Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # $RCSFile$ |
2 | # | |
3 | # Complex numbers and associated mathematical functions | |
0c721ce2 | 4 | # -- Raphael Manfredi, September 1996 |
5cd24f17 | 5 | # -- Jarkko Hietaniemi, March-April 1997 |
a0d0e21e LW |
6 | |
7 | require Exporter; | |
5aabfad6 | 8 | package Math::Complex; |
a0d0e21e | 9 | |
0c721ce2 JH |
10 | use strict; |
11 | ||
5aabfad6 | 12 | use vars qw($VERSION @ISA |
13 | @EXPORT %EXPORT_TAGS | |
14 | $package $display | |
5cd24f17 | 15 | $i $logn %logn); |
0c721ce2 | 16 | |
5aabfad6 | 17 | @ISA = qw(Exporter); |
18 | ||
19 | $VERSION = 1.01; | |
20 | ||
21 | my @trig = qw( | |
22 | pi | |
5cd24f17 | 23 | sin cos tan |
5aabfad6 | 24 | csc cosec sec cot cotan |
25 | asin acos atan | |
26 | acsc acosec asec acot acotan | |
27 | sinh cosh tanh | |
28 | csch cosech sech coth cotanh | |
29 | asinh acosh atanh | |
30 | acsch acosech asech acoth acotanh | |
31 | ); | |
32 | ||
33 | @EXPORT = (qw( | |
34 | i Re Im arg | |
35 | sqrt exp log ln | |
36 | log10 logn cbrt root | |
37 | cplx cplxe | |
38 | ), | |
39 | @trig); | |
40 | ||
41 | %EXPORT_TAGS = ( | |
42 | 'trig' => [@trig], | |
66730be0 | 43 | ); |
a0d0e21e | 44 | |
a5f75d66 | 45 | use overload |
0c721ce2 JH |
46 | '+' => \&plus, |
47 | '-' => \&minus, | |
48 | '*' => \&multiply, | |
49 | '/' => \÷, | |
66730be0 RM |
50 | '**' => \&power, |
51 | '<=>' => \&spaceship, | |
52 | 'neg' => \&negate, | |
0c721ce2 | 53 | '~' => \&conjugate, |
66730be0 RM |
54 | 'abs' => \&abs, |
55 | 'sqrt' => \&sqrt, | |
56 | 'exp' => \&exp, | |
57 | 'log' => \&log, | |
58 | 'sin' => \&sin, | |
59 | 'cos' => \&cos, | |
0c721ce2 | 60 | 'tan' => \&tan, |
66730be0 RM |
61 | 'atan2' => \&atan2, |
62 | qw("" stringify); | |
63 | ||
64 | # | |
65 | # Package globals | |
66 | # | |
67 | ||
68 | $package = 'Math::Complex'; # Package name | |
69 | $display = 'cartesian'; # Default display format | |
70 | ||
71 | # | |
72 | # Object attributes (internal): | |
73 | # cartesian [real, imaginary] -- cartesian form | |
74 | # polar [rho, theta] -- polar form | |
75 | # c_dirty cartesian form not up-to-date | |
76 | # p_dirty polar form not up-to-date | |
77 | # display display format (package's global when not set) | |
78 | # | |
79 | ||
80 | # | |
81 | # ->make | |
82 | # | |
83 | # Create a new complex number (cartesian form) | |
84 | # | |
85 | sub make { | |
86 | my $self = bless {}, shift; | |
87 | my ($re, $im) = @_; | |
40da2db3 | 88 | $self->{'cartesian'} = [$re, $im]; |
66730be0 RM |
89 | $self->{c_dirty} = 0; |
90 | $self->{p_dirty} = 1; | |
91 | return $self; | |
92 | } | |
93 | ||
94 | # | |
95 | # ->emake | |
96 | # | |
97 | # Create a new complex number (exponential form) | |
98 | # | |
99 | sub emake { | |
100 | my $self = bless {}, shift; | |
101 | my ($rho, $theta) = @_; | |
102 | $theta += pi() if $rho < 0; | |
40da2db3 | 103 | $self->{'polar'} = [abs($rho), $theta]; |
66730be0 RM |
104 | $self->{p_dirty} = 0; |
105 | $self->{c_dirty} = 1; | |
106 | return $self; | |
107 | } | |
108 | ||
109 | sub new { &make } # For backward compatibility only. | |
110 | ||
111 | # | |
112 | # cplx | |
113 | # | |
114 | # Creates a complex number from a (re, im) tuple. | |
115 | # This avoids the burden of writing Math::Complex->make(re, im). | |
116 | # | |
117 | sub cplx { | |
118 | my ($re, $im) = @_; | |
0c721ce2 | 119 | return $package->make($re, defined $im ? $im : 0); |
66730be0 RM |
120 | } |
121 | ||
122 | # | |
123 | # cplxe | |
124 | # | |
125 | # Creates a complex number from a (rho, theta) tuple. | |
126 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
127 | # | |
128 | sub cplxe { | |
129 | my ($rho, $theta) = @_; | |
0c721ce2 | 130 | return $package->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
131 | } |
132 | ||
133 | # | |
134 | # pi | |
135 | # | |
136 | # The number defined as 2 * pi = 360 degrees | |
137 | # | |
5cd24f17 | 138 | |
139 | use constant pi => 4 * atan2(1, 1); | |
140 | ||
141 | # | |
142 | # log2inv | |
143 | # | |
144 | # Used in log10(). | |
145 | # | |
146 | ||
147 | use constant log10inv => 1 / log(10); | |
66730be0 RM |
148 | |
149 | # | |
150 | # i | |
151 | # | |
152 | # The number defined as i*i = -1; | |
153 | # | |
154 | sub i () { | |
5cd24f17 | 155 | return $i if ($i); |
156 | $i = bless {}; | |
40da2db3 | 157 | $i->{'cartesian'} = [0, 1]; |
5cd24f17 | 158 | $i->{'polar'} = [1, pi/2]; |
66730be0 RM |
159 | $i->{c_dirty} = 0; |
160 | $i->{p_dirty} = 0; | |
161 | return $i; | |
162 | } | |
163 | ||
164 | # | |
165 | # Attribute access/set routines | |
166 | # | |
167 | ||
0c721ce2 JH |
168 | sub cartesian {$_[0]->{c_dirty} ? |
169 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
170 | sub polar {$_[0]->{p_dirty} ? | |
171 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 172 | |
40da2db3 JH |
173 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
174 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
175 | |
176 | # | |
177 | # ->update_cartesian | |
178 | # | |
179 | # Recompute and return the cartesian form, given accurate polar form. | |
180 | # | |
181 | sub update_cartesian { | |
182 | my $self = shift; | |
40da2db3 | 183 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 184 | $self->{c_dirty} = 0; |
40da2db3 | 185 | return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; |
66730be0 RM |
186 | } |
187 | ||
188 | # | |
189 | # | |
190 | # ->update_polar | |
191 | # | |
192 | # Recompute and return the polar form, given accurate cartesian form. | |
193 | # | |
194 | sub update_polar { | |
195 | my $self = shift; | |
40da2db3 | 196 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 197 | $self->{p_dirty} = 0; |
40da2db3 JH |
198 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
199 | return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; | |
66730be0 RM |
200 | } |
201 | ||
202 | # | |
203 | # (plus) | |
204 | # | |
205 | # Computes z1+z2. | |
206 | # | |
207 | sub plus { | |
208 | my ($z1, $z2, $regular) = @_; | |
209 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 210 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 211 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
212 | unless (defined $regular) { |
213 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
214 | return $z1; | |
215 | } | |
216 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
217 | } | |
218 | ||
219 | # | |
220 | # (minus) | |
221 | # | |
222 | # Computes z1-z2. | |
223 | # | |
224 | sub minus { | |
225 | my ($z1, $z2, $inverted) = @_; | |
226 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
227 | $z2 = cplx($z2) unless ref $z2; |
228 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
229 | unless (defined $inverted) { |
230 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
231 | return $z1; | |
232 | } | |
233 | return $inverted ? | |
234 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
235 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 236 | |
66730be0 RM |
237 | } |
238 | ||
239 | # | |
240 | # (multiply) | |
241 | # | |
242 | # Computes z1*z2. | |
243 | # | |
244 | sub multiply { | |
245 | my ($z1, $z2, $regular) = @_; | |
246 | my ($r1, $t1) = @{$z1->polar}; | |
0e505df1 JH |
247 | $z2 = cplxe(abs($z2), $z2 >= 0 ? 0 : pi) unless ref $z2; |
248 | my ($r2, $t2) = @{$z2->polar}; | |
66730be0 RM |
249 | unless (defined $regular) { |
250 | $z1->set_polar([$r1 * $r2, $t1 + $t2]); | |
251 | return $z1; | |
252 | } | |
253 | return (ref $z1)->emake($r1 * $r2, $t1 + $t2); | |
254 | } | |
255 | ||
256 | # | |
0e505df1 | 257 | # _divbyzero |
0c721ce2 JH |
258 | # |
259 | # Die on division by zero. | |
260 | # | |
0e505df1 | 261 | sub _divbyzero { |
5cd24f17 | 262 | my $mess = "$_[0]: Division by zero.\n"; |
263 | ||
264 | if (defined $_[1]) { | |
265 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
266 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
267 | $mess .= "is 0)\n"; | |
268 | } | |
269 | ||
0c721ce2 | 270 | my @up = caller(1); |
5cd24f17 | 271 | |
272 | $mess .= "Died at $up[1] line $up[2].\n"; | |
273 | ||
274 | die $mess; | |
0c721ce2 JH |
275 | } |
276 | ||
277 | # | |
66730be0 RM |
278 | # (divide) |
279 | # | |
280 | # Computes z1/z2. | |
281 | # | |
282 | sub divide { | |
283 | my ($z1, $z2, $inverted) = @_; | |
284 | my ($r1, $t1) = @{$z1->polar}; | |
0e505df1 JH |
285 | $z2 = cplxe(abs($z2), $z2 >= 0 ? 0 : pi) unless ref $z2; |
286 | my ($r2, $t2) = @{$z2->polar}; | |
66730be0 | 287 | unless (defined $inverted) { |
0e505df1 | 288 | _divbyzero "$z1/0" if ($r2 == 0); |
66730be0 RM |
289 | $z1->set_polar([$r1 / $r2, $t1 - $t2]); |
290 | return $z1; | |
291 | } | |
0c721ce2 | 292 | if ($inverted) { |
0e505df1 | 293 | _divbyzero "$z2/0" if ($r1 == 0); |
0c721ce2 JH |
294 | return (ref $z1)->emake($r2 / $r1, $t2 - $t1); |
295 | } else { | |
0e505df1 | 296 | _divbyzero "$z1/0" if ($r2 == 0); |
0c721ce2 JH |
297 | return (ref $z1)->emake($r1 / $r2, $t1 - $t2); |
298 | } | |
66730be0 RM |
299 | } |
300 | ||
301 | # | |
0e505df1 JH |
302 | # _zerotozero |
303 | # | |
304 | # Die on zero raised to the zeroth. | |
305 | # | |
306 | sub _zerotozero { | |
307 | my $mess = "The zero raised to the zeroth power is not defined.\n"; | |
308 | ||
309 | my @up = caller(1); | |
310 | ||
311 | $mess .= "Died at $up[1] line $up[2].\n"; | |
312 | ||
313 | die $mess; | |
314 | } | |
315 | ||
316 | # | |
66730be0 RM |
317 | # (power) |
318 | # | |
319 | # Computes z1**z2 = exp(z2 * log z1)). | |
320 | # | |
321 | sub power { | |
322 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 GS |
323 | my $z1z = $z1 == 0; |
324 | my $z2z = $z2 == 0; | |
325 | _zerotozero if ($z1z and $z2z); | |
326 | if ($inverted) { | |
327 | return 0 if ($z2z); | |
328 | return 1 if ($z1z or $z2 == 1); | |
329 | } else { | |
330 | return 0 if ($z1z); | |
331 | return 1 if ($z2z or $z1 == 1); | |
332 | } | |
0e505df1 JH |
333 | $z2 = cplx($z2) unless ref $z2; |
334 | unless (defined $inverted) { | |
335 | my $z3 = exp($z2 * log $z1); | |
336 | $z1->set_cartesian([@{$z3->cartesian}]); | |
337 | return $z1; | |
338 | } | |
339 | return exp($z2 * log $z1) unless $inverted; | |
340 | return exp($z1 * log $z2); | |
66730be0 RM |
341 | } |
342 | ||
343 | # | |
344 | # (spaceship) | |
345 | # | |
346 | # Computes z1 <=> z2. | |
347 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. | |
348 | # | |
349 | sub spaceship { | |
350 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 351 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
352 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
353 | my $sgn = $inverted ? -1 : 1; |
354 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
355 | return $sgn * ($im1 <=> $im2); | |
356 | } | |
357 | ||
358 | # | |
359 | # (negate) | |
360 | # | |
361 | # Computes -z. | |
362 | # | |
363 | sub negate { | |
364 | my ($z) = @_; | |
365 | if ($z->{c_dirty}) { | |
366 | my ($r, $t) = @{$z->polar}; | |
367 | return (ref $z)->emake($r, pi + $t); | |
368 | } | |
369 | my ($re, $im) = @{$z->cartesian}; | |
370 | return (ref $z)->make(-$re, -$im); | |
371 | } | |
372 | ||
373 | # | |
374 | # (conjugate) | |
375 | # | |
376 | # Compute complex's conjugate. | |
377 | # | |
378 | sub conjugate { | |
379 | my ($z) = @_; | |
380 | if ($z->{c_dirty}) { | |
381 | my ($r, $t) = @{$z->polar}; | |
382 | return (ref $z)->emake($r, -$t); | |
383 | } | |
384 | my ($re, $im) = @{$z->cartesian}; | |
385 | return (ref $z)->make($re, -$im); | |
386 | } | |
387 | ||
388 | # | |
389 | # (abs) | |
390 | # | |
391 | # Compute complex's norm (rho). | |
392 | # | |
393 | sub abs { | |
394 | my ($z) = @_; | |
0c721ce2 | 395 | return abs($z) unless ref $z; |
66730be0 RM |
396 | my ($r, $t) = @{$z->polar}; |
397 | return abs($r); | |
398 | } | |
399 | ||
400 | # | |
401 | # arg | |
402 | # | |
403 | # Compute complex's argument (theta). | |
404 | # | |
405 | sub arg { | |
406 | my ($z) = @_; | |
0c721ce2 | 407 | return ($z < 0 ? pi : 0) unless ref $z; |
66730be0 RM |
408 | my ($r, $t) = @{$z->polar}; |
409 | return $t; | |
410 | } | |
411 | ||
412 | # | |
413 | # (sqrt) | |
414 | # | |
0c721ce2 | 415 | # Compute sqrt(z). |
66730be0 RM |
416 | # |
417 | sub sqrt { | |
418 | my ($z) = @_; | |
0c721ce2 | 419 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
420 | my ($r, $t) = @{$z->polar}; |
421 | return (ref $z)->emake(sqrt($r), $t/2); | |
422 | } | |
423 | ||
424 | # | |
425 | # cbrt | |
426 | # | |
0c721ce2 | 427 | # Compute cbrt(z) (cubic root). |
66730be0 RM |
428 | # |
429 | sub cbrt { | |
430 | my ($z) = @_; | |
0c721ce2 | 431 | return cplx($z, 0) ** (1/3) unless ref $z; |
66730be0 RM |
432 | my ($r, $t) = @{$z->polar}; |
433 | return (ref $z)->emake($r**(1/3), $t/3); | |
434 | } | |
435 | ||
436 | # | |
0e505df1 JH |
437 | # _rootbad |
438 | # | |
439 | # Die on bad root. | |
440 | # | |
441 | sub _rootbad { | |
442 | my $mess = "Root $_[0] not defined, root must be positive integer.\n"; | |
443 | ||
444 | my @up = caller(1); | |
445 | ||
446 | $mess .= "Died at $up[1] line $up[2].\n"; | |
447 | ||
448 | die $mess; | |
449 | } | |
450 | ||
451 | # | |
66730be0 RM |
452 | # root |
453 | # | |
454 | # Computes all nth root for z, returning an array whose size is n. | |
455 | # `n' must be a positive integer. | |
456 | # | |
457 | # The roots are given by (for k = 0..n-1): | |
458 | # | |
459 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
460 | # | |
461 | sub root { | |
462 | my ($z, $n) = @_; | |
0e505df1 | 463 | _rootbad($n) if ($n < 1 or int($n) != $n); |
66730be0 RM |
464 | my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); |
465 | my @root; | |
466 | my $k; | |
467 | my $theta_inc = 2 * pi / $n; | |
468 | my $rho = $r ** (1/$n); | |
469 | my $theta; | |
470 | my $complex = ref($z) || $package; | |
471 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { | |
472 | push(@root, $complex->emake($rho, $theta)); | |
a0d0e21e | 473 | } |
66730be0 | 474 | return @root; |
a0d0e21e LW |
475 | } |
476 | ||
66730be0 RM |
477 | # |
478 | # Re | |
479 | # | |
480 | # Return Re(z). | |
481 | # | |
a0d0e21e | 482 | sub Re { |
66730be0 RM |
483 | my ($z) = @_; |
484 | return $z unless ref $z; | |
485 | my ($re, $im) = @{$z->cartesian}; | |
486 | return $re; | |
a0d0e21e LW |
487 | } |
488 | ||
66730be0 RM |
489 | # |
490 | # Im | |
491 | # | |
492 | # Return Im(z). | |
493 | # | |
a0d0e21e | 494 | sub Im { |
66730be0 RM |
495 | my ($z) = @_; |
496 | return 0 unless ref $z; | |
497 | my ($re, $im) = @{$z->cartesian}; | |
498 | return $im; | |
a0d0e21e LW |
499 | } |
500 | ||
66730be0 RM |
501 | # |
502 | # (exp) | |
503 | # | |
504 | # Computes exp(z). | |
505 | # | |
506 | sub exp { | |
507 | my ($z) = @_; | |
0c721ce2 | 508 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
509 | my ($x, $y) = @{$z->cartesian}; |
510 | return (ref $z)->emake(exp($x), $y); | |
511 | } | |
512 | ||
513 | # | |
514 | # (log) | |
515 | # | |
516 | # Compute log(z). | |
517 | # | |
518 | sub log { | |
519 | my ($z) = @_; | |
0c721ce2 | 520 | $z = cplx($z, 0) unless ref $z; |
0c721ce2 | 521 | my ($x, $y) = @{$z->cartesian}; |
5cd24f17 | 522 | my ($r, $t) = @{$z->polar}; |
0c721ce2 JH |
523 | $t -= 2 * pi if ($t > pi() and $x < 0); |
524 | $t += 2 * pi if ($t < -pi() and $x < 0); | |
66730be0 RM |
525 | return (ref $z)->make(log($r), $t); |
526 | } | |
527 | ||
528 | # | |
0c721ce2 JH |
529 | # ln |
530 | # | |
531 | # Alias for log(). | |
532 | # | |
533 | sub ln { Math::Complex::log(@_) } | |
534 | ||
535 | # | |
66730be0 RM |
536 | # log10 |
537 | # | |
538 | # Compute log10(z). | |
539 | # | |
5cd24f17 | 540 | |
66730be0 RM |
541 | sub log10 { |
542 | my ($z) = @_; | |
5cd24f17 | 543 | |
544 | return log(cplx($z, 0)) * log10inv unless ref $z; | |
66730be0 | 545 | my ($r, $t) = @{$z->polar}; |
5cd24f17 | 546 | return (ref $z)->make(log($r) * log10inv, $t * log10inv); |
66730be0 RM |
547 | } |
548 | ||
549 | # | |
550 | # logn | |
551 | # | |
552 | # Compute logn(z,n) = log(z) / log(n) | |
553 | # | |
554 | sub logn { | |
555 | my ($z, $n) = @_; | |
0c721ce2 | 556 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
557 | my $logn = $logn{$n}; |
558 | $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) | |
0c721ce2 | 559 | return log($z) / $logn; |
66730be0 RM |
560 | } |
561 | ||
562 | # | |
563 | # (cos) | |
564 | # | |
565 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
566 | # | |
567 | sub cos { | |
568 | my ($z) = @_; | |
5cd24f17 | 569 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
570 | my ($x, $y) = @{$z->cartesian}; |
571 | my $ey = exp($y); | |
572 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
573 | return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, |
574 | sin($x) * ($ey_1 - $ey)/2); | |
66730be0 RM |
575 | } |
576 | ||
577 | # | |
578 | # (sin) | |
579 | # | |
580 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
581 | # | |
582 | sub sin { | |
583 | my ($z) = @_; | |
5cd24f17 | 584 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
585 | my ($x, $y) = @{$z->cartesian}; |
586 | my $ey = exp($y); | |
587 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
588 | return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, |
589 | cos($x) * ($ey - $ey_1)/2); | |
66730be0 RM |
590 | } |
591 | ||
592 | # | |
593 | # tan | |
594 | # | |
595 | # Compute tan(z) = sin(z) / cos(z). | |
596 | # | |
597 | sub tan { | |
598 | my ($z) = @_; | |
0c721ce2 | 599 | my $cz = cos($z); |
0e505df1 | 600 | _divbyzero "tan($z)", "cos($z)" if ($cz == 0); |
0c721ce2 | 601 | return sin($z) / $cz; |
66730be0 RM |
602 | } |
603 | ||
604 | # | |
0c721ce2 JH |
605 | # sec |
606 | # | |
607 | # Computes the secant sec(z) = 1 / cos(z). | |
608 | # | |
609 | sub sec { | |
610 | my ($z) = @_; | |
611 | my $cz = cos($z); | |
0e505df1 | 612 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
613 | return 1 / $cz; |
614 | } | |
615 | ||
616 | # | |
617 | # csc | |
618 | # | |
619 | # Computes the cosecant csc(z) = 1 / sin(z). | |
620 | # | |
621 | sub csc { | |
622 | my ($z) = @_; | |
623 | my $sz = sin($z); | |
0e505df1 | 624 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
625 | return 1 / $sz; |
626 | } | |
627 | ||
66730be0 | 628 | # |
0c721ce2 | 629 | # cosec |
66730be0 | 630 | # |
0c721ce2 JH |
631 | # Alias for csc(). |
632 | # | |
633 | sub cosec { Math::Complex::csc(@_) } | |
634 | ||
635 | # | |
636 | # cot | |
637 | # | |
638 | # Computes cot(z) = 1 / tan(z). | |
639 | # | |
640 | sub cot { | |
66730be0 | 641 | my ($z) = @_; |
0c721ce2 | 642 | my $sz = sin($z); |
0e505df1 | 643 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
0c721ce2 | 644 | return cos($z) / $sz; |
66730be0 RM |
645 | } |
646 | ||
647 | # | |
0c721ce2 JH |
648 | # cotan |
649 | # | |
650 | # Alias for cot(). | |
651 | # | |
652 | sub cotan { Math::Complex::cot(@_) } | |
653 | ||
654 | # | |
66730be0 RM |
655 | # acos |
656 | # | |
657 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
658 | # | |
659 | sub acos { | |
660 | my ($z) = @_; | |
0c721ce2 JH |
661 | $z = cplx($z, 0) unless ref $z; |
662 | return ~i * log($z + (Re($z) * Im($z) > 0 ? 1 : -1) * sqrt($z*$z - 1)); | |
66730be0 RM |
663 | } |
664 | ||
665 | # | |
666 | # asin | |
667 | # | |
668 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
669 | # | |
670 | sub asin { | |
671 | my ($z) = @_; | |
0c721ce2 JH |
672 | $z = cplx($z, 0) unless ref $z; |
673 | return ~i * log(i * $z + sqrt(1 - $z*$z)); | |
66730be0 RM |
674 | } |
675 | ||
676 | # | |
677 | # atan | |
678 | # | |
0c721ce2 | 679 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
680 | # |
681 | sub atan { | |
682 | my ($z) = @_; | |
5cd24f17 | 683 | $z = cplx($z, 0) unless ref $z; |
0e505df1 | 684 | _divbyzero "atan($z)", "i - $z" if ($z == i); |
0c721ce2 | 685 | return i/2*log((i + $z) / (i - $z)); |
a0d0e21e LW |
686 | } |
687 | ||
66730be0 | 688 | # |
0c721ce2 JH |
689 | # asec |
690 | # | |
691 | # Computes the arc secant asec(z) = acos(1 / z). | |
692 | # | |
693 | sub asec { | |
694 | my ($z) = @_; | |
0e505df1 | 695 | _divbyzero "asec($z)", $z if ($z == 0); |
0c721ce2 JH |
696 | return acos(1 / $z); |
697 | } | |
698 | ||
699 | # | |
5cd24f17 | 700 | # acsc |
0c721ce2 JH |
701 | # |
702 | # Computes the arc cosecant sec(z) = asin(1 / z). | |
703 | # | |
5cd24f17 | 704 | sub acsc { |
0c721ce2 | 705 | my ($z) = @_; |
0e505df1 | 706 | _divbyzero "acsc($z)", $z if ($z == 0); |
0c721ce2 JH |
707 | return asin(1 / $z); |
708 | } | |
709 | ||
710 | # | |
5cd24f17 | 711 | # acosec |
66730be0 | 712 | # |
5cd24f17 | 713 | # Alias for acsc(). |
0c721ce2 | 714 | # |
5cd24f17 | 715 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 716 | |
66730be0 | 717 | # |
0c721ce2 JH |
718 | # acot |
719 | # | |
720 | # Computes the arc cotangent acot(z) = -i/2 log((i+z) / (z-i)) | |
721 | # | |
722 | sub acot { | |
66730be0 | 723 | my ($z) = @_; |
5cd24f17 | 724 | $z = cplx($z, 0) unless ref $z; |
0e505df1 | 725 | _divbyzero "acot($z)", "$z - i" if ($z == i); |
66730be0 RM |
726 | return i/-2 * log((i + $z) / ($z - i)); |
727 | } | |
728 | ||
729 | # | |
0c721ce2 JH |
730 | # acotan |
731 | # | |
732 | # Alias for acot(). | |
733 | # | |
734 | sub acotan { Math::Complex::acot(@_) } | |
735 | ||
736 | # | |
66730be0 RM |
737 | # cosh |
738 | # | |
739 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
740 | # | |
741 | sub cosh { | |
742 | my ($z) = @_; | |
0e505df1 JH |
743 | my $real; |
744 | unless (ref $z) { | |
745 | $z = cplx($z, 0); | |
746 | $real = 1; | |
747 | } | |
748 | my ($x, $y) = @{$z->cartesian}; | |
66730be0 RM |
749 | my $ex = exp($x); |
750 | my $ex_1 = 1 / $ex; | |
f4837644 | 751 | return cplx(0.5 * ($ex + $ex_1), 0) if $real; |
0c721ce2 JH |
752 | return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, |
753 | sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
754 | } |
755 | ||
756 | # | |
757 | # sinh | |
758 | # | |
759 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
760 | # | |
761 | sub sinh { | |
762 | my ($z) = @_; | |
0e505df1 JH |
763 | my $real; |
764 | unless (ref $z) { | |
765 | $z = cplx($z, 0); | |
766 | $real = 1; | |
767 | } | |
768 | my ($x, $y) = @{$z->cartesian}; | |
66730be0 RM |
769 | my $ex = exp($x); |
770 | my $ex_1 = 1 / $ex; | |
f4837644 | 771 | return cplx(0.5 * ($ex - $ex_1), 0) if $real; |
0c721ce2 JH |
772 | return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, |
773 | sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
774 | } |
775 | ||
776 | # | |
777 | # tanh | |
778 | # | |
779 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
780 | # | |
781 | sub tanh { | |
782 | my ($z) = @_; | |
0c721ce2 | 783 | my $cz = cosh($z); |
0e505df1 | 784 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 785 | return sinh($z) / $cz; |
66730be0 RM |
786 | } |
787 | ||
788 | # | |
0c721ce2 JH |
789 | # sech |
790 | # | |
791 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
792 | # | |
793 | sub sech { | |
794 | my ($z) = @_; | |
795 | my $cz = cosh($z); | |
0e505df1 | 796 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
797 | return 1 / $cz; |
798 | } | |
799 | ||
800 | # | |
801 | # csch | |
802 | # | |
803 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 804 | # |
0c721ce2 JH |
805 | sub csch { |
806 | my ($z) = @_; | |
807 | my $sz = sinh($z); | |
0e505df1 | 808 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
809 | return 1 / $sz; |
810 | } | |
811 | ||
812 | # | |
813 | # cosech | |
814 | # | |
815 | # Alias for csch(). | |
816 | # | |
817 | sub cosech { Math::Complex::csch(@_) } | |
818 | ||
66730be0 | 819 | # |
0c721ce2 JH |
820 | # coth |
821 | # | |
822 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
823 | # | |
824 | sub coth { | |
66730be0 | 825 | my ($z) = @_; |
0c721ce2 | 826 | my $sz = sinh($z); |
0e505df1 | 827 | _divbyzero "coth($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 | 828 | return cosh($z) / $sz; |
66730be0 RM |
829 | } |
830 | ||
831 | # | |
0c721ce2 JH |
832 | # cotanh |
833 | # | |
834 | # Alias for coth(). | |
835 | # | |
836 | sub cotanh { Math::Complex::coth(@_) } | |
837 | ||
838 | # | |
66730be0 RM |
839 | # acosh |
840 | # | |
841 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). | |
842 | # | |
843 | sub acosh { | |
844 | my ($z) = @_; | |
5cd24f17 | 845 | $z = cplx($z, 0) unless ref $z; |
0c721ce2 | 846 | return log($z + sqrt($z*$z - 1)); |
66730be0 RM |
847 | } |
848 | ||
849 | # | |
850 | # asinh | |
851 | # | |
852 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
853 | # | |
854 | sub asinh { | |
855 | my ($z) = @_; | |
5cd24f17 | 856 | $z = cplx($z, 0) unless ref $z; |
0c721ce2 | 857 | return log($z + sqrt($z*$z + 1)); |
66730be0 RM |
858 | } |
859 | ||
860 | # | |
861 | # atanh | |
862 | # | |
863 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
864 | # | |
865 | sub atanh { | |
866 | my ($z) = @_; | |
0e505df1 | 867 | _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); |
5cd24f17 | 868 | $z = cplx($z, 0) unless ref $z; |
66730be0 | 869 | my $cz = (1 + $z) / (1 - $z); |
66730be0 RM |
870 | return log($cz) / 2; |
871 | } | |
872 | ||
873 | # | |
0c721ce2 JH |
874 | # asech |
875 | # | |
876 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
877 | # | |
878 | sub asech { | |
879 | my ($z) = @_; | |
0e505df1 | 880 | _divbyzero 'asech(0)', $z if ($z == 0); |
0c721ce2 JH |
881 | return acosh(1 / $z); |
882 | } | |
883 | ||
884 | # | |
885 | # acsch | |
66730be0 | 886 | # |
0c721ce2 | 887 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 888 | # |
0c721ce2 | 889 | sub acsch { |
66730be0 | 890 | my ($z) = @_; |
0e505df1 | 891 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
892 | return asinh(1 / $z); |
893 | } | |
894 | ||
895 | # | |
896 | # acosech | |
897 | # | |
898 | # Alias for acosh(). | |
899 | # | |
900 | sub acosech { Math::Complex::acsch(@_) } | |
901 | ||
902 | # | |
903 | # acoth | |
904 | # | |
905 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
906 | # | |
907 | sub acoth { | |
908 | my ($z) = @_; | |
0e505df1 | 909 | _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); |
5cd24f17 | 910 | $z = cplx($z, 0) unless ref $z; |
66730be0 | 911 | my $cz = (1 + $z) / ($z - 1); |
66730be0 RM |
912 | return log($cz) / 2; |
913 | } | |
914 | ||
915 | # | |
0c721ce2 JH |
916 | # acotanh |
917 | # | |
918 | # Alias for acot(). | |
919 | # | |
920 | sub acotanh { Math::Complex::acoth(@_) } | |
921 | ||
922 | # | |
66730be0 RM |
923 | # (atan2) |
924 | # | |
925 | # Compute atan(z1/z2). | |
926 | # | |
927 | sub atan2 { | |
928 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 929 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
930 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
931 | my $tan; |
932 | if (defined $inverted && $inverted) { # atan(z2/z1) | |
933 | return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; | |
934 | $tan = $z2 / $z1; | |
935 | } else { | |
936 | return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; | |
937 | $tan = $z1 / $z2; | |
938 | } | |
939 | return atan($tan); | |
940 | } | |
941 | ||
942 | # | |
943 | # display_format | |
944 | # ->display_format | |
945 | # | |
946 | # Set (fetch if no argument) display format for all complex numbers that | |
947 | # don't happen to have overrriden it via ->display_format | |
948 | # | |
949 | # When called as a method, this actually sets the display format for | |
950 | # the current object. | |
951 | # | |
952 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
953 | # letter is used actually, so the type can be fully spelled out for clarity. | |
954 | # | |
955 | sub display_format { | |
956 | my $self = shift; | |
957 | my $format = undef; | |
958 | ||
959 | if (ref $self) { # Called as a method | |
960 | $format = shift; | |
0c721ce2 | 961 | } else { # Regular procedure call |
66730be0 RM |
962 | $format = $self; |
963 | undef $self; | |
964 | } | |
965 | ||
966 | if (defined $self) { | |
967 | return defined $self->{display} ? $self->{display} : $display | |
968 | unless defined $format; | |
969 | return $self->{display} = $format; | |
970 | } | |
971 | ||
972 | return $display unless defined $format; | |
973 | return $display = $format; | |
974 | } | |
975 | ||
976 | # | |
977 | # (stringify) | |
978 | # | |
979 | # Show nicely formatted complex number under its cartesian or polar form, | |
980 | # depending on the current display format: | |
981 | # | |
982 | # . If a specific display format has been recorded for this object, use it. | |
983 | # . Otherwise, use the generic current default for all complex numbers, | |
984 | # which is a package global variable. | |
985 | # | |
a0d0e21e | 986 | sub stringify { |
66730be0 RM |
987 | my ($z) = shift; |
988 | my $format; | |
989 | ||
990 | $format = $display; | |
991 | $format = $z->{display} if defined $z->{display}; | |
992 | ||
993 | return $z->stringify_polar if $format =~ /^p/i; | |
994 | return $z->stringify_cartesian; | |
995 | } | |
996 | ||
997 | # | |
998 | # ->stringify_cartesian | |
999 | # | |
1000 | # Stringify as a cartesian representation 'a+bi'. | |
1001 | # | |
1002 | sub stringify_cartesian { | |
1003 | my $z = shift; | |
1004 | my ($x, $y) = @{$z->cartesian}; | |
1005 | my ($re, $im); | |
1006 | ||
55497cff | 1007 | $x = int($x + ($x < 0 ? -1 : 1) * 1e-14) |
1008 | if int(abs($x)) != int(abs($x) + 1e-14); | |
1009 | $y = int($y + ($y < 0 ? -1 : 1) * 1e-14) | |
1010 | if int(abs($y)) != int(abs($y) + 1e-14); | |
1011 | ||
66730be0 RM |
1012 | $re = "$x" if abs($x) >= 1e-14; |
1013 | if ($y == 1) { $im = 'i' } | |
1014 | elsif ($y == -1) { $im = '-i' } | |
40da2db3 | 1015 | elsif (abs($y) >= 1e-14) { $im = $y . "i" } |
66730be0 | 1016 | |
0c721ce2 | 1017 | my $str = ''; |
66730be0 RM |
1018 | $str = $re if defined $re; |
1019 | $str .= "+$im" if defined $im; | |
1020 | $str =~ s/\+-/-/; | |
1021 | $str =~ s/^\+//; | |
1022 | $str = '0' unless $str; | |
1023 | ||
1024 | return $str; | |
1025 | } | |
1026 | ||
1027 | # | |
1028 | # ->stringify_polar | |
1029 | # | |
1030 | # Stringify as a polar representation '[r,t]'. | |
1031 | # | |
1032 | sub stringify_polar { | |
1033 | my $z = shift; | |
1034 | my ($r, $t) = @{$z->polar}; | |
1035 | my $theta; | |
0c721ce2 | 1036 | my $eps = 1e-14; |
66730be0 | 1037 | |
0c721ce2 | 1038 | return '[0,0]' if $r <= $eps; |
a0d0e21e | 1039 | |
66730be0 RM |
1040 | my $tpi = 2 * pi; |
1041 | my $nt = $t / $tpi; | |
1042 | $nt = ($nt - int($nt)) * $tpi; | |
1043 | $nt += $tpi if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 1044 | |
0c721ce2 JH |
1045 | if (abs($nt) <= $eps) { $theta = 0 } |
1046 | elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } | |
66730be0 | 1047 | |
55497cff | 1048 | if (defined $theta) { |
0c721ce2 JH |
1049 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
1050 | if int(abs($r)) != int(abs($r) + $eps); | |
1051 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
1052 | if ($theta ne 'pi' and | |
1053 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 1054 | return "\[$r,$theta\]"; |
1055 | } | |
66730be0 RM |
1056 | |
1057 | # | |
1058 | # Okay, number is not a real. Try to identify pi/n and friends... | |
1059 | # | |
1060 | ||
1061 | $nt -= $tpi if $nt > pi; | |
1062 | my ($n, $k, $kpi); | |
1063 | ||
1064 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { | |
1065 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); | |
0c721ce2 JH |
1066 | if (abs($kpi/$n - $nt) <= $eps) { |
1067 | $theta = ($nt < 0 ? '-':''). | |
1068 | ($k == 1 ? 'pi':"${k}pi").'/'.abs($n); | |
66730be0 RM |
1069 | last; |
1070 | } | |
1071 | } | |
1072 | ||
1073 | $theta = $nt unless defined $theta; | |
1074 | ||
0c721ce2 JH |
1075 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
1076 | if int(abs($r)) != int(abs($r) + $eps); | |
1077 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
1078 | if ($theta !~ m(^-?\d*pi/\d+$) and | |
1079 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 1080 | |
66730be0 | 1081 | return "\[$r,$theta\]"; |
a0d0e21e | 1082 | } |
a5f75d66 AD |
1083 | |
1084 | 1; | |
1085 | __END__ | |
1086 | ||
1087 | =head1 NAME | |
1088 | ||
66730be0 | 1089 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1090 | |
1091 | =head1 SYNOPSIS | |
1092 | ||
66730be0 | 1093 | use Math::Complex; |
5aabfad6 | 1094 | |
66730be0 RM |
1095 | $z = Math::Complex->make(5, 6); |
1096 | $t = 4 - 3*i + $z; | |
1097 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1098 | |
1099 | =head1 DESCRIPTION | |
1100 | ||
66730be0 RM |
1101 | This package lets you create and manipulate complex numbers. By default, |
1102 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1103 | full complex support, along with a full set of mathematical functions | |
1104 | typically associated with and/or extended to complex numbers. | |
1105 | ||
1106 | If you wonder what complex numbers are, they were invented to be able to solve | |
1107 | the following equation: | |
1108 | ||
1109 | x*x = -1 | |
1110 | ||
1111 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1112 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1113 | I<i> is a pure I<imaginary> number. | |
1114 | ||
1115 | The arithmetics with pure imaginary numbers works just like you would expect | |
1116 | it with real numbers... you just have to remember that | |
1117 | ||
1118 | i*i = -1 | |
1119 | ||
1120 | so you have: | |
1121 | ||
1122 | 5i + 7i = i * (5 + 7) = 12i | |
1123 | 4i - 3i = i * (4 - 3) = i | |
1124 | 4i * 2i = -8 | |
1125 | 6i / 2i = 3 | |
1126 | 1 / i = -i | |
1127 | ||
1128 | Complex numbers are numbers that have both a real part and an imaginary | |
1129 | part, and are usually noted: | |
1130 | ||
1131 | a + bi | |
1132 | ||
1133 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1134 | arithmetic with complex numbers is straightforward. You have to | |
1135 | keep track of the real and the imaginary parts, but otherwise the | |
1136 | rules used for real numbers just apply: | |
1137 | ||
1138 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1139 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1140 | ||
1141 | A graphical representation of complex numbers is possible in a plane | |
1142 | (also called the I<complex plane>, but it's really a 2D plane). | |
1143 | The number | |
1144 | ||
1145 | z = a + bi | |
1146 | ||
1147 | is the point whose coordinates are (a, b). Actually, it would | |
1148 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1149 | of two complex numbers is a vectorial addition. | |
1150 | ||
1151 | Since there is a bijection between a point in the 2D plane and a complex | |
1152 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1153 | can also be uniquely identified with polar coordinates: | |
1154 | ||
1155 | [rho, theta] | |
1156 | ||
1157 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1158 | the vector and the I<x> axis. There is a notation for this using the | |
1159 | exponential form, which is: | |
1160 | ||
1161 | rho * exp(i * theta) | |
1162 | ||
1163 | where I<i> is the famous imaginary number introduced above. Conversion | |
1164 | between this form and the cartesian form C<a + bi> is immediate: | |
1165 | ||
1166 | a = rho * cos(theta) | |
1167 | b = rho * sin(theta) | |
1168 | ||
1169 | which is also expressed by this formula: | |
1170 | ||
1171 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) | |
1172 | ||
1173 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1174 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1175 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1176 | noted C<abs(z)>. | |
1177 | ||
1178 | The polar notation (also known as the trigonometric | |
1179 | representation) is much more handy for performing multiplications and | |
1180 | divisions of complex numbers, whilst the cartesian notation is better | |
1181 | suited for additions and substractions. Real numbers are on the I<x> | |
1182 | axis, and therefore I<theta> is zero. | |
1183 | ||
1184 | All the common operations that can be performed on a real number have | |
1185 | been defined to work on complex numbers as well, and are merely | |
1186 | I<extensions> of the operations defined on real numbers. This means | |
1187 | they keep their natural meaning when there is no imaginary part, provided | |
1188 | the number is within their definition set. | |
1189 | ||
1190 | For instance, the C<sqrt> routine which computes the square root of | |
1191 | its argument is only defined for positive real numbers and yields a | |
1192 | positive real number (it is an application from B<R+> to B<R+>). | |
1193 | If we allow it to return a complex number, then it can be extended to | |
1194 | negative real numbers to become an application from B<R> to B<C> (the | |
1195 | set of complex numbers): | |
1196 | ||
1197 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1198 | ||
1199 | It can also be extended to be an application from B<C> to B<C>, | |
1200 | whilst its restriction to B<R> behaves as defined above by using | |
1201 | the following definition: | |
1202 | ||
1203 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1204 | ||
1205 | Indeed, a negative real number can be noted C<[x,pi]> | |
1206 | (the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a | |
1207 | negative number) | |
1208 | and the above definition states that | |
1209 | ||
1210 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1211 | ||
1212 | which is exactly what we had defined for negative real numbers above. | |
a5f75d66 | 1213 | |
66730be0 RM |
1214 | All the common mathematical functions defined on real numbers that |
1215 | are extended to complex numbers share that same property of working | |
1216 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1217 | be called an extension, would it?). | |
a5f75d66 | 1218 | |
66730be0 RM |
1219 | A I<new> operation possible on a complex number that is |
1220 | the identity for real numbers is called the I<conjugate>, and is noted | |
1221 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1222 | |
66730be0 RM |
1223 | z = a + bi |
1224 | ~z = a - bi | |
a5f75d66 | 1225 | |
66730be0 | 1226 | Simple... Now look: |
a5f75d66 | 1227 | |
66730be0 | 1228 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1229 | |
66730be0 RM |
1230 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1231 | distance to the origin, also known as: | |
a5f75d66 | 1232 | |
66730be0 | 1233 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1234 | |
66730be0 RM |
1235 | so |
1236 | ||
1237 | z * ~z = abs(z) ** 2 | |
1238 | ||
1239 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1240 | ||
1241 | a * a = abs(a) ** 2 | |
1242 | ||
1243 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1244 | for the absolute value). This example explains why the norm of C<z> is | |
1245 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1246 | is the regular C<abs> we know when the complex number actually has no | |
1247 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1248 | notation for the norm. | |
1249 | ||
1250 | =head1 OPERATIONS | |
1251 | ||
1252 | Given the following notations: | |
1253 | ||
1254 | z1 = a + bi = r1 * exp(i * t1) | |
1255 | z2 = c + di = r2 * exp(i * t2) | |
1256 | z = <any complex or real number> | |
1257 | ||
1258 | the following (overloaded) operations are supported on complex numbers: | |
1259 | ||
1260 | z1 + z2 = (a + c) + i(b + d) | |
1261 | z1 - z2 = (a - c) + i(b - d) | |
1262 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1263 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1264 | z1 ** z2 = exp(z2 * log z1) | |
1265 | ~z1 = a - bi | |
1266 | abs(z1) = r1 = sqrt(a*a + b*b) | |
1267 | sqrt(z1) = sqrt(r1) * exp(i * t1/2) | |
1268 | exp(z1) = exp(a) * exp(i * b) | |
1269 | log(z1) = log(r1) + i*t1 | |
1270 | sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) | |
1271 | cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) | |
1272 | abs(z1) = r1 | |
1273 | atan2(z1, z2) = atan(z1/z2) | |
1274 | ||
1275 | The following extra operations are supported on both real and complex | |
1276 | numbers: | |
1277 | ||
1278 | Re(z) = a | |
1279 | Im(z) = b | |
1280 | arg(z) = t | |
1281 | ||
1282 | cbrt(z) = z ** (1/3) | |
1283 | log10(z) = log(z) / log(10) | |
1284 | logn(z, n) = log(z) / log(n) | |
1285 | ||
1286 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1287 | |
5aabfad6 | 1288 | csc(z) = 1 / sin(z) |
1289 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1290 | cot(z) = 1 / tan(z) |
66730be0 RM |
1291 | |
1292 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
1293 | acos(z) = -i * log(z + sqrt(z*z-1)) | |
1294 | atan(z) = i/2 * log((i+z) / (i-z)) | |
0c721ce2 | 1295 | |
5aabfad6 | 1296 | acsc(z) = asin(1 / z) |
1297 | asec(z) = acos(1 / z) | |
0c721ce2 | 1298 | acot(z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1299 | |
1300 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1301 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1302 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1303 | ||
5aabfad6 | 1304 | csch(z) = 1 / sinh(z) |
1305 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1306 | coth(z) = 1 / tanh(z) |
66730be0 RM |
1307 | |
1308 | asinh(z) = log(z + sqrt(z*z+1)) | |
1309 | acosh(z) = log(z + sqrt(z*z-1)) | |
1310 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1311 | |
5aabfad6 | 1312 | acsch(z) = asinh(1 / z) |
1313 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1314 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1315 | ||
1316 | I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, I<coth>, | |
1317 | I<acosech>, I<acotanh>, have aliases I<ln>, I<cosec>, I<cotan>, | |
1318 | I<acosec>, I<acotan>, I<cosech>, I<cotanh>, I<acosech>, I<acotanh>, | |
1319 | respectively. | |
1320 | ||
1321 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1322 | roots of some complex, where I<n> is a strictly positive integer. |
1323 | There are exactly I<n> such roots, returned as a list. Getting the | |
1324 | number mathematicians call C<j> such that: | |
1325 | ||
1326 | 1 + j + j*j = 0; | |
1327 | ||
1328 | is a simple matter of writing: | |
1329 | ||
1330 | $j = ((root(1, 3))[1]; | |
1331 | ||
1332 | The I<k>th root for C<z = [r,t]> is given by: | |
1333 | ||
1334 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1335 | ||
f4837644 JH |
1336 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1337 | order to ensure its restriction to real numbers is conform to what you | |
1338 | would expect, the comparison is run on the real part of the complex | |
1339 | number first, and imaginary parts are compared only when the real | |
1340 | parts match. | |
66730be0 RM |
1341 | |
1342 | =head1 CREATION | |
1343 | ||
1344 | To create a complex number, use either: | |
1345 | ||
1346 | $z = Math::Complex->make(3, 4); | |
1347 | $z = cplx(3, 4); | |
1348 | ||
1349 | if you know the cartesian form of the number, or | |
1350 | ||
1351 | $z = 3 + 4*i; | |
1352 | ||
1353 | if you like. To create a number using the trigonometric form, use either: | |
1354 | ||
1355 | $z = Math::Complex->emake(5, pi/3); | |
1356 | $x = cplxe(5, pi/3); | |
1357 | ||
0c721ce2 JH |
1358 | instead. The first argument is the modulus, the second is the angle |
1359 | (in radians, the full circle is 2*pi). (Mnmemonic: C<e> is used as a | |
1360 | notation for complex numbers in the trigonometric form). | |
66730be0 RM |
1361 | |
1362 | It is possible to write: | |
1363 | ||
1364 | $x = cplxe(-3, pi/4); | |
1365 | ||
1366 | but that will be silently converted into C<[3,-3pi/4]>, since the modulus | |
1367 | must be positive (it represents the distance to the origin in the complex | |
1368 | plane). | |
1369 | ||
1370 | =head1 STRINGIFICATION | |
1371 | ||
1372 | When printed, a complex number is usually shown under its cartesian | |
1373 | form I<a+bi>, but there are legitimate cases where the polar format | |
1374 | I<[r,t]> is more appropriate. | |
1375 | ||
1376 | By calling the routine C<Math::Complex::display_format> and supplying either | |
1377 | C<"polar"> or C<"cartesian">, you override the default display format, | |
1378 | which is C<"cartesian">. Not supplying any argument returns the current | |
1379 | setting. | |
1380 | ||
1381 | This default can be overridden on a per-number basis by calling the | |
1382 | C<display_format> method instead. As before, not supplying any argument | |
1383 | returns the current display format for this number. Otherwise whatever you | |
1384 | specify will be the new display format for I<this> particular number. | |
1385 | ||
1386 | For instance: | |
1387 | ||
1388 | use Math::Complex; | |
1389 | ||
1390 | Math::Complex::display_format('polar'); | |
1391 | $j = ((root(1, 3))[1]; | |
1392 | print "j = $j\n"; # Prints "j = [1,2pi/3] | |
1393 | $j->display_format('cartesian'); | |
1394 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1395 | ||
1396 | The polar format attempts to emphasize arguments like I<k*pi/n> | |
1397 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]). | |
1398 | ||
1399 | =head1 USAGE | |
1400 | ||
1401 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1402 | is simple and almost transparent. | |
1403 | ||
1404 | Here are some examples: | |
1405 | ||
1406 | use Math::Complex; | |
1407 | ||
1408 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1409 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1410 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1411 | ||
1412 | $z = -16 + 0*i; # Force it to be a complex | |
1413 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1414 | ||
1415 | $k = exp(i * 2*pi/3); | |
1416 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1417 | |
5cd24f17 | 1418 | =head1 ERRORS DUE TO DIVISION BY ZERO |
5aabfad6 | 1419 | |
1420 | The division (/) and the following functions | |
1421 | ||
1422 | tan | |
1423 | sec | |
1424 | csc | |
1425 | cot | |
5cd24f17 | 1426 | asec |
1427 | acsc | |
5aabfad6 | 1428 | atan |
1429 | acot | |
1430 | tanh | |
1431 | sech | |
1432 | csch | |
1433 | coth | |
1434 | atanh | |
1435 | asech | |
1436 | acsch | |
1437 | acoth | |
1438 | ||
1439 | cannot be computed for all arguments because that would mean dividing | |
1440 | by zero. These situations cause fatal runtime errors looking like this | |
1441 | ||
1442 | cot(0): Division by zero. | |
5cd24f17 | 1443 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1444 | Died at ... |
1445 | ||
5cd24f17 | 1446 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<csch>, C<coth>, C<asech>, |
1447 | C<acsch>, the argument cannot be C<0> (zero). For the C<atanh>, | |
1448 | C<acoth>, the argument cannot be C<1> (one). For the C<atan>, C<acot>, | |
1449 | the argument cannot be C<i> (the imaginary unit). For the C<tan>, | |
1450 | C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * pi>, where | |
1451 | I<k> is any integer. | |
1452 | ||
a5f75d66 AD |
1453 | =head1 BUGS |
1454 | ||
5cd24f17 | 1455 | Saying C<use Math::Complex;> exports many mathematical routines in the |
1456 | caller environment and even overrides some (C<sin>, C<cos>, C<sqrt>, | |
1457 | C<log>, C<exp>). This is construed as a feature by the Authors, | |
1458 | actually... ;-) | |
66730be0 RM |
1459 | |
1460 | The code is not optimized for speed, although we try to use the cartesian | |
1461 | form for addition-like operators and the trigonometric form for all | |
1462 | multiplication-like operators. | |
1463 | ||
1464 | The arg() routine does not ensure the angle is within the range [-pi,+pi] | |
1465 | (a side effect caused by multiplication and division using the trigonometric | |
1466 | representation). | |
a5f75d66 | 1467 | |
66730be0 RM |
1468 | All routines expect to be given real or complex numbers. Don't attempt to |
1469 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1470 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1471 | |
0c721ce2 | 1472 | =head1 AUTHORS |
a5f75d66 | 1473 | |
ace5de91 GS |
1474 | Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> and |
1475 | Jarkko Hietaniemi <F<jhi@iki.fi>>. | |
5cd24f17 | 1476 | |
1477 | =cut | |
1478 | ||
1479 | # eof |