This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Small documentation fix to ExtUtils::Constant
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
4bb101f2 3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
b5f8cc5c 4 * 2000, 2001, 2002, 2003, 2004, by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 */
15
166f8a29
DM
16/* This file contains pp ("push/pop") functions that
17 * execute the opcodes that make up a perl program. A typical pp function
18 * expects to find its arguments on the stack, and usually pushes its
19 * results onto the stack, hence the 'pp' terminology. Each OP structure
20 * contains a pointer to the relevant pp_foo() function.
21 *
22 * This particular file just contains pp_sort(), which is complex
23 * enough to merit its own file! See the other pp*.c files for the rest of
24 * the pp_ functions.
25 */
26
84d4ea48
JH
27#include "EXTERN.h"
28#define PERL_IN_PP_SORT_C
29#include "perl.h"
30
42165d27
VK
31#if defined(UNDER_CE)
32/* looks like 'small' is reserved word for WINCE (or somesuch)*/
33#define small xsmall
34#endif
35
84d4ea48
JH
36static I32 sortcv(pTHX_ SV *a, SV *b);
37static I32 sortcv_stacked(pTHX_ SV *a, SV *b);
38static I32 sortcv_xsub(pTHX_ SV *a, SV *b);
39static I32 sv_ncmp(pTHX_ SV *a, SV *b);
40static I32 sv_i_ncmp(pTHX_ SV *a, SV *b);
41static I32 amagic_ncmp(pTHX_ SV *a, SV *b);
42static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b);
43static I32 amagic_cmp(pTHX_ SV *a, SV *b);
44static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b);
45
46#define sv_cmp_static Perl_sv_cmp
47#define sv_cmp_locale_static Perl_sv_cmp_locale
48
045ac317
RGS
49#define SORTHINTS(hintsv) \
50 (((hintsv) = GvSV(gv_fetchpv("sort::hints", GV_ADDMULTI, SVt_IV))), \
51 (SvIOK(hintsv) ? ((I32)SvIV(hintsv)) : 0))
84d4ea48 52
c53fc8a6
JH
53#ifndef SMALLSORT
54#define SMALLSORT (200)
55#endif
56
84d4ea48
JH
57/*
58 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
59 *
60 * The original code was written in conjunction with BSD Computer Software
61 * Research Group at University of California, Berkeley.
62 *
63 * See also: "Optimistic Merge Sort" (SODA '92)
64 *
65 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
66 *
67 * The code can be distributed under the same terms as Perl itself.
68 *
69 */
70
84d4ea48
JH
71
72typedef char * aptr; /* pointer for arithmetic on sizes */
73typedef SV * gptr; /* pointers in our lists */
74
75/* Binary merge internal sort, with a few special mods
76** for the special perl environment it now finds itself in.
77**
78** Things that were once options have been hotwired
79** to values suitable for this use. In particular, we'll always
80** initialize looking for natural runs, we'll always produce stable
81** output, and we'll always do Peter McIlroy's binary merge.
82*/
83
84/* Pointer types for arithmetic and storage and convenience casts */
85
86#define APTR(P) ((aptr)(P))
87#define GPTP(P) ((gptr *)(P))
88#define GPPP(P) ((gptr **)(P))
89
90
91/* byte offset from pointer P to (larger) pointer Q */
92#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
93
94#define PSIZE sizeof(gptr)
95
96/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
97
98#ifdef PSHIFT
99#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
100#define PNBYTE(N) ((N) << (PSHIFT))
101#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
102#else
103/* Leave optimization to compiler */
104#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
105#define PNBYTE(N) ((N) * (PSIZE))
106#define PINDEX(P, N) (GPTP(P) + (N))
107#endif
108
109/* Pointer into other corresponding to pointer into this */
110#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
111
112#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
113
114
115/* Runs are identified by a pointer in the auxilliary list.
116** The pointer is at the start of the list,
117** and it points to the start of the next list.
118** NEXT is used as an lvalue, too.
119*/
120
121#define NEXT(P) (*GPPP(P))
122
123
124/* PTHRESH is the minimum number of pairs with the same sense to justify
125** checking for a run and extending it. Note that PTHRESH counts PAIRS,
126** not just elements, so PTHRESH == 8 means a run of 16.
127*/
128
129#define PTHRESH (8)
130
131/* RTHRESH is the number of elements in a run that must compare low
132** to the low element from the opposing run before we justify
133** doing a binary rampup instead of single stepping.
134** In random input, N in a row low should only happen with
135** probability 2^(1-N), so we can risk that we are dealing
136** with orderly input without paying much when we aren't.
137*/
138
139#define RTHRESH (6)
140
141
142/*
143** Overview of algorithm and variables.
144** The array of elements at list1 will be organized into runs of length 2,
145** or runs of length >= 2 * PTHRESH. We only try to form long runs when
146** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
147**
148** Unless otherwise specified, pair pointers address the first of two elements.
149**
150** b and b+1 are a pair that compare with sense ``sense''.
151** b is the ``bottom'' of adjacent pairs that might form a longer run.
152**
153** p2 parallels b in the list2 array, where runs are defined by
154** a pointer chain.
155**
156** t represents the ``top'' of the adjacent pairs that might extend
157** the run beginning at b. Usually, t addresses a pair
158** that compares with opposite sense from (b,b+1).
159** However, it may also address a singleton element at the end of list1,
160** or it may be equal to ``last'', the first element beyond list1.
161**
162** r addresses the Nth pair following b. If this would be beyond t,
163** we back it off to t. Only when r is less than t do we consider the
164** run long enough to consider checking.
165**
166** q addresses a pair such that the pairs at b through q already form a run.
167** Often, q will equal b, indicating we only are sure of the pair itself.
168** However, a search on the previous cycle may have revealed a longer run,
169** so q may be greater than b.
170**
171** p is used to work back from a candidate r, trying to reach q,
172** which would mean b through r would be a run. If we discover such a run,
173** we start q at r and try to push it further towards t.
174** If b through r is NOT a run, we detect the wrong order at (p-1,p).
175** In any event, after the check (if any), we have two main cases.
176**
177** 1) Short run. b <= q < p <= r <= t.
178** b through q is a run (perhaps trivial)
179** q through p are uninteresting pairs
180** p through r is a run
181**
182** 2) Long run. b < r <= q < t.
183** b through q is a run (of length >= 2 * PTHRESH)
184**
185** Note that degenerate cases are not only possible, but likely.
186** For example, if the pair following b compares with opposite sense,
187** then b == q < p == r == t.
188*/
189
190
957d8989 191static IV
84d4ea48
JH
192dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
193{
957d8989 194 I32 sense;
84d4ea48
JH
195 register gptr *b, *p, *q, *t, *p2;
196 register gptr c, *last, *r;
197 gptr *savep;
957d8989 198 IV runs = 0;
84d4ea48
JH
199
200 b = list1;
201 last = PINDEX(b, nmemb);
202 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
203 for (p2 = list2; b < last; ) {
204 /* We just started, or just reversed sense.
205 ** Set t at end of pairs with the prevailing sense.
206 */
207 for (p = b+2, t = p; ++p < last; t = ++p) {
208 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
209 }
210 q = b;
211 /* Having laid out the playing field, look for long runs */
212 do {
213 p = r = b + (2 * PTHRESH);
214 if (r >= t) p = r = t; /* too short to care about */
215 else {
216 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
217 ((p -= 2) > q));
218 if (p <= q) {
219 /* b through r is a (long) run.
220 ** Extend it as far as possible.
221 */
222 p = q = r;
223 while (((p += 2) < t) &&
224 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
225 r = p = q + 2; /* no simple pairs, no after-run */
226 }
227 }
228 if (q > b) { /* run of greater than 2 at b */
229 savep = p;
230 p = q += 2;
231 /* pick up singleton, if possible */
232 if ((p == t) &&
233 ((t + 1) == last) &&
234 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
235 savep = r = p = q = last;
957d8989 236 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48
JH
237 if (sense) while (b < --p) {
238 c = *b;
239 *b++ = *p;
240 *p = c;
241 }
242 p = savep;
243 }
244 while (q < p) { /* simple pairs */
957d8989 245 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48
JH
246 if (sense) {
247 c = *q++;
248 *(q-1) = *q;
249 *q++ = c;
250 } else q += 2;
251 }
252 if (((b = p) == t) && ((t+1) == last)) {
957d8989 253 NEXT(p2) = p2 + 1; ++runs;
84d4ea48
JH
254 b++;
255 }
256 q = r;
257 } while (b < t);
258 sense = !sense;
259 }
957d8989 260 return runs;
84d4ea48
JH
261}
262
263
3fe0b9a9 264/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 265 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 266 * on others. The most likely explanation was platform-specific
957d8989
JL
267 * differences in cache sizes and relative speeds.
268 *
269 * The quicksort divide-and-conquer algorithm guarantees that, as the
270 * problem is subdivided into smaller and smaller parts, the parts
271 * fit into smaller (and faster) caches. So it doesn't matter how
272 * many levels of cache exist, quicksort will "find" them, and,
273 * as long as smaller is faster, take advanatge of them.
274 *
3fe0b9a9 275 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
276 * Suppose we have five runs (each typically of length 2 after dynprep).
277 *
278 * pass base aux
279 * 0 1 2 3 4 5
280 * 1 12 34 5
281 * 2 1234 5
282 * 3 12345
283 * 4 12345
284 *
285 * Adjacent pairs are merged in "grand sweeps" through the input.
286 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
287 * runs 3 and 4 are merged and the runs from run 5 have been copied.
288 * The only cache that matters is one large enough to hold *all* the input.
289 * On some platforms, this may be many times slower than smaller caches.
290 *
291 * The following pseudo-code uses the same basic merge algorithm,
292 * but in a divide-and-conquer way.
293 *
294 * # merge $runs runs at offset $offset of list $list1 into $list2.
295 * # all unmerged runs ($runs == 1) originate in list $base.
296 * sub mgsort2 {
297 * my ($offset, $runs, $base, $list1, $list2) = @_;
298 *
299 * if ($runs == 1) {
300 * if ($list1 is $base) copy run to $list2
301 * return offset of end of list (or copy)
302 * } else {
303 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
304 * mgsort2($off2, $runs/2, $base, $list2, $list1)
305 * merge the adjacent runs at $offset of $list1 into $list2
306 * return the offset of the end of the merged runs
307 * }
308 * }
309 * mgsort2(0, $runs, $base, $aux, $base);
310 *
311 * For our 5 runs, the tree of calls looks like
312 *
313 * 5
314 * 3 2
315 * 2 1 1 1
316 * 1 1
317 *
318 * 1 2 3 4 5
319 *
320 * and the corresponding activity looks like
321 *
322 * copy runs 1 and 2 from base to aux
323 * merge runs 1 and 2 from aux to base
324 * (run 3 is where it belongs, no copy needed)
325 * merge runs 12 and 3 from base to aux
326 * (runs 4 and 5 are where they belong, no copy needed)
327 * merge runs 4 and 5 from base to aux
328 * merge runs 123 and 45 from aux to base
329 *
330 * Note that we merge runs 1 and 2 immediately after copying them,
331 * while they are still likely to be in fast cache. Similarly,
332 * run 3 is merged with run 12 while it still may be lingering in cache.
333 * This implementation should therefore enjoy much of the cache-friendly
334 * behavior that quicksort does. In addition, it does less copying
335 * than the original mergesort implementation (only runs 1 and 2 are copied)
336 * and the "balancing" of merges is better (merged runs comprise more nearly
337 * equal numbers of original runs).
338 *
339 * The actual cache-friendly implementation will use a pseudo-stack
340 * to avoid recursion, and will unroll processing of runs of length 2,
341 * but it is otherwise similar to the recursive implementation.
957d8989
JL
342 */
343
344typedef struct {
345 IV offset; /* offset of 1st of 2 runs at this level */
346 IV runs; /* how many runs must be combined into 1 */
347} off_runs; /* pseudo-stack element */
348
6c3fb703
NC
349
350static I32
351cmp_desc(pTHX_ gptr a, gptr b)
352{
353 return -PL_sort_RealCmp(aTHX_ a, b);
354}
355
957d8989 356STATIC void
6c3fb703 357S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989
JL
358{
359 IV i, run, runs, offset;
360 I32 sense, level;
361 int iwhich;
362 register gptr *f1, *f2, *t, *b, *p, *tp2, *l1, *l2, *q;
363 gptr *aux, *list1, *list2;
364 gptr *p1;
365 gptr small[SMALLSORT];
366 gptr *which[3];
367 off_runs stack[60], *stackp;
6c3fb703 368 SVCOMPARE_t savecmp;
957d8989
JL
369
370 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703
NC
371
372 if (flags) {
373 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
374 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
375 cmp = cmp_desc;
376 }
377
957d8989
JL
378 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
379 else { New(799,aux,nmemb,gptr); } /* allocate auxilliary array */
380 level = 0;
381 stackp = stack;
382 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
383 stackp->offset = offset = 0;
384 which[0] = which[2] = base;
385 which[1] = aux;
386 for (;;) {
387 /* On levels where both runs have be constructed (stackp->runs == 0),
388 * merge them, and note the offset of their end, in case the offset
389 * is needed at the next level up. Hop up a level, and,
390 * as long as stackp->runs is 0, keep merging.
391 */
392 if ((runs = stackp->runs) == 0) {
393 iwhich = level & 1;
394 list1 = which[iwhich]; /* area where runs are now */
395 list2 = which[++iwhich]; /* area for merged runs */
396 do {
397 offset = stackp->offset;
398 f1 = p1 = list1 + offset; /* start of first run */
399 p = tp2 = list2 + offset; /* where merged run will go */
400 t = NEXT(p); /* where first run ends */
401 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
402 t = NEXT(t); /* where second runs ends */
403 l2 = POTHER(t, list2, list1); /* ... on the other side */
404 offset = PNELEM(list2, t);
405 while (f1 < l1 && f2 < l2) {
406 /* If head 1 is larger than head 2, find ALL the elements
407 ** in list 2 strictly less than head1, write them all,
408 ** then head 1. Then compare the new heads, and repeat,
409 ** until one or both lists are exhausted.
410 **
411 ** In all comparisons (after establishing
412 ** which head to merge) the item to merge
413 ** (at pointer q) is the first operand of
414 ** the comparison. When we want to know
415 ** if ``q is strictly less than the other'',
416 ** we can't just do
417 ** cmp(q, other) < 0
418 ** because stability demands that we treat equality
419 ** as high when q comes from l2, and as low when
420 ** q was from l1. So we ask the question by doing
421 ** cmp(q, other) <= sense
422 ** and make sense == 0 when equality should look low,
423 ** and -1 when equality should look high.
424 */
425
426
427 if (cmp(aTHX_ *f1, *f2) <= 0) {
428 q = f2; b = f1; t = l1;
429 sense = -1;
430 } else {
431 q = f1; b = f2; t = l2;
432 sense = 0;
433 }
434
435
436 /* ramp up
437 **
438 ** Leave t at something strictly
439 ** greater than q (or at the end of the list),
440 ** and b at something strictly less than q.
441 */
442 for (i = 1, run = 0 ;;) {
443 if ((p = PINDEX(b, i)) >= t) {
444 /* off the end */
445 if (((p = PINDEX(t, -1)) > b) &&
446 (cmp(aTHX_ *q, *p) <= sense))
447 t = p;
448 else b = p;
449 break;
450 } else if (cmp(aTHX_ *q, *p) <= sense) {
451 t = p;
452 break;
453 } else b = p;
454 if (++run >= RTHRESH) i += i;
455 }
456
457
458 /* q is known to follow b and must be inserted before t.
459 ** Increment b, so the range of possibilities is [b,t).
460 ** Round binary split down, to favor early appearance.
461 ** Adjust b and t until q belongs just before t.
462 */
463
464 b++;
465 while (b < t) {
466 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
467 if (cmp(aTHX_ *q, *p) <= sense) {
468 t = p;
469 } else b = p + 1;
470 }
471
472
473 /* Copy all the strictly low elements */
474
475 if (q == f1) {
476 FROMTOUPTO(f2, tp2, t);
477 *tp2++ = *f1++;
478 } else {
479 FROMTOUPTO(f1, tp2, t);
480 *tp2++ = *f2++;
481 }
482 }
483
484
485 /* Run out remaining list */
486 if (f1 == l1) {
487 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
488 } else FROMTOUPTO(f1, tp2, l1);
489 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
490
491 if (--level == 0) goto done;
492 --stackp;
493 t = list1; list1 = list2; list2 = t; /* swap lists */
494 } while ((runs = stackp->runs) == 0);
495 }
496
497
498 stackp->runs = 0; /* current run will finish level */
499 /* While there are more than 2 runs remaining,
500 * turn them into exactly 2 runs (at the "other" level),
501 * each made up of approximately half the runs.
502 * Stack the second half for later processing,
503 * and set about producing the first half now.
504 */
505 while (runs > 2) {
506 ++level;
507 ++stackp;
508 stackp->offset = offset;
509 runs -= stackp->runs = runs / 2;
510 }
511 /* We must construct a single run from 1 or 2 runs.
512 * All the original runs are in which[0] == base.
513 * The run we construct must end up in which[level&1].
514 */
515 iwhich = level & 1;
516 if (runs == 1) {
517 /* Constructing a single run from a single run.
518 * If it's where it belongs already, there's nothing to do.
519 * Otherwise, copy it to where it belongs.
520 * A run of 1 is either a singleton at level 0,
521 * or the second half of a split 3. In neither event
522 * is it necessary to set offset. It will be set by the merge
523 * that immediately follows.
524 */
525 if (iwhich) { /* Belongs in aux, currently in base */
526 f1 = b = PINDEX(base, offset); /* where list starts */
527 f2 = PINDEX(aux, offset); /* where list goes */
528 t = NEXT(f2); /* where list will end */
529 offset = PNELEM(aux, t); /* offset thereof */
530 t = PINDEX(base, offset); /* where it currently ends */
531 FROMTOUPTO(f1, f2, t); /* copy */
532 NEXT(b) = t; /* set up parallel pointer */
533 } else if (level == 0) goto done; /* single run at level 0 */
534 } else {
535 /* Constructing a single run from two runs.
536 * The merge code at the top will do that.
537 * We need only make sure the two runs are in the "other" array,
538 * so they'll end up in the correct array after the merge.
539 */
540 ++level;
541 ++stackp;
542 stackp->offset = offset;
543 stackp->runs = 0; /* take care of both runs, trigger merge */
544 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
545 f1 = b = PINDEX(base, offset); /* where first run starts */
546 f2 = PINDEX(aux, offset); /* where it will be copied */
547 t = NEXT(f2); /* where first run will end */
548 offset = PNELEM(aux, t); /* offset thereof */
549 p = PINDEX(base, offset); /* end of first run */
550 t = NEXT(t); /* where second run will end */
551 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
552 FROMTOUPTO(f1, f2, t); /* copy both runs */
553 NEXT(b) = p; /* paralled pointer for 1st */
554 NEXT(p) = t; /* ... and for second */
555 }
556 }
557 }
558done:
559 if (aux != small) Safefree(aux); /* free iff allocated */
6c3fb703
NC
560 if (flags) {
561 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
562 }
957d8989
JL
563 return;
564}
565
84d4ea48
JH
566/*
567 * The quicksort implementation was derived from source code contributed
568 * by Tom Horsley.
569 *
570 * NOTE: this code was derived from Tom Horsley's qsort replacement
571 * and should not be confused with the original code.
572 */
573
574/* Copyright (C) Tom Horsley, 1997. All rights reserved.
575
576 Permission granted to distribute under the same terms as perl which are
577 (briefly):
578
579 This program is free software; you can redistribute it and/or modify
580 it under the terms of either:
581
582 a) the GNU General Public License as published by the Free
583 Software Foundation; either version 1, or (at your option) any
584 later version, or
585
586 b) the "Artistic License" which comes with this Kit.
587
588 Details on the perl license can be found in the perl source code which
589 may be located via the www.perl.com web page.
590
591 This is the most wonderfulest possible qsort I can come up with (and
592 still be mostly portable) My (limited) tests indicate it consistently
593 does about 20% fewer calls to compare than does the qsort in the Visual
594 C++ library, other vendors may vary.
595
596 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
597 others I invented myself (or more likely re-invented since they seemed
598 pretty obvious once I watched the algorithm operate for a while).
599
600 Most of this code was written while watching the Marlins sweep the Giants
601 in the 1997 National League Playoffs - no Braves fans allowed to use this
602 code (just kidding :-).
603
604 I realize that if I wanted to be true to the perl tradition, the only
605 comment in this file would be something like:
606
607 ...they shuffled back towards the rear of the line. 'No, not at the
608 rear!' the slave-driver shouted. 'Three files up. And stay there...
609
610 However, I really needed to violate that tradition just so I could keep
611 track of what happens myself, not to mention some poor fool trying to
612 understand this years from now :-).
613*/
614
615/* ********************************************************** Configuration */
616
617#ifndef QSORT_ORDER_GUESS
618#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
619#endif
620
621/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
622 future processing - a good max upper bound is log base 2 of memory size
623 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
624 safely be smaller than that since the program is taking up some space and
625 most operating systems only let you grab some subset of contiguous
626 memory (not to mention that you are normally sorting data larger than
627 1 byte element size :-).
628*/
629#ifndef QSORT_MAX_STACK
630#define QSORT_MAX_STACK 32
631#endif
632
633/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
634 Anything bigger and we use qsort. If you make this too small, the qsort
635 will probably break (or become less efficient), because it doesn't expect
636 the middle element of a partition to be the same as the right or left -
637 you have been warned).
638*/
639#ifndef QSORT_BREAK_EVEN
640#define QSORT_BREAK_EVEN 6
641#endif
642
4eb872f6
JL
643/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
644 to go quadratic on. We innoculate larger partitions against
645 quadratic behavior by shuffling them before sorting. This is not
646 an absolute guarantee of non-quadratic behavior, but it would take
647 staggeringly bad luck to pick extreme elements as the pivot
648 from randomized data.
649*/
650#ifndef QSORT_PLAY_SAFE
651#define QSORT_PLAY_SAFE 255
652#endif
653
84d4ea48
JH
654/* ************************************************************* Data Types */
655
656/* hold left and right index values of a partition waiting to be sorted (the
657 partition includes both left and right - right is NOT one past the end or
658 anything like that).
659*/
660struct partition_stack_entry {
661 int left;
662 int right;
663#ifdef QSORT_ORDER_GUESS
664 int qsort_break_even;
665#endif
666};
667
668/* ******************************************************* Shorthand Macros */
669
670/* Note that these macros will be used from inside the qsort function where
671 we happen to know that the variable 'elt_size' contains the size of an
672 array element and the variable 'temp' points to enough space to hold a
673 temp element and the variable 'array' points to the array being sorted
674 and 'compare' is the pointer to the compare routine.
675
676 Also note that there are very many highly architecture specific ways
677 these might be sped up, but this is simply the most generally portable
678 code I could think of.
679*/
680
681/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
682*/
683#define qsort_cmp(elt1, elt2) \
684 ((*compare)(aTHX_ array[elt1], array[elt2]))
685
686#ifdef QSORT_ORDER_GUESS
687#define QSORT_NOTICE_SWAP swapped++;
688#else
689#define QSORT_NOTICE_SWAP
690#endif
691
692/* swaps contents of array elements elt1, elt2.
693*/
694#define qsort_swap(elt1, elt2) \
695 STMT_START { \
696 QSORT_NOTICE_SWAP \
697 temp = array[elt1]; \
698 array[elt1] = array[elt2]; \
699 array[elt2] = temp; \
700 } STMT_END
701
702/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
703 elt3 and elt3 gets elt1.
704*/
705#define qsort_rotate(elt1, elt2, elt3) \
706 STMT_START { \
707 QSORT_NOTICE_SWAP \
708 temp = array[elt1]; \
709 array[elt1] = array[elt2]; \
710 array[elt2] = array[elt3]; \
711 array[elt3] = temp; \
712 } STMT_END
713
714/* ************************************************************ Debug stuff */
715
716#ifdef QSORT_DEBUG
717
718static void
719break_here()
720{
721 return; /* good place to set a breakpoint */
722}
723
724#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
725
726static void
727doqsort_all_asserts(
728 void * array,
729 size_t num_elts,
730 size_t elt_size,
731 int (*compare)(const void * elt1, const void * elt2),
732 int pc_left, int pc_right, int u_left, int u_right)
733{
734 int i;
735
736 qsort_assert(pc_left <= pc_right);
737 qsort_assert(u_right < pc_left);
738 qsort_assert(pc_right < u_left);
739 for (i = u_right + 1; i < pc_left; ++i) {
740 qsort_assert(qsort_cmp(i, pc_left) < 0);
741 }
742 for (i = pc_left; i < pc_right; ++i) {
743 qsort_assert(qsort_cmp(i, pc_right) == 0);
744 }
745 for (i = pc_right + 1; i < u_left; ++i) {
746 qsort_assert(qsort_cmp(pc_right, i) < 0);
747 }
748}
749
750#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
751 doqsort_all_asserts(array, num_elts, elt_size, compare, \
752 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
753
754#else
755
756#define qsort_assert(t) ((void)0)
757
758#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
759
760#endif
761
762/* ****************************************************************** qsort */
763
764STATIC void /* the standard unstable (u) quicksort (qsort) */
765S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
766{
767 register SV * temp;
768
769 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
770 int next_stack_entry = 0;
771
772 int part_left;
773 int part_right;
774#ifdef QSORT_ORDER_GUESS
775 int qsort_break_even;
776 int swapped;
777#endif
778
779 /* Make sure we actually have work to do.
780 */
781 if (num_elts <= 1) {
782 return;
783 }
784
4eb872f6
JL
785 /* Innoculate large partitions against quadratic behavior */
786 if (num_elts > QSORT_PLAY_SAFE) {
787 register size_t n, j;
788 register SV **q;
789 for (n = num_elts, q = array; n > 1; ) {
eb160463 790 j = (size_t)(n-- * Drand01());
4eb872f6
JL
791 temp = q[j];
792 q[j] = q[n];
793 q[n] = temp;
794 }
795 }
796
84d4ea48
JH
797 /* Setup the initial partition definition and fall into the sorting loop
798 */
799 part_left = 0;
800 part_right = (int)(num_elts - 1);
801#ifdef QSORT_ORDER_GUESS
802 qsort_break_even = QSORT_BREAK_EVEN;
803#else
804#define qsort_break_even QSORT_BREAK_EVEN
805#endif
806 for ( ; ; ) {
807 if ((part_right - part_left) >= qsort_break_even) {
808 /* OK, this is gonna get hairy, so lets try to document all the
809 concepts and abbreviations and variables and what they keep
810 track of:
811
812 pc: pivot chunk - the set of array elements we accumulate in the
813 middle of the partition, all equal in value to the original
814 pivot element selected. The pc is defined by:
815
816 pc_left - the leftmost array index of the pc
817 pc_right - the rightmost array index of the pc
818
819 we start with pc_left == pc_right and only one element
820 in the pivot chunk (but it can grow during the scan).
821
822 u: uncompared elements - the set of elements in the partition
823 we have not yet compared to the pivot value. There are two
824 uncompared sets during the scan - one to the left of the pc
825 and one to the right.
826
827 u_right - the rightmost index of the left side's uncompared set
828 u_left - the leftmost index of the right side's uncompared set
829
830 The leftmost index of the left sides's uncompared set
831 doesn't need its own variable because it is always defined
832 by the leftmost edge of the whole partition (part_left). The
833 same goes for the rightmost edge of the right partition
834 (part_right).
835
836 We know there are no uncompared elements on the left once we
837 get u_right < part_left and no uncompared elements on the
838 right once u_left > part_right. When both these conditions
839 are met, we have completed the scan of the partition.
840
841 Any elements which are between the pivot chunk and the
842 uncompared elements should be less than the pivot value on
843 the left side and greater than the pivot value on the right
844 side (in fact, the goal of the whole algorithm is to arrange
845 for that to be true and make the groups of less-than and
846 greater-then elements into new partitions to sort again).
847
848 As you marvel at the complexity of the code and wonder why it
849 has to be so confusing. Consider some of the things this level
850 of confusion brings:
851
852 Once I do a compare, I squeeze every ounce of juice out of it. I
853 never do compare calls I don't have to do, and I certainly never
854 do redundant calls.
855
856 I also never swap any elements unless I can prove there is a
857 good reason. Many sort algorithms will swap a known value with
858 an uncompared value just to get things in the right place (or
859 avoid complexity :-), but that uncompared value, once it gets
860 compared, may then have to be swapped again. A lot of the
861 complexity of this code is due to the fact that it never swaps
862 anything except compared values, and it only swaps them when the
863 compare shows they are out of position.
864 */
865 int pc_left, pc_right;
866 int u_right, u_left;
867
868 int s;
869
870 pc_left = ((part_left + part_right) / 2);
871 pc_right = pc_left;
872 u_right = pc_left - 1;
873 u_left = pc_right + 1;
874
875 /* Qsort works best when the pivot value is also the median value
876 in the partition (unfortunately you can't find the median value
877 without first sorting :-), so to give the algorithm a helping
878 hand, we pick 3 elements and sort them and use the median value
879 of that tiny set as the pivot value.
880
881 Some versions of qsort like to use the left middle and right as
882 the 3 elements to sort so they can insure the ends of the
883 partition will contain values which will stop the scan in the
884 compare loop, but when you have to call an arbitrarily complex
885 routine to do a compare, its really better to just keep track of
886 array index values to know when you hit the edge of the
887 partition and avoid the extra compare. An even better reason to
888 avoid using a compare call is the fact that you can drop off the
889 edge of the array if someone foolishly provides you with an
890 unstable compare function that doesn't always provide consistent
891 results.
892
893 So, since it is simpler for us to compare the three adjacent
894 elements in the middle of the partition, those are the ones we
895 pick here (conveniently pointed at by u_right, pc_left, and
896 u_left). The values of the left, center, and right elements
897 are refered to as l c and r in the following comments.
898 */
899
900#ifdef QSORT_ORDER_GUESS
901 swapped = 0;
902#endif
903 s = qsort_cmp(u_right, pc_left);
904 if (s < 0) {
905 /* l < c */
906 s = qsort_cmp(pc_left, u_left);
907 /* if l < c, c < r - already in order - nothing to do */
908 if (s == 0) {
909 /* l < c, c == r - already in order, pc grows */
910 ++pc_right;
911 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
912 } else if (s > 0) {
913 /* l < c, c > r - need to know more */
914 s = qsort_cmp(u_right, u_left);
915 if (s < 0) {
916 /* l < c, c > r, l < r - swap c & r to get ordered */
917 qsort_swap(pc_left, u_left);
918 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
919 } else if (s == 0) {
920 /* l < c, c > r, l == r - swap c&r, grow pc */
921 qsort_swap(pc_left, u_left);
922 --pc_left;
923 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
924 } else {
925 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
926 qsort_rotate(pc_left, u_right, u_left);
927 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
928 }
929 }
930 } else if (s == 0) {
931 /* l == c */
932 s = qsort_cmp(pc_left, u_left);
933 if (s < 0) {
934 /* l == c, c < r - already in order, grow pc */
935 --pc_left;
936 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
937 } else if (s == 0) {
938 /* l == c, c == r - already in order, grow pc both ways */
939 --pc_left;
940 ++pc_right;
941 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
942 } else {
943 /* l == c, c > r - swap l & r, grow pc */
944 qsort_swap(u_right, u_left);
945 ++pc_right;
946 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
947 }
948 } else {
949 /* l > c */
950 s = qsort_cmp(pc_left, u_left);
951 if (s < 0) {
952 /* l > c, c < r - need to know more */
953 s = qsort_cmp(u_right, u_left);
954 if (s < 0) {
955 /* l > c, c < r, l < r - swap l & c to get ordered */
956 qsort_swap(u_right, pc_left);
957 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
958 } else if (s == 0) {
959 /* l > c, c < r, l == r - swap l & c, grow pc */
960 qsort_swap(u_right, pc_left);
961 ++pc_right;
962 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
963 } else {
964 /* l > c, c < r, l > r - rotate lcr into crl to order */
965 qsort_rotate(u_right, pc_left, u_left);
966 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
967 }
968 } else if (s == 0) {
969 /* l > c, c == r - swap ends, grow pc */
970 qsort_swap(u_right, u_left);
971 --pc_left;
972 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
973 } else {
974 /* l > c, c > r - swap ends to get in order */
975 qsort_swap(u_right, u_left);
976 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
977 }
978 }
979 /* We now know the 3 middle elements have been compared and
980 arranged in the desired order, so we can shrink the uncompared
981 sets on both sides
982 */
983 --u_right;
984 ++u_left;
985 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
986
987 /* The above massive nested if was the simple part :-). We now have
988 the middle 3 elements ordered and we need to scan through the
989 uncompared sets on either side, swapping elements that are on
990 the wrong side or simply shuffling equal elements around to get
991 all equal elements into the pivot chunk.
992 */
993
994 for ( ; ; ) {
995 int still_work_on_left;
996 int still_work_on_right;
997
998 /* Scan the uncompared values on the left. If I find a value
999 equal to the pivot value, move it over so it is adjacent to
1000 the pivot chunk and expand the pivot chunk. If I find a value
1001 less than the pivot value, then just leave it - its already
1002 on the correct side of the partition. If I find a greater
1003 value, then stop the scan.
1004 */
1005 while ((still_work_on_left = (u_right >= part_left))) {
1006 s = qsort_cmp(u_right, pc_left);
1007 if (s < 0) {
1008 --u_right;
1009 } else if (s == 0) {
1010 --pc_left;
1011 if (pc_left != u_right) {
1012 qsort_swap(u_right, pc_left);
1013 }
1014 --u_right;
1015 } else {
1016 break;
1017 }
1018 qsort_assert(u_right < pc_left);
1019 qsort_assert(pc_left <= pc_right);
1020 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1021 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1022 }
1023
1024 /* Do a mirror image scan of uncompared values on the right
1025 */
1026 while ((still_work_on_right = (u_left <= part_right))) {
1027 s = qsort_cmp(pc_right, u_left);
1028 if (s < 0) {
1029 ++u_left;
1030 } else if (s == 0) {
1031 ++pc_right;
1032 if (pc_right != u_left) {
1033 qsort_swap(pc_right, u_left);
1034 }
1035 ++u_left;
1036 } else {
1037 break;
1038 }
1039 qsort_assert(u_left > pc_right);
1040 qsort_assert(pc_left <= pc_right);
1041 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1042 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1043 }
1044
1045 if (still_work_on_left) {
1046 /* I know I have a value on the left side which needs to be
1047 on the right side, but I need to know more to decide
1048 exactly the best thing to do with it.
1049 */
1050 if (still_work_on_right) {
1051 /* I know I have values on both side which are out of
1052 position. This is a big win because I kill two birds
1053 with one swap (so to speak). I can advance the
1054 uncompared pointers on both sides after swapping both
1055 of them into the right place.
1056 */
1057 qsort_swap(u_right, u_left);
1058 --u_right;
1059 ++u_left;
1060 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1061 } else {
1062 /* I have an out of position value on the left, but the
1063 right is fully scanned, so I "slide" the pivot chunk
1064 and any less-than values left one to make room for the
1065 greater value over on the right. If the out of position
1066 value is immediately adjacent to the pivot chunk (there
1067 are no less-than values), I can do that with a swap,
1068 otherwise, I have to rotate one of the less than values
1069 into the former position of the out of position value
1070 and the right end of the pivot chunk into the left end
1071 (got all that?).
1072 */
1073 --pc_left;
1074 if (pc_left == u_right) {
1075 qsort_swap(u_right, pc_right);
1076 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1077 } else {
1078 qsort_rotate(u_right, pc_left, pc_right);
1079 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1080 }
1081 --pc_right;
1082 --u_right;
1083 }
1084 } else if (still_work_on_right) {
1085 /* Mirror image of complex case above: I have an out of
1086 position value on the right, but the left is fully
1087 scanned, so I need to shuffle things around to make room
1088 for the right value on the left.
1089 */
1090 ++pc_right;
1091 if (pc_right == u_left) {
1092 qsort_swap(u_left, pc_left);
1093 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1094 } else {
1095 qsort_rotate(pc_right, pc_left, u_left);
1096 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1097 }
1098 ++pc_left;
1099 ++u_left;
1100 } else {
1101 /* No more scanning required on either side of partition,
1102 break out of loop and figure out next set of partitions
1103 */
1104 break;
1105 }
1106 }
1107
1108 /* The elements in the pivot chunk are now in the right place. They
1109 will never move or be compared again. All I have to do is decide
1110 what to do with the stuff to the left and right of the pivot
1111 chunk.
1112
1113 Notes on the QSORT_ORDER_GUESS ifdef code:
1114
1115 1. If I just built these partitions without swapping any (or
1116 very many) elements, there is a chance that the elements are
1117 already ordered properly (being properly ordered will
1118 certainly result in no swapping, but the converse can't be
1119 proved :-).
1120
1121 2. A (properly written) insertion sort will run faster on
1122 already ordered data than qsort will.
1123
1124 3. Perhaps there is some way to make a good guess about
1125 switching to an insertion sort earlier than partition size 6
1126 (for instance - we could save the partition size on the stack
1127 and increase the size each time we find we didn't swap, thus
1128 switching to insertion sort earlier for partitions with a
1129 history of not swapping).
1130
1131 4. Naturally, if I just switch right away, it will make
1132 artificial benchmarks with pure ascending (or descending)
1133 data look really good, but is that a good reason in general?
1134 Hard to say...
1135 */
1136
1137#ifdef QSORT_ORDER_GUESS
1138 if (swapped < 3) {
1139#if QSORT_ORDER_GUESS == 1
1140 qsort_break_even = (part_right - part_left) + 1;
1141#endif
1142#if QSORT_ORDER_GUESS == 2
1143 qsort_break_even *= 2;
1144#endif
1145#if QSORT_ORDER_GUESS == 3
1146 int prev_break = qsort_break_even;
1147 qsort_break_even *= qsort_break_even;
1148 if (qsort_break_even < prev_break) {
1149 qsort_break_even = (part_right - part_left) + 1;
1150 }
1151#endif
1152 } else {
1153 qsort_break_even = QSORT_BREAK_EVEN;
1154 }
1155#endif
1156
1157 if (part_left < pc_left) {
1158 /* There are elements on the left which need more processing.
1159 Check the right as well before deciding what to do.
1160 */
1161 if (pc_right < part_right) {
1162 /* We have two partitions to be sorted. Stack the biggest one
1163 and process the smallest one on the next iteration. This
1164 minimizes the stack height by insuring that any additional
1165 stack entries must come from the smallest partition which
1166 (because it is smallest) will have the fewest
1167 opportunities to generate additional stack entries.
1168 */
1169 if ((part_right - pc_right) > (pc_left - part_left)) {
1170 /* stack the right partition, process the left */
1171 partition_stack[next_stack_entry].left = pc_right + 1;
1172 partition_stack[next_stack_entry].right = part_right;
1173#ifdef QSORT_ORDER_GUESS
1174 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1175#endif
1176 part_right = pc_left - 1;
1177 } else {
1178 /* stack the left partition, process the right */
1179 partition_stack[next_stack_entry].left = part_left;
1180 partition_stack[next_stack_entry].right = pc_left - 1;
1181#ifdef QSORT_ORDER_GUESS
1182 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1183#endif
1184 part_left = pc_right + 1;
1185 }
1186 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1187 ++next_stack_entry;
1188 } else {
1189 /* The elements on the left are the only remaining elements
1190 that need sorting, arrange for them to be processed as the
1191 next partition.
1192 */
1193 part_right = pc_left - 1;
1194 }
1195 } else if (pc_right < part_right) {
1196 /* There is only one chunk on the right to be sorted, make it
1197 the new partition and loop back around.
1198 */
1199 part_left = pc_right + 1;
1200 } else {
1201 /* This whole partition wound up in the pivot chunk, so
1202 we need to get a new partition off the stack.
1203 */
1204 if (next_stack_entry == 0) {
1205 /* the stack is empty - we are done */
1206 break;
1207 }
1208 --next_stack_entry;
1209 part_left = partition_stack[next_stack_entry].left;
1210 part_right = partition_stack[next_stack_entry].right;
1211#ifdef QSORT_ORDER_GUESS
1212 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1213#endif
1214 }
1215 } else {
1216 /* This partition is too small to fool with qsort complexity, just
1217 do an ordinary insertion sort to minimize overhead.
1218 */
1219 int i;
1220 /* Assume 1st element is in right place already, and start checking
1221 at 2nd element to see where it should be inserted.
1222 */
1223 for (i = part_left + 1; i <= part_right; ++i) {
1224 int j;
1225 /* Scan (backwards - just in case 'i' is already in right place)
1226 through the elements already sorted to see if the ith element
1227 belongs ahead of one of them.
1228 */
1229 for (j = i - 1; j >= part_left; --j) {
1230 if (qsort_cmp(i, j) >= 0) {
1231 /* i belongs right after j
1232 */
1233 break;
1234 }
1235 }
1236 ++j;
1237 if (j != i) {
1238 /* Looks like we really need to move some things
1239 */
1240 int k;
1241 temp = array[i];
1242 for (k = i - 1; k >= j; --k)
1243 array[k + 1] = array[k];
1244 array[j] = temp;
1245 }
1246 }
1247
1248 /* That partition is now sorted, grab the next one, or get out
1249 of the loop if there aren't any more.
1250 */
1251
1252 if (next_stack_entry == 0) {
1253 /* the stack is empty - we are done */
1254 break;
1255 }
1256 --next_stack_entry;
1257 part_left = partition_stack[next_stack_entry].left;
1258 part_right = partition_stack[next_stack_entry].right;
1259#ifdef QSORT_ORDER_GUESS
1260 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1261#endif
1262 }
1263 }
1264
1265 /* Believe it or not, the array is sorted at this point! */
1266}
1267
84d4ea48
JH
1268/* Stabilize what is, presumably, an otherwise unstable sort method.
1269 * We do that by allocating (or having on hand) an array of pointers
1270 * that is the same size as the original array of elements to be sorted.
1271 * We initialize this parallel array with the addresses of the original
1272 * array elements. This indirection can make you crazy.
1273 * Some pictures can help. After initializing, we have
1274 *
1275 * indir list1
1276 * +----+ +----+
1277 * | | --------------> | | ------> first element to be sorted
1278 * +----+ +----+
1279 * | | --------------> | | ------> second element to be sorted
1280 * +----+ +----+
1281 * | | --------------> | | ------> third element to be sorted
1282 * +----+ +----+
1283 * ...
1284 * +----+ +----+
1285 * | | --------------> | | ------> n-1st element to be sorted
1286 * +----+ +----+
1287 * | | --------------> | | ------> n-th element to be sorted
1288 * +----+ +----+
1289 *
1290 * During the sort phase, we leave the elements of list1 where they are,
1291 * and sort the pointers in the indirect array in the same order determined
1292 * by the original comparison routine on the elements pointed to.
1293 * Because we don't move the elements of list1 around through
1294 * this phase, we can break ties on elements that compare equal
1295 * using their address in the list1 array, ensuring stabilty.
1296 * This leaves us with something looking like
1297 *
1298 * indir list1
1299 * +----+ +----+
1300 * | | --+ +---> | | ------> first element to be sorted
1301 * +----+ | | +----+
1302 * | | --|-------|---> | | ------> second element to be sorted
1303 * +----+ | | +----+
1304 * | | --|-------+ +-> | | ------> third element to be sorted
1305 * +----+ | | +----+
1306 * ...
1307 * +----+ | | | | +----+
1308 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1309 * +----+ | | +----+
1310 * | | ---+ +----> | | ------> n-th element to be sorted
1311 * +----+ +----+
1312 *
1313 * where the i-th element of the indirect array points to the element
1314 * that should be i-th in the sorted array. After the sort phase,
1315 * we have to put the elements of list1 into the places
1316 * dictated by the indirect array.
1317 */
1318
84d4ea48
JH
1319
1320static I32
1321cmpindir(pTHX_ gptr a, gptr b)
1322{
1323 I32 sense;
1324 gptr *ap = (gptr *)a;
1325 gptr *bp = (gptr *)b;
1326
147f47de 1327 if ((sense = PL_sort_RealCmp(aTHX_ *ap, *bp)) == 0)
84d4ea48
JH
1328 sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1329 return sense;
1330}
1331
6c3fb703
NC
1332static I32
1333cmpindir_desc(pTHX_ gptr a, gptr b)
1334{
1335 I32 sense;
1336 gptr *ap = (gptr *)a;
1337 gptr *bp = (gptr *)b;
1338
1339 /* Reverse the default */
1340 if ((sense = PL_sort_RealCmp(aTHX_ *ap, *bp)))
1341 return -sense;
1342 /* But don't reverse the stability test. */
1343 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1344
1345}
1346
84d4ea48 1347STATIC void
6c3fb703 1348S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
84d4ea48 1349{
045ac317 1350 SV *hintsv;
84d4ea48 1351
045ac317 1352 if (SORTHINTS(hintsv) & HINT_SORT_STABLE) {
84d4ea48
JH
1353 register gptr **pp, *q;
1354 register size_t n, j, i;
1355 gptr *small[SMALLSORT], **indir, tmp;
1356 SVCOMPARE_t savecmp;
1357 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1358
84d4ea48
JH
1359 /* Small arrays can use the stack, big ones must be allocated */
1360 if (nmemb <= SMALLSORT) indir = small;
1361 else { New(1799, indir, nmemb, gptr *); }
4eb872f6 1362
84d4ea48
JH
1363 /* Copy pointers to original array elements into indirect array */
1364 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1365
147f47de
AB
1366 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1367 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1368
84d4ea48 1369 /* sort, with indirection */
6c3fb703
NC
1370 S_qsortsvu(aTHX_ (gptr *)indir, nmemb,
1371 flags ? cmpindir_desc : cmpindir);
4eb872f6 1372
84d4ea48
JH
1373 pp = indir;
1374 q = list1;
1375 for (n = nmemb; n--; ) {
1376 /* Assert A: all elements of q with index > n are already
1377 * in place. This is vacuosly true at the start, and we
1378 * put element n where it belongs below (if it wasn't
1379 * already where it belonged). Assert B: we only move
1380 * elements that aren't where they belong,
1381 * so, by A, we never tamper with elements above n.
1382 */
1383 j = pp[n] - q; /* This sets j so that q[j] is
1384 * at pp[n]. *pp[j] belongs in
1385 * q[j], by construction.
1386 */
1387 if (n != j) { /* all's well if n == j */
1388 tmp = q[j]; /* save what's in q[j] */
1389 do {
1390 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1391 i = pp[j] - q; /* the index in q of the element
1392 * just moved */
1393 pp[j] = q + j; /* this is ok now */
1394 } while ((j = i) != n);
1395 /* There are only finitely many (nmemb) addresses
1396 * in the pp array.
1397 * So we must eventually revisit an index we saw before.
1398 * Suppose the first revisited index is k != n.
1399 * An index is visited because something else belongs there.
1400 * If we visit k twice, then two different elements must
1401 * belong in the same place, which cannot be.
1402 * So j must get back to n, the loop terminates,
1403 * and we put the saved element where it belongs.
1404 */
1405 q[n] = tmp; /* put what belongs into
1406 * the n-th element */
1407 }
1408 }
1409
1410 /* free iff allocated */
1411 if (indir != small) { Safefree(indir); }
1412 /* restore prevailing comparison routine */
147f47de 1413 PL_sort_RealCmp = savecmp;
6c3fb703
NC
1414 } else if (flags) {
1415 SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1416 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1417 cmp = cmp_desc;
1418 S_qsortsvu(aTHX_ list1, nmemb, cmp);
1419 /* restore prevailing comparison routine */
1420 PL_sort_RealCmp = savecmp;
c53fc8a6
JH
1421 } else {
1422 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48
JH
1423 }
1424}
4eb872f6
JL
1425
1426/*
ccfc67b7
JH
1427=head1 Array Manipulation Functions
1428
84d4ea48
JH
1429=for apidoc sortsv
1430
1431Sort an array. Here is an example:
1432
4eb872f6 1433 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1434
78210658
AD
1435See lib/sort.pm for details about controlling the sorting algorithm.
1436
84d4ea48
JH
1437=cut
1438*/
4eb872f6 1439
84d4ea48
JH
1440void
1441Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1442{
6c3fb703
NC
1443 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1444 = S_mergesortsv;
045ac317 1445 SV *hintsv;
84d4ea48 1446 I32 hints;
4eb872f6 1447
78210658
AD
1448 /* Sun's Compiler (cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2) used
1449 to miscompile this function under optimization -O. If you get test
1450 errors related to picking the correct sort() function, try recompiling
1451 this file without optimiziation. -- A.D. 4/2002.
1452 */
045ac317 1453 hints = SORTHINTS(hintsv);
78210658
AD
1454 if (hints & HINT_SORT_QUICKSORT) {
1455 sortsvp = S_qsortsv;
1456 }
1457 else {
1458 /* The default as of 5.8.0 is mergesort */
1459 sortsvp = S_mergesortsv;
84d4ea48 1460 }
4eb872f6 1461
6c3fb703
NC
1462 sortsvp(aTHX_ array, nmemb, cmp, 0);
1463}
1464
1465
1466void
1467S_sortsv_desc(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1468{
1469 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1470 = S_mergesortsv;
1471 SV *hintsv;
1472 I32 hints;
1473
1474 /* Sun's Compiler (cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2) used
1475 to miscompile this function under optimization -O. If you get test
1476 errors related to picking the correct sort() function, try recompiling
1477 this file without optimiziation. -- A.D. 4/2002.
1478 */
1479 hints = SORTHINTS(hintsv);
1480 if (hints & HINT_SORT_QUICKSORT) {
1481 sortsvp = S_qsortsv;
1482 }
1483 else {
1484 /* The default as of 5.8.0 is mergesort */
1485 sortsvp = S_mergesortsv;
1486 }
1487
1488 sortsvp(aTHX_ array, nmemb, cmp, 1);
84d4ea48
JH
1489}
1490
1491PP(pp_sort)
1492{
1493 dSP; dMARK; dORIGMARK;
fe1bc4cf
DM
1494 register SV **p1 = ORIGMARK+1, **p2;
1495 register I32 max, i;
1496 AV* av = Nullav;
84d4ea48
JH
1497 HV *stash;
1498 GV *gv;
1499 CV *cv = 0;
1500 I32 gimme = GIMME;
1501 OP* nextop = PL_op->op_next;
1502 I32 overloading = 0;
1503 bool hasargs = FALSE;
1504 I32 is_xsub = 0;
fe1bc4cf 1505 I32 sorting_av = 0;
471178c0
NC
1506 U8 private = PL_op->op_private;
1507 U8 flags = PL_op->op_flags;
6c3fb703
NC
1508 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1509 = Perl_sortsv;
84d4ea48
JH
1510
1511 if (gimme != G_ARRAY) {
1512 SP = MARK;
1513 RETPUSHUNDEF;
1514 }
1515
1516 ENTER;
1517 SAVEVPTR(PL_sortcop);
471178c0
NC
1518 if (flags & OPf_STACKED) {
1519 if (flags & OPf_SPECIAL) {
84d4ea48
JH
1520 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1521 kid = kUNOP->op_first; /* pass rv2gv */
1522 kid = kUNOP->op_first; /* pass leave */
1523 PL_sortcop = kid->op_next;
1524 stash = CopSTASH(PL_curcop);
1525 }
1526 else {
1527 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1528 if (cv && SvPOK(cv)) {
1529 STRLEN n_a;
1530 char *proto = SvPV((SV*)cv, n_a);
1531 if (proto && strEQ(proto, "$$")) {
1532 hasargs = TRUE;
1533 }
1534 }
1535 if (!(cv && CvROOT(cv))) {
1536 if (cv && CvXSUB(cv)) {
1537 is_xsub = 1;
1538 }
1539 else if (gv) {
1540 SV *tmpstr = sv_newmortal();
1541 gv_efullname3(tmpstr, gv, Nullch);
35c1215d
NC
1542 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1543 tmpstr);
84d4ea48
JH
1544 }
1545 else {
1546 DIE(aTHX_ "Undefined subroutine in sort");
1547 }
1548 }
1549
1550 if (is_xsub)
1551 PL_sortcop = (OP*)cv;
1552 else {
1553 PL_sortcop = CvSTART(cv);
1554 SAVEVPTR(CvROOT(cv)->op_ppaddr);
1555 CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL];
1556
dd2155a4 1557 PAD_SET_CUR(CvPADLIST(cv), 1);
84d4ea48
JH
1558 }
1559 }
1560 }
1561 else {
1562 PL_sortcop = Nullop;
1563 stash = CopSTASH(PL_curcop);
1564 }
1565
fe1bc4cf
DM
1566 /* optimiser converts "@a = sort @a" to "sort \@a";
1567 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1568 * result back to @a at the end of this function */
471178c0 1569 if (private & OPpSORT_INPLACE) {
fe1bc4cf
DM
1570 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1571 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1572 av = (AV*)(*SP);
1573 max = AvFILL(av) + 1;
1574 if (SvMAGICAL(av)) {
1575 MEXTEND(SP, max);
1576 p2 = SP;
1577 for (i=0; i < (U32)max; i++) {
1578 SV **svp = av_fetch(av, i, FALSE);
1579 *SP++ = (svp) ? *svp : Nullsv;
1580 }
1581 }
1582 else {
1583 p1 = p2 = AvARRAY(av);
1584 sorting_av = 1;
1585 }
1586 }
1587 else {
1588 p2 = MARK+1;
1589 max = SP - MARK;
1590 }
1591
471178c0 1592 if (private & OPpSORT_DESCEND) {
6c3fb703
NC
1593 sortsvp = S_sortsv_desc;
1594 }
1595
fe1bc4cf
DM
1596 /* shuffle stack down, removing optional initial cv (p1!=p2), plus any
1597 * nulls; also stringify any args */
1598 for (i=max; i > 0 ; i--) {
1599 if ((*p1 = *p2++)) { /* Weed out nulls. */
1600 SvTEMP_off(*p1);
1601 if (!PL_sortcop && !SvPOK(*p1)) {
84d4ea48 1602 STRLEN n_a;
fe1bc4cf 1603 if (SvAMAGIC(*p1))
84d4ea48
JH
1604 overloading = 1;
1605 else
fe1bc4cf 1606 (void)sv_2pv(*p1, &n_a);
84d4ea48 1607 }
fe1bc4cf 1608 p1++;
84d4ea48 1609 }
fe1bc4cf
DM
1610 else
1611 max--;
84d4ea48 1612 }
fe1bc4cf
DM
1613 if (sorting_av)
1614 AvFILLp(av) = max-1;
1615
1616 if (max > 1) {
471178c0 1617 SV **start;
fe1bc4cf 1618 if (PL_sortcop) {
84d4ea48
JH
1619 PERL_CONTEXT *cx;
1620 SV** newsp;
1621 bool oldcatch = CATCH_GET;
1622
1623 SAVETMPS;
1624 SAVEOP();
1625
1626 CATCH_SET(TRUE);
1627 PUSHSTACKi(PERLSI_SORT);
1628 if (!hasargs && !is_xsub) {
1629 if (PL_sortstash != stash || !PL_firstgv || !PL_secondgv) {
1630 SAVESPTR(PL_firstgv);
1631 SAVESPTR(PL_secondgv);
1632 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1633 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1634 PL_sortstash = stash;
1635 }
84d4ea48
JH
1636 SAVESPTR(GvSV(PL_firstgv));
1637 SAVESPTR(GvSV(PL_secondgv));
1638 }
1639
1640 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
471178c0 1641 if (!(flags & OPf_SPECIAL)) {
84d4ea48
JH
1642 cx->cx_type = CXt_SUB;
1643 cx->blk_gimme = G_SCALAR;
1644 PUSHSUB(cx);
84d4ea48
JH
1645 }
1646 PL_sortcxix = cxstack_ix;
1647
1648 if (hasargs && !is_xsub) {
1649 /* This is mostly copied from pp_entersub */
dd2155a4 1650 AV *av = (AV*)PAD_SVl(0);
84d4ea48 1651
84d4ea48
JH
1652 cx->blk_sub.savearray = GvAV(PL_defgv);
1653 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
dd2155a4 1654 CX_CURPAD_SAVE(cx->blk_sub);
84d4ea48
JH
1655 cx->blk_sub.argarray = av;
1656 }
471178c0
NC
1657
1658 start = p1 - max;
1659 sortsvp(aTHX_ start, max,
1660 is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv);
84d4ea48
JH
1661
1662 POPBLOCK(cx,PL_curpm);
1663 PL_stack_sp = newsp;
1664 POPSTACK;
1665 CATCH_SET(oldcatch);
1666 }
fe1bc4cf 1667 else {
84d4ea48 1668 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
471178c0
NC
1669 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1670 sortsvp(aTHX_ start, max,
1671 (private & OPpSORT_NUMERIC)
1672 ? ( (private & OPpSORT_INTEGER)
84d4ea48
JH
1673 ? ( overloading ? amagic_i_ncmp : sv_i_ncmp)
1674 : ( overloading ? amagic_ncmp : sv_ncmp))
1675 : ( IN_LOCALE_RUNTIME
1676 ? ( overloading
1677 ? amagic_cmp_locale
1678 : sv_cmp_locale_static)
1679 : ( overloading ? amagic_cmp : sv_cmp_static)));
471178c0
NC
1680 }
1681 if (private & OPpSORT_REVERSE) {
1682 SV **q = start+max-1;
1683 while (start < q) {
1684 SV *tmp = *start;
1685 *start++ = *q;
1686 *q-- = tmp;
84d4ea48
JH
1687 }
1688 }
1689 }
fe1bc4cf
DM
1690 if (av && !sorting_av) {
1691 /* simulate pp_aassign of tied AV */
1692 SV *sv;
1693 SV** base, **didstore;
1694 for (base = ORIGMARK+1, i=0; i < max; i++) {
1695 sv = NEWSV(28,0);
1696 sv_setsv(sv, base[i]);
1697 base[i] = sv;
1698 }
1699 av_clear(av);
1700 av_extend(av, max);
1701 for (i=0; i < max; i++) {
1702 sv = base[i];
1703 didstore = av_store(av, i, sv);
1704 if (SvSMAGICAL(sv))
1705 mg_set(sv);
1706 if (!didstore)
1707 sv_2mortal(sv);
1708 }
1709 }
84d4ea48 1710 LEAVE;
fe1bc4cf 1711 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
84d4ea48
JH
1712 return nextop;
1713}
1714
1715static I32
1716sortcv(pTHX_ SV *a, SV *b)
1717{
1718 I32 oldsaveix = PL_savestack_ix;
1719 I32 oldscopeix = PL_scopestack_ix;
1720 I32 result;
1721 GvSV(PL_firstgv) = a;
1722 GvSV(PL_secondgv) = b;
1723 PL_stack_sp = PL_stack_base;
1724 PL_op = PL_sortcop;
1725 CALLRUNOPS(aTHX);
1726 if (PL_stack_sp != PL_stack_base + 1)
1727 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1728 if (!SvNIOKp(*PL_stack_sp))
1729 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1730 result = SvIV(*PL_stack_sp);
1731 while (PL_scopestack_ix > oldscopeix) {
1732 LEAVE;
1733 }
1734 leave_scope(oldsaveix);
1735 return result;
1736}
1737
1738static I32
1739sortcv_stacked(pTHX_ SV *a, SV *b)
1740{
1741 I32 oldsaveix = PL_savestack_ix;
1742 I32 oldscopeix = PL_scopestack_ix;
1743 I32 result;
1744 AV *av;
1745
84d4ea48 1746 av = GvAV(PL_defgv);
84d4ea48
JH
1747
1748 if (AvMAX(av) < 1) {
1749 SV** ary = AvALLOC(av);
1750 if (AvARRAY(av) != ary) {
1751 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1752 SvPVX(av) = (char*)ary;
1753 }
1754 if (AvMAX(av) < 1) {
1755 AvMAX(av) = 1;
1756 Renew(ary,2,SV*);
1757 SvPVX(av) = (char*)ary;
1758 }
1759 }
1760 AvFILLp(av) = 1;
1761
1762 AvARRAY(av)[0] = a;
1763 AvARRAY(av)[1] = b;
1764 PL_stack_sp = PL_stack_base;
1765 PL_op = PL_sortcop;
1766 CALLRUNOPS(aTHX);
1767 if (PL_stack_sp != PL_stack_base + 1)
1768 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1769 if (!SvNIOKp(*PL_stack_sp))
1770 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1771 result = SvIV(*PL_stack_sp);
1772 while (PL_scopestack_ix > oldscopeix) {
1773 LEAVE;
1774 }
1775 leave_scope(oldsaveix);
1776 return result;
1777}
1778
1779static I32
1780sortcv_xsub(pTHX_ SV *a, SV *b)
1781{
1782 dSP;
1783 I32 oldsaveix = PL_savestack_ix;
1784 I32 oldscopeix = PL_scopestack_ix;
1785 I32 result;
1786 CV *cv=(CV*)PL_sortcop;
1787
1788 SP = PL_stack_base;
1789 PUSHMARK(SP);
1790 EXTEND(SP, 2);
1791 *++SP = a;
1792 *++SP = b;
1793 PUTBACK;
1794 (void)(*CvXSUB(cv))(aTHX_ cv);
1795 if (PL_stack_sp != PL_stack_base + 1)
1796 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1797 if (!SvNIOKp(*PL_stack_sp))
1798 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1799 result = SvIV(*PL_stack_sp);
1800 while (PL_scopestack_ix > oldscopeix) {
1801 LEAVE;
1802 }
1803 leave_scope(oldsaveix);
1804 return result;
1805}
1806
1807
1808static I32
1809sv_ncmp(pTHX_ SV *a, SV *b)
1810{
1811 NV nv1 = SvNV(a);
1812 NV nv2 = SvNV(b);
1813 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1814}
1815
1816static I32
1817sv_i_ncmp(pTHX_ SV *a, SV *b)
1818{
1819 IV iv1 = SvIV(a);
1820 IV iv2 = SvIV(b);
1821 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1822}
1823#define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \
1824 *svp = Nullsv; \
1825 if (PL_amagic_generation) { \
1826 if (SvAMAGIC(left)||SvAMAGIC(right))\
1827 *svp = amagic_call(left, \
1828 right, \
1829 CAT2(meth,_amg), \
1830 0); \
1831 } \
1832 } STMT_END
1833
1834static I32
1835amagic_ncmp(pTHX_ register SV *a, register SV *b)
1836{
1837 SV *tmpsv;
1838 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1839 if (tmpsv) {
1840 NV d;
4eb872f6 1841
84d4ea48
JH
1842 if (SvIOK(tmpsv)) {
1843 I32 i = SvIVX(tmpsv);
1844 if (i > 0)
1845 return 1;
1846 return i? -1 : 0;
1847 }
1848 d = SvNV(tmpsv);
1849 if (d > 0)
1850 return 1;
1851 return d? -1 : 0;
1852 }
1853 return sv_ncmp(aTHX_ a, b);
1854}
1855
1856static I32
1857amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
1858{
1859 SV *tmpsv;
1860 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1861 if (tmpsv) {
1862 NV d;
4eb872f6 1863
84d4ea48
JH
1864 if (SvIOK(tmpsv)) {
1865 I32 i = SvIVX(tmpsv);
1866 if (i > 0)
1867 return 1;
1868 return i? -1 : 0;
1869 }
1870 d = SvNV(tmpsv);
1871 if (d > 0)
1872 return 1;
1873 return d? -1 : 0;
1874 }
1875 return sv_i_ncmp(aTHX_ a, b);
1876}
1877
1878static I32
1879amagic_cmp(pTHX_ register SV *str1, register SV *str2)
1880{
1881 SV *tmpsv;
1882 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1883 if (tmpsv) {
1884 NV d;
4eb872f6 1885
84d4ea48
JH
1886 if (SvIOK(tmpsv)) {
1887 I32 i = SvIVX(tmpsv);
1888 if (i > 0)
1889 return 1;
1890 return i? -1 : 0;
1891 }
1892 d = SvNV(tmpsv);
1893 if (d > 0)
1894 return 1;
1895 return d? -1 : 0;
1896 }
1897 return sv_cmp(str1, str2);
1898}
1899
1900static I32
1901amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
1902{
1903 SV *tmpsv;
1904 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1905 if (tmpsv) {
1906 NV d;
4eb872f6 1907
84d4ea48
JH
1908 if (SvIOK(tmpsv)) {
1909 I32 i = SvIVX(tmpsv);
1910 if (i > 0)
1911 return 1;
1912 return i? -1 : 0;
1913 }
1914 d = SvNV(tmpsv);
1915 if (d > 0)
1916 return 1;
1917 return d? -1 : 0;
1918 }
1919 return sv_cmp_locale(str1, str2);
1920}