Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
b42d0ec9 JH |
3 | # -- Raphael Manfredi Since Sep 1996 |
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |
5 | # -- Daniel S. Lewart Since Sep 1997 | |
fb73857a | 6 | # |
a0d0e21e LW |
7 | |
8 | require Exporter; | |
5aabfad6 | 9 | package Math::Complex; |
a0d0e21e | 10 | |
17f410f9 | 11 | use 5.005_64; |
b42d0ec9 | 12 | use strict; |
fb73857a | 13 | |
17f410f9 | 14 | our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS); |
fb73857a | 15 | |
b42d0ec9 | 16 | my ( $i, $ip2, %logn ); |
0c721ce2 | 17 | |
2820d885 | 18 | $VERSION = sprintf("%s", q$Id: Complex.pm,v 1.26 1998/11/01 00:00:00 dsl Exp $ =~ /(\d+\.\d+)/); |
0c721ce2 | 19 | |
5aabfad6 | 20 | @ISA = qw(Exporter); |
21 | ||
5aabfad6 | 22 | my @trig = qw( |
23 | pi | |
fb73857a | 24 | tan |
5aabfad6 | 25 | csc cosec sec cot cotan |
26 | asin acos atan | |
27 | acsc acosec asec acot acotan | |
28 | sinh cosh tanh | |
29 | csch cosech sech coth cotanh | |
30 | asinh acosh atanh | |
31 | acsch acosech asech acoth acotanh | |
32 | ); | |
33 | ||
34 | @EXPORT = (qw( | |
b42d0ec9 | 35 | i Re Im rho theta arg |
fb73857a | 36 | sqrt log ln |
5aabfad6 | 37 | log10 logn cbrt root |
38 | cplx cplxe | |
39 | ), | |
40 | @trig); | |
41 | ||
42 | %EXPORT_TAGS = ( | |
43 | 'trig' => [@trig], | |
66730be0 | 44 | ); |
a0d0e21e | 45 | |
a5f75d66 | 46 | use overload |
0c721ce2 JH |
47 | '+' => \&plus, |
48 | '-' => \&minus, | |
49 | '*' => \&multiply, | |
50 | '/' => \÷, | |
66730be0 RM |
51 | '**' => \&power, |
52 | '<=>' => \&spaceship, | |
53 | 'neg' => \&negate, | |
0c721ce2 | 54 | '~' => \&conjugate, |
66730be0 RM |
55 | 'abs' => \&abs, |
56 | 'sqrt' => \&sqrt, | |
57 | 'exp' => \&exp, | |
58 | 'log' => \&log, | |
59 | 'sin' => \&sin, | |
60 | 'cos' => \&cos, | |
0c721ce2 | 61 | 'tan' => \&tan, |
66730be0 RM |
62 | 'atan2' => \&atan2, |
63 | qw("" stringify); | |
64 | ||
65 | # | |
b42d0ec9 | 66 | # Package "privates" |
66730be0 RM |
67 | # |
68 | ||
b42d0ec9 JH |
69 | my $package = 'Math::Complex'; # Package name |
70 | my $display = 'cartesian'; # Default display format | |
71 | my $eps = 1e-14; # Epsilon | |
66730be0 RM |
72 | |
73 | # | |
74 | # Object attributes (internal): | |
75 | # cartesian [real, imaginary] -- cartesian form | |
76 | # polar [rho, theta] -- polar form | |
77 | # c_dirty cartesian form not up-to-date | |
78 | # p_dirty polar form not up-to-date | |
79 | # display display format (package's global when not set) | |
80 | # | |
81 | ||
b42d0ec9 JH |
82 | # Die on bad *make() arguments. |
83 | ||
84 | sub _cannot_make { | |
85 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n"; | |
86 | } | |
87 | ||
66730be0 RM |
88 | # |
89 | # ->make | |
90 | # | |
91 | # Create a new complex number (cartesian form) | |
92 | # | |
93 | sub make { | |
94 | my $self = bless {}, shift; | |
95 | my ($re, $im) = @_; | |
b42d0ec9 JH |
96 | my $rre = ref $re; |
97 | if ( $rre ) { | |
98 | if ( $rre eq ref $self ) { | |
99 | $re = Re($re); | |
100 | } else { | |
101 | _cannot_make("real part", $rre); | |
102 | } | |
103 | } | |
104 | my $rim = ref $im; | |
105 | if ( $rim ) { | |
106 | if ( $rim eq ref $self ) { | |
107 | $im = Im($im); | |
108 | } else { | |
109 | _cannot_make("imaginary part", $rim); | |
110 | } | |
111 | } | |
112 | $self->{'cartesian'} = [ $re, $im ]; | |
66730be0 RM |
113 | $self->{c_dirty} = 0; |
114 | $self->{p_dirty} = 1; | |
b42d0ec9 | 115 | $self->display_format('cartesian'); |
66730be0 RM |
116 | return $self; |
117 | } | |
118 | ||
119 | # | |
120 | # ->emake | |
121 | # | |
122 | # Create a new complex number (exponential form) | |
123 | # | |
124 | sub emake { | |
125 | my $self = bless {}, shift; | |
126 | my ($rho, $theta) = @_; | |
b42d0ec9 JH |
127 | my $rrh = ref $rho; |
128 | if ( $rrh ) { | |
129 | if ( $rrh eq ref $self ) { | |
130 | $rho = rho($rho); | |
131 | } else { | |
132 | _cannot_make("rho", $rrh); | |
133 | } | |
134 | } | |
135 | my $rth = ref $theta; | |
136 | if ( $rth ) { | |
137 | if ( $rth eq ref $self ) { | |
138 | $theta = theta($theta); | |
139 | } else { | |
140 | _cannot_make("theta", $rth); | |
141 | } | |
142 | } | |
fb73857a | 143 | if ($rho < 0) { |
144 | $rho = -$rho; | |
145 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
146 | } | |
147 | $self->{'polar'} = [$rho, $theta]; | |
66730be0 RM |
148 | $self->{p_dirty} = 0; |
149 | $self->{c_dirty} = 1; | |
b42d0ec9 | 150 | $self->display_format('polar'); |
66730be0 RM |
151 | return $self; |
152 | } | |
153 | ||
154 | sub new { &make } # For backward compatibility only. | |
155 | ||
156 | # | |
157 | # cplx | |
158 | # | |
159 | # Creates a complex number from a (re, im) tuple. | |
160 | # This avoids the burden of writing Math::Complex->make(re, im). | |
161 | # | |
162 | sub cplx { | |
163 | my ($re, $im) = @_; | |
0c721ce2 | 164 | return $package->make($re, defined $im ? $im : 0); |
66730be0 RM |
165 | } |
166 | ||
167 | # | |
168 | # cplxe | |
169 | # | |
170 | # Creates a complex number from a (rho, theta) tuple. | |
171 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
172 | # | |
173 | sub cplxe { | |
174 | my ($rho, $theta) = @_; | |
0c721ce2 | 175 | return $package->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
176 | } |
177 | ||
178 | # | |
179 | # pi | |
180 | # | |
fb73857a | 181 | # The number defined as pi = 180 degrees |
66730be0 | 182 | # |
6570f784 | 183 | sub pi () { 4 * CORE::atan2(1, 1) } |
5cd24f17 | 184 | |
185 | # | |
fb73857a | 186 | # pit2 |
5cd24f17 | 187 | # |
fb73857a | 188 | # The full circle |
189 | # | |
6570f784 | 190 | sub pit2 () { 2 * pi } |
fb73857a | 191 | |
5cd24f17 | 192 | # |
fb73857a | 193 | # pip2 |
194 | # | |
195 | # The quarter circle | |
196 | # | |
6570f784 | 197 | sub pip2 () { pi / 2 } |
5cd24f17 | 198 | |
fb73857a | 199 | # |
d09ae4e6 JH |
200 | # deg1 |
201 | # | |
202 | # One degree in radians, used in stringify_polar. | |
203 | # | |
204 | ||
6570f784 | 205 | sub deg1 () { pi / 180 } |
d09ae4e6 JH |
206 | |
207 | # | |
fb73857a | 208 | # uplog10 |
209 | # | |
210 | # Used in log10(). | |
211 | # | |
6570f784 | 212 | sub uplog10 () { 1 / CORE::log(10) } |
66730be0 RM |
213 | |
214 | # | |
215 | # i | |
216 | # | |
217 | # The number defined as i*i = -1; | |
218 | # | |
219 | sub i () { | |
5cd24f17 | 220 | return $i if ($i); |
221 | $i = bless {}; | |
40da2db3 | 222 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 223 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
224 | $i->{c_dirty} = 0; |
225 | $i->{p_dirty} = 0; | |
226 | return $i; | |
227 | } | |
228 | ||
229 | # | |
230 | # Attribute access/set routines | |
231 | # | |
232 | ||
0c721ce2 JH |
233 | sub cartesian {$_[0]->{c_dirty} ? |
234 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
235 | sub polar {$_[0]->{p_dirty} ? | |
236 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 237 | |
40da2db3 JH |
238 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
239 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
240 | |
241 | # | |
242 | # ->update_cartesian | |
243 | # | |
244 | # Recompute and return the cartesian form, given accurate polar form. | |
245 | # | |
246 | sub update_cartesian { | |
247 | my $self = shift; | |
40da2db3 | 248 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 249 | $self->{c_dirty} = 0; |
a8693bd3 | 250 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
66730be0 RM |
251 | } |
252 | ||
253 | # | |
254 | # | |
255 | # ->update_polar | |
256 | # | |
257 | # Recompute and return the polar form, given accurate cartesian form. | |
258 | # | |
259 | sub update_polar { | |
260 | my $self = shift; | |
40da2db3 | 261 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 262 | $self->{p_dirty} = 0; |
40da2db3 | 263 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
a8693bd3 | 264 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)]; |
66730be0 RM |
265 | } |
266 | ||
267 | # | |
268 | # (plus) | |
269 | # | |
270 | # Computes z1+z2. | |
271 | # | |
272 | sub plus { | |
273 | my ($z1, $z2, $regular) = @_; | |
274 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 275 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 276 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
277 | unless (defined $regular) { |
278 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
279 | return $z1; | |
280 | } | |
281 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
282 | } | |
283 | ||
284 | # | |
285 | # (minus) | |
286 | # | |
287 | # Computes z1-z2. | |
288 | # | |
289 | sub minus { | |
290 | my ($z1, $z2, $inverted) = @_; | |
291 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
292 | $z2 = cplx($z2) unless ref $z2; |
293 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
294 | unless (defined $inverted) { |
295 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
296 | return $z1; | |
297 | } | |
298 | return $inverted ? | |
299 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
300 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 301 | |
66730be0 RM |
302 | } |
303 | ||
304 | # | |
305 | # (multiply) | |
306 | # | |
307 | # Computes z1*z2. | |
308 | # | |
309 | sub multiply { | |
fb73857a | 310 | my ($z1, $z2, $regular) = @_; |
311 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
312 | # if both polar better use polar to avoid rounding errors | |
313 | my ($r1, $t1) = @{$z1->polar}; | |
314 | my ($r2, $t2) = @{$z2->polar}; | |
315 | my $t = $t1 + $t2; | |
316 | if ($t > pi()) { $t -= pit2 } | |
317 | elsif ($t <= -pi()) { $t += pit2 } | |
318 | unless (defined $regular) { | |
319 | $z1->set_polar([$r1 * $r2, $t]); | |
66730be0 | 320 | return $z1; |
fb73857a | 321 | } |
322 | return (ref $z1)->emake($r1 * $r2, $t); | |
323 | } else { | |
324 | my ($x1, $y1) = @{$z1->cartesian}; | |
325 | if (ref $z2) { | |
326 | my ($x2, $y2) = @{$z2->cartesian}; | |
327 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
328 | } else { | |
329 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
330 | } | |
66730be0 | 331 | } |
66730be0 RM |
332 | } |
333 | ||
334 | # | |
0e505df1 | 335 | # _divbyzero |
0c721ce2 JH |
336 | # |
337 | # Die on division by zero. | |
338 | # | |
0e505df1 | 339 | sub _divbyzero { |
5cd24f17 | 340 | my $mess = "$_[0]: Division by zero.\n"; |
341 | ||
342 | if (defined $_[1]) { | |
343 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
344 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
345 | $mess .= "is 0)\n"; | |
346 | } | |
347 | ||
0c721ce2 | 348 | my @up = caller(1); |
fb73857a | 349 | |
5cd24f17 | 350 | $mess .= "Died at $up[1] line $up[2].\n"; |
351 | ||
352 | die $mess; | |
0c721ce2 JH |
353 | } |
354 | ||
355 | # | |
66730be0 RM |
356 | # (divide) |
357 | # | |
358 | # Computes z1/z2. | |
359 | # | |
360 | sub divide { | |
361 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 362 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
363 | # if both polar better use polar to avoid rounding errors | |
364 | my ($r1, $t1) = @{$z1->polar}; | |
365 | my ($r2, $t2) = @{$z2->polar}; | |
366 | my $t; | |
367 | if ($inverted) { | |
0e505df1 | 368 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 369 | $t = $t2 - $t1; |
370 | if ($t > pi()) { $t -= pit2 } | |
371 | elsif ($t <= -pi()) { $t += pit2 } | |
372 | return (ref $z1)->emake($r2 / $r1, $t); | |
373 | } else { | |
0e505df1 | 374 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 375 | $t = $t1 - $t2; |
376 | if ($t > pi()) { $t -= pit2 } | |
377 | elsif ($t <= -pi()) { $t += pit2 } | |
378 | return (ref $z1)->emake($r1 / $r2, $t); | |
379 | } | |
380 | } else { | |
381 | my ($d, $x2, $y2); | |
382 | if ($inverted) { | |
383 | ($x2, $y2) = @{$z1->cartesian}; | |
384 | $d = $x2*$x2 + $y2*$y2; | |
385 | _divbyzero "$z2/0" if $d == 0; | |
386 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
387 | } else { | |
388 | my ($x1, $y1) = @{$z1->cartesian}; | |
389 | if (ref $z2) { | |
390 | ($x2, $y2) = @{$z2->cartesian}; | |
391 | $d = $x2*$x2 + $y2*$y2; | |
392 | _divbyzero "$z1/0" if $d == 0; | |
393 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
394 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
395 | return (ref $z1)->make($u, $v); | |
396 | } else { | |
397 | _divbyzero "$z1/0" if $z2 == 0; | |
398 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
399 | } | |
400 | } | |
0c721ce2 | 401 | } |
66730be0 RM |
402 | } |
403 | ||
404 | # | |
405 | # (power) | |
406 | # | |
407 | # Computes z1**z2 = exp(z2 * log z1)). | |
408 | # | |
409 | sub power { | |
410 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 | 411 | if ($inverted) { |
2820d885 DL |
412 | return 1 if $z1 == 0 || $z2 == 1; |
413 | return 0 if $z2 == 0 && Re($z1) > 0; | |
ace5de91 | 414 | } else { |
2820d885 DL |
415 | return 1 if $z2 == 0 || $z1 == 1; |
416 | return 0 if $z1 == 0 && Re($z2) > 0; | |
ace5de91 | 417 | } |
2820d885 DL |
418 | my $w = $inverted ? CORE::exp($z1 * CORE::log($z2)) |
419 | : CORE::exp($z2 * CORE::log($z1)); | |
d09ae4e6 JH |
420 | # If both arguments cartesian, return cartesian, else polar. |
421 | return $z1->{c_dirty} == 0 && | |
422 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |
423 | cplx(@{$w->cartesian}) : $w; | |
66730be0 RM |
424 | } |
425 | ||
426 | # | |
427 | # (spaceship) | |
428 | # | |
429 | # Computes z1 <=> z2. | |
2820d885 | 430 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
66730be0 RM |
431 | # |
432 | sub spaceship { | |
433 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 434 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
435 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
436 | my $sgn = $inverted ? -1 : 1; |
437 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
438 | return $sgn * ($im1 <=> $im2); | |
439 | } | |
440 | ||
441 | # | |
442 | # (negate) | |
443 | # | |
444 | # Computes -z. | |
445 | # | |
446 | sub negate { | |
447 | my ($z) = @_; | |
448 | if ($z->{c_dirty}) { | |
449 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 450 | $t = ($t <= 0) ? $t + pi : $t - pi; |
451 | return (ref $z)->emake($r, $t); | |
66730be0 RM |
452 | } |
453 | my ($re, $im) = @{$z->cartesian}; | |
454 | return (ref $z)->make(-$re, -$im); | |
455 | } | |
456 | ||
457 | # | |
458 | # (conjugate) | |
459 | # | |
460 | # Compute complex's conjugate. | |
461 | # | |
462 | sub conjugate { | |
463 | my ($z) = @_; | |
464 | if ($z->{c_dirty}) { | |
465 | my ($r, $t) = @{$z->polar}; | |
466 | return (ref $z)->emake($r, -$t); | |
467 | } | |
468 | my ($re, $im) = @{$z->cartesian}; | |
469 | return (ref $z)->make($re, -$im); | |
470 | } | |
471 | ||
472 | # | |
473 | # (abs) | |
474 | # | |
b42d0ec9 | 475 | # Compute or set complex's norm (rho). |
66730be0 RM |
476 | # |
477 | sub abs { | |
b42d0ec9 JH |
478 | my ($z, $rho) = @_; |
479 | return $z unless ref $z; | |
480 | if (defined $rho) { | |
481 | $z->{'polar'} = [ $rho, ${$z->polar}[1] ]; | |
482 | $z->{p_dirty} = 0; | |
483 | $z->{c_dirty} = 1; | |
484 | return $rho; | |
485 | } else { | |
486 | return ${$z->polar}[0]; | |
487 | } | |
488 | } | |
489 | ||
490 | sub _theta { | |
491 | my $theta = $_[0]; | |
492 | ||
493 | if ($$theta > pi()) { $$theta -= pit2 } | |
494 | elsif ($$theta <= -pi()) { $$theta += pit2 } | |
66730be0 RM |
495 | } |
496 | ||
497 | # | |
498 | # arg | |
499 | # | |
b42d0ec9 | 500 | # Compute or set complex's argument (theta). |
66730be0 RM |
501 | # |
502 | sub arg { | |
b42d0ec9 JH |
503 | my ($z, $theta) = @_; |
504 | return $z unless ref $z; | |
505 | if (defined $theta) { | |
506 | _theta(\$theta); | |
507 | $z->{'polar'} = [ ${$z->polar}[0], $theta ]; | |
508 | $z->{p_dirty} = 0; | |
509 | $z->{c_dirty} = 1; | |
510 | } else { | |
511 | $theta = ${$z->polar}[1]; | |
512 | _theta(\$theta); | |
513 | } | |
514 | return $theta; | |
66730be0 RM |
515 | } |
516 | ||
517 | # | |
518 | # (sqrt) | |
519 | # | |
0c721ce2 | 520 | # Compute sqrt(z). |
66730be0 | 521 | # |
b42d0ec9 JH |
522 | # It is quite tempting to use wantarray here so that in list context |
523 | # sqrt() would return the two solutions. This, however, would | |
524 | # break things like | |
525 | # | |
526 | # print "sqrt(z) = ", sqrt($z), "\n"; | |
527 | # | |
528 | # The two values would be printed side by side without no intervening | |
529 | # whitespace, quite confusing. | |
530 | # Therefore if you want the two solutions use the root(). | |
531 | # | |
66730be0 RM |
532 | sub sqrt { |
533 | my ($z) = @_; | |
b42d0ec9 | 534 | my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 | 535 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0; |
66730be0 | 536 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 537 | return (ref $z)->emake(CORE::sqrt($r), $t/2); |
66730be0 RM |
538 | } |
539 | ||
540 | # | |
541 | # cbrt | |
542 | # | |
0c721ce2 | 543 | # Compute cbrt(z) (cubic root). |
66730be0 | 544 | # |
b42d0ec9 JH |
545 | # Why are we not returning three values? The same answer as for sqrt(). |
546 | # | |
66730be0 RM |
547 | sub cbrt { |
548 | my ($z) = @_; | |
a8693bd3 | 549 | return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) |
fb73857a | 550 | unless ref $z; |
66730be0 | 551 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 552 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
66730be0 RM |
553 | } |
554 | ||
555 | # | |
0e505df1 JH |
556 | # _rootbad |
557 | # | |
558 | # Die on bad root. | |
559 | # | |
560 | sub _rootbad { | |
561 | my $mess = "Root $_[0] not defined, root must be positive integer.\n"; | |
562 | ||
563 | my @up = caller(1); | |
fb73857a | 564 | |
0e505df1 JH |
565 | $mess .= "Died at $up[1] line $up[2].\n"; |
566 | ||
567 | die $mess; | |
568 | } | |
569 | ||
570 | # | |
66730be0 RM |
571 | # root |
572 | # | |
573 | # Computes all nth root for z, returning an array whose size is n. | |
574 | # `n' must be a positive integer. | |
575 | # | |
576 | # The roots are given by (for k = 0..n-1): | |
577 | # | |
578 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
579 | # | |
580 | sub root { | |
581 | my ($z, $n) = @_; | |
0e505df1 | 582 | _rootbad($n) if ($n < 1 or int($n) != $n); |
a8693bd3 | 583 | my ($r, $t) = ref $z ? @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); |
66730be0 RM |
584 | my @root; |
585 | my $k; | |
fb73857a | 586 | my $theta_inc = pit2 / $n; |
66730be0 RM |
587 | my $rho = $r ** (1/$n); |
588 | my $theta; | |
d09ae4e6 | 589 | my $cartesian = ref $z && $z->{c_dirty} == 0; |
66730be0 | 590 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { |
d09ae4e6 JH |
591 | my $w = cplxe($rho, $theta); |
592 | # Yes, $cartesian is loop invariant. | |
593 | push @root, $cartesian ? cplx(@{$w->cartesian}) : $w; | |
a0d0e21e | 594 | } |
66730be0 | 595 | return @root; |
a0d0e21e LW |
596 | } |
597 | ||
66730be0 RM |
598 | # |
599 | # Re | |
600 | # | |
b42d0ec9 | 601 | # Return or set Re(z). |
66730be0 | 602 | # |
a0d0e21e | 603 | sub Re { |
b42d0ec9 | 604 | my ($z, $Re) = @_; |
66730be0 | 605 | return $z unless ref $z; |
b42d0ec9 JH |
606 | if (defined $Re) { |
607 | $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ]; | |
608 | $z->{c_dirty} = 0; | |
609 | $z->{p_dirty} = 1; | |
610 | } else { | |
611 | return ${$z->cartesian}[0]; | |
612 | } | |
a0d0e21e LW |
613 | } |
614 | ||
66730be0 RM |
615 | # |
616 | # Im | |
617 | # | |
b42d0ec9 | 618 | # Return or set Im(z). |
66730be0 | 619 | # |
a0d0e21e | 620 | sub Im { |
b42d0ec9 JH |
621 | my ($z, $Im) = @_; |
622 | return $z unless ref $z; | |
623 | if (defined $Im) { | |
624 | $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ]; | |
625 | $z->{c_dirty} = 0; | |
626 | $z->{p_dirty} = 1; | |
627 | } else { | |
628 | return ${$z->cartesian}[1]; | |
629 | } | |
630 | } | |
631 | ||
632 | # | |
633 | # rho | |
634 | # | |
635 | # Return or set rho(w). | |
636 | # | |
637 | sub rho { | |
638 | Math::Complex::abs(@_); | |
639 | } | |
640 | ||
641 | # | |
642 | # theta | |
643 | # | |
644 | # Return or set theta(w). | |
645 | # | |
646 | sub theta { | |
647 | Math::Complex::arg(@_); | |
a0d0e21e LW |
648 | } |
649 | ||
66730be0 RM |
650 | # |
651 | # (exp) | |
652 | # | |
653 | # Computes exp(z). | |
654 | # | |
655 | sub exp { | |
656 | my ($z) = @_; | |
657 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 658 | return (ref $z)->emake(CORE::exp($x), $y); |
66730be0 RM |
659 | } |
660 | ||
661 | # | |
8c03c583 JH |
662 | # _logofzero |
663 | # | |
fb73857a | 664 | # Die on logarithm of zero. |
8c03c583 JH |
665 | # |
666 | sub _logofzero { | |
667 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
668 | ||
669 | if (defined $_[1]) { | |
670 | $mess .= "(Because in the definition of $_[0], the argument "; | |
671 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
672 | $mess .= "is 0)\n"; | |
673 | } | |
674 | ||
675 | my @up = caller(1); | |
fb73857a | 676 | |
8c03c583 JH |
677 | $mess .= "Died at $up[1] line $up[2].\n"; |
678 | ||
679 | die $mess; | |
680 | } | |
681 | ||
682 | # | |
66730be0 RM |
683 | # (log) |
684 | # | |
685 | # Compute log(z). | |
686 | # | |
687 | sub log { | |
688 | my ($z) = @_; | |
fb73857a | 689 | unless (ref $z) { |
690 | _logofzero("log") if $z == 0; | |
a8693bd3 | 691 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
fb73857a | 692 | } |
5cd24f17 | 693 | my ($r, $t) = @{$z->polar}; |
fb73857a | 694 | _logofzero("log") if $r == 0; |
695 | if ($t > pi()) { $t -= pit2 } | |
696 | elsif ($t <= -pi()) { $t += pit2 } | |
a8693bd3 | 697 | return (ref $z)->make(CORE::log($r), $t); |
66730be0 RM |
698 | } |
699 | ||
700 | # | |
0c721ce2 JH |
701 | # ln |
702 | # | |
703 | # Alias for log(). | |
704 | # | |
705 | sub ln { Math::Complex::log(@_) } | |
706 | ||
707 | # | |
66730be0 RM |
708 | # log10 |
709 | # | |
710 | # Compute log10(z). | |
711 | # | |
5cd24f17 | 712 | |
66730be0 | 713 | sub log10 { |
fb73857a | 714 | return Math::Complex::log($_[0]) * uplog10; |
66730be0 RM |
715 | } |
716 | ||
717 | # | |
718 | # logn | |
719 | # | |
720 | # Compute logn(z,n) = log(z) / log(n) | |
721 | # | |
722 | sub logn { | |
723 | my ($z, $n) = @_; | |
0c721ce2 | 724 | $z = cplx($z, 0) unless ref $z; |
66730be0 | 725 | my $logn = $logn{$n}; |
a8693bd3 NIS |
726 | $logn = $logn{$n} = CORE::log($n) unless defined $logn; # Cache log(n) |
727 | return CORE::log($z) / $logn; | |
66730be0 RM |
728 | } |
729 | ||
730 | # | |
731 | # (cos) | |
732 | # | |
733 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
734 | # | |
735 | sub cos { | |
736 | my ($z) = @_; | |
737 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 738 | my $ey = CORE::exp($y); |
66730be0 | 739 | my $ey_1 = 1 / $ey; |
a8693bd3 NIS |
740 | return (ref $z)->make(CORE::cos($x) * ($ey + $ey_1)/2, |
741 | CORE::sin($x) * ($ey_1 - $ey)/2); | |
66730be0 RM |
742 | } |
743 | ||
744 | # | |
745 | # (sin) | |
746 | # | |
747 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
748 | # | |
749 | sub sin { | |
750 | my ($z) = @_; | |
751 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 752 | my $ey = CORE::exp($y); |
66730be0 | 753 | my $ey_1 = 1 / $ey; |
a8693bd3 NIS |
754 | return (ref $z)->make(CORE::sin($x) * ($ey + $ey_1)/2, |
755 | CORE::cos($x) * ($ey - $ey_1)/2); | |
66730be0 RM |
756 | } |
757 | ||
758 | # | |
759 | # tan | |
760 | # | |
761 | # Compute tan(z) = sin(z) / cos(z). | |
762 | # | |
763 | sub tan { | |
764 | my ($z) = @_; | |
a8693bd3 NIS |
765 | my $cz = CORE::cos($z); |
766 | _divbyzero "tan($z)", "cos($z)" if (CORE::abs($cz) < $eps); | |
767 | return CORE::sin($z) / $cz; | |
66730be0 RM |
768 | } |
769 | ||
770 | # | |
0c721ce2 JH |
771 | # sec |
772 | # | |
773 | # Computes the secant sec(z) = 1 / cos(z). | |
774 | # | |
775 | sub sec { | |
776 | my ($z) = @_; | |
a8693bd3 | 777 | my $cz = CORE::cos($z); |
0e505df1 | 778 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
779 | return 1 / $cz; |
780 | } | |
781 | ||
782 | # | |
783 | # csc | |
784 | # | |
785 | # Computes the cosecant csc(z) = 1 / sin(z). | |
786 | # | |
787 | sub csc { | |
788 | my ($z) = @_; | |
a8693bd3 | 789 | my $sz = CORE::sin($z); |
0e505df1 | 790 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
791 | return 1 / $sz; |
792 | } | |
793 | ||
66730be0 | 794 | # |
0c721ce2 | 795 | # cosec |
66730be0 | 796 | # |
0c721ce2 JH |
797 | # Alias for csc(). |
798 | # | |
799 | sub cosec { Math::Complex::csc(@_) } | |
800 | ||
801 | # | |
802 | # cot | |
803 | # | |
fb73857a | 804 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
805 | # |
806 | sub cot { | |
66730be0 | 807 | my ($z) = @_; |
a8693bd3 | 808 | my $sz = CORE::sin($z); |
0e505df1 | 809 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
a8693bd3 | 810 | return CORE::cos($z) / $sz; |
66730be0 RM |
811 | } |
812 | ||
813 | # | |
0c721ce2 JH |
814 | # cotan |
815 | # | |
816 | # Alias for cot(). | |
817 | # | |
818 | sub cotan { Math::Complex::cot(@_) } | |
819 | ||
820 | # | |
66730be0 RM |
821 | # acos |
822 | # | |
823 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
824 | # | |
825 | sub acos { | |
fb73857a | 826 | my $z = $_[0]; |
a8693bd3 | 827 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1; |
fb73857a | 828 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 NIS |
829 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
830 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 831 | my $alpha = ($t1 + $t2)/2; |
832 | my $beta = ($t1 - $t2)/2; | |
833 | $alpha = 1 if $alpha < 1; | |
834 | if ($beta > 1) { $beta = 1 } | |
835 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
836 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
837 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 838 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
839 | return $package->make($u, $v); | |
66730be0 RM |
840 | } |
841 | ||
842 | # | |
843 | # asin | |
844 | # | |
845 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
846 | # | |
847 | sub asin { | |
fb73857a | 848 | my $z = $_[0]; |
a8693bd3 | 849 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1; |
fb73857a | 850 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
a8693bd3 NIS |
851 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
852 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 853 | my $alpha = ($t1 + $t2)/2; |
854 | my $beta = ($t1 - $t2)/2; | |
855 | $alpha = 1 if $alpha < 1; | |
856 | if ($beta > 1) { $beta = 1 } | |
857 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
858 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
859 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 860 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
861 | return $package->make($u, $v); | |
66730be0 RM |
862 | } |
863 | ||
864 | # | |
865 | # atan | |
866 | # | |
0c721ce2 | 867 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
868 | # |
869 | sub atan { | |
870 | my ($z) = @_; | |
a8693bd3 | 871 | return CORE::atan2($z, 1) unless ref $z; |
8c03c583 JH |
872 | _divbyzero "atan(i)" if ( $z == i); |
873 | _divbyzero "atan(-i)" if (-$z == i); | |
a8693bd3 | 874 | my $log = CORE::log((i + $z) / (i - $z)); |
fb73857a | 875 | $ip2 = 0.5 * i unless defined $ip2; |
876 | return $ip2 * $log; | |
a0d0e21e LW |
877 | } |
878 | ||
66730be0 | 879 | # |
0c721ce2 JH |
880 | # asec |
881 | # | |
882 | # Computes the arc secant asec(z) = acos(1 / z). | |
883 | # | |
884 | sub asec { | |
885 | my ($z) = @_; | |
0e505df1 | 886 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 887 | return acos(1 / $z); |
0c721ce2 JH |
888 | } |
889 | ||
890 | # | |
5cd24f17 | 891 | # acsc |
0c721ce2 | 892 | # |
8c03c583 | 893 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 894 | # |
5cd24f17 | 895 | sub acsc { |
0c721ce2 | 896 | my ($z) = @_; |
0e505df1 | 897 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 898 | return asin(1 / $z); |
0c721ce2 JH |
899 | } |
900 | ||
901 | # | |
5cd24f17 | 902 | # acosec |
66730be0 | 903 | # |
5cd24f17 | 904 | # Alias for acsc(). |
0c721ce2 | 905 | # |
5cd24f17 | 906 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 907 | |
66730be0 | 908 | # |
0c721ce2 JH |
909 | # acot |
910 | # | |
8c03c583 | 911 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
912 | # |
913 | sub acot { | |
66730be0 | 914 | my ($z) = @_; |
a8693bd3 NIS |
915 | _divbyzero "acot(0)" if (CORE::abs($z) < $eps); |
916 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z; | |
917 | _divbyzero "acot(i)" if (CORE::abs($z - i) < $eps); | |
918 | _logofzero "acot(-i)" if (CORE::abs($z + i) < $eps); | |
8c03c583 | 919 | return atan(1 / $z); |
66730be0 RM |
920 | } |
921 | ||
922 | # | |
0c721ce2 JH |
923 | # acotan |
924 | # | |
925 | # Alias for acot(). | |
926 | # | |
927 | sub acotan { Math::Complex::acot(@_) } | |
928 | ||
929 | # | |
66730be0 RM |
930 | # cosh |
931 | # | |
932 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
933 | # | |
934 | sub cosh { | |
935 | my ($z) = @_; | |
fb73857a | 936 | my $ex; |
0e505df1 | 937 | unless (ref $z) { |
a8693bd3 | 938 | $ex = CORE::exp($z); |
fb73857a | 939 | return ($ex + 1/$ex)/2; |
0e505df1 JH |
940 | } |
941 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 942 | $ex = CORE::exp($x); |
66730be0 | 943 | my $ex_1 = 1 / $ex; |
a8693bd3 NIS |
944 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
945 | CORE::sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
946 | } |
947 | ||
948 | # | |
949 | # sinh | |
950 | # | |
951 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
952 | # | |
953 | sub sinh { | |
954 | my ($z) = @_; | |
fb73857a | 955 | my $ex; |
0e505df1 | 956 | unless (ref $z) { |
a8693bd3 | 957 | $ex = CORE::exp($z); |
fb73857a | 958 | return ($ex - 1/$ex)/2; |
0e505df1 JH |
959 | } |
960 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 961 | $ex = CORE::exp($x); |
66730be0 | 962 | my $ex_1 = 1 / $ex; |
a8693bd3 NIS |
963 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
964 | CORE::sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
965 | } |
966 | ||
967 | # | |
968 | # tanh | |
969 | # | |
970 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
971 | # | |
972 | sub tanh { | |
973 | my ($z) = @_; | |
0c721ce2 | 974 | my $cz = cosh($z); |
0e505df1 | 975 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 976 | return sinh($z) / $cz; |
66730be0 RM |
977 | } |
978 | ||
979 | # | |
0c721ce2 JH |
980 | # sech |
981 | # | |
982 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
983 | # | |
984 | sub sech { | |
985 | my ($z) = @_; | |
986 | my $cz = cosh($z); | |
0e505df1 | 987 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
988 | return 1 / $cz; |
989 | } | |
990 | ||
991 | # | |
992 | # csch | |
993 | # | |
994 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 995 | # |
0c721ce2 JH |
996 | sub csch { |
997 | my ($z) = @_; | |
998 | my $sz = sinh($z); | |
0e505df1 | 999 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
1000 | return 1 / $sz; |
1001 | } | |
1002 | ||
1003 | # | |
1004 | # cosech | |
1005 | # | |
1006 | # Alias for csch(). | |
1007 | # | |
1008 | sub cosech { Math::Complex::csch(@_) } | |
1009 | ||
66730be0 | 1010 | # |
0c721ce2 JH |
1011 | # coth |
1012 | # | |
1013 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
1014 | # | |
1015 | sub coth { | |
66730be0 | 1016 | my ($z) = @_; |
0c721ce2 | 1017 | my $sz = sinh($z); |
0e505df1 | 1018 | _divbyzero "coth($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 | 1019 | return cosh($z) / $sz; |
66730be0 RM |
1020 | } |
1021 | ||
1022 | # | |
0c721ce2 JH |
1023 | # cotanh |
1024 | # | |
1025 | # Alias for coth(). | |
1026 | # | |
1027 | sub cotanh { Math::Complex::coth(@_) } | |
1028 | ||
1029 | # | |
66730be0 RM |
1030 | # acosh |
1031 | # | |
fb73857a | 1032 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
1033 | # |
1034 | sub acosh { | |
1035 | my ($z) = @_; | |
fb73857a | 1036 | unless (ref $z) { |
a8693bd3 | 1037 | return CORE::log($z + CORE::sqrt($z*$z-1)) if $z >= 1; |
fb73857a | 1038 | $z = cplx($z, 0); |
1039 | } | |
8c03c583 | 1040 | my ($re, $im) = @{$z->cartesian}; |
fb73857a | 1041 | if ($im == 0) { |
a8693bd3 NIS |
1042 | return cplx(CORE::log($re + CORE::sqrt($re*$re - 1)), 0) if $re >= 1; |
1043 | return cplx(0, CORE::atan2(CORE::sqrt(1-$re*$re), $re)) if CORE::abs($re) <= 1; | |
fb73857a | 1044 | } |
a8693bd3 | 1045 | return CORE::log($z + CORE::sqrt($z*$z - 1)); |
66730be0 RM |
1046 | } |
1047 | ||
1048 | # | |
1049 | # asinh | |
1050 | # | |
1051 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
1052 | # | |
1053 | sub asinh { | |
1054 | my ($z) = @_; | |
a8693bd3 | 1055 | return CORE::log($z + CORE::sqrt($z*$z + 1)); |
66730be0 RM |
1056 | } |
1057 | ||
1058 | # | |
1059 | # atanh | |
1060 | # | |
1061 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
1062 | # | |
1063 | sub atanh { | |
1064 | my ($z) = @_; | |
fb73857a | 1065 | unless (ref $z) { |
a8693bd3 | 1066 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
fb73857a | 1067 | $z = cplx($z, 0); |
1068 | } | |
8c03c583 JH |
1069 | _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); |
1070 | _logofzero 'atanh(-1)' if ($z == -1); | |
a8693bd3 | 1071 | return 0.5 * CORE::log((1 + $z) / (1 - $z)); |
66730be0 RM |
1072 | } |
1073 | ||
1074 | # | |
0c721ce2 JH |
1075 | # asech |
1076 | # | |
1077 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
1078 | # | |
1079 | sub asech { | |
1080 | my ($z) = @_; | |
0e505df1 | 1081 | _divbyzero 'asech(0)', $z if ($z == 0); |
0c721ce2 JH |
1082 | return acosh(1 / $z); |
1083 | } | |
1084 | ||
1085 | # | |
1086 | # acsch | |
66730be0 | 1087 | # |
0c721ce2 | 1088 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 1089 | # |
0c721ce2 | 1090 | sub acsch { |
66730be0 | 1091 | my ($z) = @_; |
0e505df1 | 1092 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
1093 | return asinh(1 / $z); |
1094 | } | |
1095 | ||
1096 | # | |
1097 | # acosech | |
1098 | # | |
1099 | # Alias for acosh(). | |
1100 | # | |
1101 | sub acosech { Math::Complex::acsch(@_) } | |
1102 | ||
1103 | # | |
1104 | # acoth | |
1105 | # | |
1106 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1107 | # | |
1108 | sub acoth { | |
1109 | my ($z) = @_; | |
a8693bd3 | 1110 | _divbyzero 'acoth(0)' if (CORE::abs($z) < $eps); |
fb73857a | 1111 | unless (ref $z) { |
a8693bd3 | 1112 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
fb73857a | 1113 | $z = cplx($z, 0); |
1114 | } | |
a8693bd3 NIS |
1115 | _divbyzero 'acoth(1)', "$z - 1" if (CORE::abs($z - 1) < $eps); |
1116 | _logofzero 'acoth(-1)', "1 / $z" if (CORE::abs($z + 1) < $eps); | |
1117 | return CORE::log((1 + $z) / ($z - 1)) / 2; | |
66730be0 RM |
1118 | } |
1119 | ||
1120 | # | |
0c721ce2 JH |
1121 | # acotanh |
1122 | # | |
1123 | # Alias for acot(). | |
1124 | # | |
1125 | sub acotanh { Math::Complex::acoth(@_) } | |
1126 | ||
1127 | # | |
66730be0 RM |
1128 | # (atan2) |
1129 | # | |
1130 | # Compute atan(z1/z2). | |
1131 | # | |
1132 | sub atan2 { | |
1133 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1134 | my ($re1, $im1, $re2, $im2); |
1135 | if ($inverted) { | |
1136 | ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1137 | ($re2, $im2) = @{$z1->cartesian}; | |
66730be0 | 1138 | } else { |
fb73857a | 1139 | ($re1, $im1) = @{$z1->cartesian}; |
1140 | ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1141 | } | |
1142 | if ($im2 == 0) { | |
a8693bd3 | 1143 | return cplx(CORE::atan2($re1, $re2), 0) if $im1 == 0; |
fb73857a | 1144 | return cplx(($im1<=>0) * pip2, 0) if $re2 == 0; |
66730be0 | 1145 | } |
fb73857a | 1146 | my $w = atan($z1/$z2); |
1147 | my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); | |
1148 | $u += pi if $re2 < 0; | |
1149 | $u -= pit2 if $u > pi; | |
1150 | return cplx($u, $v); | |
66730be0 RM |
1151 | } |
1152 | ||
1153 | # | |
1154 | # display_format | |
1155 | # ->display_format | |
1156 | # | |
1157 | # Set (fetch if no argument) display format for all complex numbers that | |
fb73857a | 1158 | # don't happen to have overridden it via ->display_format |
66730be0 RM |
1159 | # |
1160 | # When called as a method, this actually sets the display format for | |
1161 | # the current object. | |
1162 | # | |
1163 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1164 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1165 | # | |
1166 | sub display_format { | |
1167 | my $self = shift; | |
1168 | my $format = undef; | |
1169 | ||
1170 | if (ref $self) { # Called as a method | |
1171 | $format = shift; | |
0c721ce2 | 1172 | } else { # Regular procedure call |
66730be0 RM |
1173 | $format = $self; |
1174 | undef $self; | |
1175 | } | |
1176 | ||
1177 | if (defined $self) { | |
1178 | return defined $self->{display} ? $self->{display} : $display | |
1179 | unless defined $format; | |
1180 | return $self->{display} = $format; | |
1181 | } | |
1182 | ||
1183 | return $display unless defined $format; | |
1184 | return $display = $format; | |
1185 | } | |
1186 | ||
1187 | # | |
1188 | # (stringify) | |
1189 | # | |
1190 | # Show nicely formatted complex number under its cartesian or polar form, | |
1191 | # depending on the current display format: | |
1192 | # | |
1193 | # . If a specific display format has been recorded for this object, use it. | |
1194 | # . Otherwise, use the generic current default for all complex numbers, | |
1195 | # which is a package global variable. | |
1196 | # | |
a0d0e21e | 1197 | sub stringify { |
66730be0 RM |
1198 | my ($z) = shift; |
1199 | my $format; | |
1200 | ||
1201 | $format = $display; | |
1202 | $format = $z->{display} if defined $z->{display}; | |
1203 | ||
1204 | return $z->stringify_polar if $format =~ /^p/i; | |
1205 | return $z->stringify_cartesian; | |
1206 | } | |
1207 | ||
1208 | # | |
1209 | # ->stringify_cartesian | |
1210 | # | |
1211 | # Stringify as a cartesian representation 'a+bi'. | |
1212 | # | |
1213 | sub stringify_cartesian { | |
1214 | my $z = shift; | |
1215 | my ($x, $y) = @{$z->cartesian}; | |
1216 | my ($re, $im); | |
1217 | ||
fb73857a | 1218 | $x = int($x + ($x < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1219 | if int(CORE::abs($x)) != int(CORE::abs($x) + $eps); |
fb73857a | 1220 | $y = int($y + ($y < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1221 | if int(CORE::abs($y)) != int(CORE::abs($y) + $eps); |
55497cff | 1222 | |
a8693bd3 | 1223 | $re = "$x" if CORE::abs($x) >= $eps; |
fb73857a | 1224 | if ($y == 1) { $im = 'i' } |
1225 | elsif ($y == -1) { $im = '-i' } | |
a8693bd3 | 1226 | elsif (CORE::abs($y) >= $eps) { $im = $y . "i" } |
66730be0 | 1227 | |
0c721ce2 | 1228 | my $str = ''; |
66730be0 RM |
1229 | $str = $re if defined $re; |
1230 | $str .= "+$im" if defined $im; | |
1231 | $str =~ s/\+-/-/; | |
1232 | $str =~ s/^\+//; | |
d09ae4e6 | 1233 | $str =~ s/([-+])1i/$1i/; # Not redundant with the above 1/-1 tests. |
66730be0 RM |
1234 | $str = '0' unless $str; |
1235 | ||
1236 | return $str; | |
1237 | } | |
1238 | ||
d09ae4e6 JH |
1239 | |
1240 | # Helper for stringify_polar, a Greatest Common Divisor with a memory. | |
1241 | ||
1242 | sub _gcd { | |
1243 | my ($a, $b) = @_; | |
1244 | ||
1245 | use integer; | |
1246 | ||
1247 | # Loops forever if given negative inputs. | |
1248 | ||
1249 | if ($b and $a > $b) { return gcd($a % $b, $b) } | |
1250 | elsif ($a and $b > $a) { return gcd($b % $a, $a) } | |
1251 | else { return $a ? $a : $b } | |
1252 | } | |
1253 | ||
1254 | my %gcd; | |
1255 | ||
1256 | sub gcd { | |
1257 | my ($a, $b) = @_; | |
1258 | ||
1259 | my $id = "$a $b"; | |
2820d885 | 1260 | |
d09ae4e6 JH |
1261 | unless (exists $gcd{$id}) { |
1262 | $gcd{$id} = _gcd($a, $b); | |
1263 | $gcd{"$b $a"} = $gcd{$id}; | |
1264 | } | |
1265 | ||
1266 | return $gcd{$id}; | |
1267 | } | |
1268 | ||
66730be0 RM |
1269 | # |
1270 | # ->stringify_polar | |
1271 | # | |
1272 | # Stringify as a polar representation '[r,t]'. | |
1273 | # | |
1274 | sub stringify_polar { | |
1275 | my $z = shift; | |
1276 | my ($r, $t) = @{$z->polar}; | |
1277 | my $theta; | |
1278 | ||
0c721ce2 | 1279 | return '[0,0]' if $r <= $eps; |
a0d0e21e | 1280 | |
fb73857a | 1281 | my $nt = $t / pit2; |
1282 | $nt = ($nt - int($nt)) * pit2; | |
1283 | $nt += pit2 if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 1284 | |
a8693bd3 NIS |
1285 | if (CORE::abs($nt) <= $eps) { $theta = 0 } |
1286 | elsif (CORE::abs(pi-$nt) <= $eps) { $theta = 'pi' } | |
66730be0 | 1287 | |
55497cff | 1288 | if (defined $theta) { |
0c721ce2 | 1289 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1290 | if int(CORE::abs($r)) != int(CORE::abs($r) + $eps); |
0c721ce2 JH |
1291 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) |
1292 | if ($theta ne 'pi' and | |
a8693bd3 | 1293 | int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps)); |
55497cff | 1294 | return "\[$r,$theta\]"; |
1295 | } | |
66730be0 RM |
1296 | |
1297 | # | |
1298 | # Okay, number is not a real. Try to identify pi/n and friends... | |
1299 | # | |
1300 | ||
fb73857a | 1301 | $nt -= pit2 if $nt > pi; |
fb73857a | 1302 | |
a8693bd3 | 1303 | if (CORE::abs($nt) >= deg1) { |
d09ae4e6 JH |
1304 | my ($n, $k, $kpi); |
1305 | ||
1306 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { | |
66730be0 | 1307 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); |
a8693bd3 NIS |
1308 | if (CORE::abs($kpi/$n - $nt) <= $eps) { |
1309 | $n = CORE::abs($n); | |
d09ae4e6 JH |
1310 | my $gcd = gcd($k, $n); |
1311 | if ($gcd > 1) { | |
1312 | $k /= $gcd; | |
1313 | $n /= $gcd; | |
1314 | } | |
1315 | next if $n > 360; | |
1316 | $theta = ($nt < 0 ? '-':''). | |
1317 | ($k == 1 ? 'pi':"${k}pi"); | |
1318 | $theta .= '/'.$n if $n > 1; | |
1319 | last; | |
66730be0 | 1320 | } |
d09ae4e6 | 1321 | } |
66730be0 RM |
1322 | } |
1323 | ||
1324 | $theta = $nt unless defined $theta; | |
1325 | ||
0c721ce2 | 1326 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
a8693bd3 | 1327 | if int(CORE::abs($r)) != int(CORE::abs($r) + $eps); |
0c721ce2 JH |
1328 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) |
1329 | if ($theta !~ m(^-?\d*pi/\d+$) and | |
a8693bd3 | 1330 | int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps)); |
55497cff | 1331 | |
66730be0 | 1332 | return "\[$r,$theta\]"; |
a0d0e21e | 1333 | } |
a5f75d66 AD |
1334 | |
1335 | 1; | |
1336 | __END__ | |
1337 | ||
1338 | =head1 NAME | |
1339 | ||
66730be0 | 1340 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1341 | |
1342 | =head1 SYNOPSIS | |
1343 | ||
66730be0 | 1344 | use Math::Complex; |
fb73857a | 1345 | |
66730be0 RM |
1346 | $z = Math::Complex->make(5, 6); |
1347 | $t = 4 - 3*i + $z; | |
1348 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1349 | |
1350 | =head1 DESCRIPTION | |
1351 | ||
66730be0 RM |
1352 | This package lets you create and manipulate complex numbers. By default, |
1353 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1354 | full complex support, along with a full set of mathematical functions | |
1355 | typically associated with and/or extended to complex numbers. | |
1356 | ||
1357 | If you wonder what complex numbers are, they were invented to be able to solve | |
1358 | the following equation: | |
1359 | ||
1360 | x*x = -1 | |
1361 | ||
1362 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1363 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1364 | I<i> is a pure I<imaginary> number. | |
1365 | ||
1366 | The arithmetics with pure imaginary numbers works just like you would expect | |
1367 | it with real numbers... you just have to remember that | |
1368 | ||
1369 | i*i = -1 | |
1370 | ||
1371 | so you have: | |
1372 | ||
1373 | 5i + 7i = i * (5 + 7) = 12i | |
1374 | 4i - 3i = i * (4 - 3) = i | |
1375 | 4i * 2i = -8 | |
1376 | 6i / 2i = 3 | |
1377 | 1 / i = -i | |
1378 | ||
1379 | Complex numbers are numbers that have both a real part and an imaginary | |
1380 | part, and are usually noted: | |
1381 | ||
1382 | a + bi | |
1383 | ||
1384 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1385 | arithmetic with complex numbers is straightforward. You have to | |
1386 | keep track of the real and the imaginary parts, but otherwise the | |
1387 | rules used for real numbers just apply: | |
1388 | ||
1389 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1390 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1391 | ||
1392 | A graphical representation of complex numbers is possible in a plane | |
1393 | (also called the I<complex plane>, but it's really a 2D plane). | |
1394 | The number | |
1395 | ||
1396 | z = a + bi | |
1397 | ||
1398 | is the point whose coordinates are (a, b). Actually, it would | |
1399 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1400 | of two complex numbers is a vectorial addition. | |
1401 | ||
1402 | Since there is a bijection between a point in the 2D plane and a complex | |
1403 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1404 | can also be uniquely identified with polar coordinates: | |
1405 | ||
1406 | [rho, theta] | |
1407 | ||
1408 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1409 | the vector and the I<x> axis. There is a notation for this using the | |
1410 | exponential form, which is: | |
1411 | ||
1412 | rho * exp(i * theta) | |
1413 | ||
1414 | where I<i> is the famous imaginary number introduced above. Conversion | |
1415 | between this form and the cartesian form C<a + bi> is immediate: | |
1416 | ||
1417 | a = rho * cos(theta) | |
1418 | b = rho * sin(theta) | |
1419 | ||
1420 | which is also expressed by this formula: | |
1421 | ||
fb73857a | 1422 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1423 | |
1424 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1425 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1426 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1427 | noted C<abs(z)>. | |
1428 | ||
1429 | The polar notation (also known as the trigonometric | |
1430 | representation) is much more handy for performing multiplications and | |
1431 | divisions of complex numbers, whilst the cartesian notation is better | |
fb73857a | 1432 | suited for additions and subtractions. Real numbers are on the I<x> |
1433 | axis, and therefore I<theta> is zero or I<pi>. | |
66730be0 RM |
1434 | |
1435 | All the common operations that can be performed on a real number have | |
1436 | been defined to work on complex numbers as well, and are merely | |
1437 | I<extensions> of the operations defined on real numbers. This means | |
1438 | they keep their natural meaning when there is no imaginary part, provided | |
1439 | the number is within their definition set. | |
1440 | ||
1441 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1442 | its argument is only defined for non-negative real numbers and yields a |
1443 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1444 | If we allow it to return a complex number, then it can be extended to |
1445 | negative real numbers to become an application from B<R> to B<C> (the | |
1446 | set of complex numbers): | |
1447 | ||
1448 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1449 | ||
1450 | It can also be extended to be an application from B<C> to B<C>, | |
1451 | whilst its restriction to B<R> behaves as defined above by using | |
1452 | the following definition: | |
1453 | ||
1454 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1455 | ||
fb73857a | 1456 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1457 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1458 | number) and the above definition states that | |
66730be0 RM |
1459 | |
1460 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1461 | ||
1462 | which is exactly what we had defined for negative real numbers above. | |
b42d0ec9 JH |
1463 | The C<sqrt> returns only one of the solutions: if you want the both, |
1464 | use the C<root> function. | |
a5f75d66 | 1465 | |
66730be0 RM |
1466 | All the common mathematical functions defined on real numbers that |
1467 | are extended to complex numbers share that same property of working | |
1468 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1469 | be called an extension, would it?). | |
a5f75d66 | 1470 | |
66730be0 RM |
1471 | A I<new> operation possible on a complex number that is |
1472 | the identity for real numbers is called the I<conjugate>, and is noted | |
1473 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1474 | |
66730be0 RM |
1475 | z = a + bi |
1476 | ~z = a - bi | |
a5f75d66 | 1477 | |
66730be0 | 1478 | Simple... Now look: |
a5f75d66 | 1479 | |
66730be0 | 1480 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1481 | |
66730be0 RM |
1482 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1483 | distance to the origin, also known as: | |
a5f75d66 | 1484 | |
66730be0 | 1485 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1486 | |
66730be0 RM |
1487 | so |
1488 | ||
1489 | z * ~z = abs(z) ** 2 | |
1490 | ||
1491 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1492 | ||
1493 | a * a = abs(a) ** 2 | |
1494 | ||
1495 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1496 | for the absolute value). This example explains why the norm of C<z> is | |
1497 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1498 | is the regular C<abs> we know when the complex number actually has no | |
1499 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1500 | notation for the norm. | |
1501 | ||
1502 | =head1 OPERATIONS | |
1503 | ||
1504 | Given the following notations: | |
1505 | ||
1506 | z1 = a + bi = r1 * exp(i * t1) | |
1507 | z2 = c + di = r2 * exp(i * t2) | |
1508 | z = <any complex or real number> | |
1509 | ||
1510 | the following (overloaded) operations are supported on complex numbers: | |
1511 | ||
1512 | z1 + z2 = (a + c) + i(b + d) | |
1513 | z1 - z2 = (a - c) + i(b - d) | |
1514 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1515 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1516 | z1 ** z2 = exp(z2 * log z1) | |
b42d0ec9 JH |
1517 | ~z = a - bi |
1518 | abs(z) = r1 = sqrt(a*a + b*b) | |
1519 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |
1520 | exp(z) = exp(a) * exp(i * b) | |
1521 | log(z) = log(r1) + i*t | |
1522 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
1523 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
66730be0 RM |
1524 | atan2(z1, z2) = atan(z1/z2) |
1525 | ||
1526 | The following extra operations are supported on both real and complex | |
1527 | numbers: | |
1528 | ||
1529 | Re(z) = a | |
1530 | Im(z) = b | |
1531 | arg(z) = t | |
b42d0ec9 | 1532 | abs(z) = r |
66730be0 RM |
1533 | |
1534 | cbrt(z) = z ** (1/3) | |
1535 | log10(z) = log(z) / log(10) | |
1536 | logn(z, n) = log(z) / log(n) | |
1537 | ||
1538 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1539 | |
5aabfad6 | 1540 | csc(z) = 1 / sin(z) |
1541 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1542 | cot(z) = 1 / tan(z) |
66730be0 RM |
1543 | |
1544 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1545 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1546 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1547 | |
5aabfad6 | 1548 | acsc(z) = asin(1 / z) |
1549 | asec(z) = acos(1 / z) | |
8c03c583 | 1550 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1551 | |
1552 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1553 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1554 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1555 | ||
5aabfad6 | 1556 | csch(z) = 1 / sinh(z) |
1557 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1558 | coth(z) = 1 / tanh(z) |
fb73857a | 1559 | |
66730be0 RM |
1560 | asinh(z) = log(z + sqrt(z*z+1)) |
1561 | acosh(z) = log(z + sqrt(z*z-1)) | |
1562 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1563 | |
5aabfad6 | 1564 | acsch(z) = asinh(1 / z) |
1565 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1566 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1567 | ||
b42d0ec9 JH |
1568 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, |
1569 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
1570 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
1571 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
1572 | C<rho>, and C<theta> can be used also also mutators. The C<cbrt> | |
1573 | returns only one of the solutions: if you want all three, use the | |
1574 | C<root> function. | |
0c721ce2 JH |
1575 | |
1576 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1577 | roots of some complex, where I<n> is a strictly positive integer. |
1578 | There are exactly I<n> such roots, returned as a list. Getting the | |
1579 | number mathematicians call C<j> such that: | |
1580 | ||
1581 | 1 + j + j*j = 0; | |
1582 | ||
1583 | is a simple matter of writing: | |
1584 | ||
1585 | $j = ((root(1, 3))[1]; | |
1586 | ||
1587 | The I<k>th root for C<z = [r,t]> is given by: | |
1588 | ||
1589 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1590 | ||
f4837644 JH |
1591 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1592 | order to ensure its restriction to real numbers is conform to what you | |
1593 | would expect, the comparison is run on the real part of the complex | |
1594 | number first, and imaginary parts are compared only when the real | |
1595 | parts match. | |
66730be0 RM |
1596 | |
1597 | =head1 CREATION | |
1598 | ||
1599 | To create a complex number, use either: | |
1600 | ||
1601 | $z = Math::Complex->make(3, 4); | |
1602 | $z = cplx(3, 4); | |
1603 | ||
1604 | if you know the cartesian form of the number, or | |
1605 | ||
1606 | $z = 3 + 4*i; | |
1607 | ||
fb73857a | 1608 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1609 | |
1610 | $z = Math::Complex->emake(5, pi/3); | |
1611 | $x = cplxe(5, pi/3); | |
1612 | ||
0c721ce2 | 1613 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1614 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1615 | notation for complex numbers in the polar form). | |
66730be0 RM |
1616 | |
1617 | It is possible to write: | |
1618 | ||
1619 | $x = cplxe(-3, pi/4); | |
1620 | ||
1621 | but that will be silently converted into C<[3,-3pi/4]>, since the modulus | |
fb73857a | 1622 | must be non-negative (it represents the distance to the origin in the complex |
66730be0 RM |
1623 | plane). |
1624 | ||
b42d0ec9 JH |
1625 | It is also possible to have a complex number as either argument of |
1626 | either the C<make> or C<emake>: the appropriate component of | |
1627 | the argument will be used. | |
1628 | ||
1629 | $z1 = cplx(-2, 1); | |
1630 | $z2 = cplx($z1, 4); | |
1631 | ||
66730be0 RM |
1632 | =head1 STRINGIFICATION |
1633 | ||
1634 | When printed, a complex number is usually shown under its cartesian | |
1635 | form I<a+bi>, but there are legitimate cases where the polar format | |
1636 | I<[r,t]> is more appropriate. | |
1637 | ||
1638 | By calling the routine C<Math::Complex::display_format> and supplying either | |
1639 | C<"polar"> or C<"cartesian">, you override the default display format, | |
1640 | which is C<"cartesian">. Not supplying any argument returns the current | |
1641 | setting. | |
1642 | ||
1643 | This default can be overridden on a per-number basis by calling the | |
1644 | C<display_format> method instead. As before, not supplying any argument | |
1645 | returns the current display format for this number. Otherwise whatever you | |
1646 | specify will be the new display format for I<this> particular number. | |
1647 | ||
1648 | For instance: | |
1649 | ||
1650 | use Math::Complex; | |
1651 | ||
1652 | Math::Complex::display_format('polar'); | |
1653 | $j = ((root(1, 3))[1]; | |
1654 | print "j = $j\n"; # Prints "j = [1,2pi/3] | |
1655 | $j->display_format('cartesian'); | |
1656 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1657 | ||
1658 | The polar format attempts to emphasize arguments like I<k*pi/n> | |
1659 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]). | |
1660 | ||
1661 | =head1 USAGE | |
1662 | ||
1663 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1664 | is simple and almost transparent. | |
1665 | ||
1666 | Here are some examples: | |
1667 | ||
1668 | use Math::Complex; | |
1669 | ||
1670 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1671 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1672 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1673 | ||
1674 | $z = -16 + 0*i; # Force it to be a complex | |
1675 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1676 | ||
1677 | $k = exp(i * 2*pi/3); | |
1678 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1679 | |
b42d0ec9 JH |
1680 | $z->Re(3); # Re, Im, arg, abs, |
1681 | $j->arg(2); # (the last two aka rho, theta) | |
1682 | # can be used also as mutators. | |
1683 | ||
1684 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |
5aabfad6 | 1685 | |
1686 | The division (/) and the following functions | |
1687 | ||
b42d0ec9 | 1688 | log ln log10 logn |
2820d885 | 1689 | tan sec csc cot |
b42d0ec9 JH |
1690 | atan asec acsc acot |
1691 | tanh sech csch coth | |
1692 | atanh asech acsch acoth | |
5aabfad6 | 1693 | |
1694 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1695 | by zero or taking logarithm of zero. These situations cause fatal |
1696 | runtime errors looking like this | |
5aabfad6 | 1697 | |
1698 | cot(0): Division by zero. | |
5cd24f17 | 1699 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1700 | Died at ... |
1701 | ||
8c03c583 JH |
1702 | or |
1703 | ||
1704 | atanh(-1): Logarithm of zero. | |
1705 | Died at... | |
1706 | ||
1707 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
b42d0ec9 JH |
1708 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the the |
1709 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot | |
1710 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
1711 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
1712 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
1713 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
1714 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
1715 | is any integer. | |
1716 | ||
1717 | Note that because we are operating on approximations of real numbers, | |
1718 | these errors can happen when merely `too close' to the singularities | |
1719 | listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of | |
1720 | division by zero. | |
1721 | ||
1722 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
1723 | ||
1724 | The C<make> and C<emake> accept both real and complex arguments. | |
1725 | When they cannot recognize the arguments they will die with error | |
1726 | messages like the following | |
1727 | ||
1728 | Math::Complex::make: Cannot take real part of ... | |
1729 | Math::Complex::make: Cannot take real part of ... | |
1730 | Math::Complex::emake: Cannot take rho of ... | |
1731 | Math::Complex::emake: Cannot take theta of ... | |
5cd24f17 | 1732 | |
a5f75d66 AD |
1733 | =head1 BUGS |
1734 | ||
5cd24f17 | 1735 | Saying C<use Math::Complex;> exports many mathematical routines in the |
fb73857a | 1736 | caller environment and even overrides some (C<sqrt>, C<log>). |
1737 | This is construed as a feature by the Authors, actually... ;-) | |
a5f75d66 | 1738 | |
66730be0 RM |
1739 | All routines expect to be given real or complex numbers. Don't attempt to |
1740 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1741 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1742 | |
d09ae4e6 JH |
1743 | In Cray UNICOS there is some strange numerical instability that results |
1744 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
1745 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
1746 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
1747 | ||
0c721ce2 | 1748 | =head1 AUTHORS |
a5f75d66 | 1749 | |
6e238990 | 1750 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and |
ace5de91 | 1751 | Jarkko Hietaniemi <F<jhi@iki.fi>>. |
5cd24f17 | 1752 | |
fb73857a | 1753 | Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. |
1754 | ||
5cd24f17 | 1755 | =cut |
1756 | ||
b42d0ec9 JH |
1757 | 1; |
1758 | ||
5cd24f17 | 1759 | # eof |