This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Remove unused USING_WIDE code from win32 and wince branches
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
4bb101f2 3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
241d1a3b 4 * 2000, 2001, 2002, 2003, 2004, 2005, by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 */
15
166f8a29
DM
16/* This file contains pp ("push/pop") functions that
17 * execute the opcodes that make up a perl program. A typical pp function
18 * expects to find its arguments on the stack, and usually pushes its
19 * results onto the stack, hence the 'pp' terminology. Each OP structure
20 * contains a pointer to the relevant pp_foo() function.
21 *
22 * This particular file just contains pp_sort(), which is complex
23 * enough to merit its own file! See the other pp*.c files for the rest of
24 * the pp_ functions.
25 */
26
84d4ea48
JH
27#include "EXTERN.h"
28#define PERL_IN_PP_SORT_C
29#include "perl.h"
30
42165d27
VK
31#if defined(UNDER_CE)
32/* looks like 'small' is reserved word for WINCE (or somesuch)*/
33#define small xsmall
34#endif
35
84d4ea48
JH
36static I32 sortcv(pTHX_ SV *a, SV *b);
37static I32 sortcv_stacked(pTHX_ SV *a, SV *b);
38static I32 sortcv_xsub(pTHX_ SV *a, SV *b);
39static I32 sv_ncmp(pTHX_ SV *a, SV *b);
40static I32 sv_i_ncmp(pTHX_ SV *a, SV *b);
41static I32 amagic_ncmp(pTHX_ SV *a, SV *b);
42static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b);
43static I32 amagic_cmp(pTHX_ SV *a, SV *b);
44static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b);
45
46#define sv_cmp_static Perl_sv_cmp
47#define sv_cmp_locale_static Perl_sv_cmp_locale
48
5fe61d93
SF
49#define dSORTHINTS SV *hintsv = GvSV(gv_fetchpv("sort::hints", GV_ADDMULTI, SVt_IV))
50#define SORTHINTS (SvIOK(hintsv) ? ((I32)SvIV(hintsv)) : 0)
84d4ea48 51
c53fc8a6
JH
52#ifndef SMALLSORT
53#define SMALLSORT (200)
54#endif
55
84d4ea48
JH
56/*
57 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
58 *
59 * The original code was written in conjunction with BSD Computer Software
60 * Research Group at University of California, Berkeley.
61 *
62 * See also: "Optimistic Merge Sort" (SODA '92)
63 *
64 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
65 *
66 * The code can be distributed under the same terms as Perl itself.
67 *
68 */
69
84d4ea48
JH
70
71typedef char * aptr; /* pointer for arithmetic on sizes */
72typedef SV * gptr; /* pointers in our lists */
73
74/* Binary merge internal sort, with a few special mods
75** for the special perl environment it now finds itself in.
76**
77** Things that were once options have been hotwired
78** to values suitable for this use. In particular, we'll always
79** initialize looking for natural runs, we'll always produce stable
80** output, and we'll always do Peter McIlroy's binary merge.
81*/
82
83/* Pointer types for arithmetic and storage and convenience casts */
84
85#define APTR(P) ((aptr)(P))
86#define GPTP(P) ((gptr *)(P))
87#define GPPP(P) ((gptr **)(P))
88
89
90/* byte offset from pointer P to (larger) pointer Q */
91#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
92
93#define PSIZE sizeof(gptr)
94
95/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
96
97#ifdef PSHIFT
98#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
99#define PNBYTE(N) ((N) << (PSHIFT))
100#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
101#else
102/* Leave optimization to compiler */
103#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
104#define PNBYTE(N) ((N) * (PSIZE))
105#define PINDEX(P, N) (GPTP(P) + (N))
106#endif
107
108/* Pointer into other corresponding to pointer into this */
109#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
110
111#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
112
113
114/* Runs are identified by a pointer in the auxilliary list.
115** The pointer is at the start of the list,
116** and it points to the start of the next list.
117** NEXT is used as an lvalue, too.
118*/
119
120#define NEXT(P) (*GPPP(P))
121
122
123/* PTHRESH is the minimum number of pairs with the same sense to justify
124** checking for a run and extending it. Note that PTHRESH counts PAIRS,
125** not just elements, so PTHRESH == 8 means a run of 16.
126*/
127
128#define PTHRESH (8)
129
130/* RTHRESH is the number of elements in a run that must compare low
131** to the low element from the opposing run before we justify
132** doing a binary rampup instead of single stepping.
133** In random input, N in a row low should only happen with
134** probability 2^(1-N), so we can risk that we are dealing
135** with orderly input without paying much when we aren't.
136*/
137
138#define RTHRESH (6)
139
140
141/*
142** Overview of algorithm and variables.
143** The array of elements at list1 will be organized into runs of length 2,
144** or runs of length >= 2 * PTHRESH. We only try to form long runs when
145** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
146**
147** Unless otherwise specified, pair pointers address the first of two elements.
148**
a0288114
AL
149** b and b+1 are a pair that compare with sense "sense".
150** b is the "bottom" of adjacent pairs that might form a longer run.
84d4ea48
JH
151**
152** p2 parallels b in the list2 array, where runs are defined by
153** a pointer chain.
154**
a0288114 155** t represents the "top" of the adjacent pairs that might extend
84d4ea48
JH
156** the run beginning at b. Usually, t addresses a pair
157** that compares with opposite sense from (b,b+1).
158** However, it may also address a singleton element at the end of list1,
a0288114 159** or it may be equal to "last", the first element beyond list1.
84d4ea48
JH
160**
161** r addresses the Nth pair following b. If this would be beyond t,
162** we back it off to t. Only when r is less than t do we consider the
163** run long enough to consider checking.
164**
165** q addresses a pair such that the pairs at b through q already form a run.
166** Often, q will equal b, indicating we only are sure of the pair itself.
167** However, a search on the previous cycle may have revealed a longer run,
168** so q may be greater than b.
169**
170** p is used to work back from a candidate r, trying to reach q,
171** which would mean b through r would be a run. If we discover such a run,
172** we start q at r and try to push it further towards t.
173** If b through r is NOT a run, we detect the wrong order at (p-1,p).
174** In any event, after the check (if any), we have two main cases.
175**
176** 1) Short run. b <= q < p <= r <= t.
177** b through q is a run (perhaps trivial)
178** q through p are uninteresting pairs
179** p through r is a run
180**
181** 2) Long run. b < r <= q < t.
182** b through q is a run (of length >= 2 * PTHRESH)
183**
184** Note that degenerate cases are not only possible, but likely.
185** For example, if the pair following b compares with opposite sense,
186** then b == q < p == r == t.
187*/
188
189
957d8989 190static IV
84d4ea48
JH
191dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
192{
957d8989 193 I32 sense;
84d4ea48
JH
194 register gptr *b, *p, *q, *t, *p2;
195 register gptr c, *last, *r;
196 gptr *savep;
957d8989 197 IV runs = 0;
84d4ea48
JH
198
199 b = list1;
200 last = PINDEX(b, nmemb);
201 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
202 for (p2 = list2; b < last; ) {
203 /* We just started, or just reversed sense.
204 ** Set t at end of pairs with the prevailing sense.
205 */
206 for (p = b+2, t = p; ++p < last; t = ++p) {
207 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
208 }
209 q = b;
210 /* Having laid out the playing field, look for long runs */
211 do {
212 p = r = b + (2 * PTHRESH);
213 if (r >= t) p = r = t; /* too short to care about */
214 else {
215 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
216 ((p -= 2) > q));
217 if (p <= q) {
218 /* b through r is a (long) run.
219 ** Extend it as far as possible.
220 */
221 p = q = r;
222 while (((p += 2) < t) &&
223 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
224 r = p = q + 2; /* no simple pairs, no after-run */
225 }
226 }
227 if (q > b) { /* run of greater than 2 at b */
228 savep = p;
229 p = q += 2;
230 /* pick up singleton, if possible */
231 if ((p == t) &&
232 ((t + 1) == last) &&
233 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
234 savep = r = p = q = last;
957d8989 235 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48
JH
236 if (sense) while (b < --p) {
237 c = *b;
238 *b++ = *p;
239 *p = c;
240 }
241 p = savep;
242 }
243 while (q < p) { /* simple pairs */
957d8989 244 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48
JH
245 if (sense) {
246 c = *q++;
247 *(q-1) = *q;
248 *q++ = c;
249 } else q += 2;
250 }
251 if (((b = p) == t) && ((t+1) == last)) {
957d8989 252 NEXT(p2) = p2 + 1; ++runs;
84d4ea48
JH
253 b++;
254 }
255 q = r;
256 } while (b < t);
257 sense = !sense;
258 }
957d8989 259 return runs;
84d4ea48
JH
260}
261
262
3fe0b9a9 263/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 264 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 265 * on others. The most likely explanation was platform-specific
957d8989
JL
266 * differences in cache sizes and relative speeds.
267 *
268 * The quicksort divide-and-conquer algorithm guarantees that, as the
269 * problem is subdivided into smaller and smaller parts, the parts
270 * fit into smaller (and faster) caches. So it doesn't matter how
271 * many levels of cache exist, quicksort will "find" them, and,
e62b3022 272 * as long as smaller is faster, take advantage of them.
957d8989 273 *
3fe0b9a9 274 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
275 * Suppose we have five runs (each typically of length 2 after dynprep).
276 *
277 * pass base aux
278 * 0 1 2 3 4 5
279 * 1 12 34 5
280 * 2 1234 5
281 * 3 12345
282 * 4 12345
283 *
284 * Adjacent pairs are merged in "grand sweeps" through the input.
285 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
286 * runs 3 and 4 are merged and the runs from run 5 have been copied.
287 * The only cache that matters is one large enough to hold *all* the input.
288 * On some platforms, this may be many times slower than smaller caches.
289 *
290 * The following pseudo-code uses the same basic merge algorithm,
291 * but in a divide-and-conquer way.
292 *
293 * # merge $runs runs at offset $offset of list $list1 into $list2.
294 * # all unmerged runs ($runs == 1) originate in list $base.
295 * sub mgsort2 {
296 * my ($offset, $runs, $base, $list1, $list2) = @_;
297 *
298 * if ($runs == 1) {
299 * if ($list1 is $base) copy run to $list2
300 * return offset of end of list (or copy)
301 * } else {
302 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
303 * mgsort2($off2, $runs/2, $base, $list2, $list1)
304 * merge the adjacent runs at $offset of $list1 into $list2
305 * return the offset of the end of the merged runs
306 * }
307 * }
308 * mgsort2(0, $runs, $base, $aux, $base);
309 *
310 * For our 5 runs, the tree of calls looks like
311 *
312 * 5
313 * 3 2
314 * 2 1 1 1
315 * 1 1
316 *
317 * 1 2 3 4 5
318 *
319 * and the corresponding activity looks like
320 *
321 * copy runs 1 and 2 from base to aux
322 * merge runs 1 and 2 from aux to base
323 * (run 3 is where it belongs, no copy needed)
324 * merge runs 12 and 3 from base to aux
325 * (runs 4 and 5 are where they belong, no copy needed)
326 * merge runs 4 and 5 from base to aux
327 * merge runs 123 and 45 from aux to base
328 *
329 * Note that we merge runs 1 and 2 immediately after copying them,
330 * while they are still likely to be in fast cache. Similarly,
331 * run 3 is merged with run 12 while it still may be lingering in cache.
332 * This implementation should therefore enjoy much of the cache-friendly
333 * behavior that quicksort does. In addition, it does less copying
334 * than the original mergesort implementation (only runs 1 and 2 are copied)
335 * and the "balancing" of merges is better (merged runs comprise more nearly
336 * equal numbers of original runs).
337 *
338 * The actual cache-friendly implementation will use a pseudo-stack
339 * to avoid recursion, and will unroll processing of runs of length 2,
340 * but it is otherwise similar to the recursive implementation.
957d8989
JL
341 */
342
343typedef struct {
344 IV offset; /* offset of 1st of 2 runs at this level */
345 IV runs; /* how many runs must be combined into 1 */
346} off_runs; /* pseudo-stack element */
347
6c3fb703
NC
348
349static I32
350cmp_desc(pTHX_ gptr a, gptr b)
351{
352 return -PL_sort_RealCmp(aTHX_ a, b);
353}
354
957d8989 355STATIC void
6c3fb703 356S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989 357{
551405c4 358 IV i, run, offset;
957d8989 359 I32 sense, level;
551405c4 360 register gptr *f1, *f2, *t, *b, *p;
957d8989 361 int iwhich;
551405c4 362 gptr *aux;
957d8989
JL
363 gptr *p1;
364 gptr small[SMALLSORT];
365 gptr *which[3];
366 off_runs stack[60], *stackp;
a80036c6 367 SVCOMPARE_t savecmp = 0;
957d8989
JL
368
369 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703
NC
370
371 if (flags) {
372 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
373 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
374 cmp = cmp_desc;
375 }
376
957d8989 377 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
a02a5408 378 else { Newx(aux,nmemb,gptr); } /* allocate auxilliary array */
957d8989
JL
379 level = 0;
380 stackp = stack;
381 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
382 stackp->offset = offset = 0;
383 which[0] = which[2] = base;
384 which[1] = aux;
385 for (;;) {
386 /* On levels where both runs have be constructed (stackp->runs == 0),
387 * merge them, and note the offset of their end, in case the offset
388 * is needed at the next level up. Hop up a level, and,
389 * as long as stackp->runs is 0, keep merging.
390 */
551405c4
AL
391 IV runs = stackp->runs;
392 if (runs == 0) {
393 gptr *list1, *list2;
957d8989
JL
394 iwhich = level & 1;
395 list1 = which[iwhich]; /* area where runs are now */
396 list2 = which[++iwhich]; /* area for merged runs */
397 do {
551405c4 398 register gptr *l1, *l2, *tp2;
957d8989
JL
399 offset = stackp->offset;
400 f1 = p1 = list1 + offset; /* start of first run */
401 p = tp2 = list2 + offset; /* where merged run will go */
402 t = NEXT(p); /* where first run ends */
403 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
404 t = NEXT(t); /* where second runs ends */
405 l2 = POTHER(t, list2, list1); /* ... on the other side */
406 offset = PNELEM(list2, t);
407 while (f1 < l1 && f2 < l2) {
408 /* If head 1 is larger than head 2, find ALL the elements
409 ** in list 2 strictly less than head1, write them all,
410 ** then head 1. Then compare the new heads, and repeat,
411 ** until one or both lists are exhausted.
412 **
413 ** In all comparisons (after establishing
414 ** which head to merge) the item to merge
415 ** (at pointer q) is the first operand of
416 ** the comparison. When we want to know
a0288114 417 ** if "q is strictly less than the other",
957d8989
JL
418 ** we can't just do
419 ** cmp(q, other) < 0
420 ** because stability demands that we treat equality
421 ** as high when q comes from l2, and as low when
422 ** q was from l1. So we ask the question by doing
423 ** cmp(q, other) <= sense
424 ** and make sense == 0 when equality should look low,
425 ** and -1 when equality should look high.
426 */
427
551405c4 428 register gptr *q;
957d8989
JL
429 if (cmp(aTHX_ *f1, *f2) <= 0) {
430 q = f2; b = f1; t = l1;
431 sense = -1;
432 } else {
433 q = f1; b = f2; t = l2;
434 sense = 0;
435 }
436
437
438 /* ramp up
439 **
440 ** Leave t at something strictly
441 ** greater than q (or at the end of the list),
442 ** and b at something strictly less than q.
443 */
444 for (i = 1, run = 0 ;;) {
445 if ((p = PINDEX(b, i)) >= t) {
446 /* off the end */
447 if (((p = PINDEX(t, -1)) > b) &&
448 (cmp(aTHX_ *q, *p) <= sense))
449 t = p;
450 else b = p;
451 break;
452 } else if (cmp(aTHX_ *q, *p) <= sense) {
453 t = p;
454 break;
455 } else b = p;
456 if (++run >= RTHRESH) i += i;
457 }
458
459
460 /* q is known to follow b and must be inserted before t.
461 ** Increment b, so the range of possibilities is [b,t).
462 ** Round binary split down, to favor early appearance.
463 ** Adjust b and t until q belongs just before t.
464 */
465
466 b++;
467 while (b < t) {
468 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
469 if (cmp(aTHX_ *q, *p) <= sense) {
470 t = p;
471 } else b = p + 1;
472 }
473
474
475 /* Copy all the strictly low elements */
476
477 if (q == f1) {
478 FROMTOUPTO(f2, tp2, t);
479 *tp2++ = *f1++;
480 } else {
481 FROMTOUPTO(f1, tp2, t);
482 *tp2++ = *f2++;
483 }
484 }
485
486
487 /* Run out remaining list */
488 if (f1 == l1) {
489 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
490 } else FROMTOUPTO(f1, tp2, l1);
491 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
492
493 if (--level == 0) goto done;
494 --stackp;
495 t = list1; list1 = list2; list2 = t; /* swap lists */
496 } while ((runs = stackp->runs) == 0);
497 }
498
499
500 stackp->runs = 0; /* current run will finish level */
501 /* While there are more than 2 runs remaining,
502 * turn them into exactly 2 runs (at the "other" level),
503 * each made up of approximately half the runs.
504 * Stack the second half for later processing,
505 * and set about producing the first half now.
506 */
507 while (runs > 2) {
508 ++level;
509 ++stackp;
510 stackp->offset = offset;
511 runs -= stackp->runs = runs / 2;
512 }
513 /* We must construct a single run from 1 or 2 runs.
514 * All the original runs are in which[0] == base.
515 * The run we construct must end up in which[level&1].
516 */
517 iwhich = level & 1;
518 if (runs == 1) {
519 /* Constructing a single run from a single run.
520 * If it's where it belongs already, there's nothing to do.
521 * Otherwise, copy it to where it belongs.
522 * A run of 1 is either a singleton at level 0,
523 * or the second half of a split 3. In neither event
524 * is it necessary to set offset. It will be set by the merge
525 * that immediately follows.
526 */
527 if (iwhich) { /* Belongs in aux, currently in base */
528 f1 = b = PINDEX(base, offset); /* where list starts */
529 f2 = PINDEX(aux, offset); /* where list goes */
530 t = NEXT(f2); /* where list will end */
531 offset = PNELEM(aux, t); /* offset thereof */
532 t = PINDEX(base, offset); /* where it currently ends */
533 FROMTOUPTO(f1, f2, t); /* copy */
534 NEXT(b) = t; /* set up parallel pointer */
535 } else if (level == 0) goto done; /* single run at level 0 */
536 } else {
537 /* Constructing a single run from two runs.
538 * The merge code at the top will do that.
539 * We need only make sure the two runs are in the "other" array,
540 * so they'll end up in the correct array after the merge.
541 */
542 ++level;
543 ++stackp;
544 stackp->offset = offset;
545 stackp->runs = 0; /* take care of both runs, trigger merge */
546 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
547 f1 = b = PINDEX(base, offset); /* where first run starts */
548 f2 = PINDEX(aux, offset); /* where it will be copied */
549 t = NEXT(f2); /* where first run will end */
550 offset = PNELEM(aux, t); /* offset thereof */
551 p = PINDEX(base, offset); /* end of first run */
552 t = NEXT(t); /* where second run will end */
553 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
554 FROMTOUPTO(f1, f2, t); /* copy both runs */
555 NEXT(b) = p; /* paralled pointer for 1st */
556 NEXT(p) = t; /* ... and for second */
557 }
558 }
559 }
560done:
561 if (aux != small) Safefree(aux); /* free iff allocated */
6c3fb703
NC
562 if (flags) {
563 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
564 }
957d8989
JL
565 return;
566}
567
84d4ea48
JH
568/*
569 * The quicksort implementation was derived from source code contributed
570 * by Tom Horsley.
571 *
572 * NOTE: this code was derived from Tom Horsley's qsort replacement
573 * and should not be confused with the original code.
574 */
575
576/* Copyright (C) Tom Horsley, 1997. All rights reserved.
577
578 Permission granted to distribute under the same terms as perl which are
579 (briefly):
580
581 This program is free software; you can redistribute it and/or modify
582 it under the terms of either:
583
584 a) the GNU General Public License as published by the Free
585 Software Foundation; either version 1, or (at your option) any
586 later version, or
587
588 b) the "Artistic License" which comes with this Kit.
589
590 Details on the perl license can be found in the perl source code which
591 may be located via the www.perl.com web page.
592
593 This is the most wonderfulest possible qsort I can come up with (and
594 still be mostly portable) My (limited) tests indicate it consistently
595 does about 20% fewer calls to compare than does the qsort in the Visual
596 C++ library, other vendors may vary.
597
598 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
599 others I invented myself (or more likely re-invented since they seemed
600 pretty obvious once I watched the algorithm operate for a while).
601
602 Most of this code was written while watching the Marlins sweep the Giants
603 in the 1997 National League Playoffs - no Braves fans allowed to use this
604 code (just kidding :-).
605
606 I realize that if I wanted to be true to the perl tradition, the only
607 comment in this file would be something like:
608
609 ...they shuffled back towards the rear of the line. 'No, not at the
610 rear!' the slave-driver shouted. 'Three files up. And stay there...
611
612 However, I really needed to violate that tradition just so I could keep
613 track of what happens myself, not to mention some poor fool trying to
614 understand this years from now :-).
615*/
616
617/* ********************************************************** Configuration */
618
619#ifndef QSORT_ORDER_GUESS
620#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
621#endif
622
623/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
624 future processing - a good max upper bound is log base 2 of memory size
625 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
626 safely be smaller than that since the program is taking up some space and
627 most operating systems only let you grab some subset of contiguous
628 memory (not to mention that you are normally sorting data larger than
629 1 byte element size :-).
630*/
631#ifndef QSORT_MAX_STACK
632#define QSORT_MAX_STACK 32
633#endif
634
635/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
636 Anything bigger and we use qsort. If you make this too small, the qsort
637 will probably break (or become less efficient), because it doesn't expect
638 the middle element of a partition to be the same as the right or left -
639 you have been warned).
640*/
641#ifndef QSORT_BREAK_EVEN
642#define QSORT_BREAK_EVEN 6
643#endif
644
4eb872f6
JL
645/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
646 to go quadratic on. We innoculate larger partitions against
647 quadratic behavior by shuffling them before sorting. This is not
648 an absolute guarantee of non-quadratic behavior, but it would take
649 staggeringly bad luck to pick extreme elements as the pivot
650 from randomized data.
651*/
652#ifndef QSORT_PLAY_SAFE
653#define QSORT_PLAY_SAFE 255
654#endif
655
84d4ea48
JH
656/* ************************************************************* Data Types */
657
658/* hold left and right index values of a partition waiting to be sorted (the
659 partition includes both left and right - right is NOT one past the end or
660 anything like that).
661*/
662struct partition_stack_entry {
663 int left;
664 int right;
665#ifdef QSORT_ORDER_GUESS
666 int qsort_break_even;
667#endif
668};
669
670/* ******************************************************* Shorthand Macros */
671
672/* Note that these macros will be used from inside the qsort function where
673 we happen to know that the variable 'elt_size' contains the size of an
674 array element and the variable 'temp' points to enough space to hold a
675 temp element and the variable 'array' points to the array being sorted
676 and 'compare' is the pointer to the compare routine.
677
678 Also note that there are very many highly architecture specific ways
679 these might be sped up, but this is simply the most generally portable
680 code I could think of.
681*/
682
683/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
684*/
685#define qsort_cmp(elt1, elt2) \
686 ((*compare)(aTHX_ array[elt1], array[elt2]))
687
688#ifdef QSORT_ORDER_GUESS
689#define QSORT_NOTICE_SWAP swapped++;
690#else
691#define QSORT_NOTICE_SWAP
692#endif
693
694/* swaps contents of array elements elt1, elt2.
695*/
696#define qsort_swap(elt1, elt2) \
697 STMT_START { \
698 QSORT_NOTICE_SWAP \
699 temp = array[elt1]; \
700 array[elt1] = array[elt2]; \
701 array[elt2] = temp; \
702 } STMT_END
703
704/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
705 elt3 and elt3 gets elt1.
706*/
707#define qsort_rotate(elt1, elt2, elt3) \
708 STMT_START { \
709 QSORT_NOTICE_SWAP \
710 temp = array[elt1]; \
711 array[elt1] = array[elt2]; \
712 array[elt2] = array[elt3]; \
713 array[elt3] = temp; \
714 } STMT_END
715
716/* ************************************************************ Debug stuff */
717
718#ifdef QSORT_DEBUG
719
720static void
721break_here()
722{
723 return; /* good place to set a breakpoint */
724}
725
726#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
727
728static void
729doqsort_all_asserts(
730 void * array,
731 size_t num_elts,
732 size_t elt_size,
733 int (*compare)(const void * elt1, const void * elt2),
734 int pc_left, int pc_right, int u_left, int u_right)
735{
736 int i;
737
738 qsort_assert(pc_left <= pc_right);
739 qsort_assert(u_right < pc_left);
740 qsort_assert(pc_right < u_left);
741 for (i = u_right + 1; i < pc_left; ++i) {
742 qsort_assert(qsort_cmp(i, pc_left) < 0);
743 }
744 for (i = pc_left; i < pc_right; ++i) {
745 qsort_assert(qsort_cmp(i, pc_right) == 0);
746 }
747 for (i = pc_right + 1; i < u_left; ++i) {
748 qsort_assert(qsort_cmp(pc_right, i) < 0);
749 }
750}
751
752#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
753 doqsort_all_asserts(array, num_elts, elt_size, compare, \
754 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
755
756#else
757
758#define qsort_assert(t) ((void)0)
759
760#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
761
762#endif
763
764/* ****************************************************************** qsort */
765
766STATIC void /* the standard unstable (u) quicksort (qsort) */
767S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
768{
769 register SV * temp;
770
771 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
772 int next_stack_entry = 0;
773
774 int part_left;
775 int part_right;
776#ifdef QSORT_ORDER_GUESS
777 int qsort_break_even;
778 int swapped;
779#endif
780
781 /* Make sure we actually have work to do.
782 */
783 if (num_elts <= 1) {
784 return;
785 }
786
4eb872f6
JL
787 /* Innoculate large partitions against quadratic behavior */
788 if (num_elts > QSORT_PLAY_SAFE) {
901017d6
AL
789 register size_t n;
790 register SV ** const q = array;
791 for (n = num_elts; n > 1; ) {
792 register const size_t j = (size_t)(n-- * Drand01());
4eb872f6
JL
793 temp = q[j];
794 q[j] = q[n];
795 q[n] = temp;
796 }
797 }
798
84d4ea48
JH
799 /* Setup the initial partition definition and fall into the sorting loop
800 */
801 part_left = 0;
802 part_right = (int)(num_elts - 1);
803#ifdef QSORT_ORDER_GUESS
804 qsort_break_even = QSORT_BREAK_EVEN;
805#else
806#define qsort_break_even QSORT_BREAK_EVEN
807#endif
808 for ( ; ; ) {
809 if ((part_right - part_left) >= qsort_break_even) {
810 /* OK, this is gonna get hairy, so lets try to document all the
811 concepts and abbreviations and variables and what they keep
812 track of:
813
814 pc: pivot chunk - the set of array elements we accumulate in the
815 middle of the partition, all equal in value to the original
816 pivot element selected. The pc is defined by:
817
818 pc_left - the leftmost array index of the pc
819 pc_right - the rightmost array index of the pc
820
821 we start with pc_left == pc_right and only one element
822 in the pivot chunk (but it can grow during the scan).
823
824 u: uncompared elements - the set of elements in the partition
825 we have not yet compared to the pivot value. There are two
826 uncompared sets during the scan - one to the left of the pc
827 and one to the right.
828
829 u_right - the rightmost index of the left side's uncompared set
830 u_left - the leftmost index of the right side's uncompared set
831
832 The leftmost index of the left sides's uncompared set
833 doesn't need its own variable because it is always defined
834 by the leftmost edge of the whole partition (part_left). The
835 same goes for the rightmost edge of the right partition
836 (part_right).
837
838 We know there are no uncompared elements on the left once we
839 get u_right < part_left and no uncompared elements on the
840 right once u_left > part_right. When both these conditions
841 are met, we have completed the scan of the partition.
842
843 Any elements which are between the pivot chunk and the
844 uncompared elements should be less than the pivot value on
845 the left side and greater than the pivot value on the right
846 side (in fact, the goal of the whole algorithm is to arrange
847 for that to be true and make the groups of less-than and
848 greater-then elements into new partitions to sort again).
849
850 As you marvel at the complexity of the code and wonder why it
851 has to be so confusing. Consider some of the things this level
852 of confusion brings:
853
854 Once I do a compare, I squeeze every ounce of juice out of it. I
855 never do compare calls I don't have to do, and I certainly never
856 do redundant calls.
857
858 I also never swap any elements unless I can prove there is a
859 good reason. Many sort algorithms will swap a known value with
860 an uncompared value just to get things in the right place (or
861 avoid complexity :-), but that uncompared value, once it gets
862 compared, may then have to be swapped again. A lot of the
863 complexity of this code is due to the fact that it never swaps
864 anything except compared values, and it only swaps them when the
865 compare shows they are out of position.
866 */
867 int pc_left, pc_right;
868 int u_right, u_left;
869
870 int s;
871
872 pc_left = ((part_left + part_right) / 2);
873 pc_right = pc_left;
874 u_right = pc_left - 1;
875 u_left = pc_right + 1;
876
877 /* Qsort works best when the pivot value is also the median value
878 in the partition (unfortunately you can't find the median value
879 without first sorting :-), so to give the algorithm a helping
880 hand, we pick 3 elements and sort them and use the median value
881 of that tiny set as the pivot value.
882
883 Some versions of qsort like to use the left middle and right as
884 the 3 elements to sort so they can insure the ends of the
885 partition will contain values which will stop the scan in the
886 compare loop, but when you have to call an arbitrarily complex
887 routine to do a compare, its really better to just keep track of
888 array index values to know when you hit the edge of the
889 partition and avoid the extra compare. An even better reason to
890 avoid using a compare call is the fact that you can drop off the
891 edge of the array if someone foolishly provides you with an
892 unstable compare function that doesn't always provide consistent
893 results.
894
895 So, since it is simpler for us to compare the three adjacent
896 elements in the middle of the partition, those are the ones we
897 pick here (conveniently pointed at by u_right, pc_left, and
898 u_left). The values of the left, center, and right elements
899 are refered to as l c and r in the following comments.
900 */
901
902#ifdef QSORT_ORDER_GUESS
903 swapped = 0;
904#endif
905 s = qsort_cmp(u_right, pc_left);
906 if (s < 0) {
907 /* l < c */
908 s = qsort_cmp(pc_left, u_left);
909 /* if l < c, c < r - already in order - nothing to do */
910 if (s == 0) {
911 /* l < c, c == r - already in order, pc grows */
912 ++pc_right;
913 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
914 } else if (s > 0) {
915 /* l < c, c > r - need to know more */
916 s = qsort_cmp(u_right, u_left);
917 if (s < 0) {
918 /* l < c, c > r, l < r - swap c & r to get ordered */
919 qsort_swap(pc_left, u_left);
920 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
921 } else if (s == 0) {
922 /* l < c, c > r, l == r - swap c&r, grow pc */
923 qsort_swap(pc_left, u_left);
924 --pc_left;
925 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
926 } else {
927 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
928 qsort_rotate(pc_left, u_right, u_left);
929 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
930 }
931 }
932 } else if (s == 0) {
933 /* l == c */
934 s = qsort_cmp(pc_left, u_left);
935 if (s < 0) {
936 /* l == c, c < r - already in order, grow pc */
937 --pc_left;
938 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
939 } else if (s == 0) {
940 /* l == c, c == r - already in order, grow pc both ways */
941 --pc_left;
942 ++pc_right;
943 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
944 } else {
945 /* l == c, c > r - swap l & r, grow pc */
946 qsort_swap(u_right, u_left);
947 ++pc_right;
948 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
949 }
950 } else {
951 /* l > c */
952 s = qsort_cmp(pc_left, u_left);
953 if (s < 0) {
954 /* l > c, c < r - need to know more */
955 s = qsort_cmp(u_right, u_left);
956 if (s < 0) {
957 /* l > c, c < r, l < r - swap l & c to get ordered */
958 qsort_swap(u_right, pc_left);
959 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
960 } else if (s == 0) {
961 /* l > c, c < r, l == r - swap l & c, grow pc */
962 qsort_swap(u_right, pc_left);
963 ++pc_right;
964 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
965 } else {
966 /* l > c, c < r, l > r - rotate lcr into crl to order */
967 qsort_rotate(u_right, pc_left, u_left);
968 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
969 }
970 } else if (s == 0) {
971 /* l > c, c == r - swap ends, grow pc */
972 qsort_swap(u_right, u_left);
973 --pc_left;
974 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
975 } else {
976 /* l > c, c > r - swap ends to get in order */
977 qsort_swap(u_right, u_left);
978 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
979 }
980 }
981 /* We now know the 3 middle elements have been compared and
982 arranged in the desired order, so we can shrink the uncompared
983 sets on both sides
984 */
985 --u_right;
986 ++u_left;
987 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
988
989 /* The above massive nested if was the simple part :-). We now have
990 the middle 3 elements ordered and we need to scan through the
991 uncompared sets on either side, swapping elements that are on
992 the wrong side or simply shuffling equal elements around to get
993 all equal elements into the pivot chunk.
994 */
995
996 for ( ; ; ) {
997 int still_work_on_left;
998 int still_work_on_right;
999
1000 /* Scan the uncompared values on the left. If I find a value
1001 equal to the pivot value, move it over so it is adjacent to
1002 the pivot chunk and expand the pivot chunk. If I find a value
1003 less than the pivot value, then just leave it - its already
1004 on the correct side of the partition. If I find a greater
1005 value, then stop the scan.
1006 */
1007 while ((still_work_on_left = (u_right >= part_left))) {
1008 s = qsort_cmp(u_right, pc_left);
1009 if (s < 0) {
1010 --u_right;
1011 } else if (s == 0) {
1012 --pc_left;
1013 if (pc_left != u_right) {
1014 qsort_swap(u_right, pc_left);
1015 }
1016 --u_right;
1017 } else {
1018 break;
1019 }
1020 qsort_assert(u_right < pc_left);
1021 qsort_assert(pc_left <= pc_right);
1022 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1023 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1024 }
1025
1026 /* Do a mirror image scan of uncompared values on the right
1027 */
1028 while ((still_work_on_right = (u_left <= part_right))) {
1029 s = qsort_cmp(pc_right, u_left);
1030 if (s < 0) {
1031 ++u_left;
1032 } else if (s == 0) {
1033 ++pc_right;
1034 if (pc_right != u_left) {
1035 qsort_swap(pc_right, u_left);
1036 }
1037 ++u_left;
1038 } else {
1039 break;
1040 }
1041 qsort_assert(u_left > pc_right);
1042 qsort_assert(pc_left <= pc_right);
1043 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1044 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1045 }
1046
1047 if (still_work_on_left) {
1048 /* I know I have a value on the left side which needs to be
1049 on the right side, but I need to know more to decide
1050 exactly the best thing to do with it.
1051 */
1052 if (still_work_on_right) {
1053 /* I know I have values on both side which are out of
1054 position. This is a big win because I kill two birds
1055 with one swap (so to speak). I can advance the
1056 uncompared pointers on both sides after swapping both
1057 of them into the right place.
1058 */
1059 qsort_swap(u_right, u_left);
1060 --u_right;
1061 ++u_left;
1062 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1063 } else {
1064 /* I have an out of position value on the left, but the
1065 right is fully scanned, so I "slide" the pivot chunk
1066 and any less-than values left one to make room for the
1067 greater value over on the right. If the out of position
1068 value is immediately adjacent to the pivot chunk (there
1069 are no less-than values), I can do that with a swap,
1070 otherwise, I have to rotate one of the less than values
1071 into the former position of the out of position value
1072 and the right end of the pivot chunk into the left end
1073 (got all that?).
1074 */
1075 --pc_left;
1076 if (pc_left == u_right) {
1077 qsort_swap(u_right, pc_right);
1078 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1079 } else {
1080 qsort_rotate(u_right, pc_left, pc_right);
1081 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1082 }
1083 --pc_right;
1084 --u_right;
1085 }
1086 } else if (still_work_on_right) {
1087 /* Mirror image of complex case above: I have an out of
1088 position value on the right, but the left is fully
1089 scanned, so I need to shuffle things around to make room
1090 for the right value on the left.
1091 */
1092 ++pc_right;
1093 if (pc_right == u_left) {
1094 qsort_swap(u_left, pc_left);
1095 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1096 } else {
1097 qsort_rotate(pc_right, pc_left, u_left);
1098 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1099 }
1100 ++pc_left;
1101 ++u_left;
1102 } else {
1103 /* No more scanning required on either side of partition,
1104 break out of loop and figure out next set of partitions
1105 */
1106 break;
1107 }
1108 }
1109
1110 /* The elements in the pivot chunk are now in the right place. They
1111 will never move or be compared again. All I have to do is decide
1112 what to do with the stuff to the left and right of the pivot
1113 chunk.
1114
1115 Notes on the QSORT_ORDER_GUESS ifdef code:
1116
1117 1. If I just built these partitions without swapping any (or
1118 very many) elements, there is a chance that the elements are
1119 already ordered properly (being properly ordered will
1120 certainly result in no swapping, but the converse can't be
1121 proved :-).
1122
1123 2. A (properly written) insertion sort will run faster on
1124 already ordered data than qsort will.
1125
1126 3. Perhaps there is some way to make a good guess about
1127 switching to an insertion sort earlier than partition size 6
1128 (for instance - we could save the partition size on the stack
1129 and increase the size each time we find we didn't swap, thus
1130 switching to insertion sort earlier for partitions with a
1131 history of not swapping).
1132
1133 4. Naturally, if I just switch right away, it will make
1134 artificial benchmarks with pure ascending (or descending)
1135 data look really good, but is that a good reason in general?
1136 Hard to say...
1137 */
1138
1139#ifdef QSORT_ORDER_GUESS
1140 if (swapped < 3) {
1141#if QSORT_ORDER_GUESS == 1
1142 qsort_break_even = (part_right - part_left) + 1;
1143#endif
1144#if QSORT_ORDER_GUESS == 2
1145 qsort_break_even *= 2;
1146#endif
1147#if QSORT_ORDER_GUESS == 3
901017d6 1148 const int prev_break = qsort_break_even;
84d4ea48
JH
1149 qsort_break_even *= qsort_break_even;
1150 if (qsort_break_even < prev_break) {
1151 qsort_break_even = (part_right - part_left) + 1;
1152 }
1153#endif
1154 } else {
1155 qsort_break_even = QSORT_BREAK_EVEN;
1156 }
1157#endif
1158
1159 if (part_left < pc_left) {
1160 /* There are elements on the left which need more processing.
1161 Check the right as well before deciding what to do.
1162 */
1163 if (pc_right < part_right) {
1164 /* We have two partitions to be sorted. Stack the biggest one
1165 and process the smallest one on the next iteration. This
1166 minimizes the stack height by insuring that any additional
1167 stack entries must come from the smallest partition which
1168 (because it is smallest) will have the fewest
1169 opportunities to generate additional stack entries.
1170 */
1171 if ((part_right - pc_right) > (pc_left - part_left)) {
1172 /* stack the right partition, process the left */
1173 partition_stack[next_stack_entry].left = pc_right + 1;
1174 partition_stack[next_stack_entry].right = part_right;
1175#ifdef QSORT_ORDER_GUESS
1176 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1177#endif
1178 part_right = pc_left - 1;
1179 } else {
1180 /* stack the left partition, process the right */
1181 partition_stack[next_stack_entry].left = part_left;
1182 partition_stack[next_stack_entry].right = pc_left - 1;
1183#ifdef QSORT_ORDER_GUESS
1184 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1185#endif
1186 part_left = pc_right + 1;
1187 }
1188 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1189 ++next_stack_entry;
1190 } else {
1191 /* The elements on the left are the only remaining elements
1192 that need sorting, arrange for them to be processed as the
1193 next partition.
1194 */
1195 part_right = pc_left - 1;
1196 }
1197 } else if (pc_right < part_right) {
1198 /* There is only one chunk on the right to be sorted, make it
1199 the new partition and loop back around.
1200 */
1201 part_left = pc_right + 1;
1202 } else {
1203 /* This whole partition wound up in the pivot chunk, so
1204 we need to get a new partition off the stack.
1205 */
1206 if (next_stack_entry == 0) {
1207 /* the stack is empty - we are done */
1208 break;
1209 }
1210 --next_stack_entry;
1211 part_left = partition_stack[next_stack_entry].left;
1212 part_right = partition_stack[next_stack_entry].right;
1213#ifdef QSORT_ORDER_GUESS
1214 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1215#endif
1216 }
1217 } else {
1218 /* This partition is too small to fool with qsort complexity, just
1219 do an ordinary insertion sort to minimize overhead.
1220 */
1221 int i;
1222 /* Assume 1st element is in right place already, and start checking
1223 at 2nd element to see where it should be inserted.
1224 */
1225 for (i = part_left + 1; i <= part_right; ++i) {
1226 int j;
1227 /* Scan (backwards - just in case 'i' is already in right place)
1228 through the elements already sorted to see if the ith element
1229 belongs ahead of one of them.
1230 */
1231 for (j = i - 1; j >= part_left; --j) {
1232 if (qsort_cmp(i, j) >= 0) {
1233 /* i belongs right after j
1234 */
1235 break;
1236 }
1237 }
1238 ++j;
1239 if (j != i) {
1240 /* Looks like we really need to move some things
1241 */
1242 int k;
1243 temp = array[i];
1244 for (k = i - 1; k >= j; --k)
1245 array[k + 1] = array[k];
1246 array[j] = temp;
1247 }
1248 }
1249
1250 /* That partition is now sorted, grab the next one, or get out
1251 of the loop if there aren't any more.
1252 */
1253
1254 if (next_stack_entry == 0) {
1255 /* the stack is empty - we are done */
1256 break;
1257 }
1258 --next_stack_entry;
1259 part_left = partition_stack[next_stack_entry].left;
1260 part_right = partition_stack[next_stack_entry].right;
1261#ifdef QSORT_ORDER_GUESS
1262 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1263#endif
1264 }
1265 }
1266
1267 /* Believe it or not, the array is sorted at this point! */
1268}
1269
84d4ea48
JH
1270/* Stabilize what is, presumably, an otherwise unstable sort method.
1271 * We do that by allocating (or having on hand) an array of pointers
1272 * that is the same size as the original array of elements to be sorted.
1273 * We initialize this parallel array with the addresses of the original
1274 * array elements. This indirection can make you crazy.
1275 * Some pictures can help. After initializing, we have
1276 *
1277 * indir list1
1278 * +----+ +----+
1279 * | | --------------> | | ------> first element to be sorted
1280 * +----+ +----+
1281 * | | --------------> | | ------> second element to be sorted
1282 * +----+ +----+
1283 * | | --------------> | | ------> third element to be sorted
1284 * +----+ +----+
1285 * ...
1286 * +----+ +----+
1287 * | | --------------> | | ------> n-1st element to be sorted
1288 * +----+ +----+
1289 * | | --------------> | | ------> n-th element to be sorted
1290 * +----+ +----+
1291 *
1292 * During the sort phase, we leave the elements of list1 where they are,
1293 * and sort the pointers in the indirect array in the same order determined
1294 * by the original comparison routine on the elements pointed to.
1295 * Because we don't move the elements of list1 around through
1296 * this phase, we can break ties on elements that compare equal
1297 * using their address in the list1 array, ensuring stabilty.
1298 * This leaves us with something looking like
1299 *
1300 * indir list1
1301 * +----+ +----+
1302 * | | --+ +---> | | ------> first element to be sorted
1303 * +----+ | | +----+
1304 * | | --|-------|---> | | ------> second element to be sorted
1305 * +----+ | | +----+
1306 * | | --|-------+ +-> | | ------> third element to be sorted
1307 * +----+ | | +----+
1308 * ...
1309 * +----+ | | | | +----+
1310 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1311 * +----+ | | +----+
1312 * | | ---+ +----> | | ------> n-th element to be sorted
1313 * +----+ +----+
1314 *
1315 * where the i-th element of the indirect array points to the element
1316 * that should be i-th in the sorted array. After the sort phase,
1317 * we have to put the elements of list1 into the places
1318 * dictated by the indirect array.
1319 */
1320
84d4ea48
JH
1321
1322static I32
1323cmpindir(pTHX_ gptr a, gptr b)
1324{
1325 I32 sense;
901017d6
AL
1326 gptr * const ap = (gptr *)a;
1327 gptr * const bp = (gptr *)b;
84d4ea48 1328
147f47de 1329 if ((sense = PL_sort_RealCmp(aTHX_ *ap, *bp)) == 0)
84d4ea48
JH
1330 sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1331 return sense;
1332}
1333
6c3fb703
NC
1334static I32
1335cmpindir_desc(pTHX_ gptr a, gptr b)
1336{
1337 I32 sense;
901017d6
AL
1338 gptr * const ap = (gptr *)a;
1339 gptr * const bp = (gptr *)b;
6c3fb703
NC
1340
1341 /* Reverse the default */
1342 if ((sense = PL_sort_RealCmp(aTHX_ *ap, *bp)))
1343 return -sense;
1344 /* But don't reverse the stability test. */
1345 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1346
1347}
1348
84d4ea48 1349STATIC void
6c3fb703 1350S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
84d4ea48 1351{
84d4ea48 1352
5fe61d93
SF
1353 dSORTHINTS;
1354
1355 if (SORTHINTS & HINT_SORT_STABLE) {
84d4ea48
JH
1356 register gptr **pp, *q;
1357 register size_t n, j, i;
1358 gptr *small[SMALLSORT], **indir, tmp;
1359 SVCOMPARE_t savecmp;
1360 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1361
84d4ea48
JH
1362 /* Small arrays can use the stack, big ones must be allocated */
1363 if (nmemb <= SMALLSORT) indir = small;
a02a5408 1364 else { Newx(indir, nmemb, gptr *); }
4eb872f6 1365
84d4ea48
JH
1366 /* Copy pointers to original array elements into indirect array */
1367 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1368
147f47de
AB
1369 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1370 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1371
84d4ea48 1372 /* sort, with indirection */
6c3fb703
NC
1373 S_qsortsvu(aTHX_ (gptr *)indir, nmemb,
1374 flags ? cmpindir_desc : cmpindir);
4eb872f6 1375
84d4ea48
JH
1376 pp = indir;
1377 q = list1;
1378 for (n = nmemb; n--; ) {
1379 /* Assert A: all elements of q with index > n are already
1380 * in place. This is vacuosly true at the start, and we
1381 * put element n where it belongs below (if it wasn't
1382 * already where it belonged). Assert B: we only move
1383 * elements that aren't where they belong,
1384 * so, by A, we never tamper with elements above n.
1385 */
1386 j = pp[n] - q; /* This sets j so that q[j] is
1387 * at pp[n]. *pp[j] belongs in
1388 * q[j], by construction.
1389 */
1390 if (n != j) { /* all's well if n == j */
1391 tmp = q[j]; /* save what's in q[j] */
1392 do {
1393 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1394 i = pp[j] - q; /* the index in q of the element
1395 * just moved */
1396 pp[j] = q + j; /* this is ok now */
1397 } while ((j = i) != n);
1398 /* There are only finitely many (nmemb) addresses
1399 * in the pp array.
1400 * So we must eventually revisit an index we saw before.
1401 * Suppose the first revisited index is k != n.
1402 * An index is visited because something else belongs there.
1403 * If we visit k twice, then two different elements must
1404 * belong in the same place, which cannot be.
1405 * So j must get back to n, the loop terminates,
1406 * and we put the saved element where it belongs.
1407 */
1408 q[n] = tmp; /* put what belongs into
1409 * the n-th element */
1410 }
1411 }
1412
1413 /* free iff allocated */
1414 if (indir != small) { Safefree(indir); }
1415 /* restore prevailing comparison routine */
147f47de 1416 PL_sort_RealCmp = savecmp;
6c3fb703
NC
1417 } else if (flags) {
1418 SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1419 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1420 cmp = cmp_desc;
1421 S_qsortsvu(aTHX_ list1, nmemb, cmp);
1422 /* restore prevailing comparison routine */
1423 PL_sort_RealCmp = savecmp;
c53fc8a6
JH
1424 } else {
1425 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48
JH
1426 }
1427}
4eb872f6
JL
1428
1429/*
ccfc67b7
JH
1430=head1 Array Manipulation Functions
1431
84d4ea48
JH
1432=for apidoc sortsv
1433
1434Sort an array. Here is an example:
1435
4eb872f6 1436 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1437
78210658
AD
1438See lib/sort.pm for details about controlling the sorting algorithm.
1439
84d4ea48
JH
1440=cut
1441*/
4eb872f6 1442
84d4ea48
JH
1443void
1444Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1445{
6c3fb703
NC
1446 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1447 = S_mergesortsv;
5fe61d93
SF
1448 dSORTHINTS;
1449 const I32 hints = SORTHINTS;
78210658
AD
1450 if (hints & HINT_SORT_QUICKSORT) {
1451 sortsvp = S_qsortsv;
1452 }
1453 else {
1454 /* The default as of 5.8.0 is mergesort */
1455 sortsvp = S_mergesortsv;
84d4ea48 1456 }
4eb872f6 1457
6c3fb703
NC
1458 sortsvp(aTHX_ array, nmemb, cmp, 0);
1459}
1460
1461
b7787f18 1462static void
6c3fb703
NC
1463S_sortsv_desc(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1464{
1465 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1466 = S_mergesortsv;
5fe61d93
SF
1467 dSORTHINTS;
1468 const I32 hints = SORTHINTS;
6c3fb703
NC
1469 if (hints & HINT_SORT_QUICKSORT) {
1470 sortsvp = S_qsortsv;
1471 }
1472 else {
1473 /* The default as of 5.8.0 is mergesort */
1474 sortsvp = S_mergesortsv;
1475 }
1476
1477 sortsvp(aTHX_ array, nmemb, cmp, 1);
84d4ea48
JH
1478}
1479
4d562308
SF
1480#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1481#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1482#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1483
84d4ea48
JH
1484PP(pp_sort)
1485{
27da23d5 1486 dVAR; dSP; dMARK; dORIGMARK;
fe1bc4cf
DM
1487 register SV **p1 = ORIGMARK+1, **p2;
1488 register I32 max, i;
1489 AV* av = Nullav;
84d4ea48
JH
1490 HV *stash;
1491 GV *gv;
1492 CV *cv = 0;
1493 I32 gimme = GIMME;
1494 OP* nextop = PL_op->op_next;
1495 I32 overloading = 0;
1496 bool hasargs = FALSE;
1497 I32 is_xsub = 0;
fe1bc4cf 1498 I32 sorting_av = 0;
901017d6
AL
1499 const U8 priv = PL_op->op_private;
1500 const U8 flags = PL_op->op_flags;
6c3fb703
NC
1501 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1502 = Perl_sortsv;
4d562308 1503 I32 all_SIVs = 1;
84d4ea48
JH
1504
1505 if (gimme != G_ARRAY) {
1506 SP = MARK;
b59aed67 1507 EXTEND(SP,1);
84d4ea48
JH
1508 RETPUSHUNDEF;
1509 }
1510
1511 ENTER;
1512 SAVEVPTR(PL_sortcop);
471178c0
NC
1513 if (flags & OPf_STACKED) {
1514 if (flags & OPf_SPECIAL) {
84d4ea48
JH
1515 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1516 kid = kUNOP->op_first; /* pass rv2gv */
1517 kid = kUNOP->op_first; /* pass leave */
1518 PL_sortcop = kid->op_next;
1519 stash = CopSTASH(PL_curcop);
1520 }
1521 else {
1522 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1523 if (cv && SvPOK(cv)) {
349d4f2f 1524 const char *proto = SvPV_nolen_const((SV*)cv);
84d4ea48
JH
1525 if (proto && strEQ(proto, "$$")) {
1526 hasargs = TRUE;
1527 }
1528 }
1529 if (!(cv && CvROOT(cv))) {
1530 if (cv && CvXSUB(cv)) {
1531 is_xsub = 1;
1532 }
1533 else if (gv) {
1534 SV *tmpstr = sv_newmortal();
1535 gv_efullname3(tmpstr, gv, Nullch);
35c1215d
NC
1536 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1537 tmpstr);
84d4ea48
JH
1538 }
1539 else {
1540 DIE(aTHX_ "Undefined subroutine in sort");
1541 }
1542 }
1543
1544 if (is_xsub)
1545 PL_sortcop = (OP*)cv;
9850bf21 1546 else
84d4ea48 1547 PL_sortcop = CvSTART(cv);
84d4ea48
JH
1548 }
1549 }
1550 else {
1551 PL_sortcop = Nullop;
1552 stash = CopSTASH(PL_curcop);
1553 }
1554
fe1bc4cf
DM
1555 /* optimiser converts "@a = sort @a" to "sort \@a";
1556 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1557 * result back to @a at the end of this function */
0723351e 1558 if (priv & OPpSORT_INPLACE) {
fe1bc4cf
DM
1559 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1560 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1561 av = (AV*)(*SP);
1562 max = AvFILL(av) + 1;
1563 if (SvMAGICAL(av)) {
1564 MEXTEND(SP, max);
1565 p2 = SP;
fe2774ed 1566 for (i=0; i < max; i++) {
fe1bc4cf
DM
1567 SV **svp = av_fetch(av, i, FALSE);
1568 *SP++ = (svp) ? *svp : Nullsv;
1569 }
1570 }
1571 else {
9850bf21
RH
1572 if (SvREADONLY(av))
1573 Perl_croak(aTHX_ PL_no_modify);
1574 else
1575 SvREADONLY_on(av);
fe1bc4cf
DM
1576 p1 = p2 = AvARRAY(av);
1577 sorting_av = 1;
1578 }
1579 }
1580 else {
1581 p2 = MARK+1;
1582 max = SP - MARK;
1583 }
1584
0723351e 1585 if (priv & OPpSORT_DESCEND) {
6c3fb703
NC
1586 sortsvp = S_sortsv_desc;
1587 }
1588
83a44efe
SF
1589 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1590 * any nulls; also stringify or converting to integer or number as
1591 * required any args */
fe1bc4cf
DM
1592 for (i=max; i > 0 ; i--) {
1593 if ((*p1 = *p2++)) { /* Weed out nulls. */
1594 SvTEMP_off(*p1);
83a44efe
SF
1595 if (!PL_sortcop) {
1596 if (priv & OPpSORT_NUMERIC) {
1597 if (priv & OPpSORT_INTEGER) {
1598 if (!SvIOK(*p1)) {
1599 if (SvAMAGIC(*p1))
1600 overloading = 1;
1601 else
1602 (void)sv_2iv(*p1);
1603 }
1604 }
1605 else {
4d562308 1606 if (!SvNSIOK(*p1)) {
83a44efe
SF
1607 if (SvAMAGIC(*p1))
1608 overloading = 1;
1609 else
1610 (void)sv_2nv(*p1);
1611 }
4d562308
SF
1612 if (all_SIVs && !SvSIOK(*p1))
1613 all_SIVs = 0;
83a44efe
SF
1614 }
1615 }
1616 else {
1617 if (!SvPOK(*p1)) {
83a44efe
SF
1618 if (SvAMAGIC(*p1))
1619 overloading = 1;
1620 else
83003860
NC
1621 (void)sv_2pv_flags(*p1, 0,
1622 SV_GMAGIC|SV_CONST_RETURN);
83a44efe
SF
1623 }
1624 }
84d4ea48 1625 }
fe1bc4cf 1626 p1++;
84d4ea48 1627 }
fe1bc4cf
DM
1628 else
1629 max--;
84d4ea48 1630 }
fe1bc4cf
DM
1631 if (sorting_av)
1632 AvFILLp(av) = max-1;
1633
1634 if (max > 1) {
471178c0 1635 SV **start;
fe1bc4cf 1636 if (PL_sortcop) {
84d4ea48
JH
1637 PERL_CONTEXT *cx;
1638 SV** newsp;
901017d6 1639 const bool oldcatch = CATCH_GET;
84d4ea48
JH
1640
1641 SAVETMPS;
1642 SAVEOP();
1643
1644 CATCH_SET(TRUE);
1645 PUSHSTACKi(PERLSI_SORT);
1646 if (!hasargs && !is_xsub) {
9850bf21
RH
1647 SAVESPTR(PL_firstgv);
1648 SAVESPTR(PL_secondgv);
1649 SAVESPTR(PL_sortstash);
1650 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1651 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1652 PL_sortstash = stash;
84d4ea48
JH
1653 SAVESPTR(GvSV(PL_firstgv));
1654 SAVESPTR(GvSV(PL_secondgv));
1655 }
1656
1657 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
471178c0 1658 if (!(flags & OPf_SPECIAL)) {
84d4ea48
JH
1659 cx->cx_type = CXt_SUB;
1660 cx->blk_gimme = G_SCALAR;
1661 PUSHSUB(cx);
9850bf21
RH
1662 if (!is_xsub) {
1663 AV* padlist = CvPADLIST(cv);
1664
1665 if (++CvDEPTH(cv) >= 2) {
1666 PERL_STACK_OVERFLOW_CHECK();
1667 pad_push(padlist, CvDEPTH(cv));
1668 }
1669 SAVECOMPPAD();
1670 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
84d4ea48 1671
9850bf21
RH
1672 if (hasargs) {
1673 /* This is mostly copied from pp_entersub */
1674 AV *av = (AV*)PAD_SVl(0);
84d4ea48 1675
9850bf21
RH
1676 cx->blk_sub.savearray = GvAV(PL_defgv);
1677 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
1678 CX_CURPAD_SAVE(cx->blk_sub);
1679 cx->blk_sub.argarray = av;
1680 }
1681
1682 }
84d4ea48 1683 }
9850bf21 1684 cx->cx_type |= CXp_MULTICALL;
471178c0
NC
1685
1686 start = p1 - max;
1687 sortsvp(aTHX_ start, max,
1688 is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv);
84d4ea48 1689
9850bf21
RH
1690 if (!(flags & OPf_SPECIAL)) {
1691 LEAVESUB(cv);
1692 if (!is_xsub)
1693 CvDEPTH(cv)--;
1694 }
84d4ea48
JH
1695 POPBLOCK(cx,PL_curpm);
1696 PL_stack_sp = newsp;
1697 POPSTACK;
1698 CATCH_SET(oldcatch);
1699 }
fe1bc4cf 1700 else {
84d4ea48 1701 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
471178c0
NC
1702 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1703 sortsvp(aTHX_ start, max,
0723351e 1704 (priv & OPpSORT_NUMERIC)
4d562308 1705 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
84d4ea48 1706 ? ( overloading ? amagic_i_ncmp : sv_i_ncmp)
4d562308 1707 : ( overloading ? amagic_ncmp : sv_ncmp ) )
84d4ea48
JH
1708 : ( IN_LOCALE_RUNTIME
1709 ? ( overloading
1710 ? amagic_cmp_locale
1711 : sv_cmp_locale_static)
1712 : ( overloading ? amagic_cmp : sv_cmp_static)));
471178c0 1713 }
0723351e 1714 if (priv & OPpSORT_REVERSE) {
471178c0
NC
1715 SV **q = start+max-1;
1716 while (start < q) {
1717 SV *tmp = *start;
1718 *start++ = *q;
1719 *q-- = tmp;
84d4ea48
JH
1720 }
1721 }
1722 }
9850bf21
RH
1723 if (sorting_av)
1724 SvREADONLY_off(av);
1725 else if (av && !sorting_av) {
fe1bc4cf 1726 /* simulate pp_aassign of tied AV */
901017d6
AL
1727 SV** const base = ORIGMARK+1;
1728 for (i=0; i < max; i++) {
1729 base[i] = newSVsv(base[i]);
fe1bc4cf
DM
1730 }
1731 av_clear(av);
1732 av_extend(av, max);
1733 for (i=0; i < max; i++) {
901017d6 1734 SV * const sv = base[i];
551405c4 1735 SV ** const didstore = av_store(av, i, sv);
fe1bc4cf
DM
1736 if (SvSMAGICAL(sv))
1737 mg_set(sv);
1738 if (!didstore)
1739 sv_2mortal(sv);
1740 }
1741 }
84d4ea48 1742 LEAVE;
fe1bc4cf 1743 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
84d4ea48
JH
1744 return nextop;
1745}
1746
1747static I32
1748sortcv(pTHX_ SV *a, SV *b)
1749{
27da23d5 1750 dVAR;
901017d6
AL
1751 const I32 oldsaveix = PL_savestack_ix;
1752 const I32 oldscopeix = PL_scopestack_ix;
84d4ea48
JH
1753 I32 result;
1754 GvSV(PL_firstgv) = a;
1755 GvSV(PL_secondgv) = b;
1756 PL_stack_sp = PL_stack_base;
1757 PL_op = PL_sortcop;
1758 CALLRUNOPS(aTHX);
1759 if (PL_stack_sp != PL_stack_base + 1)
1760 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1761 if (!SvNIOKp(*PL_stack_sp))
1762 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1763 result = SvIV(*PL_stack_sp);
1764 while (PL_scopestack_ix > oldscopeix) {
1765 LEAVE;
1766 }
1767 leave_scope(oldsaveix);
1768 return result;
1769}
1770
1771static I32
1772sortcv_stacked(pTHX_ SV *a, SV *b)
1773{
27da23d5 1774 dVAR;
901017d6
AL
1775 const I32 oldsaveix = PL_savestack_ix;
1776 const I32 oldscopeix = PL_scopestack_ix;
84d4ea48 1777 I32 result;
901017d6 1778 AV * const av = GvAV(PL_defgv);
84d4ea48
JH
1779
1780 if (AvMAX(av) < 1) {
1781 SV** ary = AvALLOC(av);
1782 if (AvARRAY(av) != ary) {
1783 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
f880fe2f 1784 SvPV_set(av, (char*)ary);
84d4ea48
JH
1785 }
1786 if (AvMAX(av) < 1) {
1787 AvMAX(av) = 1;
1788 Renew(ary,2,SV*);
f880fe2f 1789 SvPV_set(av, (char*)ary);
84d4ea48
JH
1790 }
1791 }
1792 AvFILLp(av) = 1;
1793
1794 AvARRAY(av)[0] = a;
1795 AvARRAY(av)[1] = b;
1796 PL_stack_sp = PL_stack_base;
1797 PL_op = PL_sortcop;
1798 CALLRUNOPS(aTHX);
1799 if (PL_stack_sp != PL_stack_base + 1)
1800 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1801 if (!SvNIOKp(*PL_stack_sp))
1802 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1803 result = SvIV(*PL_stack_sp);
1804 while (PL_scopestack_ix > oldscopeix) {
1805 LEAVE;
1806 }
1807 leave_scope(oldsaveix);
1808 return result;
1809}
1810
1811static I32
1812sortcv_xsub(pTHX_ SV *a, SV *b)
1813{
27da23d5 1814 dVAR; dSP;
901017d6
AL
1815 const I32 oldsaveix = PL_savestack_ix;
1816 const I32 oldscopeix = PL_scopestack_ix;
1817 CV * const cv=(CV*)PL_sortcop;
84d4ea48 1818 I32 result;
84d4ea48
JH
1819
1820 SP = PL_stack_base;
1821 PUSHMARK(SP);
1822 EXTEND(SP, 2);
1823 *++SP = a;
1824 *++SP = b;
1825 PUTBACK;
1826 (void)(*CvXSUB(cv))(aTHX_ cv);
1827 if (PL_stack_sp != PL_stack_base + 1)
1828 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1829 if (!SvNIOKp(*PL_stack_sp))
1830 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1831 result = SvIV(*PL_stack_sp);
1832 while (PL_scopestack_ix > oldscopeix) {
1833 LEAVE;
1834 }
1835 leave_scope(oldsaveix);
1836 return result;
1837}
1838
1839
1840static I32
1841sv_ncmp(pTHX_ SV *a, SV *b)
1842{
901017d6
AL
1843 const NV nv1 = SvNSIV(a);
1844 const NV nv2 = SvNSIV(b);
84d4ea48
JH
1845 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1846}
1847
1848static I32
1849sv_i_ncmp(pTHX_ SV *a, SV *b)
1850{
901017d6
AL
1851 const IV iv1 = SvIV(a);
1852 const IV iv2 = SvIV(b);
84d4ea48
JH
1853 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1854}
901017d6
AL
1855
1856#define tryCALL_AMAGICbin(left,right,meth) \
1857 (PL_amagic_generation && (SvAMAGIC(left)||SvAMAGIC(right))) \
1858 ? amagic_call(left, right, CAT2(meth,_amg), 0) \
1859 : Nullsv;
84d4ea48
JH
1860
1861static I32
1862amagic_ncmp(pTHX_ register SV *a, register SV *b)
1863{
901017d6 1864 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp);
84d4ea48 1865 if (tmpsv) {
84d4ea48 1866 if (SvIOK(tmpsv)) {
901017d6 1867 const I32 i = SvIVX(tmpsv);
84d4ea48
JH
1868 if (i > 0)
1869 return 1;
1870 return i? -1 : 0;
1871 }
901017d6
AL
1872 else {
1873 const NV d = SvNV(tmpsv);
1874 if (d > 0)
1875 return 1;
1876 return d ? -1 : 0;
1877 }
84d4ea48
JH
1878 }
1879 return sv_ncmp(aTHX_ a, b);
1880}
1881
1882static I32
1883amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
1884{
901017d6 1885 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp);
84d4ea48 1886 if (tmpsv) {
84d4ea48 1887 if (SvIOK(tmpsv)) {
901017d6 1888 const I32 i = SvIVX(tmpsv);
84d4ea48
JH
1889 if (i > 0)
1890 return 1;
1891 return i? -1 : 0;
1892 }
901017d6
AL
1893 else {
1894 const NV d = SvNV(tmpsv);
1895 if (d > 0)
1896 return 1;
1897 return d ? -1 : 0;
1898 }
84d4ea48
JH
1899 }
1900 return sv_i_ncmp(aTHX_ a, b);
1901}
1902
1903static I32
1904amagic_cmp(pTHX_ register SV *str1, register SV *str2)
1905{
901017d6 1906 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp);
84d4ea48 1907 if (tmpsv) {
84d4ea48 1908 if (SvIOK(tmpsv)) {
901017d6 1909 const I32 i = SvIVX(tmpsv);
84d4ea48
JH
1910 if (i > 0)
1911 return 1;
1912 return i? -1 : 0;
1913 }
901017d6
AL
1914 else {
1915 const NV d = SvNV(tmpsv);
1916 if (d > 0)
1917 return 1;
1918 return d? -1 : 0;
1919 }
84d4ea48
JH
1920 }
1921 return sv_cmp(str1, str2);
1922}
1923
1924static I32
1925amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
1926{
901017d6 1927 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp);
84d4ea48 1928 if (tmpsv) {
84d4ea48 1929 if (SvIOK(tmpsv)) {
901017d6 1930 const I32 i = SvIVX(tmpsv);
84d4ea48
JH
1931 if (i > 0)
1932 return 1;
1933 return i? -1 : 0;
1934 }
901017d6
AL
1935 else {
1936 const NV d = SvNV(tmpsv);
1937 if (d > 0)
1938 return 1;
1939 return d? -1 : 0;
1940 }
84d4ea48
JH
1941 }
1942 return sv_cmp_locale(str1, str2);
1943}
241d1a3b
NC
1944
1945/*
1946 * Local variables:
1947 * c-indentation-style: bsd
1948 * c-basic-offset: 4
1949 * indent-tabs-mode: t
1950 * End:
1951 *
37442d52
RGS
1952 * ex: set ts=8 sts=4 sw=4 noet:
1953 */