Commit | Line | Data |
---|---|---|
4b88f280 | 1 | #line 2 "op.c" |
a0d0e21e | 2 | /* op.c |
79072805 | 3 | * |
1129b882 NC |
4 | * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
5 | * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others | |
79072805 LW |
6 | * |
7 | * You may distribute under the terms of either the GNU General Public | |
8 | * License or the Artistic License, as specified in the README file. | |
9 | * | |
a0d0e21e LW |
10 | */ |
11 | ||
12 | /* | |
4ac71550 TC |
13 | * 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was |
14 | * our Mr. Bilbo's first cousin on the mother's side (her mother being the | |
15 | * youngest of the Old Took's daughters); and Mr. Drogo was his second | |
16 | * cousin. So Mr. Frodo is his first *and* second cousin, once removed | |
17 | * either way, as the saying is, if you follow me.' --the Gaffer | |
18 | * | |
19 | * [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"] | |
79072805 LW |
20 | */ |
21 | ||
166f8a29 DM |
22 | /* This file contains the functions that create, manipulate and optimize |
23 | * the OP structures that hold a compiled perl program. | |
24 | * | |
9b7bf845 DM |
25 | * Note that during the build of miniperl, a temporary copy of this file |
26 | * is made, called opmini.c. | |
27 | * | |
28 | * A Perl program is compiled into a tree of OP nodes. Each op contains: | |
29 | * * structural OP pointers to its children and siblings (op_sibling, | |
30 | * op_first etc) that define the tree structure; | |
31 | * * execution order OP pointers (op_next, plus sometimes op_other, | |
32 | * op_lastop etc) that define the execution sequence plus variants; | |
33 | * * a pointer to the C "pp" function that would execute the op; | |
34 | * * any data specific to that op. | |
35 | * For example, an OP_CONST op points to the pp_const() function and to an | |
36 | * SV containing the constant value. When pp_const() is executed, its job | |
37 | * is to push that SV onto the stack. | |
166f8a29 DM |
38 | * |
39 | * OPs are mainly created by the newFOO() functions, which are mainly | |
40 | * called from the parser (in perly.y) as the code is parsed. For example | |
41 | * the Perl code $a + $b * $c would cause the equivalent of the following | |
42 | * to be called (oversimplifying a bit): | |
43 | * | |
44 | * newBINOP(OP_ADD, flags, | |
45 | * newSVREF($a), | |
46 | * newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c)) | |
47 | * ) | |
48 | * | |
9b7bf845 DM |
49 | * As the parser reduces low-level rules, it creates little op subtrees; |
50 | * as higher-level rules are resolved, these subtrees get joined together | |
51 | * as branches on a bigger subtree, until eventually a top-level rule like | |
52 | * a subroutine definition is reduced, at which point there is one large | |
53 | * parse tree left. | |
54 | * | |
55 | * The execution order pointers (op_next) are generated as the subtrees | |
56 | * are joined together. Consider this sub-expression: A*B + C/D: at the | |
57 | * point when it's just been parsed, the op tree looks like: | |
58 | * | |
59 | * [+] | |
60 | * | | |
61 | * [*]------[/] | |
62 | * | | | |
63 | * A---B C---D | |
64 | * | |
65 | * with the intended execution order being: | |
66 | * | |
67 | * [PREV] => A => B => [*] => C => D => [/] => [+] => [NEXT] | |
68 | * | |
69 | * At this point all the nodes' op_next pointers will have been set, | |
70 | * except that: | |
71 | * * we don't know what the [NEXT] node will be yet; | |
72 | * * we don't know what the [PREV] node will be yet, but when it gets | |
73 | * created and needs its op_next set, it needs to be set to point to | |
74 | * A, which is non-obvious. | |
75 | * To handle both those cases, we temporarily set the top node's | |
76 | * op_next to point to the first node to be executed in this subtree (A in | |
77 | * this case). This means that initially a subtree's op_next chain, | |
78 | * starting from the top node, will visit each node in execution sequence | |
79 | * then point back at the top node. | |
80 | * When we embed this subtree in a larger tree, its top op_next is used | |
81 | * to get the start node, then is set to point to its new neighbour. | |
82 | * For example the two separate [*],A,B and [/],C,D subtrees would | |
83 | * initially have had: | |
84 | * [*] => A; A => B; B => [*] | |
85 | * and | |
86 | * [/] => C; C => D; D => [/] | |
87 | * When these two subtrees were joined together to make the [+] subtree, | |
88 | * [+]'s op_next was set to [*]'s op_next, i.e. A; then [*]'s op_next was | |
89 | * set to point to [/]'s op_next, i.e. C. | |
90 | * | |
91 | * This op_next linking is done by the LINKLIST() macro and its underlying | |
92 | * op_linklist() function. Given a top-level op, if its op_next is | |
93 | * non-null, it's already been linked, so leave it. Otherwise link it with | |
94 | * its children as described above, possibly recursively if any of the | |
95 | * children have a null op_next. | |
96 | * | |
97 | * In summary: given a subtree, its top-level node's op_next will either | |
98 | * be: | |
99 | * NULL: the subtree hasn't been LINKLIST()ed yet; | |
100 | * fake: points to the start op for this subtree; | |
101 | * real: once the subtree has been embedded into a larger tree | |
166f8a29 | 102 | */ |
ccfc67b7 | 103 | |
61b743bb | 104 | /* |
9b7bf845 DM |
105 | |
106 | Here's an older description from Larry. | |
107 | ||
61b743bb DM |
108 | Perl's compiler is essentially a 3-pass compiler with interleaved phases: |
109 | ||
110 | A bottom-up pass | |
111 | A top-down pass | |
112 | An execution-order pass | |
113 | ||
114 | The bottom-up pass is represented by all the "newOP" routines and | |
115 | the ck_ routines. The bottom-upness is actually driven by yacc. | |
116 | So at the point that a ck_ routine fires, we have no idea what the | |
117 | context is, either upward in the syntax tree, or either forward or | |
118 | backward in the execution order. (The bottom-up parser builds that | |
119 | part of the execution order it knows about, but if you follow the "next" | |
120 | links around, you'll find it's actually a closed loop through the | |
ef9da979 | 121 | top level node.) |
61b743bb DM |
122 | |
123 | Whenever the bottom-up parser gets to a node that supplies context to | |
124 | its components, it invokes that portion of the top-down pass that applies | |
125 | to that part of the subtree (and marks the top node as processed, so | |
126 | if a node further up supplies context, it doesn't have to take the | |
127 | plunge again). As a particular subcase of this, as the new node is | |
128 | built, it takes all the closed execution loops of its subcomponents | |
129 | and links them into a new closed loop for the higher level node. But | |
130 | it's still not the real execution order. | |
131 | ||
132 | The actual execution order is not known till we get a grammar reduction | |
133 | to a top-level unit like a subroutine or file that will be called by | |
134 | "name" rather than via a "next" pointer. At that point, we can call | |
135 | into peep() to do that code's portion of the 3rd pass. It has to be | |
136 | recursive, but it's recursive on basic blocks, not on tree nodes. | |
137 | */ | |
138 | ||
06e0342d | 139 | /* To implement user lexical pragmas, there needs to be a way at run time to |
b3ca2e83 NC |
140 | get the compile time state of %^H for that block. Storing %^H in every |
141 | block (or even COP) would be very expensive, so a different approach is | |
142 | taken. The (running) state of %^H is serialised into a tree of HE-like | |
143 | structs. Stores into %^H are chained onto the current leaf as a struct | |
144 | refcounted_he * with the key and the value. Deletes from %^H are saved | |
145 | with a value of PL_sv_placeholder. The state of %^H at any point can be | |
146 | turned back into a regular HV by walking back up the tree from that point's | |
06e0342d | 147 | leaf, ignoring any key you've already seen (placeholder or not), storing |
b3ca2e83 NC |
148 | the rest into the HV structure, then removing the placeholders. Hence |
149 | memory is only used to store the %^H deltas from the enclosing COP, rather | |
150 | than the entire %^H on each COP. | |
151 | ||
152 | To cause actions on %^H to write out the serialisation records, it has | |
153 | magic type 'H'. This magic (itself) does nothing, but its presence causes | |
154 | the values to gain magic type 'h', which has entries for set and clear. | |
c28fe1ec | 155 | C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store |
34795b44 | 156 | record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS> |
c28fe1ec NC |
157 | saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that |
158 | it will be correctly restored when any inner compiling scope is exited. | |
b3ca2e83 NC |
159 | */ |
160 | ||
79072805 | 161 | #include "EXTERN.h" |
864dbfa3 | 162 | #define PERL_IN_OP_C |
79072805 | 163 | #include "perl.h" |
77ca0c92 | 164 | #include "keywords.h" |
2846acbf | 165 | #include "feature.h" |
74529a43 | 166 | #include "regcomp.h" |
58a0d047 | 167 | #include "invlist_inline.h" |
79072805 | 168 | |
16c91539 | 169 | #define CALL_PEEP(o) PL_peepp(aTHX_ o) |
1a0a2ba9 | 170 | #define CALL_RPEEP(o) PL_rpeepp(aTHX_ o) |
16c91539 | 171 | #define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o) |
a2efc822 | 172 | |
5068f264 | 173 | static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar"; |
637494ac | 174 | |
72621f84 DM |
175 | /* remove any leading "empty" ops from the op_next chain whose first |
176 | * node's address is stored in op_p. Store the updated address of the | |
177 | * first node in op_p. | |
178 | */ | |
179 | ||
180 | STATIC void | |
dc3bf405 | 181 | S_prune_chain_head(OP** op_p) |
72621f84 DM |
182 | { |
183 | while (*op_p | |
184 | && ( (*op_p)->op_type == OP_NULL | |
185 | || (*op_p)->op_type == OP_SCOPE | |
186 | || (*op_p)->op_type == OP_SCALAR | |
187 | || (*op_p)->op_type == OP_LINESEQ) | |
188 | ) | |
189 | *op_p = (*op_p)->op_next; | |
190 | } | |
191 | ||
192 | ||
8be227ab FC |
193 | /* See the explanatory comments above struct opslab in op.h. */ |
194 | ||
7aef8e5b | 195 | #ifdef PERL_DEBUG_READONLY_OPS |
3107b51f FC |
196 | # define PERL_SLAB_SIZE 128 |
197 | # define PERL_MAX_SLAB_SIZE 4096 | |
198 | # include <sys/mman.h> | |
7aef8e5b | 199 | #endif |
3107b51f | 200 | |
7aef8e5b | 201 | #ifndef PERL_SLAB_SIZE |
8be227ab | 202 | # define PERL_SLAB_SIZE 64 |
7aef8e5b FC |
203 | #endif |
204 | #ifndef PERL_MAX_SLAB_SIZE | |
e6cee8c0 | 205 | # define PERL_MAX_SLAB_SIZE 2048 |
7aef8e5b | 206 | #endif |
8be227ab FC |
207 | |
208 | /* rounds up to nearest pointer */ | |
7aef8e5b | 209 | #define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *)) |
f0cfed98 TC |
210 | |
211 | #define DIFF(o,p) \ | |
212 | (assert(((char *)(p) - (char *)(o)) % sizeof(I32**) == 0), \ | |
213 | ((size_t)((I32 **)(p) - (I32**)(o)))) | |
8be227ab | 214 | |
17b8f3a1 DM |
215 | /* requires double parens and aTHX_ */ |
216 | #define DEBUG_S_warn(args) \ | |
217 | DEBUG_S( \ | |
1f4fbd3b | 218 | PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \ |
17b8f3a1 DM |
219 | ) |
220 | ||
f0cfed98 TC |
221 | /* opslot_size includes the size of the slot header, and an op can't be smaller than BASEOP */ |
222 | #define OPSLOT_SIZE_BASE (SIZE_TO_PSIZE(sizeof(OPSLOT))) | |
223 | ||
224 | /* the number of bytes to allocate for a slab with sz * sizeof(I32 **) space for op */ | |
225 | #define OpSLABSizeBytes(sz) \ | |
226 | ((sz) * sizeof(I32 *) + STRUCT_OFFSET(OPSLAB, opslab_slots)) | |
17b8f3a1 DM |
227 | |
228 | /* malloc a new op slab (suitable for attaching to PL_compcv). | |
f0cfed98 | 229 | * sz is in units of pointers from the beginning of opslab_opslots */ |
49c01b24 | 230 | |
8be227ab | 231 | static OPSLAB * |
17b8f3a1 | 232 | S_new_slab(pTHX_ OPSLAB *head, size_t sz) |
8be227ab | 233 | { |
17b8f3a1 | 234 | OPSLAB *slab; |
f0cfed98 | 235 | size_t sz_bytes = OpSLABSizeBytes(sz); |
17b8f3a1 DM |
236 | |
237 | /* opslot_offset is only U16 */ | |
f0cfed98 TC |
238 | assert(sz < U16_MAX); |
239 | /* room for at least one op */ | |
240 | assert(sz >= OPSLOT_SIZE_BASE); | |
17b8f3a1 | 241 | |
7aef8e5b | 242 | #ifdef PERL_DEBUG_READONLY_OPS |
f0cfed98 | 243 | slab = (OPSLAB *) mmap(0, sz_bytes, |
1f4fbd3b MS |
244 | PROT_READ|PROT_WRITE, |
245 | MAP_ANON|MAP_PRIVATE, -1, 0); | |
3107b51f | 246 | DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n", |
1f4fbd3b | 247 | (unsigned long) sz, slab)); |
3107b51f | 248 | if (slab == MAP_FAILED) { |
1f4fbd3b MS |
249 | perror("mmap failed"); |
250 | abort(); | |
3107b51f | 251 | } |
7aef8e5b | 252 | #else |
f0cfed98 TC |
253 | slab = (OPSLAB *)PerlMemShared_malloc(sz_bytes); |
254 | Zero(slab, sz_bytes, char); | |
7aef8e5b | 255 | #endif |
aa034fa0 DM |
256 | slab->opslab_size = (U16)sz; |
257 | ||
dc3bf405 BF |
258 | #ifndef WIN32 |
259 | /* The context is unused in non-Windows */ | |
260 | PERL_UNUSED_CONTEXT; | |
261 | #endif | |
f0cfed98 | 262 | slab->opslab_free_space = sz; |
17b8f3a1 | 263 | slab->opslab_head = head ? head : slab; |
7b85c12a DM |
264 | DEBUG_S_warn((aTHX_ "allocated new op slab sz 0x%x, %p, head slab %p", |
265 | (unsigned int)slab->opslab_size, (void*)slab, | |
266 | (void*)(slab->opslab_head))); | |
8be227ab FC |
267 | return slab; |
268 | } | |
269 | ||
0bd6eef4 TC |
270 | #define OPSLOT_SIZE_TO_INDEX(sz) ((sz) - OPSLOT_SIZE_BASE) |
271 | ||
272 | #define link_freed_op(slab, o) S_link_freed_op(aTHX_ slab, o) | |
273 | static void | |
274 | S_link_freed_op(pTHX_ OPSLAB *slab, OP *o) { | |
275 | U16 sz = OpSLOT(o)->opslot_size; | |
276 | U16 index = OPSLOT_SIZE_TO_INDEX(sz); | |
277 | ||
278 | assert(sz >= OPSLOT_SIZE_BASE); | |
279 | /* make sure the array is large enough to include ops this large */ | |
280 | if (!slab->opslab_freed) { | |
281 | /* we don't have a free list array yet, make a new one */ | |
282 | slab->opslab_freed_size = index+1; | |
283 | slab->opslab_freed = (OP**)PerlMemShared_calloc((slab->opslab_freed_size), sizeof(OP*)); | |
284 | ||
285 | if (!slab->opslab_freed) | |
286 | croak_no_mem(); | |
287 | } | |
288 | else if (index >= slab->opslab_freed_size) { | |
289 | /* It's probably not worth doing exponential expansion here, the number of op sizes | |
290 | is small. | |
291 | */ | |
292 | /* We already have a list that isn't large enough, expand it */ | |
293 | size_t newsize = index+1; | |
294 | OP **p = (OP **)PerlMemShared_realloc(slab->opslab_freed, newsize * sizeof(OP*)); | |
295 | ||
296 | if (!p) | |
297 | croak_no_mem(); | |
298 | ||
299 | Zero(p+slab->opslab_freed_size, newsize - slab->opslab_freed_size, OP *); | |
300 | ||
301 | slab->opslab_freed = p; | |
302 | slab->opslab_freed_size = newsize; | |
303 | } | |
304 | ||
305 | o->op_next = slab->opslab_freed[index]; | |
306 | slab->opslab_freed[index] = o; | |
307 | } | |
e7372881 | 308 | |
49c01b24 DM |
309 | /* Returns a sz-sized block of memory (suitable for holding an op) from |
310 | * a free slot in the chain of op slabs attached to PL_compcv. | |
311 | * Allocates a new slab if necessary. | |
312 | * if PL_compcv isn't compiling, malloc() instead. | |
313 | */ | |
314 | ||
8be227ab FC |
315 | void * |
316 | Perl_Slab_Alloc(pTHX_ size_t sz) | |
317 | { | |
bffbea38 | 318 | OPSLAB *head_slab; /* first slab in the chain */ |
8be227ab FC |
319 | OPSLAB *slab2; |
320 | OPSLOT *slot; | |
321 | OP *o; | |
f0cfed98 | 322 | size_t sz_in_p; /* size in pointer units, including the OPSLOT header */ |
8be227ab | 323 | |
2073970f NC |
324 | /* We only allocate ops from the slab during subroutine compilation. |
325 | We find the slab via PL_compcv, hence that must be non-NULL. It could | |
326 | also be pointing to a subroutine which is now fully set up (CvROOT() | |
327 | pointing to the top of the optree for that sub), or a subroutine | |
328 | which isn't using the slab allocator. If our sanity checks aren't met, | |
329 | don't use a slab, but allocate the OP directly from the heap. */ | |
8be227ab FC |
330 | if (!PL_compcv || CvROOT(PL_compcv) |
331 | || (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv))) | |
29e61fd9 | 332 | { |
1f4fbd3b | 333 | o = (OP*)PerlMemShared_calloc(1, sz); |
29e61fd9 DM |
334 | goto gotit; |
335 | } | |
8be227ab | 336 | |
2073970f NC |
337 | /* While the subroutine is under construction, the slabs are accessed via |
338 | CvSTART(), to avoid needing to expand PVCV by one pointer for something | |
339 | unneeded at runtime. Once a subroutine is constructed, the slabs are | |
340 | accessed via CvROOT(). So if CvSTART() is NULL, no slab has been | |
341 | allocated yet. See the commit message for 8be227ab5eaa23f2 for more | |
342 | details. */ | |
343 | if (!CvSTART(PL_compcv)) { | |
1f4fbd3b MS |
344 | CvSTART(PL_compcv) = |
345 | (OP *)(head_slab = S_new_slab(aTHX_ NULL, PERL_SLAB_SIZE)); | |
346 | CvSLABBED_on(PL_compcv); | |
347 | head_slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */ | |
8be227ab | 348 | } |
bffbea38 | 349 | else ++(head_slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt; |
8be227ab | 350 | |
f0cfed98 | 351 | sz_in_p = SIZE_TO_PSIZE(sz + OPSLOT_HEADER); |
8be227ab | 352 | |
0bd6eef4 | 353 | /* The head slab for each CV maintains a free list of OPs. In particular, constant folding |
2073970f NC |
354 | will free up OPs, so it makes sense to re-use them where possible. A |
355 | freed up slot is used in preference to a new allocation. */ | |
0bd6eef4 | 356 | if (head_slab->opslab_freed && |
f0cfed98 | 357 | OPSLOT_SIZE_TO_INDEX(sz_in_p) < head_slab->opslab_freed_size) { |
0bd6eef4 TC |
358 | U16 base_index; |
359 | ||
360 | /* look for a large enough size with any freed ops */ | |
f0cfed98 | 361 | for (base_index = OPSLOT_SIZE_TO_INDEX(sz_in_p); |
0bd6eef4 TC |
362 | base_index < head_slab->opslab_freed_size && !head_slab->opslab_freed[base_index]; |
363 | ++base_index) { | |
364 | } | |
365 | ||
366 | if (base_index < head_slab->opslab_freed_size) { | |
367 | /* found a freed op */ | |
368 | o = head_slab->opslab_freed[base_index]; | |
369 | ||
3b392ccb | 370 | DEBUG_S_warn((aTHX_ "realloced op at %p, slab %p, head slab %p", |
f0cfed98 | 371 | (void *)o, (void *)OpMySLAB(o), (void *)head_slab)); |
1f4fbd3b MS |
372 | head_slab->opslab_freed[base_index] = o->op_next; |
373 | Zero(o, sz, char); | |
374 | o->op_slabbed = 1; | |
375 | goto gotit; | |
376 | } | |
8be227ab FC |
377 | } |
378 | ||
7b85c12a | 379 | #define INIT_OPSLOT(s) \ |
1f4fbd3b MS |
380 | slot->opslot_offset = DIFF(&slab2->opslab_slots, slot) ; \ |
381 | slot->opslot_size = s; \ | |
382 | slab2->opslab_free_space -= s; \ | |
383 | o = &slot->opslot_op; \ | |
384 | o->op_slabbed = 1 | |
8be227ab FC |
385 | |
386 | /* The partially-filled slab is next in the chain. */ | |
bffbea38 | 387 | slab2 = head_slab->opslab_next ? head_slab->opslab_next : head_slab; |
f0cfed98 | 388 | if (slab2->opslab_free_space < sz_in_p) { |
1f4fbd3b MS |
389 | /* Remaining space is too small. */ |
390 | /* If we can fit a BASEOP, add it to the free chain, so as not | |
391 | to waste it. */ | |
392 | if (slab2->opslab_free_space >= OPSLOT_SIZE_BASE) { | |
393 | slot = &slab2->opslab_slots; | |
394 | INIT_OPSLOT(slab2->opslab_free_space); | |
395 | o->op_type = OP_FREED; | |
f0cfed98 TC |
396 | DEBUG_S_warn((aTHX_ "linked unused op space at %p, slab %p, head slab %p", |
397 | (void *)o, (void *)slab2, (void *)head_slab)); | |
0bd6eef4 | 398 | link_freed_op(head_slab, o); |
1f4fbd3b | 399 | } |
8be227ab | 400 | |
1f4fbd3b MS |
401 | /* Create a new slab. Make this one twice as big. */ |
402 | slab2 = S_new_slab(aTHX_ head_slab, | |
403 | slab2->opslab_size > PERL_MAX_SLAB_SIZE / 2 | |
7b85c12a DM |
404 | ? PERL_MAX_SLAB_SIZE |
405 | : slab2->opslab_size * 2); | |
1f4fbd3b MS |
406 | slab2->opslab_next = head_slab->opslab_next; |
407 | head_slab->opslab_next = slab2; | |
8be227ab | 408 | } |
f0cfed98 | 409 | assert(slab2->opslab_size >= sz_in_p); |
8be227ab FC |
410 | |
411 | /* Create a new op slot */ | |
f0cfed98 | 412 | slot = OpSLOToff(slab2, slab2->opslab_free_space - sz_in_p); |
8be227ab | 413 | assert(slot >= &slab2->opslab_slots); |
f0cfed98 | 414 | INIT_OPSLOT(sz_in_p); |
17b8f3a1 DM |
415 | DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p, head slab %p", |
416 | (void*)o, (void*)slab2, (void*)head_slab)); | |
29e61fd9 DM |
417 | |
418 | gotit: | |
87b5a8b9 DM |
419 | /* moresib == 0, op_sibling == 0 implies a solitary unattached op */ |
420 | assert(!o->op_moresib); | |
86cd3a13 | 421 | assert(!o->op_sibparent); |
29e61fd9 | 422 | |
8be227ab FC |
423 | return (void *)o; |
424 | } | |
425 | ||
7aef8e5b | 426 | #undef INIT_OPSLOT |
8be227ab | 427 | |
7aef8e5b | 428 | #ifdef PERL_DEBUG_READONLY_OPS |
3107b51f FC |
429 | void |
430 | Perl_Slab_to_ro(pTHX_ OPSLAB *slab) | |
431 | { | |
432 | PERL_ARGS_ASSERT_SLAB_TO_RO; | |
433 | ||
434 | if (slab->opslab_readonly) return; | |
435 | slab->opslab_readonly = 1; | |
436 | for (; slab; slab = slab->opslab_next) { | |
1f4fbd3b MS |
437 | /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n", |
438 | (unsigned long) slab->opslab_size, (void *)slab));*/ | |
439 | if (mprotect(slab, OpSLABSizeBytes(slab->opslab_size), PROT_READ)) | |
440 | Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", (void *)slab, | |
441 | (unsigned long)slab->opslab_size, errno); | |
3107b51f FC |
442 | } |
443 | } | |
444 | ||
7bbbc3c0 NC |
445 | void |
446 | Perl_Slab_to_rw(pTHX_ OPSLAB *const slab) | |
3107b51f | 447 | { |
3107b51f FC |
448 | OPSLAB *slab2; |
449 | ||
450 | PERL_ARGS_ASSERT_SLAB_TO_RW; | |
451 | ||
3107b51f FC |
452 | if (!slab->opslab_readonly) return; |
453 | slab2 = slab; | |
454 | for (; slab2; slab2 = slab2->opslab_next) { | |
1f4fbd3b MS |
455 | /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n", |
456 | (unsigned long) size, (void *)slab2));*/ | |
457 | if (mprotect((void *)slab2, OpSLABSizeBytes(slab2->opslab_size), | |
458 | PROT_READ|PROT_WRITE)) { | |
459 | Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", (void *)slab, | |
460 | (unsigned long)slab2->opslab_size, errno); | |
461 | } | |
3107b51f FC |
462 | } |
463 | slab->opslab_readonly = 0; | |
464 | } | |
465 | ||
466 | #else | |
9e4d7a13 | 467 | # define Slab_to_rw(op) NOOP |
3107b51f FC |
468 | #endif |
469 | ||
c5cd8dab DM |
470 | /* make freed ops die if they're inadvertently executed */ |
471 | #ifdef DEBUGGING | |
472 | static OP * | |
473 | S_pp_freed(pTHX) | |
474 | { | |
475 | DIE(aTHX_ "panic: freed op 0x%p called\n", PL_op); | |
476 | } | |
477 | #endif | |
478 | ||
49c01b24 DM |
479 | |
480 | /* Return the block of memory used by an op to the free list of | |
481 | * the OP slab associated with that op. | |
482 | */ | |
483 | ||
8be227ab FC |
484 | void |
485 | Perl_Slab_Free(pTHX_ void *op) | |
486 | { | |
487 | OP * const o = (OP *)op; | |
488 | OPSLAB *slab; | |
489 | ||
490 | PERL_ARGS_ASSERT_SLAB_FREE; | |
491 | ||
c5cd8dab DM |
492 | #ifdef DEBUGGING |
493 | o->op_ppaddr = S_pp_freed; | |
494 | #endif | |
495 | ||
8be227ab | 496 | if (!o->op_slabbed) { |
90840c5d | 497 | if (!o->op_static) |
1f4fbd3b MS |
498 | PerlMemShared_free(op); |
499 | return; | |
8be227ab FC |
500 | } |
501 | ||
502 | slab = OpSLAB(o); | |
503 | /* If this op is already freed, our refcount will get screwy. */ | |
504 | assert(o->op_type != OP_FREED); | |
505 | o->op_type = OP_FREED; | |
0bd6eef4 | 506 | link_freed_op(slab, o); |
7b85c12a | 507 | DEBUG_S_warn((aTHX_ "freeing op at %p, slab %p, head slab %p", |
f0cfed98 | 508 | (void*)o, (void *)OpMySLAB(o), (void*)slab)); |
8be227ab FC |
509 | OpslabREFCNT_dec_padok(slab); |
510 | } | |
511 | ||
512 | void | |
513 | Perl_opslab_free_nopad(pTHX_ OPSLAB *slab) | |
514 | { | |
8be227ab FC |
515 | const bool havepad = !!PL_comppad; |
516 | PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD; | |
517 | if (havepad) { | |
1f4fbd3b MS |
518 | ENTER; |
519 | PAD_SAVE_SETNULLPAD(); | |
8be227ab FC |
520 | } |
521 | opslab_free(slab); | |
522 | if (havepad) LEAVE; | |
523 | } | |
524 | ||
49c01b24 DM |
525 | /* Free a chain of OP slabs. Should only be called after all ops contained |
526 | * in it have been freed. At this point, its reference count should be 1, | |
527 | * because OpslabREFCNT_dec() skips doing rc-- when it detects that rc == 1, | |
528 | * and just directly calls opslab_free(). | |
529 | * (Note that the reference count which PL_compcv held on the slab should | |
530 | * have been removed once compilation of the sub was complete). | |
531 | * | |
532 | * | |
533 | */ | |
534 | ||
8be227ab FC |
535 | void |
536 | Perl_opslab_free(pTHX_ OPSLAB *slab) | |
537 | { | |
538 | OPSLAB *slab2; | |
539 | PERL_ARGS_ASSERT_OPSLAB_FREE; | |
81611534 | 540 | PERL_UNUSED_CONTEXT; |
eb212a1c | 541 | DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab)); |
8be227ab | 542 | assert(slab->opslab_refcnt == 1); |
0bd6eef4 | 543 | PerlMemShared_free(slab->opslab_freed); |
3dc78631 | 544 | do { |
1f4fbd3b | 545 | slab2 = slab->opslab_next; |
7aef8e5b | 546 | #ifdef DEBUGGING |
1f4fbd3b | 547 | slab->opslab_refcnt = ~(size_t)0; |
7aef8e5b FC |
548 | #endif |
549 | #ifdef PERL_DEBUG_READONLY_OPS | |
1f4fbd3b MS |
550 | DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n", |
551 | (void*)slab)); | |
552 | if (munmap(slab, OpSLABSizeBytes(slab->opslab_size))) { | |
553 | perror("munmap failed"); | |
554 | abort(); | |
555 | } | |
7aef8e5b | 556 | #else |
1f4fbd3b | 557 | PerlMemShared_free(slab); |
7aef8e5b | 558 | #endif |
3dc78631 DM |
559 | slab = slab2; |
560 | } while (slab); | |
8be227ab FC |
561 | } |
562 | ||
49c01b24 DM |
563 | /* like opslab_free(), but first calls op_free() on any ops in the slab |
564 | * not marked as OP_FREED | |
565 | */ | |
566 | ||
8be227ab FC |
567 | void |
568 | Perl_opslab_force_free(pTHX_ OPSLAB *slab) | |
569 | { | |
570 | OPSLAB *slab2; | |
7aef8e5b | 571 | #ifdef DEBUGGING |
8be227ab | 572 | size_t savestack_count = 0; |
7aef8e5b | 573 | #endif |
8be227ab FC |
574 | PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE; |
575 | slab2 = slab; | |
576 | do { | |
f0cfed98 TC |
577 | OPSLOT *slot = OpSLOToff(slab2, slab2->opslab_free_space); |
578 | OPSLOT *end = OpSLOToff(slab2, slab2->opslab_size); | |
1f4fbd3b | 579 | for (; slot < end; |
8c47b5bc DM |
580 | slot = (OPSLOT*) ((I32**)slot + slot->opslot_size) ) |
581 | { | |
1f4fbd3b MS |
582 | if (slot->opslot_op.op_type != OP_FREED |
583 | && !(slot->opslot_op.op_savefree | |
7aef8e5b | 584 | #ifdef DEBUGGING |
1f4fbd3b | 585 | && ++savestack_count |
7aef8e5b | 586 | #endif |
1f4fbd3b MS |
587 | ) |
588 | ) { | |
589 | assert(slot->opslot_op.op_slabbed); | |
590 | op_free(&slot->opslot_op); | |
591 | if (slab->opslab_refcnt == 1) goto free; | |
592 | } | |
593 | } | |
8be227ab FC |
594 | } while ((slab2 = slab2->opslab_next)); |
595 | /* > 1 because the CV still holds a reference count. */ | |
596 | if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */ | |
7aef8e5b | 597 | #ifdef DEBUGGING |
1f4fbd3b | 598 | assert(savestack_count == slab->opslab_refcnt-1); |
7aef8e5b | 599 | #endif |
1f4fbd3b MS |
600 | /* Remove the CV’s reference count. */ |
601 | slab->opslab_refcnt--; | |
602 | return; | |
8be227ab FC |
603 | } |
604 | free: | |
605 | opslab_free(slab); | |
606 | } | |
607 | ||
3107b51f FC |
608 | #ifdef PERL_DEBUG_READONLY_OPS |
609 | OP * | |
610 | Perl_op_refcnt_inc(pTHX_ OP *o) | |
611 | { | |
612 | if(o) { | |
372eab01 NC |
613 | OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL; |
614 | if (slab && slab->opslab_readonly) { | |
83519873 | 615 | Slab_to_rw(slab); |
372eab01 NC |
616 | ++o->op_targ; |
617 | Slab_to_ro(slab); | |
618 | } else { | |
619 | ++o->op_targ; | |
620 | } | |
3107b51f FC |
621 | } |
622 | return o; | |
623 | ||
624 | } | |
625 | ||
626 | PADOFFSET | |
627 | Perl_op_refcnt_dec(pTHX_ OP *o) | |
628 | { | |
372eab01 NC |
629 | PADOFFSET result; |
630 | OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL; | |
631 | ||
3107b51f | 632 | PERL_ARGS_ASSERT_OP_REFCNT_DEC; |
372eab01 NC |
633 | |
634 | if (slab && slab->opslab_readonly) { | |
83519873 | 635 | Slab_to_rw(slab); |
372eab01 NC |
636 | result = --o->op_targ; |
637 | Slab_to_ro(slab); | |
638 | } else { | |
639 | result = --o->op_targ; | |
640 | } | |
641 | return result; | |
3107b51f FC |
642 | } |
643 | #endif | |
e50aee73 | 644 | /* |
ce6f1cbc | 645 | * In the following definition, the ", (OP*)0" is just to make the compiler |
a5f75d66 | 646 | * think the expression is of the right type: croak actually does a Siglongjmp. |
e50aee73 | 647 | */ |
11343788 | 648 | #define CHECKOP(type,o) \ |
ce6f1cbc | 649 | ((PL_op_mask && PL_op_mask[type]) \ |
5dc0d613 | 650 | ? ( op_free((OP*)o), \ |
1f4fbd3b MS |
651 | Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \ |
652 | (OP*)0 ) \ | |
16c91539 | 653 | : PL_check[type](aTHX_ (OP*)o)) |
e50aee73 | 654 | |
e6438c1a | 655 | #define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2) |
c53d7c7d | 656 | |
b9a07097 | 657 | #define OpTYPE_set(o,type) \ |
cba5a3b0 | 658 | STMT_START { \ |
1f4fbd3b MS |
659 | o->op_type = (OPCODE)type; \ |
660 | o->op_ppaddr = PL_ppaddr[type]; \ | |
cba5a3b0 DG |
661 | } STMT_END |
662 | ||
76e3520e | 663 | STATIC OP * |
cea2e8a9 | 664 | S_no_fh_allowed(pTHX_ OP *o) |
79072805 | 665 | { |
7918f24d NC |
666 | PERL_ARGS_ASSERT_NO_FH_ALLOWED; |
667 | ||
cea2e8a9 | 668 | yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function", |
1f4fbd3b | 669 | OP_DESC(o))); |
11343788 | 670 | return o; |
79072805 LW |
671 | } |
672 | ||
76e3520e | 673 | STATIC OP * |
ce16c625 BF |
674 | S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags) |
675 | { | |
676 | PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV; | |
677 | yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags); | |
678 | return o; | |
679 | } | |
2f96a1b4 | 680 | |
ce16c625 BF |
681 | STATIC OP * |
682 | S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags) | |
683 | { | |
684 | PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV; | |
7918f24d | 685 | |
ce16c625 | 686 | yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags); |
11343788 | 687 | return o; |
79072805 LW |
688 | } |
689 | ||
76e3520e | 690 | STATIC void |
ed9feedd | 691 | S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid) |
8990e307 | 692 | { |
ce16c625 BF |
693 | PERL_ARGS_ASSERT_BAD_TYPE_PV; |
694 | ||
695 | yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)", | |
1f4fbd3b | 696 | (int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0); |
ce16c625 | 697 | } |
7918f24d | 698 | |
ce16c625 | 699 | STATIC void |
ed9feedd | 700 | S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t) |
ce16c625 | 701 | { |
ecf05a58 | 702 | SV * const namesv = cv_name((CV *)gv, NULL, 0); |
7b3b0904 | 703 | PERL_ARGS_ASSERT_BAD_TYPE_GV; |
2f96a1b4 | 704 | |
147e3846 | 705 | yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %" SVf " must be %s (not %s)", |
1f4fbd3b | 706 | (int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv)); |
8990e307 LW |
707 | } |
708 | ||
7a52d87a | 709 | STATIC void |
eb796c7f | 710 | S_no_bareword_allowed(pTHX_ OP *o) |
7a52d87a | 711 | { |
7918f24d NC |
712 | PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED; |
713 | ||
5a844595 | 714 | qerror(Perl_mess(aTHX_ |
1f4fbd3b MS |
715 | "Bareword \"%" SVf "\" not allowed while \"strict subs\" in use", |
716 | SVfARG(cSVOPo_sv))); | |
eb796c7f | 717 | o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */ |
7a52d87a GS |
718 | } |
719 | ||
0f2beabb TC |
720 | void |
721 | Perl_no_bareword_filehandle(pTHX_ const char *fhname) { | |
722 | PERL_ARGS_ASSERT_NO_BAREWORD_FILEHANDLE; | |
723 | ||
724 | if (strNE(fhname, "STDERR") | |
725 | && strNE(fhname, "STDOUT") | |
726 | && strNE(fhname, "STDIN") | |
727 | && strNE(fhname, "_") | |
728 | && strNE(fhname, "ARGV") | |
729 | && strNE(fhname, "ARGVOUT") | |
730 | && strNE(fhname, "DATA")) { | |
731 | qerror(Perl_mess(aTHX_ "Bareword filehandle \"%s\" not allowed under 'no feature \"bareword_filehandles\"'", fhname)); | |
732 | } | |
733 | } | |
734 | ||
79072805 LW |
735 | /* "register" allocation */ |
736 | ||
737 | PADOFFSET | |
d6447115 | 738 | Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags) |
93a17b20 | 739 | { |
a0d0e21e | 740 | PADOFFSET off; |
07319fdb | 741 | bool is_idfirst, is_default; |
12bd6ede | 742 | const bool is_our = (PL_parser->in_my == KEY_our); |
a0d0e21e | 743 | |
7918f24d NC |
744 | PERL_ARGS_ASSERT_ALLOCMY; |
745 | ||
48d0d1be | 746 | if (flags & ~SVf_UTF8) |
1f4fbd3b MS |
747 | Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf, |
748 | (UV)flags); | |
d6447115 | 749 | |
07319fdb TK |
750 | is_idfirst = flags & SVf_UTF8 |
751 | ? isIDFIRST_utf8_safe((U8*)name + 1, name + len) | |
752 | : isIDFIRST_A(name[1]); | |
753 | ||
754 | /* $_, @_, etc. */ | |
755 | is_default = len == 2 && name[1] == '_'; | |
756 | ||
59f00321 | 757 | /* complain about "my $<special_var>" etc etc */ |
07319fdb | 758 | if (!is_our && (!is_idfirst || is_default)) { |
f27832e7 DM |
759 | const char * const type = |
760 | PL_parser->in_my == KEY_sigvar ? "subroutine signature" : | |
761 | PL_parser->in_my == KEY_state ? "\"state\"" : "\"my\""; | |
762 | ||
1f4fbd3b MS |
763 | if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1])) |
764 | && isASCII(name[1]) | |
765 | && (!isPRINT(name[1]) || memCHRs("\t\n\r\f", name[1]))) { | |
766 | /* diag_listed_as: Can't use global %s in %s */ | |
767 | yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in %s", | |
768 | name[0], toCTRL(name[1]), | |
f27832e7 | 769 | (int)(len - 2), name + 2, |
1f4fbd3b MS |
770 | type)); |
771 | } else { | |
772 | yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in %s", | |
f27832e7 | 773 | (int) len, name, |
1f4fbd3b MS |
774 | type), flags & SVf_UTF8); |
775 | } | |
a0d0e21e | 776 | } |
748a9306 | 777 | |
dd2155a4 | 778 | /* allocate a spare slot and store the name in that slot */ |
93a17b20 | 779 | |
cc76b5cc | 780 | off = pad_add_name_pvn(name, len, |
1f4fbd3b MS |
781 | (is_our ? padadd_OUR : |
782 | PL_parser->in_my == KEY_state ? padadd_STATE : 0), | |
783 | PL_parser->in_my_stash, | |
784 | (is_our | |
785 | /* $_ is always in main::, even with our */ | |
786 | ? (PL_curstash && !memEQs(name,len,"$_") | |
787 | ? PL_curstash | |
788 | : PL_defstash) | |
789 | : NULL | |
790 | ) | |
dd2155a4 | 791 | ); |
a74073ad DM |
792 | /* anon sub prototypes contains state vars should always be cloned, |
793 | * otherwise the state var would be shared between anon subs */ | |
794 | ||
795 | if (PL_parser->in_my == KEY_state && CvANON(PL_compcv)) | |
1f4fbd3b | 796 | CvCLONE_on(PL_compcv); |
a74073ad | 797 | |
dd2155a4 | 798 | return off; |
79072805 LW |
799 | } |
800 | ||
c0b8aebd | 801 | /* |
3f620621 | 802 | =for apidoc_section $optree_manipulation |
dcccc8ff | 803 | |
c0b8aebd FC |
804 | =for apidoc alloccopstash |
805 | ||
806 | Available only under threaded builds, this function allocates an entry in | |
807 | C<PL_stashpad> for the stash passed to it. | |
808 | ||
809 | =cut | |
810 | */ | |
811 | ||
d4d03940 FC |
812 | #ifdef USE_ITHREADS |
813 | PADOFFSET | |
1dc74fdb | 814 | Perl_alloccopstash(pTHX_ HV *hv) |
d4d03940 FC |
815 | { |
816 | PADOFFSET off = 0, o = 1; | |
817 | bool found_slot = FALSE; | |
818 | ||
1dc74fdb FC |
819 | PERL_ARGS_ASSERT_ALLOCCOPSTASH; |
820 | ||
821 | if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix; | |
d4d03940 | 822 | |
1dc74fdb | 823 | for (; o < PL_stashpadmax; ++o) { |
1f4fbd3b MS |
824 | if (PL_stashpad[o] == hv) return PL_stashpadix = o; |
825 | if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV) | |
826 | found_slot = TRUE, off = o; | |
d4d03940 FC |
827 | } |
828 | if (!found_slot) { | |
1f4fbd3b MS |
829 | Renew(PL_stashpad, PL_stashpadmax + 10, HV *); |
830 | Zero(PL_stashpad + PL_stashpadmax, 10, HV *); | |
831 | off = PL_stashpadmax; | |
832 | PL_stashpadmax += 10; | |
d4d03940 FC |
833 | } |
834 | ||
1dc74fdb | 835 | PL_stashpad[PL_stashpadix = off] = hv; |
d4d03940 FC |
836 | return off; |
837 | } | |
838 | #endif | |
839 | ||
d2c837a0 DM |
840 | /* free the body of an op without examining its contents. |
841 | * Always use this rather than FreeOp directly */ | |
842 | ||
4136a0f7 | 843 | static void |
d2c837a0 DM |
844 | S_op_destroy(pTHX_ OP *o) |
845 | { | |
d2c837a0 DM |
846 | FreeOp(o); |
847 | } | |
848 | ||
79072805 LW |
849 | /* Destructor */ |
850 | ||
6e53b6ca | 851 | /* |
44170c9a | 852 | =for apidoc op_free |
6e53b6ca | 853 | |
73cdf3a8 DM |
854 | Free an op and its children. Only use this when an op is no longer linked |
855 | to from any optree. | |
6e53b6ca DD |
856 | |
857 | =cut | |
858 | */ | |
859 | ||
79072805 | 860 | void |
864dbfa3 | 861 | Perl_op_free(pTHX_ OP *o) |
79072805 | 862 | { |
acb36ea4 | 863 | OPCODE type; |
73cdf3a8 DM |
864 | OP *top_op = o; |
865 | OP *next_op = o; | |
866 | bool went_up = FALSE; /* whether we reached the current node by | |
867 | following the parent pointer from a child, and | |
868 | so have already seen this node */ | |
869 | ||
870 | if (!o || o->op_type == OP_FREED) | |
871 | return; | |
872 | ||
873 | if (o->op_private & OPpREFCOUNTED) { | |
874 | /* if base of tree is refcounted, just decrement */ | |
875 | switch (o->op_type) { | |
876 | case OP_LEAVESUB: | |
877 | case OP_LEAVESUBLV: | |
878 | case OP_LEAVEEVAL: | |
879 | case OP_LEAVE: | |
880 | case OP_SCOPE: | |
881 | case OP_LEAVEWRITE: | |
882 | { | |
883 | PADOFFSET refcnt; | |
884 | OP_REFCNT_LOCK; | |
885 | refcnt = OpREFCNT_dec(o); | |
886 | OP_REFCNT_UNLOCK; | |
887 | if (refcnt) { | |
888 | /* Need to find and remove any pattern match ops from | |
889 | * the list we maintain for reset(). */ | |
890 | find_and_forget_pmops(o); | |
891 | return; | |
892 | } | |
893 | } | |
894 | break; | |
895 | default: | |
896 | break; | |
897 | } | |
898 | } | |
79072805 | 899 | |
73cdf3a8 DM |
900 | while (next_op) { |
901 | o = next_op; | |
902 | ||
903 | /* free child ops before ourself, (then free ourself "on the | |
904 | * way back up") */ | |
905 | ||
906 | if (!went_up && o->op_flags & OPf_KIDS) { | |
907 | next_op = cUNOPo->op_first; | |
908 | continue; | |
909 | } | |
910 | ||
911 | /* find the next node to visit, *then* free the current node | |
912 | * (can't rely on o->op_* fields being valid after o has been | |
913 | * freed) */ | |
914 | ||
915 | /* The next node to visit will be either the sibling, or the | |
916 | * parent if no siblings left, or NULL if we've worked our way | |
917 | * back up to the top node in the tree */ | |
918 | next_op = (o == top_op) ? NULL : o->op_sibparent; | |
919 | went_up = cBOOL(!OpHAS_SIBLING(o)); /* parents are already visited */ | |
920 | ||
921 | /* Now process the current node */ | |
79072805 | 922 | |
0997db6f TC |
923 | /* Though ops may be freed twice, freeing the op after its slab is a |
924 | big no-no. */ | |
73cdf3a8 | 925 | assert(!o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0); |
0997db6f TC |
926 | /* During the forced freeing of ops after compilation failure, kidops |
927 | may be freed before their parents. */ | |
928 | if (!o || o->op_type == OP_FREED) | |
929 | continue; | |
d0c8136d | 930 | |
0997db6f | 931 | type = o->op_type; |
d0c8136d | 932 | |
0997db6f | 933 | /* an op should only ever acquire op_private flags that we know about. |
09681a13 DM |
934 | * If this fails, you may need to fix something in regen/op_private. |
935 | * Don't bother testing if: | |
936 | * * the op_ppaddr doesn't match the op; someone may have | |
937 | * overridden the op and be doing strange things with it; | |
938 | * * we've errored, as op flags are often left in an | |
939 | * inconsistent state then. Note that an error when | |
940 | * compiling the main program leaves PL_parser NULL, so | |
ad53d4d4 | 941 | * we can't spot faults in the main code, only |
07a62087 DM |
942 | * evaled/required code; |
943 | * * it's a banned op - we may be croaking before the op is | |
944 | * fully formed. - see CHECKOP. */ | |
09681a13 | 945 | #ifdef DEBUGGING |
73cdf3a8 | 946 | if ( o->op_ppaddr == PL_ppaddr[type] |
09681a13 | 947 | && PL_parser |
07a62087 DM |
948 | && !PL_parser->error_count |
949 | && !(PL_op_mask && PL_op_mask[type]) | |
950 | ) | |
09681a13 | 951 | { |
0997db6f TC |
952 | assert(!(o->op_private & ~PL_op_private_valid[type])); |
953 | } | |
09681a13 | 954 | #endif |
7934575e | 955 | |
f37b8c3f | 956 | |
0997db6f TC |
957 | /* Call the op_free hook if it has been set. Do it now so that it's called |
958 | * at the right time for refcounted ops, but still before all of the kids | |
959 | * are freed. */ | |
960 | CALL_OPFREEHOOK(o); | |
961 | ||
0997db6f TC |
962 | if (type == OP_NULL) |
963 | type = (OPCODE)o->op_targ; | |
acb36ea4 | 964 | |
0997db6f TC |
965 | if (o->op_slabbed) |
966 | Slab_to_rw(OpSLAB(o)); | |
fc97af9c | 967 | |
0997db6f TC |
968 | /* COP* is not cleared by op_clear() so that we may track line |
969 | * numbers etc even after null() */ | |
970 | if (type == OP_NEXTSTATE || type == OP_DBSTATE) { | |
971 | cop_free((COP*)o); | |
972 | } | |
acb36ea4 | 973 | |
0997db6f TC |
974 | op_clear(o); |
975 | FreeOp(o); | |
0997db6f TC |
976 | if (PL_op == o) |
977 | PL_op = NULL; | |
73cdf3a8 | 978 | } |
acb36ea4 | 979 | } |
79072805 | 980 | |
73cdf3a8 | 981 | |
ab576797 DM |
982 | /* S_op_clear_gv(): free a GV attached to an OP */ |
983 | ||
f9db5646 | 984 | STATIC |
ab576797 DM |
985 | #ifdef USE_ITHREADS |
986 | void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp) | |
987 | #else | |
988 | void S_op_clear_gv(pTHX_ OP *o, SV**svp) | |
989 | #endif | |
990 | { | |
991 | ||
fedf30e1 DM |
992 | GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV |
993 | || o->op_type == OP_MULTIDEREF) | |
ab576797 DM |
994 | #ifdef USE_ITHREADS |
995 | && PL_curpad | |
996 | ? ((GV*)PAD_SVl(*ixp)) : NULL; | |
997 | #else | |
998 | ? (GV*)(*svp) : NULL; | |
999 | #endif | |
1000 | /* It's possible during global destruction that the GV is freed | |
1001 | before the optree. Whilst the SvREFCNT_inc is happy to bump from | |
1002 | 0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0 | |
1003 | will trigger an assertion failure, because the entry to sv_clear | |
1004 | checks that the scalar is not already freed. A check of for | |
1005 | !SvIS_FREED(gv) turns out to be invalid, because during global | |
1006 | destruction the reference count can be forced down to zero | |
1007 | (with SVf_BREAK set). In which case raising to 1 and then | |
1008 | dropping to 0 triggers cleanup before it should happen. I | |
1009 | *think* that this might actually be a general, systematic, | |
1010 | weakness of the whole idea of SVf_BREAK, in that code *is* | |
1011 | allowed to raise and lower references during global destruction, | |
1012 | so any *valid* code that happens to do this during global | |
1013 | destruction might well trigger premature cleanup. */ | |
1014 | bool still_valid = gv && SvREFCNT(gv); | |
1015 | ||
1016 | if (still_valid) | |
1017 | SvREFCNT_inc_simple_void(gv); | |
1018 | #ifdef USE_ITHREADS | |
1019 | if (*ixp > 0) { | |
1020 | pad_swipe(*ixp, TRUE); | |
1021 | *ixp = 0; | |
1022 | } | |
1023 | #else | |
1024 | SvREFCNT_dec(*svp); | |
1025 | *svp = NULL; | |
1026 | #endif | |
1027 | if (still_valid) { | |
1028 | int try_downgrade = SvREFCNT(gv) == 2; | |
1029 | SvREFCNT_dec_NN(gv); | |
1030 | if (try_downgrade) | |
1031 | gv_try_downgrade(gv); | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | ||
93c66552 DM |
1036 | void |
1037 | Perl_op_clear(pTHX_ OP *o) | |
acb36ea4 | 1038 | { |
13137afc | 1039 | |
7918f24d NC |
1040 | |
1041 | PERL_ARGS_ASSERT_OP_CLEAR; | |
1042 | ||
11343788 | 1043 | switch (o->op_type) { |
acb36ea4 | 1044 | case OP_NULL: /* Was holding old type, if any. */ |
c67159e1 | 1045 | /* FALLTHROUGH */ |
4d193d44 | 1046 | case OP_ENTERTRY: |
acb36ea4 | 1047 | case OP_ENTEREVAL: /* Was holding hints. */ |
4fa06845 | 1048 | case OP_ARGDEFELEM: /* Was holding signature index. */ |
1f4fbd3b MS |
1049 | o->op_targ = 0; |
1050 | break; | |
a6006777 | 1051 | default: |
1f4fbd3b MS |
1052 | if (!(o->op_flags & OPf_REF) || !OP_IS_STAT(o->op_type)) |
1053 | break; | |
1054 | /* FALLTHROUGH */ | |
463ee0b2 | 1055 | case OP_GVSV: |
79072805 | 1056 | case OP_GV: |
a6006777 | 1057 | case OP_AELEMFAST: |
f7461760 | 1058 | #ifdef USE_ITHREADS |
ab576797 | 1059 | S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix)); |
350de78d | 1060 | #else |
ab576797 | 1061 | S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv)); |
350de78d | 1062 | #endif |
1f4fbd3b | 1063 | break; |
810bd8b7 | 1064 | case OP_METHOD_REDIR: |
1065 | case OP_METHOD_REDIR_SUPER: | |
1066 | #ifdef USE_ITHREADS | |
1f4fbd3b MS |
1067 | if (cMETHOPx(o)->op_rclass_targ) { |
1068 | pad_swipe(cMETHOPx(o)->op_rclass_targ, 1); | |
1069 | cMETHOPx(o)->op_rclass_targ = 0; | |
1070 | } | |
810bd8b7 | 1071 | #else |
1f4fbd3b MS |
1072 | SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv); |
1073 | cMETHOPx(o)->op_rclass_sv = NULL; | |
810bd8b7 | 1074 | #endif |
2165bd23 | 1075 | /* FALLTHROUGH */ |
a1ae71d2 | 1076 | case OP_METHOD_NAMED: |
7d6c333c | 1077 | case OP_METHOD_SUPER: |
b46e009d | 1078 | SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv); |
1079 | cMETHOPx(o)->op_u.op_meth_sv = NULL; | |
1080 | #ifdef USE_ITHREADS | |
1081 | if (o->op_targ) { | |
1082 | pad_swipe(o->op_targ, 1); | |
1083 | o->op_targ = 0; | |
1084 | } | |
1085 | #endif | |
1086 | break; | |
79072805 | 1087 | case OP_CONST: |
996c9baa | 1088 | case OP_HINTSEVAL: |
1f4fbd3b MS |
1089 | SvREFCNT_dec(cSVOPo->op_sv); |
1090 | cSVOPo->op_sv = NULL; | |
3b1c21fa | 1091 | #ifdef USE_ITHREADS |
1f4fbd3b MS |
1092 | /** Bug #15654 |
1093 | Even if op_clear does a pad_free for the target of the op, | |
1094 | pad_free doesn't actually remove the sv that exists in the pad; | |
1095 | instead it lives on. This results in that it could be reused as | |
1096 | a target later on when the pad was reallocated. | |
1097 | **/ | |
3b1c21fa AB |
1098 | if(o->op_targ) { |
1099 | pad_swipe(o->op_targ,1); | |
1100 | o->op_targ = 0; | |
1101 | } | |
1102 | #endif | |
1f4fbd3b | 1103 | break; |
c9df4fda | 1104 | case OP_DUMP: |
748a9306 LW |
1105 | case OP_GOTO: |
1106 | case OP_NEXT: | |
1107 | case OP_LAST: | |
1108 | case OP_REDO: | |
1f4fbd3b MS |
1109 | if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS)) |
1110 | break; | |
1111 | /* FALLTHROUGH */ | |
a0d0e21e | 1112 | case OP_TRANS: |
bb16bae8 | 1113 | case OP_TRANSR: |
1f4fbd3b | 1114 | if ( (o->op_type == OP_TRANS || o->op_type == OP_TRANSR) |
f34acfec | 1115 | && (o->op_private & OPpTRANS_USE_SVOP)) |
abd07ec0 | 1116 | { |
043e41b8 | 1117 | #ifdef USE_ITHREADS |
1f4fbd3b MS |
1118 | if (cPADOPo->op_padix > 0) { |
1119 | pad_swipe(cPADOPo->op_padix, TRUE); | |
1120 | cPADOPo->op_padix = 0; | |
1121 | } | |
043e41b8 | 1122 | #else |
1f4fbd3b MS |
1123 | SvREFCNT_dec(cSVOPo->op_sv); |
1124 | cSVOPo->op_sv = NULL; | |
043e41b8 | 1125 | #endif |
1f4fbd3b MS |
1126 | } |
1127 | else { | |
1128 | PerlMemShared_free(cPVOPo->op_pv); | |
1129 | cPVOPo->op_pv = NULL; | |
1130 | } | |
1131 | break; | |
a0d0e21e | 1132 | case OP_SUBST: |
1f4fbd3b MS |
1133 | op_free(cPMOPo->op_pmreplrootu.op_pmreplroot); |
1134 | goto clear_pmop; | |
5012eebe DM |
1135 | |
1136 | case OP_SPLIT: | |
692044df DM |
1137 | if ( (o->op_private & OPpSPLIT_ASSIGN) /* @array = split */ |
1138 | && !(o->op_flags & OPf_STACKED)) /* @{expr} = split */ | |
5012eebe DM |
1139 | { |
1140 | if (o->op_private & OPpSPLIT_LEX) | |
1141 | pad_free(cPMOPo->op_pmreplrootu.op_pmtargetoff); | |
1142 | else | |
971a9dd3 | 1143 | #ifdef USE_ITHREADS |
5012eebe | 1144 | pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE); |
971a9dd3 | 1145 | #else |
5012eebe | 1146 | SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv)); |
971a9dd3 | 1147 | #endif |
5012eebe | 1148 | } |
1f4fbd3b | 1149 | /* FALLTHROUGH */ |
a0d0e21e | 1150 | case OP_MATCH: |
8782bef2 | 1151 | case OP_QR: |
7b52d656 | 1152 | clear_pmop: |
1f4fbd3b MS |
1153 | if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE)) |
1154 | op_free(cPMOPo->op_code_list); | |
1155 | cPMOPo->op_code_list = NULL; | |
1156 | forget_pmop(cPMOPo); | |
1157 | cPMOPo->op_pmreplrootu.op_pmreplroot = NULL; | |
9cddf794 NC |
1158 | /* we use the same protection as the "SAFE" version of the PM_ macros |
1159 | * here since sv_clean_all might release some PMOPs | |
5f8cb046 DM |
1160 | * after PL_regex_padav has been cleared |
1161 | * and the clearing of PL_regex_padav needs to | |
1162 | * happen before sv_clean_all | |
1163 | */ | |
13137afc | 1164 | #ifdef USE_ITHREADS |
1f4fbd3b MS |
1165 | if(PL_regex_pad) { /* We could be in destruction */ |
1166 | const IV offset = (cPMOPo)->op_pmoffset; | |
1167 | ReREFCNT_dec(PM_GETRE(cPMOPo)); | |
1168 | PL_regex_pad[offset] = &PL_sv_undef; | |
402d2eb1 | 1169 | sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset, |
1f4fbd3b | 1170 | sizeof(offset)); |
13137afc | 1171 | } |
9cddf794 | 1172 | #else |
1f4fbd3b MS |
1173 | ReREFCNT_dec(PM_GETRE(cPMOPo)); |
1174 | PM_SETRE(cPMOPo, NULL); | |
1eb1540c | 1175 | #endif |
13137afc | 1176 | |
1f4fbd3b | 1177 | break; |
fedf30e1 | 1178 | |
4fa06845 DM |
1179 | case OP_ARGCHECK: |
1180 | PerlMemShared_free(cUNOP_AUXo->op_aux); | |
1181 | break; | |
1182 | ||
e839e6ed DM |
1183 | case OP_MULTICONCAT: |
1184 | { | |
1185 | UNOP_AUX_item *aux = cUNOP_AUXo->op_aux; | |
1186 | /* aux[PERL_MULTICONCAT_IX_PLAIN_PV] and/or | |
1187 | * aux[PERL_MULTICONCAT_IX_UTF8_PV] point to plain and/or | |
1188 | * utf8 shared strings */ | |
1189 | char *p1 = aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv; | |
1190 | char *p2 = aux[PERL_MULTICONCAT_IX_UTF8_PV].pv; | |
1191 | if (p1) | |
1192 | PerlMemShared_free(p1); | |
1193 | if (p2 && p1 != p2) | |
1194 | PerlMemShared_free(p2); | |
1195 | PerlMemShared_free(aux); | |
1196 | } | |
1197 | break; | |
1198 | ||
fedf30e1 DM |
1199 | case OP_MULTIDEREF: |
1200 | { | |
1201 | UNOP_AUX_item *items = cUNOP_AUXo->op_aux; | |
1202 | UV actions = items->uv; | |
1203 | bool last = 0; | |
1204 | bool is_hash = FALSE; | |
1205 | ||
1206 | while (!last) { | |
1207 | switch (actions & MDEREF_ACTION_MASK) { | |
1208 | ||
1209 | case MDEREF_reload: | |
1210 | actions = (++items)->uv; | |
1211 | continue; | |
1212 | ||
1213 | case MDEREF_HV_padhv_helem: | |
1214 | is_hash = TRUE; | |
2165bd23 | 1215 | /* FALLTHROUGH */ |
fedf30e1 DM |
1216 | case MDEREF_AV_padav_aelem: |
1217 | pad_free((++items)->pad_offset); | |
1218 | goto do_elem; | |
1219 | ||
1220 | case MDEREF_HV_gvhv_helem: | |
1221 | is_hash = TRUE; | |
2165bd23 | 1222 | /* FALLTHROUGH */ |
fedf30e1 DM |
1223 | case MDEREF_AV_gvav_aelem: |
1224 | #ifdef USE_ITHREADS | |
1225 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1226 | #else | |
1227 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1228 | #endif | |
1229 | goto do_elem; | |
1230 | ||
1231 | case MDEREF_HV_gvsv_vivify_rv2hv_helem: | |
1232 | is_hash = TRUE; | |
2165bd23 | 1233 | /* FALLTHROUGH */ |
fedf30e1 DM |
1234 | case MDEREF_AV_gvsv_vivify_rv2av_aelem: |
1235 | #ifdef USE_ITHREADS | |
1236 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1237 | #else | |
1238 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1239 | #endif | |
1240 | goto do_vivify_rv2xv_elem; | |
1241 | ||
1242 | case MDEREF_HV_padsv_vivify_rv2hv_helem: | |
1243 | is_hash = TRUE; | |
2165bd23 | 1244 | /* FALLTHROUGH */ |
fedf30e1 DM |
1245 | case MDEREF_AV_padsv_vivify_rv2av_aelem: |
1246 | pad_free((++items)->pad_offset); | |
1247 | goto do_vivify_rv2xv_elem; | |
1248 | ||
1249 | case MDEREF_HV_pop_rv2hv_helem: | |
1250 | case MDEREF_HV_vivify_rv2hv_helem: | |
1251 | is_hash = TRUE; | |
2165bd23 | 1252 | /* FALLTHROUGH */ |
fedf30e1 DM |
1253 | do_vivify_rv2xv_elem: |
1254 | case MDEREF_AV_pop_rv2av_aelem: | |
1255 | case MDEREF_AV_vivify_rv2av_aelem: | |
1256 | do_elem: | |
1257 | switch (actions & MDEREF_INDEX_MASK) { | |
1258 | case MDEREF_INDEX_none: | |
1259 | last = 1; | |
1260 | break; | |
1261 | case MDEREF_INDEX_const: | |
1262 | if (is_hash) { | |
1263 | #ifdef USE_ITHREADS | |
1264 | /* see RT #15654 */ | |
1265 | pad_swipe((++items)->pad_offset, 1); | |
1266 | #else | |
1267 | SvREFCNT_dec((++items)->sv); | |
1268 | #endif | |
1269 | } | |
1270 | else | |
1271 | items++; | |
1272 | break; | |
1273 | case MDEREF_INDEX_padsv: | |
1274 | pad_free((++items)->pad_offset); | |
1275 | break; | |
1276 | case MDEREF_INDEX_gvsv: | |
1277 | #ifdef USE_ITHREADS | |
1278 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1279 | #else | |
1280 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1281 | #endif | |
1282 | break; | |
1283 | } | |
1284 | ||
1285 | if (actions & MDEREF_FLAG_last) | |
1286 | last = 1; | |
1287 | is_hash = FALSE; | |
1288 | ||
1289 | break; | |
1290 | ||
1291 | default: | |
1292 | assert(0); | |
1293 | last = 1; | |
1294 | break; | |
1295 | ||
1296 | } /* switch */ | |
1297 | ||
1298 | actions >>= MDEREF_SHIFT; | |
1299 | } /* while */ | |
1300 | ||
1301 | /* start of malloc is at op_aux[-1], where the length is | |
1302 | * stored */ | |
1303 | PerlMemShared_free(cUNOP_AUXo->op_aux - 1); | |
1304 | } | |
1305 | break; | |
79072805 LW |
1306 | } |
1307 | ||
743e66e6 | 1308 | if (o->op_targ > 0) { |
1f4fbd3b MS |
1309 | pad_free(o->op_targ); |
1310 | o->op_targ = 0; | |
743e66e6 | 1311 | } |
79072805 LW |
1312 | } |
1313 | ||
76e3520e | 1314 | STATIC void |
3eb57f73 HS |
1315 | S_cop_free(pTHX_ COP* cop) |
1316 | { | |
7918f24d NC |
1317 | PERL_ARGS_ASSERT_COP_FREE; |
1318 | ||
9bce496f TC |
1319 | /* If called during global destruction PL_defstash might be NULL and there |
1320 | shouldn't be any code running that will trip over the bad cop address. | |
1321 | This also avoids uselessly creating the AV after it's been destroyed. | |
1322 | */ | |
1323 | if (cop->op_type == OP_DBSTATE && PL_phase != PERL_PHASE_DESTRUCT) { | |
0cdbe216 TC |
1324 | /* Remove the now invalid op from the line number information. |
1325 | This could cause a freed memory overwrite if the debugger tried to | |
1326 | set a breakpoint on this line. | |
1327 | */ | |
9c913148 | 1328 | AV *av = CopFILEAVn(cop); |
0cdbe216 TC |
1329 | if (av) { |
1330 | SV * const * const svp = av_fetch(av, CopLINE(cop), FALSE); | |
1331 | if (svp && *svp != &PL_sv_undef && SvIVX(*svp) == PTR2IV(cop) ) { | |
1332 | (void)SvIOK_off(*svp); | |
1333 | SvIV_set(*svp, 0); | |
1334 | } | |
1335 | } | |
1336 | } | |
05ec9bb3 | 1337 | CopFILE_free(cop); |
0453d815 | 1338 | if (! specialWARN(cop->cop_warnings)) |
1f4fbd3b | 1339 | PerlMemShared_free(cop->cop_warnings); |
20439bc7 | 1340 | cophh_free(CopHINTHASH_get(cop)); |
515abc43 FC |
1341 | if (PL_curcop == cop) |
1342 | PL_curcop = NULL; | |
3eb57f73 HS |
1343 | } |
1344 | ||
c2b1997a | 1345 | STATIC void |
ddda3df5 | 1346 | S_forget_pmop(pTHX_ PMOP *const o) |
c2b1997a NC |
1347 | { |
1348 | HV * const pmstash = PmopSTASH(o); | |
7918f24d NC |
1349 | |
1350 | PERL_ARGS_ASSERT_FORGET_PMOP; | |
1351 | ||
e39a6381 | 1352 | if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) { |
1f4fbd3b MS |
1353 | MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab); |
1354 | if (mg) { | |
1355 | PMOP **const array = (PMOP**) mg->mg_ptr; | |
1356 | U32 count = mg->mg_len / sizeof(PMOP**); | |
1357 | U32 i = count; | |
1358 | ||
1359 | while (i--) { | |
1360 | if (array[i] == o) { | |
1361 | /* Found it. Move the entry at the end to overwrite it. */ | |
1362 | array[i] = array[--count]; | |
1363 | mg->mg_len = count * sizeof(PMOP**); | |
1364 | /* Could realloc smaller at this point always, but probably | |
1365 | not worth it. Probably worth free()ing if we're the | |
1366 | last. */ | |
1367 | if(!count) { | |
1368 | Safefree(mg->mg_ptr); | |
1369 | mg->mg_ptr = NULL; | |
1370 | } | |
1371 | break; | |
1372 | } | |
1373 | } | |
1374 | } | |
c2b1997a | 1375 | } |
2f96a1b4 | 1376 | if (PL_curpm == o) |
1f4fbd3b | 1377 | PL_curpm = NULL; |
c2b1997a NC |
1378 | } |
1379 | ||
f0d08550 | 1380 | |
bfd0ff22 NC |
1381 | STATIC void |
1382 | S_find_and_forget_pmops(pTHX_ OP *o) | |
1383 | { | |
f0d08550 DM |
1384 | OP* top_op = o; |
1385 | ||
7918f24d NC |
1386 | PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS; |
1387 | ||
f0d08550 DM |
1388 | while (1) { |
1389 | switch (o->op_type) { | |
1390 | case OP_SUBST: | |
1391 | case OP_SPLIT: | |
1392 | case OP_MATCH: | |
1393 | case OP_QR: | |
1394 | forget_pmop((PMOP*)o); | |
1395 | } | |
1396 | ||
1397 | if (o->op_flags & OPf_KIDS) { | |
1398 | o = cUNOPo->op_first; | |
1399 | continue; | |
1400 | } | |
1401 | ||
1402 | while (1) { | |
1403 | if (o == top_op) | |
1404 | return; /* at top; no parents/siblings to try */ | |
1405 | if (OpHAS_SIBLING(o)) { | |
1406 | o = o->op_sibparent; /* process next sibling */ | |
1407 | break; | |
1408 | } | |
1409 | o = o->op_sibparent; /*try parent's next sibling */ | |
1410 | } | |
bfd0ff22 NC |
1411 | } |
1412 | } | |
1413 | ||
f0d08550 | 1414 | |
6e53b6ca | 1415 | /* |
44170c9a | 1416 | =for apidoc op_null |
6e53b6ca DD |
1417 | |
1418 | Neutralizes an op when it is no longer needed, but is still linked to from | |
1419 | other ops. | |
1420 | ||
1421 | =cut | |
1422 | */ | |
1423 | ||
93c66552 DM |
1424 | void |
1425 | Perl_op_null(pTHX_ OP *o) | |
8990e307 | 1426 | { |
7918f24d NC |
1427 | |
1428 | PERL_ARGS_ASSERT_OP_NULL; | |
1429 | ||
acb36ea4 | 1430 | if (o->op_type == OP_NULL) |
1f4fbd3b | 1431 | return; |
b5bbe64a | 1432 | op_clear(o); |
11343788 | 1433 | o->op_targ = o->op_type; |
b9a07097 | 1434 | OpTYPE_set(o, OP_NULL); |
8990e307 LW |
1435 | } |
1436 | ||
4026c95a SH |
1437 | void |
1438 | Perl_op_refcnt_lock(pTHX) | |
e1fc825d | 1439 | PERL_TSA_ACQUIRE(PL_op_mutex) |
4026c95a | 1440 | { |
96a5add6 | 1441 | PERL_UNUSED_CONTEXT; |
4026c95a SH |
1442 | OP_REFCNT_LOCK; |
1443 | } | |
1444 | ||
1445 | void | |
1446 | Perl_op_refcnt_unlock(pTHX) | |
e1fc825d | 1447 | PERL_TSA_RELEASE(PL_op_mutex) |
4026c95a | 1448 | { |
96a5add6 | 1449 | PERL_UNUSED_CONTEXT; |
4026c95a SH |
1450 | OP_REFCNT_UNLOCK; |
1451 | } | |
1452 | ||
3253bf85 DM |
1453 | |
1454 | /* | |
1455 | =for apidoc op_sibling_splice | |
1456 | ||
1457 | A general function for editing the structure of an existing chain of | |
796b6530 | 1458 | op_sibling nodes. By analogy with the perl-level C<splice()> function, allows |
3253bf85 DM |
1459 | you to delete zero or more sequential nodes, replacing them with zero or |
1460 | more different nodes. Performs the necessary op_first/op_last | |
29e61fd9 | 1461 | housekeeping on the parent node and op_sibling manipulation on the |
a3815e44 | 1462 | children. The last deleted node will be marked as the last node by |
87b5a8b9 | 1463 | updating the op_sibling/op_sibparent or op_moresib field as appropriate. |
3253bf85 DM |
1464 | |
1465 | Note that op_next is not manipulated, and nodes are not freed; that is the | |
7e234f81 | 1466 | responsibility of the caller. It also won't create a new list op for an |
8ae26bff | 1467 | empty list etc; use higher-level functions like op_append_elem() for that. |
3253bf85 | 1468 | |
796b6530 | 1469 | C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if |
3269ea41 | 1470 | the splicing doesn't affect the first or last op in the chain. |
3253bf85 | 1471 | |
796b6530 | 1472 | C<start> is the node preceding the first node to be spliced. Node(s) |
7e234f81 | 1473 | following it will be deleted, and ops will be inserted after it. If it is |
796b6530 | 1474 | C<NULL>, the first node onwards is deleted, and nodes are inserted at the |
3253bf85 DM |
1475 | beginning. |
1476 | ||
796b6530 | 1477 | C<del_count> is the number of nodes to delete. If zero, no nodes are deleted. |
3253bf85 DM |
1478 | If -1 or greater than or equal to the number of remaining kids, all |
1479 | remaining kids are deleted. | |
1480 | ||
796b6530 KW |
1481 | C<insert> is the first of a chain of nodes to be inserted in place of the nodes. |
1482 | If C<NULL>, no nodes are inserted. | |
3253bf85 | 1483 | |
796b6530 | 1484 | The head of the chain of deleted ops is returned, or C<NULL> if no ops were |
3253bf85 DM |
1485 | deleted. |
1486 | ||
1487 | For example: | |
1488 | ||
1489 | action before after returns | |
1490 | ------ ----- ----- ------- | |
1491 | ||
1492 | P P | |
8ae26bff DM |
1493 | splice(P, A, 2, X-Y-Z) | | B-C |
1494 | A-B-C-D A-X-Y-Z-D | |
3253bf85 DM |
1495 | |
1496 | P P | |
1497 | splice(P, NULL, 1, X-Y) | | A | |
1498 | A-B-C-D X-Y-B-C-D | |
1499 | ||
1500 | P P | |
8ae26bff DM |
1501 | splice(P, NULL, 3, NULL) | | A-B-C |
1502 | A-B-C-D D | |
3253bf85 DM |
1503 | |
1504 | P P | |
1505 | splice(P, B, 0, X-Y) | | NULL | |
1506 | A-B-C-D A-B-X-Y-C-D | |
1507 | ||
5e24af7d DM |
1508 | |
1509 | For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>, | |
fbe13c60 | 1510 | see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>. |
5e24af7d | 1511 | |
3253bf85 DM |
1512 | =cut |
1513 | */ | |
1514 | ||
1515 | OP * | |
8ae26bff | 1516 | Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert) |
3253bf85 | 1517 | { |
3269ea41 | 1518 | OP *first; |
3253bf85 DM |
1519 | OP *rest; |
1520 | OP *last_del = NULL; | |
1521 | OP *last_ins = NULL; | |
1522 | ||
3269ea41 DM |
1523 | if (start) |
1524 | first = OpSIBLING(start); | |
1525 | else if (!parent) | |
1526 | goto no_parent; | |
1527 | else | |
1528 | first = cLISTOPx(parent)->op_first; | |
3253bf85 DM |
1529 | |
1530 | assert(del_count >= -1); | |
1531 | ||
1532 | if (del_count && first) { | |
1533 | last_del = first; | |
e6dae479 FC |
1534 | while (--del_count && OpHAS_SIBLING(last_del)) |
1535 | last_del = OpSIBLING(last_del); | |
1536 | rest = OpSIBLING(last_del); | |
5e24af7d | 1537 | OpLASTSIB_set(last_del, NULL); |
3253bf85 DM |
1538 | } |
1539 | else | |
1540 | rest = first; | |
1541 | ||
1542 | if (insert) { | |
1543 | last_ins = insert; | |
e6dae479 FC |
1544 | while (OpHAS_SIBLING(last_ins)) |
1545 | last_ins = OpSIBLING(last_ins); | |
5e24af7d | 1546 | OpMAYBESIB_set(last_ins, rest, NULL); |
3253bf85 DM |
1547 | } |
1548 | else | |
1549 | insert = rest; | |
1550 | ||
29e61fd9 | 1551 | if (start) { |
5e24af7d | 1552 | OpMAYBESIB_set(start, insert, NULL); |
29e61fd9 | 1553 | } |
b3e29a8d | 1554 | else { |
678ae292 | 1555 | assert(parent); |
3253bf85 | 1556 | cLISTOPx(parent)->op_first = insert; |
b3e29a8d DM |
1557 | if (insert) |
1558 | parent->op_flags |= OPf_KIDS; | |
1559 | else | |
1560 | parent->op_flags &= ~OPf_KIDS; | |
1561 | } | |
3253bf85 DM |
1562 | |
1563 | if (!rest) { | |
29e61fd9 | 1564 | /* update op_last etc */ |
3269ea41 | 1565 | U32 type; |
29e61fd9 | 1566 | OP *lastop; |
3253bf85 | 1567 | |
3269ea41 DM |
1568 | if (!parent) |
1569 | goto no_parent; | |
1570 | ||
05039abd DM |
1571 | /* ought to use OP_CLASS(parent) here, but that can't handle |
1572 | * ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't | |
1573 | * either */ | |
3269ea41 | 1574 | type = parent->op_type; |
05039abd DM |
1575 | if (type == OP_CUSTOM) { |
1576 | dTHX; | |
1577 | type = XopENTRYCUSTOM(parent, xop_class); | |
1578 | } | |
1579 | else { | |
1580 | if (type == OP_NULL) | |
1581 | type = parent->op_targ; | |
1582 | type = PL_opargs[type] & OA_CLASS_MASK; | |
1583 | } | |
3253bf85 | 1584 | |
29e61fd9 | 1585 | lastop = last_ins ? last_ins : start ? start : NULL; |
3253bf85 DM |
1586 | if ( type == OA_BINOP |
1587 | || type == OA_LISTOP | |
1588 | || type == OA_PMOP | |
1589 | || type == OA_LOOP | |
1590 | ) | |
29e61fd9 DM |
1591 | cLISTOPx(parent)->op_last = lastop; |
1592 | ||
5e24af7d DM |
1593 | if (lastop) |
1594 | OpLASTSIB_set(lastop, parent); | |
3253bf85 DM |
1595 | } |
1596 | return last_del ? first : NULL; | |
3269ea41 DM |
1597 | |
1598 | no_parent: | |
1599 | Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent"); | |
3253bf85 DM |
1600 | } |
1601 | ||
29e61fd9 DM |
1602 | /* |
1603 | =for apidoc op_parent | |
1604 | ||
796b6530 | 1605 | Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise. |
29e61fd9 DM |
1606 | |
1607 | =cut | |
1608 | */ | |
1609 | ||
1610 | OP * | |
8ae26bff | 1611 | Perl_op_parent(OP *o) |
29e61fd9 DM |
1612 | { |
1613 | PERL_ARGS_ASSERT_OP_PARENT; | |
e6dae479 FC |
1614 | while (OpHAS_SIBLING(o)) |
1615 | o = OpSIBLING(o); | |
86cd3a13 | 1616 | return o->op_sibparent; |
29e61fd9 DM |
1617 | } |
1618 | ||
3253bf85 DM |
1619 | /* replace the sibling following start with a new UNOP, which becomes |
1620 | * the parent of the original sibling; e.g. | |
1621 | * | |
1622 | * op_sibling_newUNOP(P, A, unop-args...) | |
1623 | * | |
1624 | * P P | |
1625 | * | becomes | | |
1626 | * A-B-C A-U-C | |
1627 | * | | |
1628 | * B | |
1629 | * | |
1630 | * where U is the new UNOP. | |
1631 | * | |
1632 | * parent and start args are the same as for op_sibling_splice(); | |
1633 | * type and flags args are as newUNOP(). | |
1634 | * | |
1635 | * Returns the new UNOP. | |
1636 | */ | |
1637 | ||
f9db5646 | 1638 | STATIC OP * |
3253bf85 DM |
1639 | S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags) |
1640 | { | |
1641 | OP *kid, *newop; | |
1642 | ||
1643 | kid = op_sibling_splice(parent, start, 1, NULL); | |
1644 | newop = newUNOP(type, flags, kid); | |
1645 | op_sibling_splice(parent, start, 0, newop); | |
1646 | return newop; | |
1647 | } | |
1648 | ||
1649 | ||
1650 | /* lowest-level newLOGOP-style function - just allocates and populates | |
1651 | * the struct. Higher-level stuff should be done by S_new_logop() / | |
1652 | * newLOGOP(). This function exists mainly to avoid op_first assignment | |
1653 | * being spread throughout this file. | |
1654 | */ | |
1655 | ||
6cb4123e DM |
1656 | LOGOP * |
1657 | Perl_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other) | |
3253bf85 DM |
1658 | { |
1659 | LOGOP *logop; | |
29e61fd9 | 1660 | OP *kid = first; |
3253bf85 | 1661 | NewOp(1101, logop, 1, LOGOP); |
b9a07097 | 1662 | OpTYPE_set(logop, type); |
3253bf85 DM |
1663 | logop->op_first = first; |
1664 | logop->op_other = other; | |
d2d35729 FC |
1665 | if (first) |
1666 | logop->op_flags = OPf_KIDS; | |
e6dae479 FC |
1667 | while (kid && OpHAS_SIBLING(kid)) |
1668 | kid = OpSIBLING(kid); | |
5e24af7d DM |
1669 | if (kid) |
1670 | OpLASTSIB_set(kid, (OP*)logop); | |
3253bf85 DM |
1671 | return logop; |
1672 | } | |
1673 | ||
1674 | ||
79072805 LW |
1675 | /* Contextualizers */ |
1676 | ||
d9088386 | 1677 | /* |
44170c9a | 1678 | =for apidoc op_contextualize |
d9088386 Z |
1679 | |
1680 | Applies a syntactic context to an op tree representing an expression. | |
eb7e169e | 1681 | C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_LIST>, |
d9088386 Z |
1682 | or C<G_VOID> to specify the context to apply. The modified op tree |
1683 | is returned. | |
1684 | ||
1685 | =cut | |
1686 | */ | |
1687 | ||
1688 | OP * | |
1689 | Perl_op_contextualize(pTHX_ OP *o, I32 context) | |
1690 | { | |
1691 | PERL_ARGS_ASSERT_OP_CONTEXTUALIZE; | |
1692 | switch (context) { | |
1f4fbd3b | 1693 | case G_SCALAR: return scalar(o); |
eb7e169e | 1694 | case G_LIST: return list(o); |
1f4fbd3b MS |
1695 | case G_VOID: return scalarvoid(o); |
1696 | default: | |
1697 | Perl_croak(aTHX_ "panic: op_contextualize bad context %ld", | |
1698 | (long) context); | |
d9088386 Z |
1699 | } |
1700 | } | |
1701 | ||
5983a79d | 1702 | /* |
79072805 | 1703 | |
44170c9a | 1704 | =for apidoc op_linklist |
72d33970 | 1705 | This function is the implementation of the L</LINKLIST> macro. It should |
5983a79d BM |
1706 | not be called directly. |
1707 | ||
1708 | =cut | |
1709 | */ | |
1710 | ||
7d3bb7a6 | 1711 | |
5983a79d BM |
1712 | OP * |
1713 | Perl_op_linklist(pTHX_ OP *o) | |
79072805 | 1714 | { |
7d3bb7a6 DM |
1715 | |
1716 | OP **prevp; | |
1717 | OP *kid; | |
1718 | OP * top_op = o; | |
1719 | ||
5983a79d | 1720 | PERL_ARGS_ASSERT_OP_LINKLIST; |
7918f24d | 1721 | |
7d3bb7a6 DM |
1722 | while (1) { |
1723 | /* Descend down the tree looking for any unprocessed subtrees to | |
1724 | * do first */ | |
1725 | if (!o->op_next) { | |
1726 | if (o->op_flags & OPf_KIDS) { | |
1727 | o = cUNOPo->op_first; | |
1728 | continue; | |
1729 | } | |
1730 | o->op_next = o; /* leaf node; link to self initially */ | |
1731 | } | |
79072805 | 1732 | |
7d3bb7a6 DM |
1733 | /* if we're at the top level, there either weren't any children |
1734 | * to process, or we've worked our way back to the top. */ | |
1735 | if (o == top_op) | |
1736 | return o->op_next; | |
79072805 | 1737 | |
7d3bb7a6 DM |
1738 | /* o is now processed. Next, process any sibling subtrees */ |
1739 | ||
1740 | if (OpHAS_SIBLING(o)) { | |
1741 | o = OpSIBLING(o); | |
1742 | continue; | |
1743 | } | |
1744 | ||
1745 | /* Done all the subtrees at this level. Go back up a level and | |
1746 | * link the parent in with all its (processed) children. | |
1747 | */ | |
1748 | ||
1749 | o = o->op_sibparent; | |
1750 | assert(!o->op_next); | |
1751 | prevp = &(o->op_next); | |
1752 | kid = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL; | |
1753 | while (kid) { | |
1754 | *prevp = kid->op_next; | |
1755 | prevp = &(kid->op_next); | |
1756 | kid = OpSIBLING(kid); | |
1757 | } | |
1758 | *prevp = o; | |
1759 | } | |
79072805 LW |
1760 | } |
1761 | ||
7d3bb7a6 | 1762 | |
1f676739 | 1763 | static OP * |
2dd5337b | 1764 | S_scalarkids(pTHX_ OP *o) |
79072805 | 1765 | { |
11343788 | 1766 | if (o && o->op_flags & OPf_KIDS) { |
bfed75c6 | 1767 | OP *kid; |
e6dae479 | 1768 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
1f4fbd3b | 1769 | scalar(kid); |
79072805 | 1770 | } |
11343788 | 1771 | return o; |
79072805 LW |
1772 | } |
1773 | ||
76e3520e | 1774 | STATIC OP * |
cea2e8a9 | 1775 | S_scalarboolean(pTHX_ OP *o) |
8990e307 | 1776 | { |
7918f24d NC |
1777 | PERL_ARGS_ASSERT_SCALARBOOLEAN; |
1778 | ||
0a44e30b DC |
1779 | if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST && |
1780 | !(cBINOPo->op_first->op_flags & OPf_SPECIAL)) || | |
1781 | (o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN && | |
1782 | cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST && | |
1783 | !(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) { | |
1f4fbd3b MS |
1784 | if (ckWARN(WARN_SYNTAX)) { |
1785 | const line_t oldline = CopLINE(PL_curcop); | |
a0d0e21e | 1786 | |
1f4fbd3b MS |
1787 | if (PL_parser && PL_parser->copline != NOLINE) { |
1788 | /* This ensures that warnings are reported at the first line | |
2b7cddde | 1789 | of the conditional, not the last. */ |
1f4fbd3b | 1790 | CopLINE_set(PL_curcop, PL_parser->copline); |
2b7cddde | 1791 | } |
1f4fbd3b MS |
1792 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be =="); |
1793 | CopLINE_set(PL_curcop, oldline); | |
1794 | } | |
a0d0e21e | 1795 | } |
11343788 | 1796 | return scalar(o); |
8990e307 LW |
1797 | } |
1798 | ||
0920b7fa | 1799 | static SV * |
637494ac | 1800 | S_op_varname_subscript(pTHX_ const OP *o, int subscript_type) |
0920b7fa FC |
1801 | { |
1802 | assert(o); | |
1803 | assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV || | |
1f4fbd3b | 1804 | o->op_type == OP_PADHV || o->op_type == OP_RV2HV); |
0920b7fa | 1805 | { |
1f4fbd3b MS |
1806 | const char funny = o->op_type == OP_PADAV |
1807 | || o->op_type == OP_RV2AV ? '@' : '%'; | |
1808 | if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) { | |
1809 | GV *gv; | |
1810 | if (cUNOPo->op_first->op_type != OP_GV | |
1811 | || !(gv = cGVOPx_gv(cUNOPo->op_first))) | |
1812 | return NULL; | |
1813 | return varname(gv, funny, 0, NULL, 0, subscript_type); | |
1814 | } | |
1815 | return | |
1816 | varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type); | |
0920b7fa FC |
1817 | } |
1818 | } | |
1819 | ||
637494ac TC |
1820 | static SV * |
1821 | S_op_varname(pTHX_ const OP *o) | |
1822 | { | |
1823 | return S_op_varname_subscript(aTHX_ o, 1); | |
1824 | } | |
1825 | ||
429a2555 | 1826 | static void |
2186f873 FC |
1827 | S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv) |
1828 | { /* or not so pretty :-) */ | |
2186f873 | 1829 | if (o->op_type == OP_CONST) { |
1f4fbd3b MS |
1830 | *retsv = cSVOPo_sv; |
1831 | if (SvPOK(*retsv)) { | |
1832 | SV *sv = *retsv; | |
1833 | *retsv = sv_newmortal(); | |
1834 | pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL, | |
1835 | PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT); | |
1836 | } | |
1837 | else if (!SvOK(*retsv)) | |
1838 | *retpv = "undef"; | |
2186f873 FC |
1839 | } |
1840 | else *retpv = "..."; | |
1841 | } | |
1842 | ||
1843 | static void | |
429a2555 FC |
1844 | S_scalar_slice_warning(pTHX_ const OP *o) |
1845 | { | |
1846 | OP *kid; | |
fe7df09e | 1847 | const bool h = o->op_type == OP_HSLICE |
1f4fbd3b | 1848 | || (o->op_type == OP_NULL && o->op_targ == OP_HSLICE); |
429a2555 | 1849 | const char lbrack = |
1f4fbd3b | 1850 | h ? '{' : '['; |
429a2555 | 1851 | const char rbrack = |
1f4fbd3b | 1852 | h ? '}' : ']'; |
429a2555 | 1853 | SV *name; |
32e9ec8f | 1854 | SV *keysv = NULL; /* just to silence compiler warnings */ |
429a2555 FC |
1855 | const char *key = NULL; |
1856 | ||
1857 | if (!(o->op_private & OPpSLICEWARNING)) | |
1f4fbd3b | 1858 | return; |
429a2555 | 1859 | if (PL_parser && PL_parser->error_count) |
1f4fbd3b MS |
1860 | /* This warning can be nonsensical when there is a syntax error. */ |
1861 | return; | |
429a2555 FC |
1862 | |
1863 | kid = cLISTOPo->op_first; | |
e6dae479 | 1864 | kid = OpSIBLING(kid); /* get past pushmark */ |
429a2555 FC |
1865 | /* weed out false positives: any ops that can return lists */ |
1866 | switch (kid->op_type) { | |
1867 | case OP_BACKTICK: | |
1868 | case OP_GLOB: | |
1869 | case OP_READLINE: | |
1870 | case OP_MATCH: | |
1871 | case OP_RV2AV: | |
1872 | case OP_EACH: | |
1873 | case OP_VALUES: | |
1874 | case OP_KEYS: | |
1875 | case OP_SPLIT: | |
1876 | case OP_LIST: | |
1877 | case OP_SORT: | |
1878 | case OP_REVERSE: | |
1879 | case OP_ENTERSUB: | |
1880 | case OP_CALLER: | |
1881 | case OP_LSTAT: | |
1882 | case OP_STAT: | |
1883 | case OP_READDIR: | |
1884 | case OP_SYSTEM: | |
1885 | case OP_TMS: | |
1886 | case OP_LOCALTIME: | |
1887 | case OP_GMTIME: | |
1888 | case OP_ENTEREVAL: | |
1f4fbd3b | 1889 | return; |
429a2555 | 1890 | } |
7d3c8a68 S |
1891 | |
1892 | /* Don't warn if we have a nulled list either. */ | |
1893 | if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST) | |
1894 | return; | |
1895 | ||
e6dae479 FC |
1896 | assert(OpSIBLING(kid)); |
1897 | name = S_op_varname(aTHX_ OpSIBLING(kid)); | |
429a2555 | 1898 | if (!name) /* XS module fiddling with the op tree */ |
1f4fbd3b | 1899 | return; |
2186f873 | 1900 | S_op_pretty(aTHX_ kid, &keysv, &key); |
429a2555 FC |
1901 | assert(SvPOK(name)); |
1902 | sv_chop(name,SvPVX(name)+1); | |
1903 | if (key) | |
2186f873 | 1904 | /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */ |
1f4fbd3b MS |
1905 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), |
1906 | "Scalar value @%" SVf "%c%s%c better written as $%" SVf | |
1907 | "%c%s%c", | |
1908 | SVfARG(name), lbrack, key, rbrack, SVfARG(name), | |
1909 | lbrack, key, rbrack); | |
429a2555 | 1910 | else |
2186f873 | 1911 | /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */ |
1f4fbd3b MS |
1912 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), |
1913 | "Scalar value @%" SVf "%c%" SVf "%c better written as $%" | |
1914 | SVf "%c%" SVf "%c", | |
1915 | SVfARG(name), lbrack, SVfARG(keysv), rbrack, | |
1916 | SVfARG(name), lbrack, SVfARG(keysv), rbrack); | |
429a2555 FC |
1917 | } |
1918 | ||
8623f87f DM |
1919 | |
1920 | ||
1921 | /* apply scalar context to the o subtree */ | |
1922 | ||
8990e307 | 1923 | OP * |
864dbfa3 | 1924 | Perl_scalar(pTHX_ OP *o) |
79072805 | 1925 | { |
86e988be DM |
1926 | OP * top_op = o; |
1927 | ||
1928 | while (1) { | |
78ae974a DM |
1929 | OP *next_kid = NULL; /* what op (if any) to process next */ |
1930 | OP *kid; | |
8623f87f | 1931 | |
78ae974a DM |
1932 | /* assumes no premature commitment */ |
1933 | if (!o || (PL_parser && PL_parser->error_count) | |
1934 | || (o->op_flags & OPf_WANT) | |
1935 | || o->op_type == OP_RETURN) | |
1936 | { | |
1937 | goto do_next; | |
1938 | } | |
8623f87f | 1939 | |
78ae974a | 1940 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR; |
8623f87f | 1941 | |
78ae974a DM |
1942 | switch (o->op_type) { |
1943 | case OP_REPEAT: | |
1944 | scalar(cBINOPo->op_first); | |
1945 | /* convert what initially looked like a list repeat into a | |
1946 | * scalar repeat, e.g. $s = (1) x $n | |
1947 | */ | |
1948 | if (o->op_private & OPpREPEAT_DOLIST) { | |
1949 | kid = cLISTOPx(cUNOPo->op_first)->op_first; | |
1950 | assert(kid->op_type == OP_PUSHMARK); | |
1951 | if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) { | |
1952 | op_null(cLISTOPx(cUNOPo->op_first)->op_first); | |
1953 | o->op_private &=~ OPpREPEAT_DOLIST; | |
1954 | } | |
1955 | } | |
1956 | break; | |
8623f87f | 1957 | |
78ae974a DM |
1958 | case OP_OR: |
1959 | case OP_AND: | |
1960 | case OP_COND_EXPR: | |
1961 | /* impose scalar context on everything except the condition */ | |
1962 | next_kid = OpSIBLING(cUNOPo->op_first); | |
1963 | break; | |
8623f87f | 1964 | |
78ae974a DM |
1965 | default: |
1966 | if (o->op_flags & OPf_KIDS) | |
1967 | next_kid = cUNOPo->op_first; /* do all kids */ | |
1968 | break; | |
2186f873 | 1969 | |
78ae974a DM |
1970 | /* the children of these ops are usually a list of statements, |
1971 | * except the leaves, whose first child is a corresponding enter | |
1972 | */ | |
1973 | case OP_SCOPE: | |
1974 | case OP_LINESEQ: | |
1975 | case OP_LIST: | |
1976 | kid = cLISTOPo->op_first; | |
1977 | goto do_kids; | |
1978 | case OP_LEAVE: | |
1979 | case OP_LEAVETRY: | |
1980 | kid = cLISTOPo->op_first; | |
1981 | scalar(kid); | |
1982 | kid = OpSIBLING(kid); | |
1983 | do_kids: | |
1984 | while (kid) { | |
1985 | OP *sib = OpSIBLING(kid); | |
adb47cec DM |
1986 | /* Apply void context to all kids except the last, which |
1987 | * is scalar (ignoring a trailing ex-nextstate in determining | |
1988 | * if it's the last kid). E.g. | |
1989 | * $scalar = do { void; void; scalar } | |
1990 | * Except that 'when's are always scalar, e.g. | |
1991 | * $scalar = do { given(..) { | |
1992 | * when (..) { scalar } | |
1993 | * when (..) { scalar } | |
1994 | * ... | |
1995 | * }} | |
1996 | */ | |
1997 | if (!sib | |
1998 | || ( !OpHAS_SIBLING(sib) | |
1999 | && sib->op_type == OP_NULL | |
2000 | && ( sib->op_targ == OP_NEXTSTATE | |
2001 | || sib->op_targ == OP_DBSTATE ) | |
2002 | ) | |
2003 | ) | |
db18005b DM |
2004 | { |
2005 | /* tail call optimise calling scalar() on the last kid */ | |
2006 | next_kid = kid; | |
2007 | goto do_next; | |
2008 | } | |
adb47cec | 2009 | else if (kid->op_type == OP_LEAVEWHEN) |
78ae974a | 2010 | scalar(kid); |
adb47cec DM |
2011 | else |
2012 | scalarvoid(kid); | |
78ae974a DM |
2013 | kid = sib; |
2014 | } | |
db18005b | 2015 | NOT_REACHED; /* NOTREACHED */ |
78ae974a | 2016 | break; |
2186f873 | 2017 | |
78ae974a DM |
2018 | case OP_SORT: |
2019 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context"); | |
2020 | break; | |
2186f873 | 2021 | |
78ae974a DM |
2022 | case OP_KVHSLICE: |
2023 | case OP_KVASLICE: | |
2024 | { | |
2025 | /* Warn about scalar context */ | |
2026 | const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '['; | |
2027 | const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']'; | |
2028 | SV *name; | |
2029 | SV *keysv; | |
2030 | const char *key = NULL; | |
2031 | ||
2032 | /* This warning can be nonsensical when there is a syntax error. */ | |
2033 | if (PL_parser && PL_parser->error_count) | |
2034 | break; | |
2035 | ||
2036 | if (!ckWARN(WARN_SYNTAX)) break; | |
2037 | ||
2038 | kid = cLISTOPo->op_first; | |
2039 | kid = OpSIBLING(kid); /* get past pushmark */ | |
2040 | assert(OpSIBLING(kid)); | |
2041 | name = S_op_varname(aTHX_ OpSIBLING(kid)); | |
2042 | if (!name) /* XS module fiddling with the op tree */ | |
2043 | break; | |
2044 | S_op_pretty(aTHX_ kid, &keysv, &key); | |
2045 | assert(SvPOK(name)); | |
2046 | sv_chop(name,SvPVX(name)+1); | |
2047 | if (key) | |
2048 | /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */ | |
2049 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), | |
2050 | "%%%" SVf "%c%s%c in scalar context better written " | |
2051 | "as $%" SVf "%c%s%c", | |
2052 | SVfARG(name), lbrack, key, rbrack, SVfARG(name), | |
2053 | lbrack, key, rbrack); | |
2054 | else | |
2055 | /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */ | |
2056 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), | |
2057 | "%%%" SVf "%c%" SVf "%c in scalar context better " | |
2058 | "written as $%" SVf "%c%" SVf "%c", | |
2059 | SVfARG(name), lbrack, SVfARG(keysv), rbrack, | |
2060 | SVfARG(name), lbrack, SVfARG(keysv), rbrack); | |
2061 | } | |
2062 | } /* switch */ | |
2063 | ||
2064 | /* If next_kid is set, someone in the code above wanted us to process | |
2065 | * that kid and all its remaining siblings. Otherwise, work our way | |
2066 | * back up the tree */ | |
2067 | do_next: | |
2068 | while (!next_kid) { | |
2069 | if (o == top_op) | |
2070 | return top_op; /* at top; no parents/siblings to try */ | |
2071 | if (OpHAS_SIBLING(o)) | |
2072 | next_kid = o->op_sibparent; | |
db18005b | 2073 | else { |
78ae974a | 2074 | o = o->op_sibparent; /*try parent's next sibling */ |
db18005b DM |
2075 | switch (o->op_type) { |
2076 | case OP_SCOPE: | |
2077 | case OP_LINESEQ: | |
2078 | case OP_LIST: | |
2079 | case OP_LEAVE: | |
2080 | case OP_LEAVETRY: | |
2081 | /* should really restore PL_curcop to its old value, but | |
2082 | * setting it to PL_compiling is better than do nothing */ | |
2083 | PL_curcop = &PL_compiling; | |
2084 | } | |
2085 | } | |
78ae974a DM |
2086 | } |
2087 | o = next_kid; | |
86e988be | 2088 | } /* while */ |
79072805 LW |
2089 | } |
2090 | ||
8623f87f | 2091 | |
67ba1548 DM |
2092 | /* apply void context to the optree arg */ |
2093 | ||
79072805 | 2094 | OP * |
aa9d1253 | 2095 | Perl_scalarvoid(pTHX_ OP *arg) |
79072805 LW |
2096 | { |
2097 | OP *kid; | |
8990e307 | 2098 | SV* sv; |
aa9d1253 | 2099 | OP *o = arg; |
2ebea0a1 | 2100 | |
7918f24d NC |
2101 | PERL_ARGS_ASSERT_SCALARVOID; |
2102 | ||
2a56a87f | 2103 | while (1) { |
19742f39 | 2104 | U8 want; |
aa9d1253 TC |
2105 | SV *useless_sv = NULL; |
2106 | const char* useless = NULL; | |
2a56a87f | 2107 | OP * next_kid = NULL; |
aa9d1253 | 2108 | |
26f0e7d5 TC |
2109 | if (o->op_type == OP_NEXTSTATE |
2110 | || o->op_type == OP_DBSTATE | |
2111 | || (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE | |
2112 | || o->op_targ == OP_DBSTATE))) | |
2113 | PL_curcop = (COP*)o; /* for warning below */ | |
2114 | ||
2115 | /* assumes no premature commitment */ | |
2116 | want = o->op_flags & OPf_WANT; | |
2117 | if ((want && want != OPf_WANT_SCALAR) | |
2118 | || (PL_parser && PL_parser->error_count) | |
7896dde7 | 2119 | || o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN) |
26f0e7d5 | 2120 | { |
2a56a87f | 2121 | goto get_next_op; |
26f0e7d5 | 2122 | } |
1c846c1f | 2123 | |
26f0e7d5 TC |
2124 | if ((o->op_private & OPpTARGET_MY) |
2125 | && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */ | |
2126 | { | |
0d18dd72 FC |
2127 | /* newASSIGNOP has already applied scalar context, which we |
2128 | leave, as if this op is inside SASSIGN. */ | |
2a56a87f | 2129 | goto get_next_op; |
26f0e7d5 | 2130 | } |
79072805 | 2131 | |
26f0e7d5 | 2132 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID; |
75068674 | 2133 | |
26f0e7d5 TC |
2134 | switch (o->op_type) { |
2135 | default: | |
2136 | if (!(PL_opargs[o->op_type] & OA_FOLDCONST)) | |
2137 | break; | |
2138 | /* FALLTHROUGH */ | |
2139 | case OP_REPEAT: | |
2140 | if (o->op_flags & OPf_STACKED) | |
2141 | break; | |
1e2dd519 FC |
2142 | if (o->op_type == OP_REPEAT) |
2143 | scalar(cBINOPo->op_first); | |
26f0e7d5 | 2144 | goto func_ops; |
1f4fbd3b | 2145 | case OP_CONCAT: |
3d033384 | 2146 | if ((o->op_flags & OPf_STACKED) && |
1f4fbd3b | 2147 | !(o->op_private & OPpCONCAT_NESTED)) |
3d033384 | 2148 | break; |
1f4fbd3b | 2149 | goto func_ops; |
26f0e7d5 TC |
2150 | case OP_SUBSTR: |
2151 | if (o->op_private == 4) | |
2152 | break; | |
2153 | /* FALLTHROUGH */ | |
26f0e7d5 TC |
2154 | case OP_WANTARRAY: |
2155 | case OP_GV: | |
2156 | case OP_SMARTMATCH: | |
26f0e7d5 TC |
2157 | case OP_AV2ARYLEN: |
2158 | case OP_REF: | |
2159 | case OP_REFGEN: | |
2160 | case OP_SREFGEN: | |
2161 | case OP_DEFINED: | |
2162 | case OP_HEX: | |
2163 | case OP_OCT: | |
2164 | case OP_LENGTH: | |
2165 | case OP_VEC: | |
2166 | case OP_INDEX: | |
2167 | case OP_RINDEX: | |
2168 | case OP_SPRINTF: | |
26f0e7d5 | 2169 | case OP_KVASLICE: |
26f0e7d5 TC |
2170 | case OP_KVHSLICE: |
2171 | case OP_UNPACK: | |
2172 | case OP_PACK: | |
2173 | case OP_JOIN: | |
2174 | case OP_LSLICE: | |
2175 | case OP_ANONLIST: | |
2176 | case OP_ANONHASH: | |
2177 | case OP_SORT: | |
2178 | case OP_REVERSE: | |
2179 | case OP_RANGE: | |
2180 | case OP_FLIP: | |
2181 | case OP_FLOP: | |
2182 | case OP_CALLER: | |
2183 | case OP_FILENO: | |
2184 | case OP_EOF: | |
2185 | case OP_TELL: | |
2186 | case OP_GETSOCKNAME: | |
2187 | case OP_GETPEERNAME: | |
2188 | case OP_READLINK: | |
2189 | case OP_TELLDIR: | |
2190 | case OP_GETPPID: | |
2191 | case OP_GETPGRP: | |
2192 | case OP_GETPRIORITY: | |
2193 | case OP_TIME: | |
2194 | case OP_TMS: | |
2195 | case OP_LOCALTIME: | |
2196 | case OP_GMTIME: | |
2197 | case OP_GHBYNAME: | |
2198 | case OP_GHBYADDR: | |
2199 | case OP_GHOSTENT: | |
2200 | case OP_GNBYNAME: | |
2201 | case OP_GNBYADDR: | |
2202 | case OP_GNETENT: | |
2203 | case OP_GPBYNAME: | |
2204 | case OP_GPBYNUMBER: | |
2205 | case OP_GPROTOENT: | |
2206 | case OP_GSBYNAME: | |
2207 | case OP_GSBYPORT: | |
2208 | case OP_GSERVENT: | |
2209 | case OP_GPWNAM: | |
2210 | case OP_GPWUID: | |
2211 | case OP_GGRNAM: | |
2212 | case OP_GGRGID: | |
2213 | case OP_GETLOGIN: | |
2214 | case OP_PROTOTYPE: | |
2215 | case OP_RUNCV: | |
2216 | func_ops: | |
9e209402 FC |
2217 | useless = OP_DESC(o); |
2218 | break; | |
2219 | ||
2220 | case OP_GVSV: | |
2221 | case OP_PADSV: | |
2222 | case OP_PADAV: | |
2223 | case OP_PADHV: | |
2224 | case OP_PADANY: | |
2225 | case OP_AELEM: | |
2226 | case OP_AELEMFAST: | |
2227 | case OP_AELEMFAST_LEX: | |
2228 | case OP_ASLICE: | |
2229 | case OP_HELEM: | |
2230 | case OP_HSLICE: | |
26f0e7d5 | 2231 | if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO))) |
ea5519d6 | 2232 | /* Otherwise it's "Useless use of grep iterator" */ |
3c3f8cd6 | 2233 | useless = OP_DESC(o); |
ea5519d6 | 2234 | break; |
26f0e7d5 TC |
2235 | |
2236 | case OP_SPLIT: | |
5012eebe | 2237 | if (!(o->op_private & OPpSPLIT_ASSIGN)) |
26f0e7d5 TC |
2238 | useless = OP_DESC(o); |
2239 | break; | |
2240 | ||
2241 | case OP_NOT: | |
2242 | kid = cUNOPo->op_first; | |
2243 | if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST && | |
2244 | kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) { | |
2245 | goto func_ops; | |
2246 | } | |
2247 | useless = "negative pattern binding (!~)"; | |
2248 | break; | |
2249 | ||
2250 | case OP_SUBST: | |
2251 | if (cPMOPo->op_pmflags & PMf_NONDESTRUCT) | |
2252 | useless = "non-destructive substitution (s///r)"; | |
2253 | break; | |
2254 | ||
2255 | case OP_TRANSR: | |
2256 | useless = "non-destructive transliteration (tr///r)"; | |
2257 | break; | |
2258 | ||
2259 | case OP_RV2GV: | |
2260 | case OP_RV2SV: | |
2261 | case OP_RV2AV: | |
2262 | case OP_RV2HV: | |
2263 | if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) && | |
e6dae479 | 2264 | (!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE)) |
26f0e7d5 TC |
2265 | useless = "a variable"; |
2266 | break; | |
2267 | ||
2268 | case OP_CONST: | |
2269 | sv = cSVOPo_sv; | |
2270 | if (cSVOPo->op_private & OPpCONST_STRICT) | |
2271 | no_bareword_allowed(o); | |
2272 | else { | |
2273 | if (ckWARN(WARN_VOID)) { | |
2274 | NV nv; | |
2275 | /* don't warn on optimised away booleans, eg | |
2276 | * use constant Foo, 5; Foo || print; */ | |
2277 | if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT) | |
2278 | useless = NULL; | |
2279 | /* the constants 0 and 1 are permitted as they are | |
2280 | conventionally used as dummies in constructs like | |
2281 | 1 while some_condition_with_side_effects; */ | |
2282 | else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0)) | |
2283 | useless = NULL; | |
2284 | else if (SvPOK(sv)) { | |
2285 | SV * const dsv = newSVpvs(""); | |
2286 | useless_sv | |
2287 | = Perl_newSVpvf(aTHX_ | |
2288 | "a constant (%s)", | |
2289 | pv_pretty(dsv, SvPVX_const(sv), | |
2290 | SvCUR(sv), 32, NULL, NULL, | |
2291 | PERL_PV_PRETTY_DUMP | |
2292 | | PERL_PV_ESCAPE_NOCLEAR | |
2293 | | PERL_PV_ESCAPE_UNI_DETECT)); | |
2294 | SvREFCNT_dec_NN(dsv); | |
2295 | } | |
2296 | else if (SvOK(sv)) { | |
147e3846 | 2297 | useless_sv = Perl_newSVpvf(aTHX_ "a constant (%" SVf ")", SVfARG(sv)); |
26f0e7d5 TC |
2298 | } |
2299 | else | |
2300 | useless = "a constant (undef)"; | |
2301 | } | |
2302 | } | |
2303 | op_null(o); /* don't execute or even remember it */ | |
2304 | break; | |
79072805 | 2305 | |
26f0e7d5 | 2306 | case OP_POSTINC: |
b9a07097 | 2307 | OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */ |
26f0e7d5 | 2308 | break; |
79072805 | 2309 | |
26f0e7d5 | 2310 | case OP_POSTDEC: |
b9a07097 | 2311 | OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */ |
26f0e7d5 | 2312 | break; |
79072805 | 2313 | |
26f0e7d5 | 2314 | case OP_I_POSTINC: |
b9a07097 | 2315 | OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */ |
26f0e7d5 | 2316 | break; |
79072805 | 2317 | |
26f0e7d5 | 2318 | case OP_I_POSTDEC: |
b9a07097 | 2319 | OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */ |
26f0e7d5 | 2320 | break; |
679d6c4e | 2321 | |
26f0e7d5 TC |
2322 | case OP_SASSIGN: { |
2323 | OP *rv2gv; | |
2324 | UNOP *refgen, *rv2cv; | |
2325 | LISTOP *exlist; | |
679d6c4e | 2326 | |
26f0e7d5 TC |
2327 | if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2) |
2328 | break; | |
f2f8fd84 | 2329 | |
26f0e7d5 TC |
2330 | rv2gv = ((BINOP *)o)->op_last; |
2331 | if (!rv2gv || rv2gv->op_type != OP_RV2GV) | |
2332 | break; | |
f2f8fd84 | 2333 | |
26f0e7d5 | 2334 | refgen = (UNOP *)((BINOP *)o)->op_first; |
f2f8fd84 | 2335 | |
26f0e7d5 TC |
2336 | if (!refgen || (refgen->op_type != OP_REFGEN |
2337 | && refgen->op_type != OP_SREFGEN)) | |
2338 | break; | |
f2f8fd84 | 2339 | |
26f0e7d5 TC |
2340 | exlist = (LISTOP *)refgen->op_first; |
2341 | if (!exlist || exlist->op_type != OP_NULL | |
2342 | || exlist->op_targ != OP_LIST) | |
2343 | break; | |
f2f8fd84 | 2344 | |
26f0e7d5 TC |
2345 | if (exlist->op_first->op_type != OP_PUSHMARK |
2346 | && exlist->op_first != exlist->op_last) | |
2347 | break; | |
f2f8fd84 | 2348 | |
26f0e7d5 | 2349 | rv2cv = (UNOP*)exlist->op_last; |
f2f8fd84 | 2350 | |
26f0e7d5 TC |
2351 | if (rv2cv->op_type != OP_RV2CV) |
2352 | break; | |
f2f8fd84 | 2353 | |
26f0e7d5 TC |
2354 | assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0); |
2355 | assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0); | |
2356 | assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0); | |
f2f8fd84 | 2357 | |
26f0e7d5 TC |
2358 | o->op_private |= OPpASSIGN_CV_TO_GV; |
2359 | rv2gv->op_private |= OPpDONT_INIT_GV; | |
2360 | rv2cv->op_private |= OPpMAY_RETURN_CONSTANT; | |
f2f8fd84 | 2361 | |
26f0e7d5 TC |
2362 | break; |
2363 | } | |
540dd770 | 2364 | |
26f0e7d5 TC |
2365 | case OP_AASSIGN: { |
2366 | inplace_aassign(o); | |
2367 | break; | |
2368 | } | |
edbe35ea | 2369 | |
26f0e7d5 TC |
2370 | case OP_OR: |
2371 | case OP_AND: | |
2372 | kid = cLOGOPo->op_first; | |
2373 | if (kid->op_type == OP_NOT | |
2374 | && (kid->op_flags & OPf_KIDS)) { | |
2375 | if (o->op_type == OP_AND) { | |
b9a07097 | 2376 | OpTYPE_set(o, OP_OR); |
26f0e7d5 | 2377 | } else { |
b9a07097 | 2378 | OpTYPE_set(o, OP_AND); |
26f0e7d5 TC |
2379 | } |
2380 | op_null(kid); | |
2381 | } | |
2382 | /* FALLTHROUGH */ | |
5aabfad6 | 2383 | |
26f0e7d5 TC |
2384 | case OP_DOR: |
2385 | case OP_COND_EXPR: | |
2386 | case OP_ENTERGIVEN: | |
7896dde7 | 2387 | case OP_ENTERWHEN: |
2a56a87f | 2388 | next_kid = OpSIBLING(cUNOPo->op_first); |
aa9d1253 | 2389 | break; |
095b19d1 | 2390 | |
26f0e7d5 TC |
2391 | case OP_NULL: |
2392 | if (o->op_flags & OPf_STACKED) | |
2393 | break; | |
2394 | /* FALLTHROUGH */ | |
2395 | case OP_NEXTSTATE: | |
2396 | case OP_DBSTATE: | |
2397 | case OP_ENTERTRY: | |
2398 | case OP_ENTER: | |
2399 | if (!(o->op_flags & OPf_KIDS)) | |
2400 | break; | |
2401 | /* FALLTHROUGH */ | |
2402 | case OP_SCOPE: | |
2403 | case OP_LEAVE: | |
2404 | case OP_LEAVETRY: | |
2405 | case OP_LEAVELOOP: | |
2406 | case OP_LINESEQ: | |
7896dde7 Z |
2407 | case OP_LEAVEGIVEN: |
2408 | case OP_LEAVEWHEN: | |
26f0e7d5 | 2409 | kids: |
2a56a87f | 2410 | next_kid = cLISTOPo->op_first; |
26f0e7d5 TC |
2411 | break; |
2412 | case OP_LIST: | |
2413 | /* If the first kid after pushmark is something that the padrange | |
2414 | optimisation would reject, then null the list and the pushmark. | |
2415 | */ | |
2416 | if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK | |
e6dae479 | 2417 | && ( !(kid = OpSIBLING(kid)) |
26f0e7d5 TC |
2418 | || ( kid->op_type != OP_PADSV |
2419 | && kid->op_type != OP_PADAV | |
2420 | && kid->op_type != OP_PADHV) | |
2421 | || kid->op_private & ~OPpLVAL_INTRO | |
e6dae479 | 2422 | || !(kid = OpSIBLING(kid)) |
26f0e7d5 TC |
2423 | || ( kid->op_type != OP_PADSV |
2424 | && kid->op_type != OP_PADAV | |
2425 | && kid->op_type != OP_PADHV) | |
2426 | || kid->op_private & ~OPpLVAL_INTRO) | |
2427 | ) { | |
2428 | op_null(cUNOPo->op_first); /* NULL the pushmark */ | |
2429 | op_null(o); /* NULL the list */ | |
2430 | } | |
2431 | goto kids; | |
2432 | case OP_ENTEREVAL: | |
2433 | scalarkids(o); | |
2434 | break; | |
2435 | case OP_SCALAR: | |
2436 | scalar(o); | |
2437 | break; | |
2438 | } | |
2439 | ||
2440 | if (useless_sv) { | |
2441 | /* mortalise it, in case warnings are fatal. */ | |
2442 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), | |
147e3846 | 2443 | "Useless use of %" SVf " in void context", |
26f0e7d5 TC |
2444 | SVfARG(sv_2mortal(useless_sv))); |
2445 | } | |
2446 | else if (useless) { | |
3c3f8cd6 AB |
2447 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), |
2448 | "Useless use of %s in void context", | |
2449 | useless); | |
26f0e7d5 | 2450 | } |
aa9d1253 | 2451 | |
2a56a87f DM |
2452 | get_next_op: |
2453 | /* if a kid hasn't been nominated to process, continue with the | |
2454 | * next sibling, or if no siblings left, go back to the parent's | |
2455 | * siblings and so on | |
2456 | */ | |
2457 | while (!next_kid) { | |
2458 | if (o == arg) | |
2459 | return arg; /* at top; no parents/siblings to try */ | |
2460 | if (OpHAS_SIBLING(o)) | |
2461 | next_kid = o->op_sibparent; | |
2462 | else | |
2463 | o = o->op_sibparent; /*try parent's next sibling */ | |
2464 | } | |
2465 | o = next_kid; | |
2466 | } | |
aa9d1253 TC |
2467 | |
2468 | return arg; | |
79072805 LW |
2469 | } |
2470 | ||
2a56a87f | 2471 | |
1f676739 | 2472 | static OP * |
412da003 | 2473 | S_listkids(pTHX_ OP *o) |
79072805 | 2474 | { |
11343788 | 2475 | if (o && o->op_flags & OPf_KIDS) { |
6867be6d | 2476 | OP *kid; |
1f4fbd3b MS |
2477 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
2478 | list(kid); | |
79072805 | 2479 | } |
11343788 | 2480 | return o; |
79072805 LW |
2481 | } |
2482 | ||
7cd35865 DM |
2483 | |
2484 | /* apply list context to the o subtree */ | |
2485 | ||
79072805 | 2486 | OP * |
864dbfa3 | 2487 | Perl_list(pTHX_ OP *o) |
79072805 | 2488 | { |
8ef9070b DM |
2489 | OP * top_op = o; |
2490 | ||
2491 | while (1) { | |
a58b51cf | 2492 | OP *next_kid = NULL; /* what op (if any) to process next */ |
8ef9070b | 2493 | |
a58b51cf | 2494 | OP *kid; |
79072805 | 2495 | |
a58b51cf DM |
2496 | /* assumes no premature commitment */ |
2497 | if (!o || (o->op_flags & OPf_WANT) | |
2498 | || (PL_parser && PL_parser->error_count) | |
2499 | || o->op_type == OP_RETURN) | |
2500 | { | |
2501 | goto do_next; | |
2502 | } | |
1c846c1f | 2503 | |
a58b51cf DM |
2504 | if ((o->op_private & OPpTARGET_MY) |
2505 | && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */ | |
2506 | { | |
2507 | goto do_next; /* As if inside SASSIGN */ | |
2508 | } | |
79072805 | 2509 | |
a58b51cf | 2510 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST; |
054d8a90 | 2511 | |
a58b51cf DM |
2512 | switch (o->op_type) { |
2513 | case OP_REPEAT: | |
2514 | if (o->op_private & OPpREPEAT_DOLIST | |
2515 | && !(o->op_flags & OPf_STACKED)) | |
2516 | { | |
2517 | list(cBINOPo->op_first); | |
2518 | kid = cBINOPo->op_last; | |
2519 | /* optimise away (.....) x 1 */ | |
2520 | if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv) | |
2521 | && SvIVX(kSVOP_sv) == 1) | |
2522 | { | |
2523 | op_null(o); /* repeat */ | |
2524 | op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */ | |
2525 | /* const (rhs): */ | |
2526 | op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL)); | |
2527 | } | |
2528 | } | |
2529 | break; | |
2a45276d | 2530 | |
a58b51cf DM |
2531 | case OP_OR: |
2532 | case OP_AND: | |
2533 | case OP_COND_EXPR: | |
2534 | /* impose list context on everything except the condition */ | |
2535 | next_kid = OpSIBLING(cUNOPo->op_first); | |
2536 | break; | |
054d8a90 | 2537 | |
a58b51cf DM |
2538 | default: |
2539 | if (!(o->op_flags & OPf_KIDS)) | |
2540 | break; | |
2541 | /* possibly flatten 1..10 into a constant array */ | |
2542 | if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) { | |
2543 | list(cBINOPo->op_first); | |
2544 | gen_constant_list(o); | |
2545 | goto do_next; | |
2546 | } | |
8ef9070b | 2547 | next_kid = cUNOPo->op_first; /* do all kids */ |
a58b51cf | 2548 | break; |
054d8a90 | 2549 | |
a58b51cf DM |
2550 | case OP_LIST: |
2551 | if (cLISTOPo->op_first->op_type == OP_PUSHMARK) { | |
2552 | op_null(cUNOPo->op_first); /* NULL the pushmark */ | |
2553 | op_null(o); /* NULL the list */ | |
2554 | } | |
2555 | if (o->op_flags & OPf_KIDS) | |
2556 | next_kid = cUNOPo->op_first; /* do all kids */ | |
2557 | break; | |
054d8a90 | 2558 | |
a58b51cf | 2559 | /* the children of these ops are usually a list of statements, |
06c2b1fc | 2560 | * except the leaves, whose first child is a corresponding enter |
a58b51cf DM |
2561 | */ |
2562 | case OP_SCOPE: | |
2563 | case OP_LINESEQ: | |
2564 | kid = cLISTOPo->op_first; | |
2565 | goto do_kids; | |
2566 | case OP_LEAVE: | |
2567 | case OP_LEAVETRY: | |
2568 | kid = cLISTOPo->op_first; | |
2569 | list(kid); | |
2570 | kid = OpSIBLING(kid); | |
2571 | do_kids: | |
2572 | while (kid) { | |
2573 | OP *sib = OpSIBLING(kid); | |
9d15d64e DM |
2574 | /* Apply void context to all kids except the last, which |
2575 | * is list. E.g. | |
2576 | * @a = do { void; void; list } | |
2577 | * Except that 'when's are always list context, e.g. | |
2578 | * @a = do { given(..) { | |
2579 | * when (..) { list } | |
2580 | * when (..) { list } | |
2581 | * ... | |
2582 | * }} | |
2583 | */ | |
f23e1643 DM |
2584 | if (!sib) { |
2585 | /* tail call optimise calling list() on the last kid */ | |
2586 | next_kid = kid; | |
2587 | goto do_next; | |
2588 | } | |
9d15d64e | 2589 | else if (kid->op_type == OP_LEAVEWHEN) |
a58b51cf | 2590 | list(kid); |
9d15d64e DM |
2591 | else |
2592 | scalarvoid(kid); | |
a58b51cf DM |
2593 | kid = sib; |
2594 | } | |
f23e1643 | 2595 | NOT_REACHED; /* NOTREACHED */ |
a58b51cf | 2596 | break; |
054d8a90 | 2597 | |
a58b51cf | 2598 | } |
8ef9070b | 2599 | |
a58b51cf DM |
2600 | /* If next_kid is set, someone in the code above wanted us to process |
2601 | * that kid and all its remaining siblings. Otherwise, work our way | |
2602 | * back up the tree */ | |
2603 | do_next: | |
2604 | while (!next_kid) { | |
2605 | if (o == top_op) | |
2606 | return top_op; /* at top; no parents/siblings to try */ | |
2607 | if (OpHAS_SIBLING(o)) | |
2608 | next_kid = o->op_sibparent; | |
f23e1643 | 2609 | else { |
a58b51cf | 2610 | o = o->op_sibparent; /*try parent's next sibling */ |
f23e1643 DM |
2611 | switch (o->op_type) { |
2612 | case OP_SCOPE: | |
2613 | case OP_LINESEQ: | |
2614 | case OP_LIST: | |
2615 | case OP_LEAVE: | |
2616 | case OP_LEAVETRY: | |
2617 | /* should really restore PL_curcop to its old value, but | |
2618 | * setting it to PL_compiling is better than do nothing */ | |
2619 | PL_curcop = &PL_compiling; | |
2620 | } | |
2621 | } | |
2622 | ||
a58b51cf DM |
2623 | |
2624 | } | |
2625 | o = next_kid; | |
8ef9070b | 2626 | } /* while */ |
79072805 LW |
2627 | } |
2628 | ||
ec40a663 | 2629 | /* apply void context to non-final ops of a sequence */ |
7cd35865 | 2630 | |
1f676739 | 2631 | static OP * |
ec40a663 | 2632 | S_voidnonfinal(pTHX_ OP *o) |
79072805 | 2633 | { |
11343788 | 2634 | if (o) { |
1f4fbd3b MS |
2635 | const OPCODE type = o->op_type; |
2636 | ||
2637 | if (type == OP_LINESEQ || type == OP_SCOPE || | |
2638 | type == OP_LEAVE || type == OP_LEAVETRY) | |
2639 | { | |
8f4ba787 PE |
2640 | OP *kid = cLISTOPo->op_first, *sib; |
2641 | if(type == OP_LEAVE) { | |
2642 | /* Don't put the OP_ENTER in void context */ | |
2643 | assert(kid->op_type == OP_ENTER); | |
2644 | kid = OpSIBLING(kid); | |
2645 | } | |
2646 | for (; kid; kid = sib) { | |
1f4fbd3b MS |
2647 | if ((sib = OpSIBLING(kid)) |
2648 | && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL | |
2649 | || ( sib->op_targ != OP_NEXTSTATE | |
2650 | && sib->op_targ != OP_DBSTATE ))) | |
2651 | { | |
2652 | scalarvoid(kid); | |
2653 | } | |
2654 | } | |
2655 | PL_curcop = &PL_compiling; | |
2656 | } | |
2657 | o->op_flags &= ~OPf_PARENS; | |
2658 | if (PL_hints & HINT_BLOCK_SCOPE) | |
2659 | o->op_flags |= OPf_PARENS; | |
79072805 | 2660 | } |
8990e307 | 2661 | else |
1f4fbd3b | 2662 | o = newOP(OP_STUB, 0); |
11343788 | 2663 | return o; |
79072805 LW |
2664 | } |
2665 | ||
76e3520e | 2666 | STATIC OP * |
cea2e8a9 | 2667 | S_modkids(pTHX_ OP *o, I32 type) |
79072805 | 2668 | { |
11343788 | 2669 | if (o && o->op_flags & OPf_KIDS) { |
6867be6d | 2670 | OP *kid; |
e6dae479 | 2671 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
1f4fbd3b | 2672 | op_lvalue(kid, type); |
79072805 | 2673 | } |
11343788 | 2674 | return o; |
79072805 LW |
2675 | } |
2676 | ||
12ee5d32 DM |
2677 | |
2678 | /* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid | |
2679 | * const fields. Also, convert CONST keys to HEK-in-SVs. | |
02a9632a | 2680 | * rop is the op that retrieves the hash; |
12ee5d32 | 2681 | * key_op is the first key |
02a9632a | 2682 | * real if false, only check (and possibly croak); don't update op |
12ee5d32 DM |
2683 | */ |
2684 | ||
f9db5646 | 2685 | STATIC void |
02a9632a | 2686 | S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op, int real) |
12ee5d32 DM |
2687 | { |
2688 | PADNAME *lexname; | |
2689 | GV **fields; | |
2690 | bool check_fields; | |
2691 | ||
2692 | /* find the padsv corresponding to $lex->{} or @{$lex}{} */ | |
2693 | if (rop) { | |
2694 | if (rop->op_first->op_type == OP_PADSV) | |
2695 | /* @$hash{qw(keys here)} */ | |
2696 | rop = (UNOP*)rop->op_first; | |
2697 | else { | |
2698 | /* @{$hash}{qw(keys here)} */ | |
2699 | if (rop->op_first->op_type == OP_SCOPE | |
2700 | && cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV) | |
2701 | { | |
2702 | rop = (UNOP*)cLISTOPx(rop->op_first)->op_last; | |
2703 | } | |
2704 | else | |
2705 | rop = NULL; | |
2706 | } | |
2707 | } | |
2708 | ||
2709 | lexname = NULL; /* just to silence compiler warnings */ | |
2710 | fields = NULL; /* just to silence compiler warnings */ | |
2711 | ||
2712 | check_fields = | |
2713 | rop | |
2714 | && (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ), | |
2715 | SvPAD_TYPED(lexname)) | |
2716 | && (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE)) | |
2717 | && isGV(*fields) && GvHV(*fields); | |
2718 | ||
e6dae479 | 2719 | for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) { |
12ee5d32 DM |
2720 | SV **svp, *sv; |
2721 | if (key_op->op_type != OP_CONST) | |
2722 | continue; | |
2723 | svp = cSVOPx_svp(key_op); | |
2724 | ||
e1ccd220 DIM |
2725 | /* make sure it's not a bareword under strict subs */ |
2726 | if (key_op->op_private & OPpCONST_BARE && | |
2727 | key_op->op_private & OPpCONST_STRICT) | |
2728 | { | |
2729 | no_bareword_allowed((OP*)key_op); | |
2730 | } | |
2731 | ||
12ee5d32 DM |
2732 | /* Make the CONST have a shared SV */ |
2733 | if ( !SvIsCOW_shared_hash(sv = *svp) | |
2734 | && SvTYPE(sv) < SVt_PVMG | |
2735 | && SvOK(sv) | |
02a9632a DM |
2736 | && !SvROK(sv) |
2737 | && real) | |
12ee5d32 DM |
2738 | { |
2739 | SSize_t keylen; | |
2740 | const char * const key = SvPV_const(sv, *(STRLEN*)&keylen); | |
2741 | SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0); | |
2742 | SvREFCNT_dec_NN(sv); | |
2743 | *svp = nsv; | |
2744 | } | |
2745 | ||
2746 | if ( check_fields | |
2747 | && !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0)) | |
2748 | { | |
147e3846 KW |
2749 | Perl_croak(aTHX_ "No such class field \"%" SVf "\" " |
2750 | "in variable %" PNf " of type %" HEKf, | |
12ee5d32 DM |
2751 | SVfARG(*svp), PNfARG(lexname), |
2752 | HEKfARG(HvNAME_HEK(PadnameTYPE(lexname)))); | |
2753 | } | |
2754 | } | |
2755 | } | |
2756 | ||
e839e6ed DM |
2757 | /* info returned by S_sprintf_is_multiconcatable() */ |
2758 | ||
2759 | struct sprintf_ismc_info { | |
ca84e88e | 2760 | SSize_t nargs; /* num of args to sprintf (not including the format) */ |
e839e6ed DM |
2761 | char *start; /* start of raw format string */ |
2762 | char *end; /* bytes after end of raw format string */ | |
2763 | STRLEN total_len; /* total length (in bytes) of format string, not | |
2764 | including '%s' and half of '%%' */ | |
2765 | STRLEN variant; /* number of bytes by which total_len_p would grow | |
2766 | if upgraded to utf8 */ | |
2767 | bool utf8; /* whether the format is utf8 */ | |
2768 | }; | |
2769 | ||
2770 | ||
2771 | /* is the OP_SPRINTF o suitable for converting into a multiconcat op? | |
2772 | * i.e. its format argument is a const string with only '%s' and '%%' | |
2773 | * formats, and the number of args is known, e.g. | |
2774 | * sprintf "a=%s f=%s", $a[0], scalar(f()); | |
2775 | * but not | |
2776 | * sprintf "i=%d a=%s f=%s", $i, @a, f(); | |
2777 | * | |
2778 | * If successful, the sprintf_ismc_info struct pointed to by info will be | |
2779 | * populated. | |
2780 | */ | |
2781 | ||
2782 | STATIC bool | |
2783 | S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info) | |
2784 | { | |
2785 | OP *pm, *constop, *kid; | |
2786 | SV *sv; | |
2787 | char *s, *e, *p; | |
ca84e88e | 2788 | SSize_t nargs, nformats; |
e839e6ed DM |
2789 | STRLEN cur, total_len, variant; |
2790 | bool utf8; | |
2791 | ||
2792 | /* if sprintf's behaviour changes, die here so that someone | |
2793 | * can decide whether to enhance this function or skip optimising | |
2794 | * under those new circumstances */ | |
2795 | assert(!(o->op_flags & OPf_STACKED)); | |
2796 | assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX)); | |
2797 | assert(!(o->op_private & ~OPpARG4_MASK)); | |
2798 | ||
2799 | pm = cUNOPo->op_first; | |
2800 | if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */ | |
2801 | return FALSE; | |
2802 | constop = OpSIBLING(pm); | |
2803 | if (!constop || constop->op_type != OP_CONST) | |
2804 | return FALSE; | |
2805 | sv = cSVOPx_sv(constop); | |
2806 | if (SvMAGICAL(sv) || !SvPOK(sv)) | |
2807 | return FALSE; | |
2808 | ||
2809 | s = SvPV(sv, cur); | |
2810 | e = s + cur; | |
2811 | ||
2812 | /* Scan format for %% and %s and work out how many %s there are. | |
2813 | * Abandon if other format types are found. | |
2814 | */ | |
2815 | ||
2816 | nformats = 0; | |
2817 | total_len = 0; | |
2818 | variant = 0; | |
2819 | ||
2820 | for (p = s; p < e; p++) { | |
2821 | if (*p != '%') { | |
2822 | total_len++; | |
b3baa1fe | 2823 | if (!UTF8_IS_INVARIANT(*p)) |
e839e6ed DM |
2824 | variant++; |
2825 | continue; | |
2826 | } | |
2827 | p++; | |
2828 | if (p >= e) | |
2829 | return FALSE; /* lone % at end gives "Invalid conversion" */ | |
2830 | if (*p == '%') | |
2831 | total_len++; | |
2832 | else if (*p == 's') | |
2833 | nformats++; | |
2834 | else | |
2835 | return FALSE; | |
2836 | } | |
2837 | ||
2838 | if (!nformats || nformats > PERL_MULTICONCAT_MAXARG) | |
2839 | return FALSE; | |
2840 | ||
2841 | utf8 = cBOOL(SvUTF8(sv)); | |
2842 | if (utf8) | |
2843 | variant = 0; | |
2844 | ||
2845 | /* scan args; they must all be in scalar cxt */ | |
2846 | ||
2847 | nargs = 0; | |
2848 | kid = OpSIBLING(constop); | |
2849 | ||
2850 | while (kid) { | |
2851 | if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR) | |
2852 | return FALSE; | |
2853 | nargs++; | |
2854 | kid = OpSIBLING(kid); | |
2855 | } | |
2856 | ||
2857 | if (nargs != nformats) | |
2858 | return FALSE; /* e.g. sprintf("%s%s", $a); */ | |
2859 | ||
2860 | ||
2861 | info->nargs = nargs; | |
2862 | info->start = s; | |
2863 | info->end = e; | |
2864 | info->total_len = total_len; | |
2865 | info->variant = variant; | |
2866 | info->utf8 = utf8; | |
2867 | ||
2868 | return TRUE; | |
2869 | } | |
2870 | ||
2871 | ||
2872 | ||
2873 | /* S_maybe_multiconcat(): | |
2874 | * | |
2875 | * given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly | |
2876 | * convert it (and its children) into an OP_MULTICONCAT. See the code | |
2877 | * comments just before pp_multiconcat() for the full details of what | |
2878 | * OP_MULTICONCAT supports. | |
2879 | * | |
2880 | * Basically we're looking for an optree with a chain of OP_CONCATS down | |
2881 | * the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or | |
2882 | * OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g. | |
2883 | * | |
2884 | * $x = "$a$b-$c" | |
2885 | * | |
2886 | * looks like | |
2887 | * | |
2888 | * SASSIGN | |
2889 | * | | |
2890 | * STRINGIFY -- PADSV[$x] | |
2891 | * | | |
2892 | * | | |
2893 | * ex-PUSHMARK -- CONCAT/S | |
2894 | * | | |
2895 | * CONCAT/S -- PADSV[$d] | |
2896 | * | | |
2897 | * CONCAT -- CONST["-"] | |
2898 | * | | |
2899 | * PADSV[$a] -- PADSV[$b] | |
2900 | * | |
2901 | * Note that at this stage the OP_SASSIGN may have already been optimised | |
2902 | * away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT. | |
2903 | */ | |
2904 | ||
2905 | STATIC void | |
2906 | S_maybe_multiconcat(pTHX_ OP *o) | |
2907 | { | |
2908 | OP *lastkidop; /* the right-most of any kids unshifted onto o */ | |
2909 | OP *topop; /* the top-most op in the concat tree (often equals o, | |
2910 | unless there are assign/stringify ops above it */ | |
2911 | OP *parentop; /* the parent op of topop (or itself if no parent) */ | |
2912 | OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */ | |
2913 | OP *targetop; /* the op corresponding to target=... or target.=... */ | |
2914 | OP *stringop; /* the OP_STRINGIFY op, if any */ | |
2915 | OP *nextop; /* used for recreating the op_next chain without consts */ | |
2916 | OP *kid; /* general-purpose op pointer */ | |
2917 | UNOP_AUX_item *aux; | |
2918 | UNOP_AUX_item *lenp; | |
2919 | char *const_str, *p; | |
2920 | struct sprintf_ismc_info sprintf_info; | |
2921 | ||
2922 | /* store info about each arg in args[]; | |
2923 | * toparg is the highest used slot; argp is a general | |
2924 | * pointer to args[] slots */ | |
2925 | struct { | |
2926 | void *p; /* initially points to const sv (or null for op); | |
2927 | later, set to SvPV(constsv), with ... */ | |
2928 | STRLEN len; /* ... len set to SvPV(..., len) */ | |
2929 | } *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1]; | |
2930 | ||
ca84e88e DM |
2931 | SSize_t nargs = 0; |
2932 | SSize_t nconst = 0; | |
f08f2d03 | 2933 | SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */ |
e839e6ed DM |
2934 | STRLEN variant; |
2935 | bool utf8 = FALSE; | |
2936 | bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op; | |
2937 | the last-processed arg will the LHS of one, | |
2938 | as args are processed in reverse order */ | |
2939 | U8 stacked_last = 0; /* whether the last seen concat op was STACKED */ | |
2940 | STRLEN total_len = 0; /* sum of the lengths of the const segments */ | |
2941 | U8 flags = 0; /* what will become the op_flags and ... */ | |
2942 | U8 private_flags = 0; /* ... op_private of the multiconcat op */ | |
2943 | bool is_sprintf = FALSE; /* we're optimising an sprintf */ | |
2944 | bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */ | |
f08f2d03 | 2945 | bool prev_was_const = FALSE; /* previous arg was a const */ |
e839e6ed DM |
2946 | |
2947 | /* ----------------------------------------------------------------- | |
2948 | * Phase 1: | |
2949 | * | |
2950 | * Examine the optree non-destructively to determine whether it's | |
2951 | * suitable to be converted into an OP_MULTICONCAT. Accumulate | |
2952 | * information about the optree in args[]. | |
2953 | */ | |
2954 | ||
2955 | argp = args; | |
2956 | targmyop = NULL; | |
2957 | targetop = NULL; | |
2958 | stringop = NULL; | |
2959 | topop = o; | |
2960 | parentop = o; | |
2961 | ||
2962 | assert( o->op_type == OP_SASSIGN | |
2963 | || o->op_type == OP_CONCAT | |
2964 | || o->op_type == OP_SPRINTF | |
2965 | || o->op_type == OP_STRINGIFY); | |
2966 | ||
da431b10 JH |
2967 | Zero(&sprintf_info, 1, struct sprintf_ismc_info); |
2968 | ||
e839e6ed DM |
2969 | /* first see if, at the top of the tree, there is an assign, |
2970 | * append and/or stringify */ | |
2971 | ||
2972 | if (topop->op_type == OP_SASSIGN) { | |
2973 | /* expr = ..... */ | |
2974 | if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN]) | |
2975 | return; | |
2976 | if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV)) | |
2977 | return; | |
2978 | assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */ | |
2979 | ||
2980 | parentop = topop; | |
2981 | topop = cBINOPo->op_first; | |
2982 | targetop = OpSIBLING(topop); | |
2983 | if (!targetop) /* probably some sort of syntax error */ | |
2984 | return; | |
d5a02d97 DM |
2985 | |
2986 | /* don't optimise away assign in 'local $foo = ....' */ | |
2987 | if ( (targetop->op_private & OPpLVAL_INTRO) | |
2988 | /* these are the common ops which do 'local', but | |
2989 | * not all */ | |
2990 | && ( targetop->op_type == OP_GVSV | |
2991 | || targetop->op_type == OP_RV2SV | |
2992 | || targetop->op_type == OP_AELEM | |
2993 | || targetop->op_type == OP_HELEM | |
2994 | ) | |
2995 | ) | |
2996 | return; | |
e839e6ed DM |
2997 | } |
2998 | else if ( topop->op_type == OP_CONCAT | |
2999 | && (topop->op_flags & OPf_STACKED) | |
62c1220c DM |
3000 | && (!(topop->op_private & OPpCONCAT_NESTED)) |
3001 | ) | |
e839e6ed DM |
3002 | { |
3003 | /* expr .= ..... */ | |
3004 | ||
3005 | /* OPpTARGET_MY shouldn't be able to be set here. If it is, | |
3006 | * decide what to do about it */ | |
3007 | assert(!(o->op_private & OPpTARGET_MY)); | |
3008 | ||
3009 | /* barf on unknown flags */ | |
3010 | assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY))); | |
3011 | private_flags |= OPpMULTICONCAT_APPEND; | |
3012 | targetop = cBINOPo->op_first; | |
3013 | parentop = topop; | |
3014 | topop = OpSIBLING(targetop); | |
3015 | ||
3016 | /* $x .= <FOO> gets optimised to rcatline instead */ | |
3017 | if (topop->op_type == OP_READLINE) | |
3018 | return; | |
3019 | } | |
3020 | ||
3021 | if (targetop) { | |
a3815e44 | 3022 | /* Can targetop (the LHS) if it's a padsv, be optimised |
e839e6ed DM |
3023 | * away and use OPpTARGET_MY instead? |
3024 | */ | |
3025 | if ( (targetop->op_type == OP_PADSV) | |
3026 | && !(targetop->op_private & OPpDEREF) | |
3027 | && !(targetop->op_private & OPpPAD_STATE) | |
3028 | /* we don't support 'my $x .= ...' */ | |
3029 | && ( o->op_type == OP_SASSIGN | |
3030 | || !(targetop->op_private & OPpLVAL_INTRO)) | |
3031 | ) | |
3032 | is_targable = TRUE; | |
3033 | } | |
3034 | ||
3035 | if (topop->op_type == OP_STRINGIFY) { | |
3036 | if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY]) | |
3037 | return; | |
3038 | stringop = topop; | |
3039 | ||
3040 | /* barf on unknown flags */ | |
3041 | assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY))); | |
3042 | ||
3043 | if ((topop->op_private & OPpTARGET_MY)) { | |
3044 | if (o->op_type == OP_SASSIGN) | |
3045 | return; /* can't have two assigns */ | |
3046 | targmyop = topop; | |
3047 | } | |
3048 | ||
3049 | private_flags |= OPpMULTICONCAT_STRINGIFY; | |
3050 | parentop = topop; | |
3051 | topop = cBINOPx(topop)->op_first; | |
3052 | assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK)); | |
3053 | topop = OpSIBLING(topop); | |
3054 | } | |
3055 | ||
3056 | if (topop->op_type == OP_SPRINTF) { | |
3057 | if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF]) | |
3058 | return; | |
3059 | if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) { | |
3060 | nargs = sprintf_info.nargs; | |
3061 | total_len = sprintf_info.total_len; | |
3062 | variant = sprintf_info.variant; | |
3063 | utf8 = sprintf_info.utf8; | |
3064 | is_sprintf = TRUE; | |
3065 | private_flags |= OPpMULTICONCAT_FAKE; | |
3066 | toparg = argp; | |
3067 | /* we have an sprintf op rather than a concat optree. | |
3068 | * Skip most of the code below which is associated with | |
3069 | * processing that optree. We also skip phase 2, determining | |
3070 | * whether its cost effective to optimise, since for sprintf, | |
3071 | * multiconcat is *always* faster */ | |
3072 | goto create_aux; | |
3073 | } | |
3074 | /* note that even if the sprintf itself isn't multiconcatable, | |
3075 | * the expression as a whole may be, e.g. in | |
3076 | * $x .= sprintf("%d",...) | |
3077 | * the sprintf op will be left as-is, but the concat/S op may | |
3078 | * be upgraded to multiconcat | |
3079 | */ | |
3080 | } | |
3081 | else if (topop->op_type == OP_CONCAT) { | |
3082 | if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT]) | |
3083 | return; | |
3084 | ||
3085 | if ((topop->op_private & OPpTARGET_MY)) { | |
3086 | if (o->op_type == OP_SASSIGN || targmyop) | |
3087 | return; /* can't have two assigns */ | |
3088 | targmyop = topop; | |
3089 | } | |
3090 | } | |
3091 | ||
3092 | /* Is it safe to convert a sassign/stringify/concat op into | |
3093 | * a multiconcat? */ | |
3094 | assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP); | |
3095 | assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP); | |
3096 | assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP); | |
3097 | assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP); | |
3098 | STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last) | |
3099 | == STRUCT_OFFSET(UNOP_AUX, op_aux)); | |
3100 | STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last) | |
3101 | == STRUCT_OFFSET(UNOP_AUX, op_aux)); | |
3102 | ||
3103 | /* Now scan the down the tree looking for a series of | |
3104 | * CONCAT/OPf_STACKED ops on the LHS (with the last one not | |
3105 | * stacked). For example this tree: | |
3106 | * | |
3107 | * | | |
3108 | * CONCAT/STACKED | |
3109 | * | | |
3110 | * CONCAT/STACKED -- EXPR5 | |
3111 | * | | |
3112 | * CONCAT/STACKED -- EXPR4 | |
3113 | * | | |
3114 | * CONCAT -- EXPR3 | |
3115 | * | | |
3116 | * EXPR1 -- EXPR2 | |
3117 | * | |
3118 | * corresponds to an expression like | |
3119 | * | |
3120 | * (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5) | |
3121 | * | |
3122 | * Record info about each EXPR in args[]: in particular, whether it is | |
3123 | * a stringifiable OP_CONST and if so what the const sv is. | |
3124 | * | |
3125 | * The reason why the last concat can't be STACKED is the difference | |
3126 | * between | |
3127 | * | |
3128 | * ((($a .= $a) .= $a) .= $a) .= $a | |
3129 | * | |
3130 | * and | |
3131 | * $a . $a . $a . $a . $a | |
3132 | * | |
3133 | * The main difference between the optrees for those two constructs | |
3134 | * is the presence of the last STACKED. As well as modifying $a, | |
3135 | * the former sees the changed $a between each concat, so if $s is | |
3136 | * initially 'a', the first returns 'a' x 16, while the latter returns | |
3137 | * 'a' x 5. And pp_multiconcat can't handle that kind of thing. | |
3138 | */ | |
3139 | ||
3140 | kid = topop; | |
3141 | ||
3142 | for (;;) { | |
3143 | OP *argop; | |
3144 | SV *sv; | |
3145 | bool last = FALSE; | |
3146 | ||
3147 | if ( kid->op_type == OP_CONCAT | |
3148 | && !kid_is_last | |
3149 | ) { | |
3150 | OP *k1, *k2; | |
3151 | k1 = cUNOPx(kid)->op_first; | |
3152 | k2 = OpSIBLING(k1); | |
3153 | /* shouldn't happen except maybe after compile err? */ | |
3154 | if (!k2) | |
3155 | return; | |
3156 | ||
3157 | /* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */ | |
3158 | if (kid->op_private & OPpTARGET_MY) | |
3159 | kid_is_last = TRUE; | |
3160 | ||
3161 | stacked_last = (kid->op_flags & OPf_STACKED); | |
3162 | if (!stacked_last) | |
3163 | kid_is_last = TRUE; | |
3164 | ||
3165 | kid = k1; | |
3166 | argop = k2; | |
3167 | } | |
3168 | else { | |
3169 | argop = kid; | |
3170 | last = TRUE; | |
3171 | } | |
3172 | ||
f08f2d03 | 3173 | if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2 |
e839e6ed DM |
3174 | || (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2) |
3175 | { | |
3176 | /* At least two spare slots are needed to decompose both | |
3177 | * concat args. If there are no slots left, continue to | |
3178 | * examine the rest of the optree, but don't push new values | |
3179 | * on args[]. If the optree as a whole is legal for conversion | |
3180 | * (in particular that the last concat isn't STACKED), then | |
3181 | * the first PERL_MULTICONCAT_MAXARG elements of the optree | |
3182 | * can be converted into an OP_MULTICONCAT now, with the first | |
3183 | * child of that op being the remainder of the optree - | |
3184 | * which may itself later be converted to a multiconcat op | |
3185 | * too. | |
3186 | */ | |
3187 | if (last) { | |
3188 | /* the last arg is the rest of the optree */ | |
3189 | argp++->p = NULL; | |
3190 | nargs++; | |
3191 | } | |
3192 | } | |
3193 | else if ( argop->op_type == OP_CONST | |
3194 | && ((sv = cSVOPx_sv(argop))) | |
3195 | /* defer stringification until runtime of 'constant' | |
3196 | * things that might stringify variantly, e.g. the radix | |
3197 | * point of NVs, or overloaded RVs */ | |
3198 | && (SvPOK(sv) || SvIOK(sv)) | |
3199 | && (!SvGMAGICAL(sv)) | |
3200 | ) { | |
a6d5b829 TC |
3201 | if (argop->op_private & OPpCONST_STRICT) |
3202 | no_bareword_allowed(argop); | |
e839e6ed DM |
3203 | argp++->p = sv; |
3204 | utf8 |= cBOOL(SvUTF8(sv)); | |
3205 | nconst++; | |
f08f2d03 DM |
3206 | if (prev_was_const) |
3207 | /* this const may be demoted back to a plain arg later; | |
3208 | * make sure we have enough arg slots left */ | |
3209 | nadjconst++; | |
3210 | prev_was_const = !prev_was_const; | |
e839e6ed DM |
3211 | } |
3212 | else { | |
3213 | argp++->p = NULL; | |
3214 | nargs++; | |
f08f2d03 | 3215 | prev_was_const = FALSE; |
e839e6ed DM |
3216 | } |
3217 | ||
3218 | if (last) | |
3219 | break; | |
3220 | } | |
3221 | ||
3222 | toparg = argp - 1; | |
3223 | ||
3224 | if (stacked_last) | |
3225 | return; /* we don't support ((A.=B).=C)...) */ | |
3226 | ||
bcc30fd0 DM |
3227 | /* look for two adjacent consts and don't fold them together: |
3228 | * $o . "a" . "b" | |
3229 | * should do | |
3230 | * $o->concat("a")->concat("b") | |
3231 | * rather than | |
3232 | * $o->concat("ab") | |
3233 | * (but $o .= "a" . "b" should still fold) | |
3234 | */ | |
3235 | { | |
3236 | bool seen_nonconst = FALSE; | |
3237 | for (argp = toparg; argp >= args; argp--) { | |
3238 | if (argp->p == NULL) { | |
3239 | seen_nonconst = TRUE; | |
3240 | continue; | |
3241 | } | |
3242 | if (!seen_nonconst) | |
3243 | continue; | |
3244 | if (argp[1].p) { | |
3245 | /* both previous and current arg were constants; | |
3246 | * leave the current OP_CONST as-is */ | |
3247 | argp->p = NULL; | |
3248 | nconst--; | |
3249 | nargs++; | |
3250 | } | |
3251 | } | |
3252 | } | |
3253 | ||
e839e6ed DM |
3254 | /* ----------------------------------------------------------------- |
3255 | * Phase 2: | |
3256 | * | |
3257 | * At this point we have determined that the optree *can* be converted | |
3258 | * into a multiconcat. Having gathered all the evidence, we now decide | |
3259 | * whether it *should*. | |
3260 | */ | |
3261 | ||
3262 | ||
3263 | /* we need at least one concat action, e.g.: | |
3264 | * | |
3265 | * Y . Z | |
3266 | * X = Y . Z | |
3267 | * X .= Y | |
3268 | * | |
3269 | * otherwise we could be doing something like $x = "foo", which | |
a3815e44 | 3270 | * if treated as a concat, would fail to COW. |
e839e6ed DM |
3271 | */ |
3272 | if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2) | |
3273 | return; | |
3274 | ||
3275 | /* Benchmarking seems to indicate that we gain if: | |
3276 | * * we optimise at least two actions into a single multiconcat | |
3277 | * (e.g concat+concat, sassign+concat); | |
3278 | * * or if we can eliminate at least 1 OP_CONST; | |
3279 | * * or if we can eliminate a padsv via OPpTARGET_MY | |
3280 | */ | |
3281 | ||
3282 | if ( | |
3283 | /* eliminated at least one OP_CONST */ | |
3284 | nconst >= 1 | |
3285 | /* eliminated an OP_SASSIGN */ | |
3286 | || o->op_type == OP_SASSIGN | |
3287 | /* eliminated an OP_PADSV */ | |
3288 | || (!targmyop && is_targable) | |
3289 | ) | |
3290 | /* definitely a net gain to optimise */ | |
3291 | goto optimise; | |
3292 | ||
3293 | /* ... if not, what else? */ | |
3294 | ||
3295 | /* special-case '$lex1 = expr . $lex1' (where expr isn't lex1): | |
3296 | * multiconcat is faster (due to not creating a temporary copy of | |
3297 | * $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is | |
3298 | * faster. | |
3299 | */ | |
3300 | if ( nconst == 0 | |
3301 | && nargs == 2 | |
3302 | && targmyop | |
3303 | && topop->op_type == OP_CONCAT | |
3304 | ) { | |
3305 | PADOFFSET t = targmyop->op_targ; | |
3306 | OP *k1 = cBINOPx(topop)->op_first; | |
3307 | OP *k2 = cBINOPx(topop)->op_last; | |
3308 | if ( k2->op_type == OP_PADSV | |
3309 | && k2->op_targ == t | |
3310 | && ( k1->op_type != OP_PADSV | |
3311 | || k1->op_targ != t) | |
3312 | ) | |
3313 | goto optimise; | |
3314 | } | |
3315 | ||
3316 | /* need at least two concats */ | |
3317 | if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3) | |
3318 | return; | |
3319 | ||
3320 | ||
3321 | ||
3322 | /* ----------------------------------------------------------------- | |
3323 | * Phase 3: | |
3324 | * | |
3325 | * At this point the optree has been verified as ok to be optimised | |
3326 | * into an OP_MULTICONCAT. Now start changing things. | |
3327 | */ | |
3328 | ||
3329 | optimise: | |
3330 | ||
3331 | /* stringify all const args and determine utf8ness */ | |
3332 | ||
3333 | variant = 0; | |
3334 | for (argp = args; argp <= toparg; argp++) { | |
3335 | SV *sv = (SV*)argp->p; | |
3336 | if (!sv) | |
3337 | continue; /* not a const op */ | |
3338 | if (utf8 && !SvUTF8(sv)) | |
3339 | sv_utf8_upgrade_nomg(sv); | |
3340 | argp->p = SvPV_nomg(sv, argp->len); | |
3341 | total_len += argp->len; | |
2f96a1b4 | 3342 | |
e839e6ed DM |
3343 | /* see if any strings would grow if converted to utf8 */ |
3344 | if (!utf8) { | |
c1a88fe2 KW |
3345 | variant += variant_under_utf8_count((U8 *) argp->p, |
3346 | (U8 *) argp->p + argp->len); | |
e839e6ed DM |
3347 | } |
3348 | } | |
3349 | ||
3350 | /* create and populate aux struct */ | |
3351 | ||
3352 | create_aux: | |
3353 | ||
3354 | aux = (UNOP_AUX_item*)PerlMemShared_malloc( | |
3355 | sizeof(UNOP_AUX_item) | |
3356 | * ( | |
3357 | PERL_MULTICONCAT_HEADER_SIZE | |
3358 | + ((nargs + 1) * (variant ? 2 : 1)) | |
3359 | ) | |
3360 | ); | |
6623aa6a | 3361 | const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1); |
e839e6ed DM |
3362 | |
3363 | /* Extract all the non-const expressions from the concat tree then | |
3364 | * dispose of the old tree, e.g. convert the tree from this: | |
3365 | * | |
3366 | * o => SASSIGN | |
3367 | * | | |
3368 | * STRINGIFY -- TARGET | |
3369 | * | | |
3370 | * ex-PUSHMARK -- CONCAT | |
3371 | * | | |
3372 | * CONCAT -- EXPR5 | |
3373 | * | | |
3374 | * CONCAT -- EXPR4 | |
3375 | * | | |
3376 | * CONCAT -- EXPR3 | |
3377 | * | | |
3378 | * EXPR1 -- EXPR2 | |
3379 | * | |
3380 | * | |
3381 | * to: | |
3382 | * | |
3383 | * o => MULTICONCAT | |
3384 | * | | |
3385 | * ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET | |
3386 | * | |
3387 | * except that if EXPRi is an OP_CONST, it's discarded. | |
3388 | * | |
3389 | * During the conversion process, EXPR ops are stripped from the tree | |
3390 | * and unshifted onto o. Finally, any of o's remaining original | |
3391 | * childen are discarded and o is converted into an OP_MULTICONCAT. | |
3392 | * | |
3393 | * In this middle of this, o may contain both: unshifted args on the | |
3394 | * left, and some remaining original args on the right. lastkidop | |
3395 | * is set to point to the right-most unshifted arg to delineate | |
3396 | * between the two sets. | |
3397 | */ | |
3398 | ||
3399 | ||
3400 | if (is_sprintf) { | |
3401 | /* create a copy of the format with the %'s removed, and record | |
3402 | * the sizes of the const string segments in the aux struct */ | |
3403 | char *q, *oldq; | |
3404 | lenp = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3405 | ||
3406 | p = sprintf_info.start; | |
3407 | q = const_str; | |
3408 | oldq = q; | |
3409 | for (; p < sprintf_info.end; p++) { | |
3410 | if (*p == '%') { | |
3411 | p++; | |
3412 | if (*p != '%') { | |
b5bf9f73 | 3413 | (lenp++)->ssize = q - oldq; |
e839e6ed DM |
3414 | oldq = q; |
3415 | continue; | |
3416 | } | |
3417 | } | |
3418 | *q++ = *p; | |
3419 | } | |
b5bf9f73 | 3420 | lenp->ssize = q - oldq; |
e839e6ed DM |
3421 | assert((STRLEN)(q - const_str) == total_len); |
3422 | ||
3423 | /* Attach all the args (i.e. the kids of the sprintf) to o (which | |
3424 | * may or may not be topop) The pushmark and const ops need to be | |
3425 | * kept in case they're an op_next entry point. | |
3426 | */ | |
3427 | lastkidop = cLISTOPx(topop)->op_last; | |
3428 | kid = cUNOPx(topop)->op_first; /* pushmark */ | |
3429 | op_null(kid); | |
3430 | op_null(OpSIBLING(kid)); /* const */ | |
3431 | if (o != topop) { | |
3432 | kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */ | |
3433 | op_sibling_splice(o, NULL, 0, kid); /* and attach to o */ | |
3434 | lastkidop->op_next = o; | |
3435 | } | |
3436 | } | |
3437 | else { | |
3438 | p = const_str; | |
3439 | lenp = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3440 | ||
b5bf9f73 | 3441 | lenp->ssize = -1; |
e839e6ed DM |
3442 | |
3443 | /* Concatenate all const strings into const_str. | |
3444 | * Note that args[] contains the RHS args in reverse order, so | |
3445 | * we scan args[] from top to bottom to get constant strings | |
3446 | * in L-R order | |
3447 | */ | |
3448 | for (argp = toparg; argp >= args; argp--) { | |
3449 | if (!argp->p) | |
3450 | /* not a const op */ | |
b5bf9f73 | 3451 | (++lenp)->ssize = -1; |
e839e6ed DM |
3452 | else { |
3453 | STRLEN l = argp->len; | |
3454 | Copy(argp->p, p, l, char); | |
3455 | p += l; | |
b5bf9f73 DM |
3456 | if (lenp->ssize == -1) |
3457 | lenp->ssize = l; | |
e839e6ed | 3458 | else |
b5bf9f73 | 3459 | lenp->ssize += l; |
e839e6ed DM |
3460 | } |
3461 | } | |
3462 | ||
3463 | kid = topop; | |
3464 | nextop = o; | |
3465 | lastkidop = NULL; | |
3466 | ||
3467 | for (argp = args; argp <= toparg; argp++) { | |
3468 | /* only keep non-const args, except keep the first-in-next-chain | |
3469 | * arg no matter what it is (but nulled if OP_CONST), because it | |
3470 | * may be the entry point to this subtree from the previous | |
3471 | * op_next. | |
3472 | */ | |
3473 | bool last = (argp == toparg); | |
3474 | OP *prev; | |
3475 | ||
3476 | /* set prev to the sibling *before* the arg to be cut out, | |
789a38b6 | 3477 | * e.g. when cutting EXPR: |
e839e6ed DM |
3478 | * |
3479 | * | | |
789a38b6 | 3480 | * kid= CONCAT |
e839e6ed | 3481 | * | |
789a38b6 | 3482 | * prev= CONCAT -- EXPR |
e839e6ed DM |
3483 | * | |
3484 | */ | |
3485 | if (argp == args && kid->op_type != OP_CONCAT) { | |
789a38b6 | 3486 | /* in e.g. '$x .= f(1)' there's no RHS concat tree |
e839e6ed DM |
3487 | * so the expression to be cut isn't kid->op_last but |
3488 | * kid itself */ | |
3489 | OP *o1, *o2; | |
3490 | /* find the op before kid */ | |
3491 | o1 = NULL; | |
3492 | o2 = cUNOPx(parentop)->op_first; | |
3493 | while (o2 && o2 != kid) { | |
3494 | o1 = o2; | |
3495 | o2 = OpSIBLING(o2); | |
3496 | } | |
3497 | assert(o2 == kid); | |
3498 | prev = o1; | |
3499 | kid = parentop; | |
3500 | } | |
3501 | else if (kid == o && lastkidop) | |
3502 | prev = last ? lastkidop : OpSIBLING(lastkidop); | |
3503 | else | |
3504 | prev = last ? NULL : cUNOPx(kid)->op_first; | |
3505 | ||
3506 | if (!argp->p || last) { | |
3507 | /* cut RH op */ | |
3508 | OP *aop = op_sibling_splice(kid, prev, 1, NULL); | |
3509 | /* and unshift to front of o */ | |
3510 | op_sibling_splice(o, NULL, 0, aop); | |
3511 | /* record the right-most op added to o: later we will | |
3512 | * free anything to the right of it */ | |
3513 | if (!lastkidop) | |
3514 | lastkidop = aop; | |
3515 | aop->op_next = nextop; | |
3516 | if (last) { | |
3517 | if (argp->p) | |
3518 | /* null the const at start of op_next chain */ | |
3519 | op_null(aop); | |
3520 | } | |
3521 | else if (prev) | |
3522 | nextop = prev->op_next; | |
3523 | } | |
3524 | ||
3525 | /* the last two arguments are both attached to the same concat op */ | |
3526 | if (argp < toparg - 1) | |
3527 | kid = prev; | |
3528 | } | |
3529 | } | |
3530 | ||
3531 | /* Populate the aux struct */ | |
3532 | ||
ca84e88e | 3533 | aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs; |
e839e6ed | 3534 | aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str; |
b5bf9f73 | 3535 | aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len; |
e839e6ed | 3536 | aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str; |
b5bf9f73 | 3537 | aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len; |
e839e6ed DM |
3538 | |
3539 | /* if variant > 0, calculate a variant const string and lengths where | |
3540 | * the utf8 version of the string will take 'variant' more bytes than | |
3541 | * the plain one. */ | |
3542 | ||
3543 | if (variant) { | |
3544 | char *p = const_str; | |
3545 | STRLEN ulen = total_len + variant; | |
3546 | UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3547 | UNOP_AUX_item *ulens = lens + (nargs + 1); | |
3548 | char *up = (char*)PerlMemShared_malloc(ulen); | |
ca84e88e | 3549 | SSize_t n; |
e839e6ed DM |
3550 | |
3551 | aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up; | |
b5bf9f73 | 3552 | aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen; |
e839e6ed DM |
3553 | |
3554 | for (n = 0; n < (nargs + 1); n++) { | |
576915da DM |
3555 | SSize_t i; |
3556 | char * orig_up = up; | |
b5bf9f73 | 3557 | for (i = (lens++)->ssize; i > 0; i--) { |
e839e6ed | 3558 | U8 c = *p++; |
576915da | 3559 | append_utf8_from_native_byte(c, (U8**)&up); |
e839e6ed | 3560 | } |
b5bf9f73 | 3561 | (ulens++)->ssize = (i < 0) ? i : up - orig_up; |
e839e6ed DM |
3562 | } |
3563 | } | |
3564 | ||
3565 | if (stringop) { | |
3566 | /* if there was a top(ish)-level OP_STRINGIFY, we need to keep | |
3567 | * that op's first child - an ex-PUSHMARK - because the op_next of | |
3568 | * the previous op may point to it (i.e. it's the entry point for | |
3569 | * the o optree) | |
3570 | */ | |
3571 | OP *pmop = | |
3572 | (stringop == o) | |
3573 | ? op_sibling_splice(o, lastkidop, 1, NULL) | |
3574 | : op_sibling_splice(stringop, NULL, 1, NULL); | |
3575 | assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK)); | |
3576 | op_sibling_splice(o, NULL, 0, pmop); | |
3577 | if (!lastkidop) | |
3578 | lastkidop = pmop; | |
3579 | } | |
3580 | ||
2f96a1b4 | 3581 | /* Optimise |
e839e6ed DM |
3582 | * target = A.B.C... |
3583 | * target .= A.B.C... | |
3584 | */ | |
3585 | ||
3586 | if (targetop) { | |
3587 | assert(!targmyop); | |
3588 | ||
3589 | if (o->op_type == OP_SASSIGN) { | |
3590 | /* Move the target subtree from being the last of o's children | |
3591 | * to being the last of o's preserved children. | |
3592 | * Note the difference between 'target = ...' and 'target .= ...': | |
3593 | * for the former, target is executed last; for the latter, | |
3594 | * first. | |
3595 | */ | |
3596 | kid = OpSIBLING(lastkidop); | |
3597 | op_sibling_splice(o, kid, 1, NULL); /* cut target op */ | |
3598 | op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */ | |
3599 | lastkidop->op_next = kid->op_next; | |
3600 | lastkidop = targetop; | |
3601 | } | |
3602 | else { | |
3603 | /* Move the target subtree from being the first of o's | |
3604 | * original children to being the first of *all* o's children. | |
3605 | */ | |
3606 | if (lastkidop) { | |
3607 | op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */ | |
3608 | op_sibling_splice(o, NULL, 0, targetop); /* and paste*/ | |
3609 | } | |
3610 | else { | |
3611 | /* if the RHS of .= doesn't contain a concat (e.g. | |
3612 | * $x .= "foo"), it gets missed by the "strip ops from the | |
3613 | * tree and add to o" loop earlier */ | |
3614 | assert(topop->op_type != OP_CONCAT); | |
3615 | if (stringop) { | |
3616 | /* in e.g. $x .= "$y", move the $y expression | |
3617 | * from being a child of OP_STRINGIFY to being the | |
3618 | * second child of the OP_CONCAT | |
3619 | */ | |
3620 | assert(cUNOPx(stringop)->op_first == topop); | |
3621 | op_sibling_splice(stringop, NULL, 1, NULL); | |
3622 | op_sibling_splice(o, cUNOPo->op_first, 0, topop); | |
3623 | } | |
3624 | assert(topop == OpSIBLING(cBINOPo->op_first)); | |
3625 | if (toparg->p) | |
3626 | op_null(topop); | |
3627 | lastkidop = topop; | |
3628 | } | |
3629 | } | |
3630 | ||
3631 | if (is_targable) { | |
3632 | /* optimise | |
3633 | * my $lex = A.B.C... | |
3634 | * $lex = A.B.C... | |
3635 | * $lex .= A.B.C... | |
3636 | * The original padsv op is kept but nulled in case it's the | |
3637 | * entry point for the optree (which it will be for | |
3638 | * '$lex .= ... ' | |
3639 | */ | |
3640 | private_flags |= OPpTARGET_MY; | |
3641 | private_flags |= (targetop->op_private & OPpLVAL_INTRO); | |
3642 | o->op_targ = targetop->op_targ; | |
3643 | targetop->op_targ = 0; | |
3644 | op_null(targetop); | |
3645 | } | |
3646 | else | |
3647 | flags |= OPf_STACKED; | |
3648 | } | |
3649 | else if (targmyop) { | |
3650 | private_flags |= OPpTARGET_MY; | |
3651 | if (o != targmyop) { | |
3652 | o->op_targ = targmyop->op_targ; | |
3653 | targmyop->op_targ = 0; | |
3654 | } | |
3655 | } | |
3656 | ||
3657 | /* detach the emaciated husk of the sprintf/concat optree and free it */ | |
3658 | for (;;) { | |
3659 | kid = op_sibling_splice(o, lastkidop, 1, NULL); | |
3660 | if (!kid) | |
3661 | break; | |
3662 | op_free(kid); | |
3663 | } | |
3664 | ||
3665 | /* and convert o into a multiconcat */ | |
3666 | ||
3667 | o->op_flags = (flags|OPf_KIDS|stacked_last | |
3668 | |(o->op_flags & (OPf_WANT|OPf_PARENS))); | |
3669 | o->op_private = private_flags; | |
3670 | o->op_type = OP_MULTICONCAT; | |
3671 | o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT]; | |
3672 | cUNOP_AUXo->op_aux = aux; | |
3673 | } | |
3674 | ||
12ee5d32 | 3675 | |
01f9673f DM |
3676 | /* do all the final processing on an optree (e.g. running the peephole |
3677 | * optimiser on it), then attach it to cv (if cv is non-null) | |
3678 | */ | |
3679 | ||
3680 | static void | |
3681 | S_process_optree(pTHX_ CV *cv, OP *optree, OP* start) | |
3682 | { | |
3683 | OP **startp; | |
3684 | ||
3685 | /* XXX for some reason, evals, require and main optrees are | |
3686 | * never attached to their CV; instead they just hang off | |
3687 | * PL_main_root + PL_main_start or PL_eval_root + PL_eval_start | |
3688 | * and get manually freed when appropriate */ | |
3689 | if (cv) | |
3690 | startp = &CvSTART(cv); | |
3691 | else | |
3692 | startp = PL_in_eval? &PL_eval_start : &PL_main_start; | |
3693 | ||
3694 | *startp = start; | |
3695 | optree->op_private |= OPpREFCOUNTED; | |
3696 | OpREFCNT_set(optree, 1); | |
d2905138 | 3697 | optimize_optree(optree); |
01f9673f DM |
3698 | CALL_PEEP(*startp); |
3699 | finalize_optree(optree); | |
3700 | S_prune_chain_head(startp); | |
3701 | ||
3702 | if (cv) { | |
3703 | /* now that optimizer has done its work, adjust pad values */ | |
3704 | pad_tidy(optree->op_type == OP_LEAVEWRITE ? padtidy_FORMAT | |
3705 | : CvCLONE(cv) ? padtidy_SUBCLONE : padtidy_SUB); | |
3706 | } | |
3707 | } | |
3708 | ||
3709 | ||
3ad73efd | 3710 | /* |
d2905138 DM |
3711 | =for apidoc optimize_optree |
3712 | ||
3713 | This function applies some optimisations to the optree in top-down order. | |
3714 | It is called before the peephole optimizer, which processes ops in | |
3715 | execution order. Note that finalize_optree() also does a top-down scan, | |
3716 | but is called *after* the peephole optimizer. | |
3717 | ||
3718 | =cut | |
3719 | */ | |
3720 | ||
3721 | void | |
3722 | Perl_optimize_optree(pTHX_ OP* o) | |
3723 | { | |
3724 | PERL_ARGS_ASSERT_OPTIMIZE_OPTREE; | |
3725 | ||
3726 | ENTER; | |
3727 | SAVEVPTR(PL_curcop); | |
3728 | ||
3729 | optimize_op(o); | |
3730 | ||
3731 | LEAVE; | |
3732 | } | |
3733 | ||
3734 | ||
6eebe43d | 3735 | /* helper for optimize_optree() which optimises one op then recurses |
d2905138 DM |
3736 | * to optimise any children. |
3737 | */ | |
3738 | ||
3739 | STATIC void | |
3740 | S_optimize_op(pTHX_ OP* o) | |
3741 | { | |
6eebe43d | 3742 | OP *top_op = o; |
d2905138 DM |
3743 | |
3744 | PERL_ARGS_ASSERT_OPTIMIZE_OP; | |
6eebe43d DM |
3745 | |
3746 | while (1) { | |
3747 | OP * next_kid = NULL; | |
3748 | ||
f2861c9b | 3749 | assert(o->op_type != OP_FREED); |
d2905138 | 3750 | |
f2861c9b TC |
3751 | switch (o->op_type) { |
3752 | case OP_NEXTSTATE: | |
3753 | case OP_DBSTATE: | |
3754 | PL_curcop = ((COP*)o); /* for warnings */ | |
3755 | break; | |
d2905138 DM |
3756 | |
3757 | ||
f2861c9b TC |
3758 | case OP_CONCAT: |
3759 | case OP_SASSIGN: | |
3760 | case OP_STRINGIFY: | |
3761 | case OP_SPRINTF: | |
3762 | S_maybe_multiconcat(aTHX_ o); | |
3763 | break; | |
e839e6ed | 3764 | |
f2861c9b | 3765 | case OP_SUBST: |
6eebe43d DM |
3766 | if (cPMOPo->op_pmreplrootu.op_pmreplroot) { |
3767 | /* we can't assume that op_pmreplroot->op_sibparent == o | |
3768 | * and that it is thus possible to walk back up the tree | |
3769 | * past op_pmreplroot. So, although we try to avoid | |
3770 | * recursing through op trees, do it here. After all, | |
3771 | * there are unlikely to be many nested s///e's within | |
3772 | * the replacement part of a s///e. | |
3773 | */ | |
3774 | optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot); | |
3775 | } | |
f2861c9b | 3776 | break; |
d2905138 | 3777 | |
f2861c9b TC |
3778 | default: |
3779 | break; | |
3780 | } | |
d2905138 | 3781 | |
6eebe43d DM |
3782 | if (o->op_flags & OPf_KIDS) |
3783 | next_kid = cUNOPo->op_first; | |
3784 | ||
3785 | /* if a kid hasn't been nominated to process, continue with the | |
3786 | * next sibling, or if no siblings left, go back to the parent's | |
3787 | * siblings and so on | |
3788 | */ | |
3789 | while (!next_kid) { | |
3790 | if (o == top_op) | |
3791 | return; /* at top; no parents/siblings to try */ | |
3792 | if (OpHAS_SIBLING(o)) | |
3793 | next_kid = o->op_sibparent; | |
3794 | else | |
3795 | o = o->op_sibparent; /*try parent's next sibling */ | |
f2861c9b | 3796 | } |
d2905138 | 3797 | |
6eebe43d DM |
3798 | /* this label not yet used. Goto here if any code above sets |
3799 | * next-kid | |
3800 | get_next_op: | |
3801 | */ | |
3802 | o = next_kid; | |
3803 | } | |
d2905138 DM |
3804 | } |
3805 | ||
3806 | ||
3807 | /* | |
d164302a GG |
3808 | =for apidoc finalize_optree |
3809 | ||
72d33970 FC |
3810 | This function finalizes the optree. Should be called directly after |
3811 | the complete optree is built. It does some additional | |
796b6530 | 3812 | checking which can't be done in the normal C<ck_>xxx functions and makes |
d164302a GG |
3813 | the tree thread-safe. |
3814 | ||
3815 | =cut | |
3816 | */ | |
3817 | void | |
3818 | Perl_finalize_optree(pTHX_ OP* o) | |
3819 | { | |
3820 | PERL_ARGS_ASSERT_FINALIZE_OPTREE; | |
3821 | ||
3822 | ENTER; | |
3823 | SAVEVPTR(PL_curcop); | |
3824 | ||
3825 | finalize_op(o); | |
3826 | ||
3827 | LEAVE; | |
3828 | } | |
3829 | ||
b46e009d | 3830 | #ifdef USE_ITHREADS |
3831 | /* Relocate sv to the pad for thread safety. | |
3832 | * Despite being a "constant", the SV is written to, | |
3833 | * for reference counts, sv_upgrade() etc. */ | |
3834 | PERL_STATIC_INLINE void | |
3835 | S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp) | |
3836 | { | |
3837 | PADOFFSET ix; | |
3838 | PERL_ARGS_ASSERT_OP_RELOCATE_SV; | |
3839 | if (!*svp) return; | |
3840 | ix = pad_alloc(OP_CONST, SVf_READONLY); | |
3841 | SvREFCNT_dec(PAD_SVl(ix)); | |
3842 | PAD_SETSV(ix, *svp); | |
3843 | /* XXX I don't know how this isn't readonly already. */ | |
3844 | if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix)); | |
3845 | *svp = NULL; | |
3846 | *targp = ix; | |
3847 | } | |
3848 | #endif | |
3849 | ||
7f8280cf | 3850 | /* |
44170c9a | 3851 | =for apidoc traverse_op_tree |
7f8280cf TC |
3852 | |
3853 | Return the next op in a depth-first traversal of the op tree, | |
3854 | returning NULL when the traversal is complete. | |
3855 | ||
3856 | The initial call must supply the root of the tree as both top and o. | |
3857 | ||
3858 | For now it's static, but it may be exposed to the API in the future. | |
3859 | ||
3860 | =cut | |
3861 | */ | |
3862 | ||
3863 | STATIC OP* | |
35c1827f | 3864 | S_traverse_op_tree(pTHX_ OP *top, OP *o) { |
7f8280cf TC |
3865 | OP *sib; |
3866 | ||
3867 | PERL_ARGS_ASSERT_TRAVERSE_OP_TREE; | |
3868 | ||
3869 | if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) { | |
3870 | return cUNOPo->op_first; | |
3871 | } | |
3872 | else if ((sib = OpSIBLING(o))) { | |
3873 | return sib; | |
3874 | } | |
3875 | else { | |
3876 | OP *parent = o->op_sibparent; | |
3877 | assert(!(o->op_moresib)); | |
3878 | while (parent && parent != top) { | |
3879 | OP *sib = OpSIBLING(parent); | |
3880 | if (sib) | |
3881 | return sib; | |
3882 | parent = parent->op_sibparent; | |
3883 | } | |
3884 | ||
3885 | return NULL; | |
3886 | } | |
3887 | } | |
b46e009d | 3888 | |
60dde6b2 | 3889 | STATIC void |
d164302a GG |
3890 | S_finalize_op(pTHX_ OP* o) |
3891 | { | |
7f8280cf | 3892 | OP * const top = o; |
d164302a GG |
3893 | PERL_ARGS_ASSERT_FINALIZE_OP; |
3894 | ||
7f8280cf | 3895 | do { |
64242fed | 3896 | assert(o->op_type != OP_FREED); |
d164302a | 3897 | |
64242fed TC |
3898 | switch (o->op_type) { |
3899 | case OP_NEXTSTATE: | |
3900 | case OP_DBSTATE: | |
3901 | PL_curcop = ((COP*)o); /* for warnings */ | |
3902 | break; | |
3903 | case OP_EXEC: | |
3904 | if (OpHAS_SIBLING(o)) { | |
3905 | OP *sib = OpSIBLING(o); | |
3906 | if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE) | |
3907 | && ckWARN(WARN_EXEC) | |
3908 | && OpHAS_SIBLING(sib)) | |
3909 | { | |
1f4fbd3b MS |
3910 | const OPCODE type = OpSIBLING(sib)->op_type; |
3911 | if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) { | |
3912 | const line_t oldline = CopLINE(PL_curcop); | |
3913 | CopLINE_set(PL_curcop, CopLINE((COP*)sib)); | |
3914 | Perl_warner(aTHX_ packWARN(WARN_EXEC), | |
3915 | "Statement unlikely to be reached"); | |
3916 | Perl_warner(aTHX_ packWARN(WARN_EXEC), | |
3917 | "\t(Maybe you meant system() when you said exec()?)\n"); | |
3918 | CopLINE_set(PL_curcop, oldline); | |
3919 | } | |
64242fed TC |
3920 | } |
3921 | } | |
3922 | break; | |
d164302a | 3923 | |
64242fed TC |
3924 | case OP_GV: |
3925 | if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) { | |
3926 | GV * const gv = cGVOPo_gv; | |
3927 | if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) { | |
3928 | /* XXX could check prototype here instead of just carping */ | |
3929 | SV * const sv = sv_newmortal(); | |
3930 | gv_efullname3(sv, gv, NULL); | |
3931 | Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE), | |
3932 | "%" SVf "() called too early to check prototype", | |
3933 | SVfARG(sv)); | |
3934 | } | |
3935 | } | |
3936 | break; | |
d164302a | 3937 | |
64242fed TC |
3938 | case OP_CONST: |
3939 | if (cSVOPo->op_private & OPpCONST_STRICT) | |
3940 | no_bareword_allowed(o); | |
d164302a | 3941 | #ifdef USE_ITHREADS |
64242fed TC |
3942 | /* FALLTHROUGH */ |
3943 | case OP_HINTSEVAL: | |
3944 | op_relocate_sv(&cSVOPo->op_sv, &o->op_targ); | |
b46e009d | 3945 | #endif |
64242fed | 3946 | break; |
b46e009d | 3947 | |
3948 | #ifdef USE_ITHREADS | |
64242fed TC |
3949 | /* Relocate all the METHOP's SVs to the pad for thread safety. */ |
3950 | case OP_METHOD_NAMED: | |
3951 | case OP_METHOD_SUPER: | |
3952 | case OP_METHOD_REDIR: | |
3953 | case OP_METHOD_REDIR_SUPER: | |
3954 | op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ); | |
3955 | break; | |
d164302a | 3956 | #endif |
d164302a | 3957 | |
64242fed TC |
3958 | case OP_HELEM: { |
3959 | UNOP *rop; | |
3960 | SVOP *key_op; | |
3961 | OP *kid; | |
d164302a | 3962 | |
64242fed TC |
3963 | if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST) |
3964 |