Commit | Line | Data |
---|---|---|
a0d0e21e LW |
1 | =head1 NAME |
2 | ||
3 | perlre - Perl regular expressions | |
4 | ||
5 | =head1 DESCRIPTION | |
6 | ||
cb1a09d0 | 7 | This page describes the syntax of regular expressions in Perl. For a |
5f05dabc | 8 | description of how to I<use> regular expressions in matching |
75e14d17 IZ |
9 | operations, plus various examples of the same, see discussion |
10 | of C<m//>, C<s///>, and C<??> in L<perlop/Regexp Quote-Like Operators>. | |
cb1a09d0 | 11 | |
68dc0745 | 12 | The matching operations can have various modifiers. The modifiers |
5a964f20 | 13 | that relate to the interpretation of the regular expression inside |
75e14d17 IZ |
14 | are listed below. For the modifiers that alter the way regular expression |
15 | is used by Perl, see L<perlop/Regexp Quote-Like Operators>. | |
a0d0e21e | 16 | |
55497cff | 17 | =over 4 |
18 | ||
19 | =item i | |
20 | ||
21 | Do case-insensitive pattern matching. | |
22 | ||
a034a98d DD |
23 | If C<use locale> is in effect, the case map is taken from the current |
24 | locale. See L<perllocale>. | |
25 | ||
54310121 | 26 | =item m |
55497cff | 27 | |
28 | Treat string as multiple lines. That is, change "^" and "$" from matching | |
5f05dabc | 29 | at only the very start or end of the string to the start or end of any |
55497cff | 30 | line anywhere within the string, |
31 | ||
54310121 | 32 | =item s |
55497cff | 33 | |
34 | Treat string as single line. That is, change "." to match any character | |
35 | whatsoever, even a newline, which it normally would not match. | |
36 | ||
5a964f20 TC |
37 | The C</s> and C</m> modifiers both override the C<$*> setting. That is, no matter |
38 | what C<$*> contains, C</s> without C</m> will force "^" to match only at the | |
7b8d334a GS |
39 | beginning of the string and "$" to match only at the end (or just before a |
40 | newline at the end) of the string. Together, as /ms, they let the "." match | |
41 | any character whatsoever, while yet allowing "^" and "$" to match, | |
42 | respectively, just after and just before newlines within the string. | |
43 | ||
54310121 | 44 | =item x |
55497cff | 45 | |
46 | Extend your pattern's legibility by permitting whitespace and comments. | |
47 | ||
48 | =back | |
a0d0e21e LW |
49 | |
50 | These are usually written as "the C</x> modifier", even though the delimiter | |
51 | in question might not actually be a slash. In fact, any of these | |
52 | modifiers may also be embedded within the regular expression itself using | |
53 | the new C<(?...)> construct. See below. | |
54 | ||
4633a7c4 | 55 | The C</x> modifier itself needs a little more explanation. It tells |
55497cff | 56 | the regular expression parser to ignore whitespace that is neither |
57 | backslashed nor within a character class. You can use this to break up | |
4633a7c4 | 58 | your regular expression into (slightly) more readable parts. The C<#> |
54310121 | 59 | character is also treated as a metacharacter introducing a comment, |
55497cff | 60 | just as in ordinary Perl code. This also means that if you want real |
5a964f20 TC |
61 | whitespace or C<#> characters in the pattern (outside of a character |
62 | class, where they are unaffected by C</x>), that you'll either have to | |
55497cff | 63 | escape them or encode them using octal or hex escapes. Taken together, |
64 | these features go a long way towards making Perl's regular expressions | |
0c815be9 HS |
65 | more readable. Note that you have to be careful not to include the |
66 | pattern delimiter in the comment--perl has no way of knowing you did | |
5a964f20 | 67 | not intend to close the pattern early. See the C-comment deletion code |
0c815be9 | 68 | in L<perlop>. |
a0d0e21e LW |
69 | |
70 | =head2 Regular Expressions | |
71 | ||
72 | The patterns used in pattern matching are regular expressions such as | |
5a964f20 | 73 | those supplied in the Version 8 regex routines. (In fact, the |
a0d0e21e LW |
74 | routines are derived (distantly) from Henry Spencer's freely |
75 | redistributable reimplementation of the V8 routines.) | |
76 | See L<Version 8 Regular Expressions> for details. | |
77 | ||
78 | In particular the following metacharacters have their standard I<egrep>-ish | |
79 | meanings: | |
80 | ||
54310121 | 81 | \ Quote the next metacharacter |
a0d0e21e LW |
82 | ^ Match the beginning of the line |
83 | . Match any character (except newline) | |
c07a80fd | 84 | $ Match the end of the line (or before newline at the end) |
a0d0e21e LW |
85 | | Alternation |
86 | () Grouping | |
87 | [] Character class | |
88 | ||
5f05dabc | 89 | By default, the "^" character is guaranteed to match at only the |
90 | beginning of the string, the "$" character at only the end (or before the | |
a0d0e21e LW |
91 | newline at the end) and Perl does certain optimizations with the |
92 | assumption that the string contains only one line. Embedded newlines | |
93 | will not be matched by "^" or "$". You may, however, wish to treat a | |
4a6725af | 94 | string as a multi-line buffer, such that the "^" will match after any |
a0d0e21e LW |
95 | newline within the string, and "$" will match before any newline. At the |
96 | cost of a little more overhead, you can do this by using the /m modifier | |
97 | on the pattern match operator. (Older programs did this by setting C<$*>, | |
5f05dabc | 98 | but this practice is now deprecated.) |
a0d0e21e | 99 | |
4a6725af | 100 | To facilitate multi-line substitutions, the "." character never matches a |
55497cff | 101 | newline unless you use the C</s> modifier, which in effect tells Perl to pretend |
a0d0e21e LW |
102 | the string is a single line--even if it isn't. The C</s> modifier also |
103 | overrides the setting of C<$*>, in case you have some (badly behaved) older | |
104 | code that sets it in another module. | |
105 | ||
106 | The following standard quantifiers are recognized: | |
107 | ||
108 | * Match 0 or more times | |
109 | + Match 1 or more times | |
110 | ? Match 1 or 0 times | |
111 | {n} Match exactly n times | |
112 | {n,} Match at least n times | |
113 | {n,m} Match at least n but not more than m times | |
114 | ||
115 | (If a curly bracket occurs in any other context, it is treated | |
116 | as a regular character.) The "*" modifier is equivalent to C<{0,}>, the "+" | |
25f94b33 | 117 | modifier to C<{1,}>, and the "?" modifier to C<{0,1}>. n and m are limited |
c07a80fd | 118 | to integral values less than 65536. |
a0d0e21e | 119 | |
54310121 | 120 | By default, a quantified subpattern is "greedy", that is, it will match as |
121 | many times as possible (given a particular starting location) while still | |
122 | allowing the rest of the pattern to match. If you want it to match the | |
123 | minimum number of times possible, follow the quantifier with a "?". Note | |
124 | that the meanings don't change, just the "greediness": | |
a0d0e21e LW |
125 | |
126 | *? Match 0 or more times | |
127 | +? Match 1 or more times | |
128 | ?? Match 0 or 1 time | |
129 | {n}? Match exactly n times | |
130 | {n,}? Match at least n times | |
131 | {n,m}? Match at least n but not more than m times | |
132 | ||
5f05dabc | 133 | Because patterns are processed as double quoted strings, the following |
a0d0e21e LW |
134 | also work: |
135 | ||
0f36ee90 | 136 | \t tab (HT, TAB) |
137 | \n newline (LF, NL) | |
138 | \r return (CR) | |
139 | \f form feed (FF) | |
140 | \a alarm (bell) (BEL) | |
141 | \e escape (think troff) (ESC) | |
cb1a09d0 AD |
142 | \033 octal char (think of a PDP-11) |
143 | \x1B hex char | |
a0d0e21e | 144 | \c[ control char |
cb1a09d0 AD |
145 | \l lowercase next char (think vi) |
146 | \u uppercase next char (think vi) | |
147 | \L lowercase till \E (think vi) | |
148 | \U uppercase till \E (think vi) | |
149 | \E end case modification (think vi) | |
5a964f20 | 150 | \Q quote (disable) pattern metacharacters till \E |
a0d0e21e | 151 | |
a034a98d | 152 | If C<use locale> is in effect, the case map used by C<\l>, C<\L>, C<\u> |
7b8d334a | 153 | and C<\U> is taken from the current locale. See L<perllocale>. |
a034a98d | 154 | |
1d2dff63 GS |
155 | You cannot include a literal C<$> or C<@> within a C<\Q> sequence. |
156 | An unescaped C<$> or C<@> interpolates the corresponding variable, | |
157 | while escaping will cause the literal string C<\$> to be matched. | |
158 | You'll need to write something like C<m/\Quser\E\@\Qhost/>. | |
159 | ||
a0d0e21e LW |
160 | In addition, Perl defines the following: |
161 | ||
162 | \w Match a "word" character (alphanumeric plus "_") | |
163 | \W Match a non-word character | |
164 | \s Match a whitespace character | |
165 | \S Match a non-whitespace character | |
166 | \d Match a digit character | |
167 | \D Match a non-digit character | |
168 | ||
5a964f20 | 169 | A C<\w> matches a single alphanumeric character, not a whole |
a034a98d DD |
170 | word. To match a word you'd need to say C<\w+>. If C<use locale> is in |
171 | effect, the list of alphabetic characters generated by C<\w> is taken | |
172 | from the current locale. See L<perllocale>. You may use C<\w>, C<\W>, | |
173 | C<\s>, C<\S>, C<\d>, and C<\D> within character classes (though not as | |
174 | either end of a range). | |
a0d0e21e LW |
175 | |
176 | Perl defines the following zero-width assertions: | |
177 | ||
178 | \b Match a word boundary | |
179 | \B Match a non-(word boundary) | |
5f05dabc | 180 | \A Match at only beginning of string |
181 | \Z Match at only end of string (or before newline at the end) | |
a99df21c | 182 | \G Match only where previous m//g left off (works only with /g) |
a0d0e21e LW |
183 | |
184 | A word boundary (C<\b>) is defined as a spot between two characters that | |
68dc0745 | 185 | has a C<\w> on one side of it and a C<\W> on the other side of it (in |
a0d0e21e LW |
186 | either order), counting the imaginary characters off the beginning and |
187 | end of the string as matching a C<\W>. (Within character classes C<\b> | |
188 | represents backspace rather than a word boundary.) The C<\A> and C<\Z> are | |
5a964f20 | 189 | just like "^" and "$", except that they won't match multiple times when the |
a0d0e21e | 190 | C</m> modifier is used, while "^" and "$" will match at every internal line |
c07a80fd | 191 | boundary. To match the actual end of the string, not ignoring newline, |
a99df21c GS |
192 | you can use C<\Z(?!\n)>. The C<\G> assertion can be used to chain global |
193 | matches (using C<m//g>), as described in | |
e7ea3e70 | 194 | L<perlop/"Regexp Quote-Like Operators">. |
a99df21c | 195 | |
e7ea3e70 | 196 | It is also useful when writing C<lex>-like scanners, when you have several |
5a964f20 | 197 | patterns that you want to match against consequent substrings of your |
e7ea3e70 | 198 | string, see the previous reference. |
44a8e56a | 199 | The actual location where C<\G> will match can also be influenced |
200 | by using C<pos()> as an lvalue. See L<perlfunc/pos>. | |
a0d0e21e | 201 | |
0f36ee90 | 202 | When the bracketing construct C<( ... )> is used, \E<lt>digitE<gt> matches the |
cb1a09d0 | 203 | digit'th substring. Outside of the pattern, always use "$" instead of "\" |
0f36ee90 | 204 | in front of the digit. (While the \E<lt>digitE<gt> notation can on rare occasion work |
cb1a09d0 | 205 | outside the current pattern, this should not be relied upon. See the |
0f36ee90 | 206 | WARNING below.) The scope of $E<lt>digitE<gt> (and C<$`>, C<$&>, and C<$'>) |
cb1a09d0 AD |
207 | extends to the end of the enclosing BLOCK or eval string, or to the next |
208 | successful pattern match, whichever comes first. If you want to use | |
5f05dabc | 209 | parentheses to delimit a subpattern (e.g., a set of alternatives) without |
84dc3c4d | 210 | saving it as a subpattern, follow the ( with a ?:. |
cb1a09d0 AD |
211 | |
212 | You may have as many parentheses as you wish. If you have more | |
a0d0e21e LW |
213 | than 9 substrings, the variables $10, $11, ... refer to the |
214 | corresponding substring. Within the pattern, \10, \11, etc. refer back | |
5f05dabc | 215 | to substrings if there have been at least that many left parentheses before |
c07a80fd | 216 | the backreference. Otherwise (for backward compatibility) \10 is the |
a0d0e21e LW |
217 | same as \010, a backspace, and \11 the same as \011, a tab. And so |
218 | on. (\1 through \9 are always backreferences.) | |
219 | ||
220 | C<$+> returns whatever the last bracket match matched. C<$&> returns the | |
0f36ee90 | 221 | entire matched string. (C<$0> used to return the same thing, but not any |
a0d0e21e LW |
222 | more.) C<$`> returns everything before the matched string. C<$'> returns |
223 | everything after the matched string. Examples: | |
224 | ||
225 | s/^([^ ]*) *([^ ]*)/$2 $1/; # swap first two words | |
226 | ||
227 | if (/Time: (..):(..):(..)/) { | |
228 | $hours = $1; | |
229 | $minutes = $2; | |
230 | $seconds = $3; | |
231 | } | |
232 | ||
68dc0745 | 233 | Once perl sees that you need one of C<$&>, C<$`> or C<$'> anywhere in |
234 | the program, it has to provide them on each and every pattern match. | |
235 | This can slow your program down. The same mechanism that handles | |
236 | these provides for the use of $1, $2, etc., so you pay the same price | |
5a964f20 TC |
237 | for each pattern that contains capturing parentheses. But if you never |
238 | use $&, etc., in your script, then patterns I<without> capturing | |
68dc0745 | 239 | parentheses won't be penalized. So avoid $&, $', and $` if you can, |
240 | but if you can't (and some algorithms really appreciate them), once | |
241 | you've used them once, use them at will, because you've already paid | |
5a964f20 | 242 | the price. As of 5.005, $& is not so costly as the other two. |
68dc0745 | 243 | |
5a964f20 | 244 | Backslashed metacharacters in Perl are |
201ecf35 AL |
245 | alphanumeric, such as C<\b>, C<\w>, C<\n>. Unlike some other regular |
246 | expression languages, there are no backslashed symbols that aren't | |
247 | alphanumeric. So anything that looks like \\, \(, \), \E<lt>, \E<gt>, | |
248 | \{, or \} is always interpreted as a literal character, not a | |
249 | metacharacter. This was once used in a common idiom to disable or | |
250 | quote the special meanings of regular expression metacharacters in a | |
5a964f20 | 251 | string that you want to use for a pattern. Simply quote all |
a0d0e21e LW |
252 | non-alphanumeric characters: |
253 | ||
254 | $pattern =~ s/(\W)/\\$1/g; | |
255 | ||
201ecf35 | 256 | Now it is much more common to see either the quotemeta() function or |
7b8d334a | 257 | the C<\Q> escape sequence used to disable all metacharacters' special |
201ecf35 | 258 | meanings like this: |
a0d0e21e LW |
259 | |
260 | /$unquoted\Q$quoted\E$unquoted/ | |
261 | ||
5f05dabc | 262 | Perl defines a consistent extension syntax for regular expressions. |
263 | The syntax is a pair of parentheses with a question mark as the first | |
264 | thing within the parentheses (this was a syntax error in older | |
265 | versions of Perl). The character after the question mark gives the | |
266 | function of the extension. Several extensions are already supported: | |
a0d0e21e LW |
267 | |
268 | =over 10 | |
269 | ||
cc6b7395 | 270 | =item C<(?#text)> |
a0d0e21e | 271 | |
cb1a09d0 | 272 | A comment. The text is ignored. If the C</x> switch is used to enable |
259138e3 GS |
273 | whitespace formatting, a simple C<#> will suffice. Note that perl closes |
274 | the comment as soon as it sees a C<)>, so there is no way to put a literal | |
275 | C<)> in the comment. | |
a0d0e21e | 276 | |
5a964f20 | 277 | =item C<(?:pattern)> |
a0d0e21e | 278 | |
5a964f20 TC |
279 | This is for clustering, not capturing; it groups subexpressions like |
280 | "()", but doesn't make backreferences as "()" does. So | |
a0d0e21e | 281 | |
5a964f20 | 282 | @fields = split(/\b(?:a|b|c)\b/) |
a0d0e21e LW |
283 | |
284 | is like | |
285 | ||
5a964f20 | 286 | @fields = split(/\b(a|b|c)\b/) |
a0d0e21e LW |
287 | |
288 | but doesn't spit out extra fields. | |
289 | ||
5a964f20 | 290 | =item C<(?=pattern)> |
a0d0e21e LW |
291 | |
292 | A zero-width positive lookahead assertion. For example, C</\w+(?=\t)/> | |
293 | matches a word followed by a tab, without including the tab in C<$&>. | |
294 | ||
5a964f20 | 295 | =item C<(?!pattern)> |
a0d0e21e LW |
296 | |
297 | A zero-width negative lookahead assertion. For example C</foo(?!bar)/> | |
298 | matches any occurrence of "foo" that isn't followed by "bar". Note | |
299 | however that lookahead and lookbehind are NOT the same thing. You cannot | |
7b8d334a GS |
300 | use this for lookbehind. |
301 | ||
5a964f20 | 302 | If you are looking for a "bar" that isn't preceded by a "foo", C</(?!foo)bar/> |
7b8d334a GS |
303 | will not do what you want. That's because the C<(?!foo)> is just saying that |
304 | the next thing cannot be "foo"--and it's not, it's a "bar", so "foobar" will | |
305 | match. You would have to do something like C</(?!foo)...bar/> for that. We | |
306 | say "like" because there's the case of your "bar" not having three characters | |
307 | before it. You could cover that this way: C</(?:(?!foo)...|^.{0,2})bar/>. | |
308 | Sometimes it's still easier just to say: | |
a0d0e21e | 309 | |
a3cb178b | 310 | if (/bar/ && $` !~ /foo$/) |
a0d0e21e | 311 | |
c277df42 IZ |
312 | For lookbehind see below. |
313 | ||
5a964f20 | 314 | =item C<(?E<lt>=pattern)> |
c277df42 | 315 | |
5a964f20 | 316 | A zero-width positive lookbehind assertion. For example, C</(?E<lt>=\t)\w+/> |
c277df42 IZ |
317 | matches a word following a tab, without including the tab in C<$&>. |
318 | Works only for fixed-width lookbehind. | |
319 | ||
5a964f20 | 320 | =item C<(?<!pattern)> |
c277df42 IZ |
321 | |
322 | A zero-width negative lookbehind assertion. For example C</(?<!bar)foo/> | |
323 | matches any occurrence of "foo" that isn't following "bar". | |
324 | Works only for fixed-width lookbehind. | |
325 | ||
cc6b7395 | 326 | =item C<(?{ code })> |
c277df42 IZ |
327 | |
328 | Experimental "evaluate any Perl code" zero-width assertion. Always | |
cc6b7395 IZ |
329 | succeeds. C<code> is not interpolated. Currently the rules to |
330 | determine where the C<code> ends are somewhat convoluted. | |
c277df42 | 331 | |
5a964f20 TC |
332 | B<WARNING>: This is a grave security risk for arbitrarily interpolated |
333 | patterns. It introduces security holes in previously safe programs. | |
334 | A fix to Perl, and to this documentation, will be forthcoming prior | |
335 | to the actual 5.005 release. | |
c277df42 | 336 | |
5a964f20 TC |
337 | =item C<(?E<gt>pattern)> |
338 | ||
339 | An "independent" subexpression. Matches the substring that a | |
340 | I<standalone> C<pattern> would match if anchored at the given position, | |
c277df42 IZ |
341 | B<and only this substring>. |
342 | ||
343 | Say, C<^(?E<gt>a*)ab> will never match, since C<(?E<gt>a*)> (anchored | |
5a964f20 | 344 | at the beginning of string, as above) will match I<all> characters |
c277df42 IZ |
345 | C<a> at the beginning of string, leaving no C<a> for C<ab> to match. |
346 | In contrast, C<a*ab> will match the same as C<a+b>, since the match of | |
347 | the subgroup C<a*> is influenced by the following group C<ab> (see | |
348 | L<"Backtracking">). In particular, C<a*> inside C<a*ab> will match | |
349 | less characters that a standalone C<a*>, since this makes the tail match. | |
350 | ||
5a964f20 | 351 | An effect similar to C<(?E<gt>pattern)> may be achieved by |
c277df42 | 352 | |
5a964f20 | 353 | (?=(pattern))\1 |
c277df42 IZ |
354 | |
355 | since the lookahead is in I<"logical"> context, thus matches the same | |
356 | substring as a standalone C<a+>. The following C<\1> eats the matched | |
357 | string, thus making a zero-length assertion into an analogue of | |
5a964f20 TC |
358 | C<(?>...)>. (The difference between these two constructs is that the |
359 | second one uses a catching group, thus shifting ordinals of | |
c277df42 IZ |
360 | backreferences in the rest of a regular expression.) |
361 | ||
5a964f20 TC |
362 | This construct is useful for optimizations of "eternal" |
363 | matches, because it will not backtrack (see L<"Backtracking">). | |
c277df42 | 364 | |
5a964f20 | 365 | m{ \( ( |
c277df42 IZ |
366 | [^()]+ |
367 | | | |
368 | \( [^()]* \) | |
369 | )+ | |
5a964f20 TC |
370 | \) |
371 | }x | |
372 | ||
373 | That will efficiently match a nonempty group with matching | |
374 | two-or-less-level-deep parentheses. However, if there is no such group, | |
375 | it will take virtually forever on a long string. That's because there are | |
376 | so many different ways to split a long string into several substrings. | |
377 | This is essentially what C<(.+)+> is doing, and this is a subpattern | |
378 | of the above pattern. Consider that C<((()aaaaaaaaaaaaaaaaaa> on the | |
379 | pattern above detects no-match in several seconds, but that each extra | |
380 | letter doubles this time. This exponential performance will make it | |
381 | appear that your program has hung. | |
382 | ||
383 | However, a tiny modification of this pattern | |
384 | ||
385 | m{ \( ( | |
c277df42 IZ |
386 | (?> [^()]+ ) |
387 | | | |
388 | \( [^()]* \) | |
389 | )+ | |
5a964f20 TC |
390 | \) |
391 | }x | |
c277df42 | 392 | |
5a964f20 TC |
393 | which uses C<(?E<gt>...)> matches exactly when the one above does (verifying |
394 | this yourself would be a productive exercise), but finishes in a fourth | |
395 | the time when used on a similar string with 1000000 C<a>s. Be aware, | |
396 | however, that this pattern currently triggers a warning message under | |
397 | B<-w> saying it C<"matches the null string many times">): | |
c277df42 | 398 | |
5a964f20 | 399 | On simple groups, such as the pattern C<(?> [^()]+ )>, a comparable |
c277df42 IZ |
400 | effect may be achieved by negative lookahead, as in C<[^()]+ (?! [^()] )>. |
401 | This was only 4 times slower on a string with 1000000 C<a>s. | |
402 | ||
5a964f20 | 403 | =item C<(?(condition)yes-pattern|no-pattern)> |
c277df42 | 404 | |
5a964f20 | 405 | =item C<(?(condition)yes-pattern)> |
c277df42 IZ |
406 | |
407 | Conditional expression. C<(condition)> should be either an integer in | |
408 | parentheses (which is valid if the corresponding pair of parentheses | |
409 | matched), or lookahead/lookbehind/evaluate zero-width assertion. | |
410 | ||
411 | Say, | |
412 | ||
5a964f20 | 413 | m{ ( \( )? |
c277df42 | 414 | [^()]+ |
5a964f20 TC |
415 | (?(1) \) ) |
416 | }x | |
c277df42 IZ |
417 | |
418 | matches a chunk of non-parentheses, possibly included in parentheses | |
419 | themselves. | |
a0d0e21e | 420 | |
5a964f20 | 421 | =item C<(?imsx)> |
a0d0e21e LW |
422 | |
423 | One or more embedded pattern-match modifiers. This is particularly | |
424 | useful for patterns that are specified in a table somewhere, some of | |
425 | which want to be case sensitive, and some of which don't. The case | |
5f05dabc | 426 | insensitive ones need to include merely C<(?i)> at the front of the |
a0d0e21e LW |
427 | pattern. For example: |
428 | ||
429 | $pattern = "foobar"; | |
5a964f20 | 430 | if ( /$pattern/i ) { } |
a0d0e21e LW |
431 | |
432 | # more flexible: | |
433 | ||
434 | $pattern = "(?i)foobar"; | |
5a964f20 | 435 | if ( /$pattern/ ) { } |
a0d0e21e | 436 | |
5a964f20 | 437 | These modifiers are localized inside an enclosing group (if any). Say, |
c277df42 IZ |
438 | |
439 | ( (?i) blah ) \s+ \1 | |
440 | ||
441 | (assuming C<x> modifier, and no C<i> modifier outside of this group) | |
442 | will match a repeated (I<including the case>!) word C<blah> in any | |
443 | case. | |
444 | ||
a0d0e21e LW |
445 | =back |
446 | ||
5a964f20 TC |
447 | A question mark was chosen for this and for the new minimal-matching |
448 | construct because 1) question mark is pretty rare in older regular | |
449 | expressions, and 2) whenever you see one, you should stop and "question" | |
450 | exactly what is going on. That's psychology... | |
a0d0e21e | 451 | |
c07a80fd | 452 | =head2 Backtracking |
453 | ||
c277df42 | 454 | A fundamental feature of regular expression matching involves the |
5a964f20 | 455 | notion called I<backtracking>, which is currently used (when needed) |
c277df42 IZ |
456 | by all regular expression quantifiers, namely C<*>, C<*?>, C<+>, |
457 | C<+?>, C<{n,m}>, and C<{n,m}?>. | |
c07a80fd | 458 | |
459 | For a regular expression to match, the I<entire> regular expression must | |
460 | match, not just part of it. So if the beginning of a pattern containing a | |
461 | quantifier succeeds in a way that causes later parts in the pattern to | |
462 | fail, the matching engine backs up and recalculates the beginning | |
463 | part--that's why it's called backtracking. | |
464 | ||
465 | Here is an example of backtracking: Let's say you want to find the | |
466 | word following "foo" in the string "Food is on the foo table.": | |
467 | ||
468 | $_ = "Food is on the foo table."; | |
469 | if ( /\b(foo)\s+(\w+)/i ) { | |
470 | print "$2 follows $1.\n"; | |
471 | } | |
472 | ||
473 | When the match runs, the first part of the regular expression (C<\b(foo)>) | |
474 | finds a possible match right at the beginning of the string, and loads up | |
475 | $1 with "Foo". However, as soon as the matching engine sees that there's | |
476 | no whitespace following the "Foo" that it had saved in $1, it realizes its | |
68dc0745 | 477 | mistake and starts over again one character after where it had the |
c07a80fd | 478 | tentative match. This time it goes all the way until the next occurrence |
479 | of "foo". The complete regular expression matches this time, and you get | |
480 | the expected output of "table follows foo." | |
481 | ||
482 | Sometimes minimal matching can help a lot. Imagine you'd like to match | |
483 | everything between "foo" and "bar". Initially, you write something | |
484 | like this: | |
485 | ||
486 | $_ = "The food is under the bar in the barn."; | |
487 | if ( /foo(.*)bar/ ) { | |
488 | print "got <$1>\n"; | |
489 | } | |
490 | ||
491 | Which perhaps unexpectedly yields: | |
492 | ||
493 | got <d is under the bar in the > | |
494 | ||
495 | That's because C<.*> was greedy, so you get everything between the | |
496 | I<first> "foo" and the I<last> "bar". In this case, it's more effective | |
497 | to use minimal matching to make sure you get the text between a "foo" | |
498 | and the first "bar" thereafter. | |
499 | ||
500 | if ( /foo(.*?)bar/ ) { print "got <$1>\n" } | |
501 | got <d is under the > | |
502 | ||
503 | Here's another example: let's say you'd like to match a number at the end | |
504 | of a string, and you also want to keep the preceding part the match. | |
505 | So you write this: | |
506 | ||
507 | $_ = "I have 2 numbers: 53147"; | |
508 | if ( /(.*)(\d*)/ ) { # Wrong! | |
509 | print "Beginning is <$1>, number is <$2>.\n"; | |
510 | } | |
511 | ||
512 | That won't work at all, because C<.*> was greedy and gobbled up the | |
513 | whole string. As C<\d*> can match on an empty string the complete | |
514 | regular expression matched successfully. | |
515 | ||
8e1088bc | 516 | Beginning is <I have 2 numbers: 53147>, number is <>. |
c07a80fd | 517 | |
518 | Here are some variants, most of which don't work: | |
519 | ||
520 | $_ = "I have 2 numbers: 53147"; | |
521 | @pats = qw{ | |
522 | (.*)(\d*) | |
523 | (.*)(\d+) | |
524 | (.*?)(\d*) | |
525 | (.*?)(\d+) | |
526 | (.*)(\d+)$ | |
527 | (.*?)(\d+)$ | |
528 | (.*)\b(\d+)$ | |
529 | (.*\D)(\d+)$ | |
530 | }; | |
531 | ||
532 | for $pat (@pats) { | |
533 | printf "%-12s ", $pat; | |
534 | if ( /$pat/ ) { | |
535 | print "<$1> <$2>\n"; | |
536 | } else { | |
537 | print "FAIL\n"; | |
538 | } | |
539 | } | |
540 | ||
541 | That will print out: | |
542 | ||
543 | (.*)(\d*) <I have 2 numbers: 53147> <> | |
544 | (.*)(\d+) <I have 2 numbers: 5314> <7> | |
545 | (.*?)(\d*) <> <> | |
546 | (.*?)(\d+) <I have > <2> | |
547 | (.*)(\d+)$ <I have 2 numbers: 5314> <7> | |
548 | (.*?)(\d+)$ <I have 2 numbers: > <53147> | |
549 | (.*)\b(\d+)$ <I have 2 numbers: > <53147> | |
550 | (.*\D)(\d+)$ <I have 2 numbers: > <53147> | |
551 | ||
552 | As you see, this can be a bit tricky. It's important to realize that a | |
553 | regular expression is merely a set of assertions that gives a definition | |
554 | of success. There may be 0, 1, or several different ways that the | |
555 | definition might succeed against a particular string. And if there are | |
5a964f20 TC |
556 | multiple ways it might succeed, you need to understand backtracking to |
557 | know which variety of success you will achieve. | |
c07a80fd | 558 | |
559 | When using lookahead assertions and negations, this can all get even | |
54310121 | 560 | tricker. Imagine you'd like to find a sequence of non-digits not |
c07a80fd | 561 | followed by "123". You might try to write that as |
562 | ||
563 | $_ = "ABC123"; | |
564 | if ( /^\D*(?!123)/ ) { # Wrong! | |
565 | print "Yup, no 123 in $_\n"; | |
566 | } | |
567 | ||
568 | But that isn't going to match; at least, not the way you're hoping. It | |
569 | claims that there is no 123 in the string. Here's a clearer picture of | |
570 | why it that pattern matches, contrary to popular expectations: | |
571 | ||
572 | $x = 'ABC123' ; | |
573 | $y = 'ABC445' ; | |
574 | ||
575 | print "1: got $1\n" if $x =~ /^(ABC)(?!123)/ ; | |
576 | print "2: got $1\n" if $y =~ /^(ABC)(?!123)/ ; | |
577 | ||
578 | print "3: got $1\n" if $x =~ /^(\D*)(?!123)/ ; | |
579 | print "4: got $1\n" if $y =~ /^(\D*)(?!123)/ ; | |
580 | ||
581 | This prints | |
582 | ||
583 | 2: got ABC | |
584 | 3: got AB | |
585 | 4: got ABC | |
586 | ||
5f05dabc | 587 | You might have expected test 3 to fail because it seems to a more |
c07a80fd | 588 | general purpose version of test 1. The important difference between |
589 | them is that test 3 contains a quantifier (C<\D*>) and so can use | |
590 | backtracking, whereas test 1 will not. What's happening is | |
591 | that you've asked "Is it true that at the start of $x, following 0 or more | |
5f05dabc | 592 | non-digits, you have something that's not 123?" If the pattern matcher had |
c07a80fd | 593 | let C<\D*> expand to "ABC", this would have caused the whole pattern to |
54310121 | 594 | fail. |
c07a80fd | 595 | The search engine will initially match C<\D*> with "ABC". Then it will |
5a964f20 | 596 | try to match C<(?!123> with "123", which of course fails. But because |
c07a80fd | 597 | a quantifier (C<\D*>) has been used in the regular expression, the |
598 | search engine can backtrack and retry the match differently | |
54310121 | 599 | in the hope of matching the complete regular expression. |
c07a80fd | 600 | |
5a964f20 TC |
601 | The pattern really, I<really> wants to succeed, so it uses the |
602 | standard pattern back-off-and-retry and lets C<\D*> expand to just "AB" this | |
c07a80fd | 603 | time. Now there's indeed something following "AB" that is not |
604 | "123". It's in fact "C123", which suffices. | |
605 | ||
606 | We can deal with this by using both an assertion and a negation. We'll | |
607 | say that the first part in $1 must be followed by a digit, and in fact, it | |
608 | must also be followed by something that's not "123". Remember that the | |
609 | lookaheads are zero-width expressions--they only look, but don't consume | |
610 | any of the string in their match. So rewriting this way produces what | |
611 | you'd expect; that is, case 5 will fail, but case 6 succeeds: | |
612 | ||
613 | print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/ ; | |
614 | print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/ ; | |
615 | ||
616 | 6: got ABC | |
617 | ||
5a964f20 | 618 | In other words, the two zero-width assertions next to each other work as though |
c07a80fd | 619 | they're ANDed together, just as you'd use any builtin assertions: C</^$/> |
620 | matches only if you're at the beginning of the line AND the end of the | |
621 | line simultaneously. The deeper underlying truth is that juxtaposition in | |
622 | regular expressions always means AND, except when you write an explicit OR | |
623 | using the vertical bar. C</ab/> means match "a" AND (then) match "b", | |
624 | although the attempted matches are made at different positions because "a" | |
625 | is not a zero-width assertion, but a one-width assertion. | |
626 | ||
627 | One warning: particularly complicated regular expressions can take | |
628 | exponential time to solve due to the immense number of possible ways they | |
629 | can use backtracking to try match. For example this will take a very long | |
630 | time to run | |
631 | ||
632 | /((a{0,5}){0,5}){0,5}/ | |
633 | ||
634 | And if you used C<*>'s instead of limiting it to 0 through 5 matches, then | |
635 | it would take literally forever--or until you ran out of stack space. | |
636 | ||
c277df42 | 637 | A powerful tool for optimizing such beasts is "independent" groups, |
5a964f20 | 638 | which do not backtrace (see L<C<(?E<gt>pattern)>>). Note also that |
c277df42 IZ |
639 | zero-length lookahead/lookbehind assertions will not backtrace to make |
640 | the tail match, since they are in "logical" context: only the fact | |
641 | whether they match or not is considered relevant. For an example | |
642 | where side-effects of a lookahead I<might> have influenced the | |
5a964f20 | 643 | following match, see L<C<(?E<gt>pattern)>>. |
c277df42 | 644 | |
a0d0e21e LW |
645 | =head2 Version 8 Regular Expressions |
646 | ||
5a964f20 | 647 | In case you're not familiar with the "regular" Version 8 regex |
a0d0e21e LW |
648 | routines, here are the pattern-matching rules not described above. |
649 | ||
54310121 | 650 | Any single character matches itself, unless it is a I<metacharacter> |
a0d0e21e | 651 | with a special meaning described here or above. You can cause |
5a964f20 | 652 | characters that normally function as metacharacters to be interpreted |
5f05dabc | 653 | literally by prefixing them with a "\" (e.g., "\." matches a ".", not any |
a0d0e21e LW |
654 | character; "\\" matches a "\"). A series of characters matches that |
655 | series of characters in the target string, so the pattern C<blurfl> | |
656 | would match "blurfl" in the target string. | |
657 | ||
658 | You can specify a character class, by enclosing a list of characters | |
5a964f20 | 659 | in C<[]>, which will match any one character from the list. If the |
a0d0e21e LW |
660 | first character after the "[" is "^", the class matches any character not |
661 | in the list. Within a list, the "-" character is used to specify a | |
5a964f20 | 662 | range, so that C<a-z> represents all characters between "a" and "z", |
84850974 DD |
663 | inclusive. If you want "-" itself to be a member of a class, put it |
664 | at the start or end of the list, or escape it with a backslash. (The | |
665 | following all specify the same class of three characters: C<[-az]>, | |
666 | C<[az-]>, and C<[a\-z]>. All are different from C<[a-z]>, which | |
667 | specifies a class containing twenty-six characters.) | |
a0d0e21e | 668 | |
54310121 | 669 | Characters may be specified using a metacharacter syntax much like that |
a0d0e21e LW |
670 | used in C: "\n" matches a newline, "\t" a tab, "\r" a carriage return, |
671 | "\f" a form feed, etc. More generally, \I<nnn>, where I<nnn> is a string | |
672 | of octal digits, matches the character whose ASCII value is I<nnn>. | |
0f36ee90 | 673 | Similarly, \xI<nn>, where I<nn> are hexadecimal digits, matches the |
a0d0e21e | 674 | character whose ASCII value is I<nn>. The expression \cI<x> matches the |
54310121 | 675 | ASCII character control-I<x>. Finally, the "." metacharacter matches any |
a0d0e21e LW |
676 | character except "\n" (unless you use C</s>). |
677 | ||
678 | You can specify a series of alternatives for a pattern using "|" to | |
679 | separate them, so that C<fee|fie|foe> will match any of "fee", "fie", | |
5a964f20 | 680 | or "foe" in the target string (as would C<f(e|i|o)e>). The |
a0d0e21e LW |
681 | first alternative includes everything from the last pattern delimiter |
682 | ("(", "[", or the beginning of the pattern) up to the first "|", and | |
683 | the last alternative contains everything from the last "|" to the next | |
684 | pattern delimiter. For this reason, it's common practice to include | |
685 | alternatives in parentheses, to minimize confusion about where they | |
a3cb178b GS |
686 | start and end. |
687 | ||
5a964f20 | 688 | Alternatives are tried from left to right, so the first |
a3cb178b GS |
689 | alternative found for which the entire expression matches, is the one that |
690 | is chosen. This means that alternatives are not necessarily greedy. For | |
691 | example: when mathing C<foo|foot> against "barefoot", only the "foo" | |
692 | part will match, as that is the first alternative tried, and it successfully | |
693 | matches the target string. (This might not seem important, but it is | |
694 | important when you are capturing matched text using parentheses.) | |
695 | ||
5a964f20 | 696 | Also remember that "|" is interpreted as a literal within square brackets, |
a3cb178b | 697 | so if you write C<[fee|fie|foe]> you're really only matching C<[feio|]>. |
a0d0e21e | 698 | |
54310121 | 699 | Within a pattern, you may designate subpatterns for later reference by |
a0d0e21e | 700 | enclosing them in parentheses, and you may refer back to the I<n>th |
54310121 | 701 | subpattern later in the pattern using the metacharacter \I<n>. |
702 | Subpatterns are numbered based on the left to right order of their | |
5a964f20 | 703 | opening parenthesis. A backreference matches whatever |
54310121 | 704 | actually matched the subpattern in the string being examined, not the |
705 | rules for that subpattern. Therefore, C<(0|0x)\d*\s\1\d*> will | |
5a964f20 | 706 | match "0x1234 0x4321", but not "0x1234 01234", because subpattern 1 |
748a9306 | 707 | actually matched "0x", even though the rule C<0|0x> could |
a0d0e21e | 708 | potentially match the leading 0 in the second number. |
cb1a09d0 AD |
709 | |
710 | =head2 WARNING on \1 vs $1 | |
711 | ||
5a964f20 | 712 | Some people get too used to writing things like: |
cb1a09d0 AD |
713 | |
714 | $pattern =~ s/(\W)/\\\1/g; | |
715 | ||
716 | This is grandfathered for the RHS of a substitute to avoid shocking the | |
717 | B<sed> addicts, but it's a dirty habit to get into. That's because in | |
5f05dabc | 718 | PerlThink, the righthand side of a C<s///> is a double-quoted string. C<\1> in |
cb1a09d0 AD |
719 | the usual double-quoted string means a control-A. The customary Unix |
720 | meaning of C<\1> is kludged in for C<s///>. However, if you get into the habit | |
721 | of doing that, you get yourself into trouble if you then add an C</e> | |
722 | modifier. | |
723 | ||
5a964f20 | 724 | s/(\d+)/ \1 + 1 /eg; # causes warning under -w |
cb1a09d0 AD |
725 | |
726 | Or if you try to do | |
727 | ||
728 | s/(\d+)/\1000/; | |
729 | ||
730 | You can't disambiguate that by saying C<\{1}000>, whereas you can fix it with | |
731 | C<${1}000>. Basically, the operation of interpolation should not be confused | |
732 | with the operation of matching a backreference. Certainly they mean two | |
733 | different things on the I<left> side of the C<s///>. | |
9fa51da4 CS |
734 | |
735 | =head2 SEE ALSO | |
736 | ||
9b599b2a GS |
737 | L<perlop/"Regexp Quote-Like Operators">. |
738 | ||
739 | L<perlfunc/pos>. | |
740 | ||
741 | L<perllocale>. | |
742 | ||
5a964f20 | 743 | I<Mastering Regular Expressions> (see L<perlbook>) by Jeffrey Friedl. |