This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
5.22.1 today - update Module::CoreList
[perl5.git] / time64.c
CommitLineData
a272e669
MS
1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
f832b29a 36Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
a272e669 37
f832b29a 38Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
a272e669
MS
39
40*/
41
f832b29a
JH
42#include "EXTERN.h"
43#define PERL_IN_TIME64_C
44#include "perl.h"
7643e68f 45#include "time64.h"
af9b2bf5 46
4bb2f1fc 47static const char days_in_month[2][12] = {
a272e669
MS
48 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
49 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
50};
51
4bb2f1fc 52static const short julian_days_by_month[2][12] = {
a272e669
MS
53 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
54 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
55};
56
4bb2f1fc 57static const short length_of_year[2] = { 365, 366 };
a272e669
MS
58
59/* Number of days in a 400 year Gregorian cycle */
806a119a 60static const Year years_in_gregorian_cycle = 400;
a272e669
MS
61static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
62
63/* 28 year calendar cycle between 2010 and 2037 */
806a119a 64#define SOLAR_CYCLE_LENGTH 28
4bb2f1fc 65static const short safe_years[SOLAR_CYCLE_LENGTH] = {
a272e669
MS
66 2016, 2017, 2018, 2019,
67 2020, 2021, 2022, 2023,
68 2024, 2025, 2026, 2027,
69 2028, 2029, 2030, 2031,
70 2032, 2033, 2034, 2035,
71 2036, 2037, 2010, 2011,
72 2012, 2013, 2014, 2015
73};
74
9af24521
MS
75/* Let's assume people are going to be looking for dates in the future.
76 Let's provide some cheats so you can skip ahead.
77 This has a 4x speed boost when near 2008.
78*/
79/* Number of days since epoch on Jan 1st, 2008 GMT */
80#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
81#define CHEAT_YEARS 108
a272e669
MS
82
83#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
d584a308 84#undef WRAP /* some <termios.h> define this */
a272e669
MS
85#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
86
b86b480f
MS
87#ifdef USE_SYSTEM_LOCALTIME
88# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
7bda3dfc
MS
89 (a) <= SYSTEM_LOCALTIME_MAX && \
90 (a) >= SYSTEM_LOCALTIME_MIN \
91)
b86b480f
MS
92#else
93# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
94#endif
95
96#ifdef USE_SYSTEM_GMTIME
97# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
7bda3dfc
MS
98 (a) <= SYSTEM_GMTIME_MAX && \
99 (a) >= SYSTEM_GMTIME_MIN \
100)
b86b480f
MS
101#else
102# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
103#endif
a64acb40 104
d4fb0a1f 105/* Multi varadic macros are a C99 thing, alas */
461d5a49 106#ifdef TIME_64_DEBUG
7430375d
CB
107# define TIME64_TRACE(format) (fprintf(stderr, format))
108# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
109# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
110# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
461d5a49 111#else
7430375d
CB
112# define TIME64_TRACE(format) ((void)0)
113# define TIME64_TRACE1(format, var1) ((void)0)
114# define TIME64_TRACE2(format, var1, var2) ((void)0)
115# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
461d5a49 116#endif
a64acb40 117
7430375d 118static int S_is_exception_century(Year year)
a272e669
MS
119{
120 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
7430375d 121 TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
a272e669
MS
122
123 return(is_exception);
124}
125
9af24521 126
7430375d 127static Time64_T S_timegm64(struct TM *date) {
b86b480f
MS
128 int days = 0;
129 Time64_T seconds = 0;
130 Year year;
a272e669 131
9af24521
MS
132 if( date->tm_year > 70 ) {
133 year = 70;
134 while( year < date->tm_year ) {
135 days += length_of_year[IS_LEAP(year)];
136 year++;
a272e669
MS
137 }
138 }
9af24521
MS
139 else if ( date->tm_year < 70 ) {
140 year = 69;
141 do {
142 days -= length_of_year[IS_LEAP(year)];
143 year--;
144 } while( year >= date->tm_year );
145 }
146
147 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
148 days += date->tm_mday - 1;
149
ea722b76
MS
150 /* Avoid overflowing the days integer */
151 seconds = days;
152 seconds = seconds * 60 * 60 * 24;
153
9af24521
MS
154 seconds += date->tm_hour * 60 * 60;
155 seconds += date->tm_min * 60;
156 seconds += date->tm_sec;
157
b86b480f 158 return(seconds);
9af24521
MS
159}
160
161
554fcfb9 162#ifdef DEBUGGING
7430375d 163static int S_check_tm(struct TM *tm)
9af24521 164{
9af24521 165 /* Don't forget leap seconds */
af9b2bf5 166 assert(tm->tm_sec >= 0);
9af24521
MS
167 assert(tm->tm_sec <= 61);
168
af9b2bf5 169 assert(tm->tm_min >= 0);
9af24521
MS
170 assert(tm->tm_min <= 59);
171
172 assert(tm->tm_hour >= 0);
173 assert(tm->tm_hour <= 23);
174
175 assert(tm->tm_mday >= 1);
af9b2bf5 176 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
9af24521
MS
177
178 assert(tm->tm_mon >= 0);
179 assert(tm->tm_mon <= 11);
180
181 assert(tm->tm_wday >= 0);
182 assert(tm->tm_wday <= 6);
183
184 assert(tm->tm_yday >= 0);
af9b2bf5 185 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
9af24521
MS
186
187#ifdef HAS_TM_TM_GMTOFF
188 assert(tm->tm_gmtoff >= -24 * 60 * 60);
189 assert(tm->tm_gmtoff <= 24 * 60 * 60);
190#endif
af9b2bf5
MS
191
192 return 1;
a272e669 193}
554fcfb9 194#endif
a64acb40 195
a272e669
MS
196
197/* The exceptional centuries without leap years cause the cycle to
198 shift by 16
199*/
7430375d 200static Year S_cycle_offset(Year year)
a272e669 201{
750c447b
MS
202 const Year start_year = 2000;
203 Year year_diff = year - start_year;
204 Year exceptions;
003c3b95
MS
205
206 if( year > start_year )
207 year_diff--;
208
750c447b
MS
209 exceptions = year_diff / 100;
210 exceptions -= year_diff / 400;
a272e669 211
7430375d 212 TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
461d5a49 213 year, exceptions, year_diff);
a272e669
MS
214
215 return exceptions * 16;
216}
217
218/* For a given year after 2038, pick the latest possible matching
219 year in the 28 year calendar cycle.
ea722b76
MS
220
221 A matching year...
222 1) Starts on the same day of the week.
223 2) Has the same leap year status.
224
225 This is so the calendars match up.
226
227 Also the previous year must match. When doing Jan 1st you might
228 wind up on Dec 31st the previous year when doing a -UTC time zone.
003c3b95
MS
229
230 Finally, the next year must have the same start day of week. This
231 is for Dec 31st with a +UTC time zone.
232 It doesn't need the same leap year status since we only care about
233 January 1st.
a272e669 234*/
7430375d 235static int S_safe_year(Year year)
a272e669
MS
236{
237 int safe_year;
7430375d 238 Year year_cycle = year + S_cycle_offset(year);
a272e669
MS
239
240 /* Change non-leap xx00 years to an equivalent */
7430375d 241 if( S_is_exception_century(year) )
a272e669
MS
242 year_cycle += 11;
243
003c3b95 244 /* Also xx01 years, since the previous year will be wrong */
7430375d 245 if( S_is_exception_century(year - 1) )
003c3b95
MS
246 year_cycle += 17;
247
a272e669 248 year_cycle %= SOLAR_CYCLE_LENGTH;
ea722b76
MS
249 if( year_cycle < 0 )
250 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
a272e669 251
003c3b95
MS
252 assert( year_cycle >= 0 );
253 assert( year_cycle < SOLAR_CYCLE_LENGTH );
a272e669
MS
254 safe_year = safe_years[year_cycle];
255
256 assert(safe_year <= 2037 && safe_year >= 2010);
257
7430375d 258 TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
461d5a49 259 year, year_cycle, safe_year);
a272e669
MS
260
261 return safe_year;
262}
263
750c447b 264
7430375d 265static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
606599e1
AD
266 assert(src);
267 assert(dest);
55971e21
DD
268#ifdef USE_TM64
269 dest->tm_sec = src->tm_sec;
270 dest->tm_min = src->tm_min;
271 dest->tm_hour = src->tm_hour;
272 dest->tm_mday = src->tm_mday;
273 dest->tm_mon = src->tm_mon;
274 dest->tm_year = (Year)src->tm_year;
275 dest->tm_wday = src->tm_wday;
276 dest->tm_yday = src->tm_yday;
277 dest->tm_isdst = src->tm_isdst;
278
279# ifdef HAS_TM_TM_GMTOFF
280 dest->tm_gmtoff = src->tm_gmtoff;
281# endif
282
283# ifdef HAS_TM_TM_ZONE
284 dest->tm_zone = src->tm_zone;
285# endif
286
287#else
288 /* They're the same type */
289 memcpy(dest, src, sizeof(*dest));
290#endif
806a119a
MS
291}
292
293
7430375d 294#ifndef HAS_LOCALTIME_R
948ea7a9 295/* Simulate localtime_r() to the best of our ability */
7430375d 296static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
c97ab489
CB
297#ifdef __VMS
298 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
dbf7dff6 299#endif
948ea7a9
MS
300 const struct tm *static_result = localtime(clock);
301
302 assert(result != NULL);
303
304 if( static_result == NULL ) {
305 memset(result, 0, sizeof(*result));
306 return NULL;
307 }
308 else {
309 memcpy(result, static_result, sizeof(*result));
310 return result;
311 }
312}
7430375d 313#endif
948ea7a9 314
7430375d 315#ifndef HAS_GMTIME_R
948ea7a9 316/* Simulate gmtime_r() to the best of our ability */
7430375d 317static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
c97ab489
CB
318#ifdef __VMS
319 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
320#endif
948ea7a9
MS
321 const struct tm *static_result = gmtime(clock);
322
323 assert(result != NULL);
324
325 if( static_result == NULL ) {
326 memset(result, 0, sizeof(*result));
327 return NULL;
328 }
329 else {
330 memcpy(result, static_result, sizeof(*result));
331 return result;
332 }
333}
7430375d 334#endif
948ea7a9 335
f832b29a 336struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
a272e669
MS
337{
338 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
b86b480f 339 Time64_T v_tm_tday;
a272e669 340 int leap;
b86b480f 341 Time64_T m;
a272e669 342 Time64_T time = *in_time;
750c447b 343 Year year = 70;
806a119a 344 int cycles = 0;
a272e669 345
948ea7a9
MS
346 assert(p != NULL);
347
a64acb40
MS
348 /* Use the system gmtime() if time_t is small enough */
349 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
cd1759d8 350 time_t safe_time = (time_t)*in_time;
806a119a
MS
351 struct tm safe_date;
352 GMTIME_R(&safe_time, &safe_date);
353
7430375d
CB
354 S_copy_little_tm_to_big_TM(&safe_date, p);
355 assert(S_check_tm(p));
806a119a 356
a64acb40
MS
357 return p;
358 }
359
9af24521 360#ifdef HAS_TM_TM_GMTOFF
a272e669
MS
361 p->tm_gmtoff = 0;
362#endif
363 p->tm_isdst = 0;
364
9af24521 365#ifdef HAS_TM_TM_ZONE
1cefca6b 366 p->tm_zone = (char *)"UTC";
a272e669
MS
367#endif
368
42033175
JH
369 v_tm_sec = (int)Perl_fmod(time, 60.0);
370 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
371 v_tm_min = (int)Perl_fmod(time, 60.0);
372 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
373 v_tm_hour = (int)Perl_fmod(time, 24.0);
374 time = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
455f2c6c 375 v_tm_tday = time;
750c447b 376
a272e669
MS
377 WRAP (v_tm_sec, v_tm_min, 60);
378 WRAP (v_tm_min, v_tm_hour, 60);
379 WRAP (v_tm_hour, v_tm_tday, 24);
750c447b 380
42033175 381 v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
750c447b 382 if (v_tm_wday < 0)
a272e669
MS
383 v_tm_wday += 7;
384 m = v_tm_tday;
a272e669 385
9af24521
MS
386 if (m >= CHEAT_DAYS) {
387 year = CHEAT_YEARS;
388 m -= CHEAT_DAYS;
389 }
390
391 if (m >= 0) {
a272e669 392 /* Gregorian cycles, this is huge optimization for distant times */
42033175 393 cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
806a119a
MS
394 if( cycles ) {
395 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
396 year += (cycles * years_in_gregorian_cycle);
a272e669
MS
397 }
398
399 /* Years */
400 leap = IS_LEAP (year);
401 while (m >= (Time64_T) length_of_year[leap]) {
402 m -= (Time64_T) length_of_year[leap];
403 year++;
404 leap = IS_LEAP (year);
405 }
406
407 /* Months */
408 v_tm_mon = 0;
409 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
410 m -= (Time64_T) days_in_month[leap][v_tm_mon];
411 v_tm_mon++;
412 }
413 } else {
9af24521 414 year--;
a272e669
MS
415
416 /* Gregorian cycles */
42033175 417 cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
806a119a
MS
418 if( cycles ) {
419 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
420 year += (cycles * years_in_gregorian_cycle);
a272e669
MS
421 }
422
423 /* Years */
424 leap = IS_LEAP (year);
425 while (m < (Time64_T) -length_of_year[leap]) {
426 m += (Time64_T) length_of_year[leap];
427 year--;
428 leap = IS_LEAP (year);
429 }
430
431 /* Months */
432 v_tm_mon = 11;
433 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
434 m += (Time64_T) days_in_month[leap][v_tm_mon];
435 v_tm_mon--;
436 }
437 m += (Time64_T) days_in_month[leap][v_tm_mon];
438 }
439
440 p->tm_year = year;
441 if( p->tm_year != year ) {
9af24521 442#ifdef EOVERFLOW
a272e669 443 errno = EOVERFLOW;
9af24521 444#endif
a272e669
MS
445 return NULL;
446 }
447
b86b480f 448 /* At this point m is less than a year so casting to an int is safe */
a272e669 449 p->tm_mday = (int) m + 1;
b86b480f
MS
450 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
451 p->tm_sec = v_tm_sec;
452 p->tm_min = v_tm_min;
453 p->tm_hour = v_tm_hour;
454 p->tm_mon = v_tm_mon;
455 p->tm_wday = v_tm_wday;
a272e669 456
7430375d 457 assert(S_check_tm(p));
a272e669
MS
458
459 return p;
460}
461
462
f832b29a 463struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
a272e669
MS
464{
465 time_t safe_time;
806a119a
MS
466 struct tm safe_date;
467 struct TM gm_tm;
750c447b 468 Year orig_year;
a272e669
MS
469 int month_diff;
470
948ea7a9
MS
471 assert(local_tm != NULL);
472
a64acb40
MS
473 /* Use the system localtime() if time_t is small enough */
474 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
cd1759d8 475 safe_time = (time_t)*time;
806a119a 476
7430375d 477 TIME64_TRACE1("Using system localtime for %lld\n", *time);
461d5a49 478
806a119a
MS
479 LOCALTIME_R(&safe_time, &safe_date);
480
7430375d
CB
481 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
482 assert(S_check_tm(local_tm));
806a119a 483
a64acb40
MS
484 return local_tm;
485 }
486
f832b29a 487 if( Perl_gmtime64_r(time, &gm_tm) == NULL ) {
7430375d 488 TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
af832814 489 return NULL;
461d5a49 490 }
af832814 491
a272e669
MS
492 orig_year = gm_tm.tm_year;
493
c07fe26c 494 if (gm_tm.tm_year > (2037 - 1900) ||
461d5a49 495 gm_tm.tm_year < (1970 - 1900)
c07fe26c
MS
496 )
497 {
7430375d
CB
498 TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
499 gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
c07fe26c 500 }
a272e669 501
7430375d 502 safe_time = (time_t)S_timegm64(&gm_tm);
461d5a49 503 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
7430375d 504 TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
af832814 505 return NULL;
461d5a49 506 }
a272e669 507
7430375d 508 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
806a119a 509
a272e669 510 local_tm->tm_year = orig_year;
af832814 511 if( local_tm->tm_year != orig_year ) {
7430375d 512 TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
461d5a49
MS
513 (Year)local_tm->tm_year, (Year)orig_year);
514
af832814
MS
515#ifdef EOVERFLOW
516 errno = EOVERFLOW;
517#endif
518 return NULL;
519 }
520
521
a272e669
MS
522 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
523
524 /* When localtime is Dec 31st previous year and
525 gmtime is Jan 1st next year.
526 */
527 if( month_diff == 11 ) {
528 local_tm->tm_year--;
529 }
530
531 /* When localtime is Jan 1st, next year and
532 gmtime is Dec 31st, previous year.
533 */
534 if( month_diff == -11 ) {
535 local_tm->tm_year++;
536 }
537
538 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
539 in a non-leap xx00. There is one point in the cycle
540 we can't account for which the safe xx00 year is a leap
486ec47a 541 year. So we need to correct for Dec 31st coming out as
a272e669
MS
542 the 366th day of the year.
543 */
544 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
545 local_tm->tm_yday--;
546
7430375d 547 assert(S_check_tm(local_tm));
a272e669
MS
548
549 return local_tm;
550}