHIFT
86#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
87#define PNBYTE(N) ((N) << (PSHIFT))
88#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
84d4ea48
JH
89#else
90/* Leave optimization to compiler */
7ea738a9
TK
91#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
92#define PNBYTE(N) ((N) * (PSIZE))
93#define PINDEX(P, N) (GPTP(P) + (N))
84d4ea48
JH
94#endif
95
96/* Pointer into other corresponding to pointer into this */
7ea738a9 97#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
84d4ea48
JH
98
99#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
100
101
486ec47a 102/* Runs are identified by a pointer in the auxiliary list.
84d4ea48
JH
103** The pointer is at the start of the list,
104** and it points to the start of the next list.
105** NEXT is used as an lvalue, too.
106*/
107
7ea738a9 108#define NEXT(P) (*GPPP(P))
84d4ea48
JH
109
110
111/* PTHRESH is the minimum number of pairs with the same sense to justify
112** checking for a run and extending it. Note that PTHRESH counts PAIRS,
113** not just elements, so PTHRESH == 8 means a run of 16.
114*/
115
7ea738a9 116#define PTHRESH (8)
84d4ea48
JH
117
118/* RTHRESH is the number of elements in a run that must compare low
119** to the low element from the opposing run before we justify
120** doing a binary rampup instead of single stepping.
121** In random input, N in a row low should only happen with
122** probability 2^(1-N), so we can risk that we are dealing
123** with orderly input without paying much when we aren't.
124*/
125
126#define RTHRESH (6)
127
128
129/*
130** Overview of algorithm and variables.
131** The array of elements at list1 will be organized into runs of length 2,
132** or runs of length >= 2 * PTHRESH. We only try to form long runs when
133** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
134**
135** Unless otherwise specified, pair pointers address the first of two elements.
136**
a0288114
AL
137** b and b+1 are a pair that compare with sense "sense".
138** b is the "bottom" of adjacent pairs that might form a longer run.
84d4ea48
JH
139**
140** p2 parallels b in the list2 array, where runs are defined by
141** a pointer chain.
142**
a0288114 143** t represents the "top" of the adjacent pairs that might extend
84d4ea48
JH
144** the run beginning at b. Usually, t addresses a pair
145** that compares with opposite sense from (b,b+1).
146** However, it may also address a singleton element at the end of list1,
a0288114 147** or it may be equal to "last", the first element beyond list1.
84d4ea48
JH
148**
149** r addresses the Nth pair following b. If this would be beyond t,
150** we back it off to t. Only when r is less than t do we consider the
151** run long enough to consider checking.
152**
153** q addresses a pair such that the pairs at b through q already form a run.
154** Often, q will equal b, indicating we only are sure of the pair itself.
155** However, a search on the previous cycle may have revealed a longer run,
156** so q may be greater than b.
157**
158** p is used to work back from a candidate r, trying to reach q,
159** which would mean b through r would be a run. If we discover such a run,
160** we start q at r and try to push it further towards t.
161** If b through r is NOT a run, we detect the wrong order at (p-1,p).
162** In any event, after the check (if any), we have two main cases.
163**
164** 1) Short run. b <= q < p <= r <= t.
7ea738a9
TK
165** b through q is a run (perhaps trivial)
166** q through p are uninteresting pairs
167** p through r is a run
84d4ea48
JH
168**
169** 2) Long run. b < r <= q < t.
7ea738a9 170** b through q is a run (of length >= 2 * PTHRESH)
84d4ea48
JH
171**
172** Note that degenerate cases are not only possible, but likely.
173** For example, if the pair following b compares with opposite sense,
174** then b == q < p == r == t.
175*/
176
177
044d25c7 178PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
d4c19fe8 179dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
84d4ea48 180{
957d8989 181 I32 sense;
eb578fdb
KW
182 gptr *b, *p, *q, *t, *p2;
183 gptr *last, *r;
957d8989 184 IV runs = 0;
84d4ea48
JH
185
186 b = list1;
187 last = PINDEX(b, nmemb);
188 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
189 for (p2 = list2; b < last; ) {
7ea738a9
TK
190 /* We just started, or just reversed sense.
191 ** Set t at end of pairs with the prevailing sense.
192 */
193 for (p = b+2, t = p; ++p < last; t = ++p) {
194 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
195 }
196 q = b;
197 /* Having laid out the playing field, look for long runs */
198 do {
199 p = r = b + (2 * PTHRESH);
200 if (r >= t) p = r = t; /* too short to care about */
201 else {
202 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
203 ((p -= 2) > q)) {}
204 if (p <= q) {
205 /* b through r is a (long) run.
206 ** Extend it as far as possible.
207 */
208 p = q = r;
209 while (((p += 2) < t) &&
210 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
211 r = p = q + 2; /* no simple pairs, no after-run */
212 }
213 }
214 if (q > b) { /* run of greater than 2 at b */
215 gptr *savep = p;
216
217 p = q += 2;
218 /* pick up singleton, if possible */
219 if ((p == t) &&
220 ((t + 1) == last) &&
221 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
222 savep = r = p = q = last;
223 p2 = NEXT(p2) = p2 + (p - b); ++runs;
224 if (sense)
225 while (b < --p) {
226 const gptr c = *b;
227 *b++ = *p;
228 *p = c;
229 }
230 p = savep;
231 }
232 while (q < p) { /* simple pairs */
233 p2 = NEXT(p2) = p2 + 2; ++runs;
234 if (sense) {
235 const gptr c = *q++;
236 *(q-1) = *q;
237 *q++ = c;
238 } else q += 2;
239 }
240 if (((b = p) == t) && ((t+1) == last)) {
241 NEXT(p2) = p2 + 1; ++runs;
242 b++;
243 }
244 q = r;
245 } while (b < t);
246 sense = !sense;
84d4ea48 247 }
957d8989 248 return runs;
84d4ea48
JH
249}
250
251
3fe0b9a9 252/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 253 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 254 * on others. The most likely explanation was platform-specific
957d8989
JL
255 * differences in cache sizes and relative speeds.
256 *
257 * The quicksort divide-and-conquer algorithm guarantees that, as the
258 * problem is subdivided into smaller and smaller parts, the parts
259 * fit into smaller (and faster) caches. So it doesn't matter how
260 * many levels of cache exist, quicksort will "find" them, and,
e62b3022 261 * as long as smaller is faster, take advantage of them.
957d8989 262 *
3fe0b9a9 263 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
264 * Suppose we have five runs (each typically of length 2 after dynprep).
265 *
266 * pass base aux
267 * 0 1 2 3 4 5
268 * 1 12 34 5
269 * 2 1234 5
270 * 3 12345
271 * 4 12345
272 *
273 * Adjacent pairs are merged in "grand sweeps" through the input.
274 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
275 * runs 3 and 4 are merged and the runs from run 5 have been copied.
276 * The only cache that matters is one large enough to hold *all* the input.
277 * On some platforms, this may be many times slower than smaller caches.
278 *
279 * The following pseudo-code uses the same basic merge algorithm,
280 * but in a divide-and-conquer way.
281 *
282 * # merge $runs runs at offset $offset of list $list1 into $list2.
283 * # all unmerged runs ($runs == 1) originate in list $base.
284 * sub mgsort2 {
285 * my ($offset, $runs, $base, $list1, $list2) = @_;
286 *
287 * if ($runs == 1) {
288 * if ($list1 is $base) copy run to $list2
289 * return offset of end of list (or copy)
290 * } else {
291 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
292 * mgsort2($off2, $runs/2, $base, $list2, $list1)
293 * merge the adjacent runs at $offset of $list1 into $list2
294 * return the offset of the end of the merged runs
295 * }
296 * }
297 * mgsort2(0, $runs, $base, $aux, $base);
298 *
299 * For our 5 runs, the tree of calls looks like
300 *
301 * 5
302 * 3 2
303 * 2 1 1 1
304 * 1 1
305 *
306 * 1 2 3 4 5
307 *
308 * and the corresponding activity looks like
309 *
310 * copy runs 1 and 2 from base to aux
311 * merge runs 1 and 2 from aux to base
312 * (run 3 is where it belongs, no copy needed)
313 * merge runs 12 and 3 from base to aux
314 * (runs 4 and 5 are where they belong, no copy needed)
315 * merge runs 4 and 5 from base to aux
316 * merge runs 123 and 45 from aux to base
317 *
318 * Note that we merge runs 1 and 2 immediately after copying them,
319 * while they are still likely to be in fast cache. Similarly,
320 * run 3 is merged with run 12 while it still may be lingering in cache.
321 * This implementation should therefore enjoy much of the cache-friendly
322 * behavior that quicksort does. In addition, it does less copying
323 * than the original mergesort implementation (only runs 1 and 2 are copied)
324 * and the "balancing" of merges is better (merged runs comprise more nearly
325 * equal numbers of original runs).
326 *
327 * The actual cache-friendly implementation will use a pseudo-stack
328 * to avoid recursion, and will unroll processing of runs of length 2,
329 * but it is otherwise similar to the recursive implementation.
957d8989
JL
330 */
331
332typedef struct {
7ea738a9
TK
333 IV offset; /* offset of 1st of 2 runs at this level */
334 IV runs; /* how many runs must be combined into 1 */
335} off_runs; /* pseudo-stack element */
957d8989 336
044d25c7
TK
337PERL_STATIC_FORCE_INLINE void
338S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989 339{
551405c4 340 IV i, run, offset;
957d8989 341 I32 sense, level;
eb578fdb 342 gptr *f1, *f2, *t, *b, *p;
957d8989 343 int iwhich;
551405c4 344 gptr *aux;
957d8989
JL
345 gptr *p1;
346 gptr small[SMALLSORT];
347 gptr *which[3];
348 off_runs stack[60], *stackp;
349
aa4119bb 350 PERL_UNUSED_ARG(flags);
044d25c7 351 PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
7ea738a9 352 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703 353
7ea738a9
TK
354 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
355 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
957d8989
JL
356 level = 0;
357 stackp = stack;
358 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
359 stackp->offset = offset = 0;
360 which[0] = which[2] = base;
361 which[1] = aux;
362 for (;;) {
7ea738a9
TK
363 /* On levels where both runs have be constructed (stackp->runs == 0),
364 * merge them, and note the offset of their end, in case the offset
365 * is needed at the next level up. Hop up a level, and,
366 * as long as stackp->runs is 0, keep merging.
367 */
368 IV runs = stackp->runs;
369 if (runs == 0) {
370 gptr *list1, *list2;
371 iwhich = level & 1;
372 list1 = which[iwhich]; /* area where runs are now */
373 list2 = which[++iwhich]; /* area for merged runs */
374 do {
375 gptr *l1, *l2, *tp2;
376 offset = stackp->offset;
377 f1 = p1 = list1 + offset; /* start of first run */
378 p = tp2 = list2 + offset; /* where merged run will go */
379 t = NEXT(p); /* where first run ends */
380 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
381 t = NEXT(t); /* where second runs ends */
382 l2 = POTHER(t, list2, list1); /* ... on the other side */
383 offset = PNELEM(list2, t);
384 while (f1 < l1 && f2 < l2) {
385 /* If head 1 is larger than head 2, find ALL the elements
386 ** in list 2 strictly less than head1, write them all,
387 ** then head 1. Then compare the new heads, and repeat,
388 ** until one or both lists are exhausted.
389 **
390 ** In all comparisons (after establishing
391 ** which head to merge) the item to merge
392 ** (at pointer q) is the first operand of
393 ** the comparison. When we want to know
394 ** if "q is strictly less than the other",
395 ** we can't just do
396 ** cmp(q, other) < 0
397 ** because stability demands that we treat equality
398 ** as high when q comes from l2, and as low when
399 ** q was from l1. So we ask the question by doing
400 ** cmp(q, other) <= sense
401 ** and make sense == 0 when equality should look low,
402 ** and -1 when equality should look high.
403 */
404
405 gptr *q;
406 if (cmp(aTHX_ *f1, *f2) <= 0) {
407 q = f2; b = f1; t = l1;
408 sense = -1;
409 } else {
410 q = f1; b = f2; t = l2;
411 sense = 0;
412 }
413
414
415 /* ramp up
416 **
417 ** Leave t at something strictly
418 ** greater than q (or at the end of the list),
419 ** and b at something strictly less than q.
420 */
421 for (i = 1, run = 0 ;;) {
422 if ((p = PINDEX(b, i)) >= t) {
423 /* off the end */
424 if (((p = PINDEX(t, -1)) > b) &&
425 (cmp(aTHX_ *q, *p) <= sense))
426 t = p;
427 else b = p;
428 break;
429 } else if (cmp(aTHX_ *q, *p) <= sense) {
430 t = p;
431 break;
432 } else b = p;
433 if (++run >= RTHRESH) i += i;
434 }
435
436
437 /* q is known to follow b and must be inserted before t.
438 ** Increment b, so the range of possibilities is [b,t).
439 ** Round binary split down, to favor early appearance.
440 ** Adjust b and t until q belongs just before t.
441 */
442
443 b++;
444 while (b < t) {
445 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
446 if (cmp(aTHX_ *q, *p) <= sense) {
447 t = p;
448 } else b = p + 1;
449 }
450
451
452 /* Copy all the strictly low elements */
453
454 if (q == f1) {
455 FROMTOUPTO(f2, tp2, t);
456 *tp2++ = *f1++;
457 } else {
458 FROMTOUPTO(f1, tp2, t);
459 *tp2++ = *f2++;
460 }
461 }
462
463
464 /* Run out remaining list */
465 if (f1 == l1) {
466 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
467 } else FROMTOUPTO(f1, tp2, l1);
468 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
469
470 if (--level == 0) goto done;
471 --stackp;
472 t = list1; list1 = list2; list2 = t; /* swap lists */
473 } while ((runs = stackp->runs) == 0);
474 }
475
476
477 stackp->runs = 0; /* current run will finish level */
478 /* While there are more than 2 runs remaining,
479 * turn them into exactly 2 runs (at the "other" level),
480 * each made up of approximately half the runs.
481 * Stack the second half for later processing,
482 * and set about producing the first half now.
483 */
484 while (runs > 2) {
485 ++level;
486 ++stackp;
487 stackp->offset = offset;
488 runs -= stackp->runs = runs / 2;
489 }
490 /* We must construct a single run from 1 or 2 runs.
491 * All the original runs are in which[0] == base.
492 * The run we construct must end up in which[level&1].
493 */
494 iwhich = level & 1;
495 if (runs == 1) {
496 /* Constructing a single run from a single run.
497 * If it's where it belongs already, there's nothing to do.
498 * Otherwise, copy it to where it belongs.
499 * A run of 1 is either a singleton at level 0,
500 * or the second half of a split 3. In neither event
501 * is it necessary to set offset. It will be set by the merge
502 * that immediately follows.
503 */
504 if (iwhich) { /* Belongs in aux, currently in base */
505 f1 = b = PINDEX(base, offset); /* where list starts */
506 f2 = PINDEX(aux, offset); /* where list goes */
507 t = NEXT(f2); /* where list will end */
508 offset = PNELEM(aux, t); /* offset thereof */
509 t = PINDEX(base, offset); /* where it currently ends */
510 FROMTOUPTO(f1, f2, t); /* copy */
511 NEXT(b) = t; /* set up parallel pointer */
512 } else if (level == 0) goto done; /* single run at level 0 */
513 } else {
514 /* Constructing a single run from two runs.
515 * The merge code at the top will do that.
516 * We need only make sure the two runs are in the "other" array,
517 * so they'll end up in the correct array after the merge.
518 */
519 ++level;
520 ++stackp;
521 stackp->offset = offset;
522 stackp->runs = 0; /* take care of both runs, trigger merge */
523 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
524 f1 = b = PINDEX(base, offset); /* where first run starts */
525 f2 = PINDEX(aux, offset); /* where it will be copied */
526 t = NEXT(f2); /* where first run will end */
527 offset = PNELEM(aux, t); /* offset thereof */
528 p = PINDEX(base, offset); /* end of first run */
529 t = NEXT(t); /* where second run will end */
530 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
531 FROMTOUPTO(f1, f2, t); /* copy both runs */
532 NEXT(b) = p; /* paralleled pointer for 1st */
533 NEXT(p) = t; /* ... and for second */
534 }
535 }
957d8989 536 }
7b52d656 537 done:
7ea738a9 538 if (aux != small) Safefree(aux); /* free iff allocated */
044d25c7 539
957d8989
JL
540 return;
541}
542
84d4ea48 543/*
51b56f5c 544=for apidoc_section SV Handling
044d25c7
TK
545
546=for apidoc sortsv_flags
547
548In-place sort an array of SV pointers with the given comparison routine,
549with various SORTf_* flag options.
550
551=cut
552*/
553void
554Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
555{
556 PERL_ARGS_ASSERT_SORTSV_FLAGS;
557
558 sortsv_flags_impl(base, nmemb, cmp, flags);
559}
560
561/*
562 * Each of sortsv_* functions contains an inlined copy of
563 * sortsv_flags_impl() with an inlined comparator. Basically, we are
564 * emulating C++ templates by using __attribute__((always_inline)).
565 *
566 * The purpose of that is to avoid the function call overhead inside
567 * the sorting routine, which calls the comparison function multiple
568 * times per sorted item.
569 */
570
571static void
572sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
573{
574 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
575}
576
577static void
578sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
579{
580 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
581}
582
583static void
584sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
585{
586 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
587}
588
589static void
590sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
591{
592 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
593}
594
595static void
596sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
597{
598 sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
599}
600
601static void
602sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
603{
604 sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
605}
606
607static void
608sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
609{
610 sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
611}
612
613static void
614sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
615{
616 sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
617}
618
619static void
620sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
621{
622 sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
623}
624
625static void
626sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
627{
628 sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
629}
630
631static void
632sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
633{
634 sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
635}
636
637static void
638sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
639{
640 sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
641}
642
643#ifdef USE_LOCALE_COLLATE
644
645static void
646sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
647{
648 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
649}
650
651static void
652sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
653{
654 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
655}
656
657static void
658sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
659{
660 sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
661}
662
663static void
664sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
665{
666 sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
667}
668
669#endif
670
671/*
ccfc67b7 672
84d4ea48
JH
673=for apidoc sortsv
674
8f5d5a51 675In-place sort an array of SV pointers with the given comparison routine.
84d4ea48 676
796b6530 677Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
7b9ef140 678flexible routine.
78210658 679
84d4ea48
JH
680=cut
681*/
4eb872f6 682
84d4ea48
JH
683void
684Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
685{
7918f24d
NC
686 PERL_ARGS_ASSERT_SORTSV;
687
7b9ef140 688 sortsv_flags(array, nmemb, cmp, 0);
6c3fb703
NC
689}
690
4d562308
SF
691#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
692#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
693#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
694
84d4ea48
JH
695PP(pp_sort)
696{
20b7effb 697 dSP; dMARK; dORIGMARK;
eb578fdb 698 SV **p1 = ORIGMARK+1, **p2;
c70927a6 699 SSize_t max, i;
7d49f689 700 AV* av = NULL;
84d4ea48 701 GV *gv;
cbbf8932 702 CV *cv = NULL;
1c23e2bd 703 U8 gimme = GIMME_V;
0bcc34c2 704 OP* const nextop = PL_op->op_next;
84d4ea48
JH
705 I32 overloading = 0;
706 bool hasargs = FALSE;
2b66f6d3 707 bool copytmps;
84d4ea48 708 I32 is_xsub = 0;
901017d6
AL
709 const U8 priv = PL_op->op_private;
710 const U8 flags = PL_op->op_flags;
7b9ef140 711 U32 sort_flags = 0;
044d25c7 712 I32 all_SIVs = 1, descending = 0;
84d4ea48 713
7b9ef140 714 if ((priv & OPpSORT_DESCEND) != 0)
044d25c7 715 descending = 1;
7b9ef140 716 if ((priv & OPpSORT_STABLE) != 0)
7ea738a9 717 sort_flags |= SORTf_STABLE;
afe59f35 718 if ((priv & OPpSORT_UNSTABLE) != 0)
7ea738a9 719 sort_flags |= SORTf_UNSTABLE;
7b9ef140 720
84d4ea48 721 if (gimme != G_ARRAY) {
7ea738a9
TK
722 SP = MARK;
723 EXTEND(SP,1);
724 RETPUSHUNDEF;
84d4ea48
JH
725 }
726
727 ENTER;
728 SAVEVPTR(PL_sortcop);
471178c0 729 if (flags & OPf_STACKED) {
7ea738a9 730 if (flags & OPf_SPECIAL) {
e6dae479 731 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
932bca29 732 assert(nullop->op_type == OP_NULL);
7ea738a9
TK
733 PL_sortcop = nullop->op_next;
734 }
735 else {
736 GV *autogv = NULL;
737 HV *stash;
738 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
739 check_cv:
740 if (cv && SvPOK(cv)) {
741 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
742 if (proto && strEQ(proto, "$$")) {
743 hasargs = TRUE;
744 }
745 }
746 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
747 is_xsub = 1;
748 }
749 else if (!(cv && CvROOT(cv))) {
750 if (gv) {
751 goto autoload;
752 }
753 else if (!CvANON(cv) && (gv = CvGV(cv))) {
754 if (cv != GvCV(gv)) cv = GvCV(gv);
755 autoload:
756 if (!autogv && (
757 autogv = gv_autoload_pvn(
758 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
759 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
760 )
761 )) {
762 cv = GvCVu(autogv);
763 goto check_cv;
764 }
765 else {
766 SV *tmpstr = sv_newmortal();
767 gv_efullname3(tmpstr, gv, NULL);
768 DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
769 SVfARG(tmpstr));
770 }
771 }
772 else {
773 DIE(aTHX_ "Undefined subroutine in sort");
774 }
775 }
776
777 if (is_xsub)
778 PL_sortcop = (OP*)cv;
779 else
780 PL_sortcop = CvSTART(cv);
781 }
84d4ea48
JH
782 }
783 else {
7ea738a9 784 PL_sortcop = NULL;
84d4ea48
JH
785 }
786
84721d61
DM
787 /* optimiser converts "@a = sort @a" to "sort \@a". In this case,
788 * push (@a) onto stack, then assign result back to @a at the end of
789 * this function */
0723351e 790 if (priv & OPpSORT_INPLACE) {
7ea738a9
TK
791 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
792 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
793 av = MUTABLE_AV((*SP));
84721d61
DM
794 if (SvREADONLY(av))
795 Perl_croak_no_modify();
7ea738a9 796 max = AvFILL(av) + 1;
84721d61 797 MEXTEND(SP, max);
7ea738a9
TK
798 if (SvMAGICAL(av)) {
799 for (i=0; i < max; i++) {
800 SV **svp = av_fetch(av, i, FALSE);
801 *SP++ = (svp) ? *svp : NULL;
802 }
803 }
84721d61
DM
804 else {
805 SV **svp = AvARRAY(av);
806 assert(svp || max == 0);
7ea738a9 807 for (i = 0; i < max; i++)
84721d61 808 *SP++ = *svp++;
7ea738a9 809 }
84721d61
DM
810 SP--;
811 p1 = p2 = SP - (max-1);
fe1bc4cf
DM
812 }
813 else {
7ea738a9
TK
814 p2 = MARK+1;
815 max = SP - MARK;
816 }
fe1bc4cf 817
83a44efe
SF
818 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
819 * any nulls; also stringify or converting to integer or number as
820 * required any args */
ff859a7f 821 copytmps = cBOOL(PL_sortcop);
fe1bc4cf 822 for (i=max; i > 0 ; i--) {
7ea738a9
TK
823 if ((*p1 = *p2++)) { /* Weed out nulls. */
824 if (copytmps && SvPADTMP(*p1)) {
825 *p1 = sv_mortalcopy(*p1);
826 }
827 SvTEMP_off(*p1);
828 if (!PL_sortcop) {
829 if (priv & OPpSORT_NUMERIC) {
830 if (priv & OPpSORT_INTEGER) {
831 if (!SvIOK(*p1))
832 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
833 }
834 else {
835 if (!SvNSIOK(*p1))
836 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
837 if (all_SIVs && !SvSIOK(*p1))
838 all_SIVs = 0;
839 }
840 }
841 else {
842 if (!SvPOK(*p1))
843 (void)sv_2pv_flags(*p1, 0,
844 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
845 }
846 if (SvAMAGIC(*p1))
847 overloading = 1;
60779a30 848 }
7ea738a9
TK
849 p1++;
850 }
851 else
852 max--;
84d4ea48 853 }
fe1bc4cf 854 if (max > 1) {
7ea738a9
TK
855 SV **start;
856 if (PL_sortcop) {
857 PERL_CONTEXT *cx;
858 const bool oldcatch = CATCH_GET;
8ae997c5 859 I32 old_savestack_ix = PL_savestack_ix;
84d4ea48 860
7ea738a9
TK
861 SAVEOP();
862
863 CATCH_SET(TRUE);
864 PUSHSTACKi(PERLSI_SORT);
865 if (!hasargs && !is_xsub) {
866 SAVEGENERICSV(PL_firstgv);
867 SAVEGENERICSV(PL_secondgv);
868 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
869 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
870 ));
871 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
872 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
873 ));
dc9ef998
TC
874 /* make sure the GP isn't removed out from under us for
875 * the SAVESPTR() */
876 save_gp(PL_firstgv, 0);
877 save_gp(PL_secondgv, 0);
878 /* we don't want modifications localized */
879 GvINTRO_off(PL_firstgv);
880 GvINTRO_off(PL_secondgv);
7ea738a9
TK
881 SAVEGENERICSV(GvSV(PL_firstgv));
882 SvREFCNT_inc(GvSV(PL_firstgv));
883 SAVEGENERICSV(GvSV(PL_secondgv));
884 SvREFCNT_inc(GvSV(PL_secondgv));
885 }
84d4ea48 886
33411212 887 gimme = G_SCALAR;
7ea738a9
TK
888 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
889 if (!(flags & OPf_SPECIAL)) {
890 cx->cx_type = CXt_SUB|CXp_MULTICALL;
891 cx_pushsub(cx, cv, NULL, hasargs);
892 if (!is_xsub) {
893 PADLIST * const padlist = CvPADLIST(cv);
894
895 if (++CvDEPTH(cv) >= 2)
896 pad_push(padlist, CvDEPTH(cv));
897 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
898
899 if (hasargs) {
900 /* This is mostly copied from pp_entersub */
901 AV * const av = MUTABLE_AV(PAD_SVl(0));
902
903 cx->blk_sub.savearray = GvAV(PL_defgv);
904 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
905 }
906
907 }
908 }
486430a5 909
7ea738a9 910 start = p1 - max;
3edfb5c3 911 Perl_sortsv_flags(aTHX_ start, max,
7ea738a9
TK
912 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
913 sort_flags);
84d4ea48 914
4df352a8 915 /* Reset cx, in case the context stack has been reallocated. */
4ebe6e95 916 cx = CX_CUR();
4df352a8 917
7ea738a9 918 PL_stack_sp = PL_stack_base + cx->blk_oldsp;
4df352a8 919
2f450c1b 920 CX_LEAVE_SCOPE(cx);
7ea738a9 921 if (!(flags & OPf_SPECIAL)) {
4df352a8 922 assert(CxTYPE(cx) == CXt_SUB);
a73d8813 923 cx_popsub(cx);
7ea738a9 924 }
2f450c1b 925 else
4df352a8 926 assert(CxTYPE(cx) == CXt_NULL);
2f450c1b 927 /* there isn't a POPNULL ! */
1dfbe6b4 928
7ea738a9 929 cx_popblock(cx);
5da525e9 930 CX_POP(cx);
7ea738a9
TK
931 POPSTACK;
932 CATCH_SET(oldcatch);
933 }
934 else {
935 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
936 start = ORIGMARK+1;
433b3e2b
TK
937 if (priv & OPpSORT_NUMERIC) {
938 if ((priv & OPpSORT_INTEGER) || all_SIVs) {
939 if (overloading)
044d25c7
TK
940 if (descending)
941 sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
942 else
943 sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
433b3e2b 944 else
044d25c7
TK
945 if (descending)
946 sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
947 else
948 sortsv_i_ncmp(aTHX_ start, max, sort_flags);
433b3e2b
TK
949 }
950 else {
951 if (overloading)
044d25c7
TK
952 if (descending)
953 sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
954 else
955 sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
433b3e2b 956 else
044d25c7
TK
957 if (descending)
958 sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
959 else
960 sortsv_ncmp(aTHX_ start, max, sort_flags);
433b3e2b
TK
961 }
962 }
130c5df3 963#ifdef USE_LOCALE_COLLATE
433b3e2b
TK
964 else if(IN_LC_RUNTIME(LC_COLLATE)) {
965 if (overloading)
044d25c7
TK
966 if (descending)
967 sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
968 else
969 sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
433b3e2b 970 else
044d25c7
TK
971 if (descending)
972 sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
973 else
974 sortsv_cmp_locale(aTHX_ start, max, sort_flags);
433b3e2b 975 }
130c5df3 976#endif
433b3e2b
TK
977 else {
978 if (overloading)
044d25c7
TK
979 if (descending)
980 sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
981 else
982 sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
433b3e2b 983 else
044d25c7
TK
984 if (descending)
985 sortsv_cmp_desc(aTHX_ start, max, sort_flags);
986 else
987 sortsv_cmp(aTHX_ start, max, sort_flags);
433b3e2b 988 }
7ea738a9
TK
989 }
990 if ((priv & OPpSORT_REVERSE) != 0) {
991 SV **q = start+max-1;
992 while (start < q) {
993 SV * const tmp = *start;
994 *start++ = *q;
995 *q-- = tmp;
996 }
997 }
84d4ea48 998 }
84721d61
DM
999
1000 if (av) {
1001 /* copy back result to the array */
1002 SV** const base = MARK+1;
99c9ca9e 1003 SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
84721d61 1004 if (SvMAGICAL(av)) {
99c9ca9e 1005 for (i = 0; i <= max_minus_one; i++)
84721d61
DM
1006 base[i] = newSVsv(base[i]);
1007 av_clear(av);
99c9ca9e
YO
1008 if (max_minus_one >= 0)
1009 av_extend(av, max_minus_one);
1010 for (i=0; i <= max_minus_one; i++) {
84721d61
DM
1011 SV * const sv = base[i];
1012 SV ** const didstore = av_store(av, i, sv);
1013 if (SvSMAGICAL(sv))
1014 mg_set(sv);
1015 if (!didstore)
1016 sv_2mortal(sv);
1017 }
1018 }
1019 else {
1020 /* the elements of av are likely to be the same as the
1021 * (non-refcounted) elements on the stack, just in a different
1022 * order. However, its possible that someone's messed with av
1023 * in the meantime. So bump and unbump the relevant refcounts
1024 * first.
1025 */
99c9ca9e 1026 for (i = 0; i <= max_minus_one; i++) {
45c198c1
DM
1027 SV *sv = base[i];
1028 assert(sv);
1029 if (SvREFCNT(sv) > 1)
1030 base[i] = newSVsv(sv);
1031 else
1032 SvREFCNT_inc_simple_void_NN(sv);
1033 }
84721d61 1034 av_clear(av);
99c9ca9e
YO
1035 if (max_minus_one >= 0) {
1036 av_extend(av, max_minus_one);
84721d61
DM
1037 Copy(base, AvARRAY(av), max, SV*);
1038 }
99c9ca9e 1039 AvFILLp(av) = max_minus_one;
84721d61
DM
1040 AvREIFY_off(av);
1041 AvREAL_on(av);
1042 }
fe1bc4cf 1043 }
84d4ea48 1044 LEAVE;
84721d61 1045 PL_stack_sp = ORIGMARK + max;
84d4ea48
JH
1046 return nextop;
1047}
1048
1049static I32
31e9e0a3 1050S_sortcv(pTHX_ SV *const a, SV *const b)
84d4ea48 1051{
901017d6 1052 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1053 I32 result;
ad021bfb 1054 PMOP * const pm = PL_curpm;
a9ea019a 1055 COP * const cop = PL_curcop;
16ada235 1056 SV *olda, *oldb;
7918f24d
NC
1057
1058 PERL_ARGS_ASSERT_SORTCV;
1059
16ada235
Z
1060 olda = GvSV(PL_firstgv);
1061 GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1062 SvREFCNT_dec(olda);
1063 oldb = GvSV(PL_secondgv);
1064 GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1065 SvREFCNT_dec(oldb);
84d4ea48
JH
1066 PL_stack_sp = PL_stack_base;
1067 PL_op = PL_sortcop;
1068 CALLRUNOPS(aTHX);
a9ea019a 1069 PL_curcop = cop;
33411212
DM
1070 /* entry zero of a stack is always PL_sv_undef, which
1071 * simplifies converting a '()' return into undef in scalar context */
1072 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1073 result = SvIV(*PL_stack_sp);
626ed49c 1074
53d3542d 1075 LEAVE_SCOPE(oldsaveix);
ad021bfb 1076 PL_curpm = pm;
84d4ea48
JH
1077 return result;
1078}
1079
1080static I32
31e9e0a3 1081S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
84d4ea48 1082{
901017d6 1083 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1084 I32 result;
901017d6 1085 AV * const av = GvAV(PL_defgv);
ad021bfb 1086 PMOP * const pm = PL_curpm;
a9ea019a 1087 COP * const cop = PL_curcop;
84d4ea48 1088
7918f24d
NC
1089 PERL_ARGS_ASSERT_SORTCV_STACKED;
1090
8f443ca6 1091 if (AvREAL(av)) {
7ea738a9
TK
1092 av_clear(av);
1093 AvREAL_off(av);
1094 AvREIFY_on(av);
8f443ca6 1095 }
84d4ea48 1096 if (AvMAX(av) < 1) {
7ea738a9
TK
1097 SV **ary = AvALLOC(av);
1098 if (AvARRAY(av) != ary) {
1099 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1100 AvARRAY(av) = ary;
1101 }
1102 if (AvMAX(av) < 1) {
1103 Renew(ary,2,SV*);
1104 AvMAX(av) = 1;
1105 AvARRAY(av) = ary;
1106 AvALLOC(av) = ary;
1107 }
84d4ea48
JH
1108 }
1109 AvFILLp(av) = 1;
1110
1111 AvARRAY(av)[0] = a;
1112 AvARRAY(av)[1] = b;
1113 PL_stack_sp = PL_stack_base;
1114 PL_op = PL_sortcop;
1115 CALLRUNOPS(aTHX);
a9ea019a 1116 PL_curcop = cop;
33411212
DM
1117 /* entry zero of a stack is always PL_sv_undef, which
1118 * simplifies converting a '()' return into undef in scalar context */
1119 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1120 result = SvIV(*PL_stack_sp);
626ed49c 1121
53d3542d 1122 LEAVE_SCOPE(oldsaveix);
ad021bfb 1123 PL_curpm = pm;
84d4ea48
JH
1124 return result;
1125}
1126
1127static I32
31e9e0a3 1128S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
84d4ea48 1129{
20b7effb 1130 dSP;
901017d6 1131 const I32 oldsaveix = PL_savestack_ix;
ea726b52 1132 CV * const cv=MUTABLE_CV(PL_sortcop);
84d4ea48 1133 I32 result;
ad021bfb 1134 PMOP * const pm = PL_curpm;
84d4ea48 1135
7918f24d
NC
1136 PERL_ARGS_ASSERT_SORTCV_XSUB;
1137
84d4ea48
JH
1138 SP = PL_stack_base;
1139 PUSHMARK(SP);
1140 EXTEND(SP, 2);
1141 *++SP = a;
1142 *++SP = b;
1143 PUTBACK;
1144 (void)(*CvXSUB(cv))(aTHX_ cv);
33411212
DM
1145 /* entry zero of a stack is always PL_sv_undef, which
1146 * simplifies converting a '()' return into undef in scalar context */
1147 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
84d4ea48 1148 result = SvIV(*PL_stack_sp);
33411212 1149
53d3542d 1150 LEAVE_SCOPE(oldsaveix);
ad021bfb 1151 PL_curpm = pm;
84d4ea48
JH
1152 return result;
1153}
1154
1155
044d25c7 1156PERL_STATIC_FORCE_INLINE I32
31e9e0a3 1157S_sv_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1158{
427fbfe8 1159 I32 cmp = do_ncmp(a, b);
7918f24d
NC
1160
1161 PERL_ARGS_ASSERT_SV_NCMP;
1162
427fbfe8 1163 if (cmp == 2) {
7ea738a9
TK
1164 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1165 return 0;
f3dab52a 1166 }
427fbfe8
TC
1167
1168 return cmp;
84d4ea48
JH
1169}
1170
044d25c7
TK
1171PERL_STATIC_FORCE_INLINE I32
1172S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
1173{
1174 PERL_ARGS_ASSERT_SV_NCMP_DESC;
1175
1176 return -S_sv_ncmp(aTHX_ a, b);
1177}
1178
1179PERL_STATIC_FORCE_INLINE I32
31e9e0a3 1180S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1181{
901017d6
AL
1182 const IV iv1 = SvIV(a);
1183 const IV iv2 = SvIV(b);
7918f24d
NC
1184
1185 PERL_ARGS_ASSERT_SV_I_NCMP;
1186
84d4ea48
JH
1187 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1188}
901017d6 1189
044d25c7
TK
1190PERL_STATIC_FORCE_INLINE I32
1191S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1192{
1193 PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
1194
1195 return -S_sv_i_ncmp(aTHX_ a, b);
1196}
1197
901017d6 1198#define tryCALL_AMAGICbin(left,right,meth) \
79a8d529 1199 (SvAMAGIC(left)||SvAMAGIC(right)) \
7ea738a9
TK
1200 ? amagic_call(left, right, meth, 0) \
1201 : NULL;
84d4ea48 1202
659c4b96 1203#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
eeb9de02 1204
044d25c7 1205PERL_STATIC_FORCE_INLINE I32
5aaab254 1206S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1207{
31d632c3 1208 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1209
1210 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1211
84d4ea48 1212 if (tmpsv) {
84d4ea48 1213 if (SvIOK(tmpsv)) {
901017d6 1214 const I32 i = SvIVX(tmpsv);
eeb9de02 1215 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1216 }
7ea738a9
TK
1217 else {
1218 const NV d = SvNV(tmpsv);
1219 return SORT_NORMAL_RETURN_VALUE(d);
1220 }
84d4ea48 1221 }
f0f5dc9d 1222 return S_sv_ncmp(aTHX_ a, b);
84d4ea48
JH
1223}
1224
044d25c7
TK
1225PERL_STATIC_FORCE_INLINE I32
1226S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
1227{
1228 PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
1229
1230 return -S_amagic_ncmp(aTHX_ a, b);
1231}
1232
1233PERL_STATIC_FORCE_INLINE I32
5aaab254 1234S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1235{
31d632c3 1236 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1237
1238 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1239
84d4ea48 1240 if (tmpsv) {
84d4ea48 1241 if (SvIOK(tmpsv)) {
901017d6 1242 const I32 i = SvIVX(tmpsv);
eeb9de02 1243 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1244 }
7ea738a9
TK
1245 else {
1246 const NV d = SvNV(tmpsv);
1247 return SORT_NORMAL_RETURN_VALUE(d);
1248 }
84d4ea48 1249 }
f0f5dc9d 1250 return S_sv_i_ncmp(aTHX_ a, b);
84d4ea48
JH
1251}
1252
044d25c7
TK
1253PERL_STATIC_FORCE_INLINE I32
1254S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1255{
1256 PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
1257
1258 return -S_amagic_i_ncmp(aTHX_ a, b);
1259}
1260
1261PERL_STATIC_FORCE_INLINE I32
5aaab254 1262S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1263{
31d632c3 1264 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1265
1266 PERL_ARGS_ASSERT_AMAGIC_CMP;
1267
84d4ea48 1268 if (tmpsv) {
84d4ea48 1269 if (SvIOK(tmpsv)) {
901017d6 1270 const I32 i = SvIVX(tmpsv);
eeb9de02 1271 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1272 }
7ea738a9
TK
1273 else {
1274 const NV d = SvNV(tmpsv);
1275 return SORT_NORMAL_RETURN_VALUE(d);
1276 }
84d4ea48
JH
1277 }
1278 return sv_cmp(str1, str2);
1279}
1280
044d25c7
TK
1281PERL_STATIC_FORCE_INLINE I32
1282S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1283{
1284 PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
1285
1286 return -S_amagic_cmp(aTHX_ str1, str2);
1287}
1288
1289PERL_STATIC_FORCE_INLINE I32
1290S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1291{
1292 PERL_ARGS_ASSERT_CMP_DESC;
1293
1294 return -sv_cmp(str1, str2);
1295}
1296
91191cf7
KW
1297#ifdef USE_LOCALE_COLLATE
1298
044d25c7 1299PERL_STATIC_FORCE_INLINE I32
5aaab254 1300S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1301{
31d632c3 1302 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1303
1304 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1305
84d4ea48 1306 if (tmpsv) {
84d4ea48 1307 if (SvIOK(tmpsv)) {
901017d6 1308 const I32 i = SvIVX(tmpsv);
eeb9de02 1309 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1310 }
7ea738a9
TK
1311 else {
1312 const NV d = SvNV(tmpsv);
1313 return SORT_NORMAL_RETURN_VALUE(d);
1314 }
84d4ea48
JH
1315 }
1316 return sv_cmp_locale(str1, str2);
1317}
241d1a3b 1318
044d25c7
TK
1319PERL_STATIC_FORCE_INLINE I32
1320S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1321{
1322 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
1323
1324 return -S_amagic_cmp_locale(aTHX_ str1, str2);
1325}
1326
1327PERL_STATIC_FORCE_INLINE I32
1328S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1329{
1330 PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
1331
1332 return -sv_cmp_locale(str1, str2);
1333}
1334
91191cf7
KW
1335#endif
1336
241d1a3b 1337/*
14d04a33 1338 * ex: set ts=8 sts=4 sw=4 et:
37442d52 1339 */