Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
b42d0ec9 JH |
3 | # -- Raphael Manfredi Since Sep 1996 |
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |
5 | # -- Daniel S. Lewart Since Sep 1997 | |
fb73857a | 6 | # |
a0d0e21e | 7 | |
5aabfad6 | 8 | package Math::Complex; |
a0d0e21e | 9 | |
9fbe1b12 JH |
10 | our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS, $Inf); |
11 | ||
d6a466d7 | 12 | $VERSION = 1.32; |
476757f7 | 13 | |
9fbe1b12 | 14 | BEGIN { |
ffb4440d JH |
15 | unless ($^O eq 'unicosmk') { |
16 | my $e = $!; | |
830ec763 JH |
17 | # We do want an arithmetic overflow, Inf INF inf Infinity:. |
18 | undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; | |
19 | local $SIG{FPE} = sub {die}; | |
20 | my $t = CORE::exp 30; | |
21 | $Inf = CORE::exp $t; | |
22 | EOE | |
23 | if (!defined $Inf) { # Try a different method | |
24 | undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; | |
25 | local $SIG{FPE} = sub {die}; | |
26 | my $t = 1; | |
27 | $Inf = $t + "1e99999999999999999999999999999999"; | |
28 | EOE | |
29 | } | |
ffb4440d | 30 | $! = $e; # Clear ERANGE. |
ffb4440d | 31 | } |
5240e574 | 32 | $Inf = "Inf" if !defined $Inf || !($Inf > 0); # Desperation. |
9fbe1b12 | 33 | } |
fb73857a | 34 | |
9fbe1b12 | 35 | use strict; |
fb73857a | 36 | |
9fbe1b12 JH |
37 | my $i; |
38 | my %LOGN; | |
0c721ce2 | 39 | |
9fbe1b12 | 40 | require Exporter; |
0c721ce2 | 41 | |
5aabfad6 | 42 | @ISA = qw(Exporter); |
43 | ||
5aabfad6 | 44 | my @trig = qw( |
45 | pi | |
fb73857a | 46 | tan |
5aabfad6 | 47 | csc cosec sec cot cotan |
48 | asin acos atan | |
49 | acsc acosec asec acot acotan | |
50 | sinh cosh tanh | |
51 | csch cosech sech coth cotanh | |
52 | asinh acosh atanh | |
53 | acsch acosech asech acoth acotanh | |
54 | ); | |
55 | ||
56 | @EXPORT = (qw( | |
b42d0ec9 | 57 | i Re Im rho theta arg |
fb73857a | 58 | sqrt log ln |
5aabfad6 | 59 | log10 logn cbrt root |
60 | cplx cplxe | |
61 | ), | |
62 | @trig); | |
63 | ||
64 | %EXPORT_TAGS = ( | |
65 | 'trig' => [@trig], | |
66730be0 | 66 | ); |
a0d0e21e | 67 | |
a5f75d66 | 68 | use overload |
0c721ce2 JH |
69 | '+' => \&plus, |
70 | '-' => \&minus, | |
71 | '*' => \&multiply, | |
72 | '/' => \÷, | |
66730be0 | 73 | '**' => \&power, |
1fa12f56 | 74 | '==' => \&numeq, |
66730be0 RM |
75 | '<=>' => \&spaceship, |
76 | 'neg' => \&negate, | |
0c721ce2 | 77 | '~' => \&conjugate, |
66730be0 RM |
78 | 'abs' => \&abs, |
79 | 'sqrt' => \&sqrt, | |
80 | 'exp' => \&exp, | |
81 | 'log' => \&log, | |
82 | 'sin' => \&sin, | |
83 | 'cos' => \&cos, | |
0c721ce2 | 84 | 'tan' => \&tan, |
66730be0 RM |
85 | 'atan2' => \&atan2, |
86 | qw("" stringify); | |
87 | ||
88 | # | |
b42d0ec9 | 89 | # Package "privates" |
66730be0 RM |
90 | # |
91 | ||
16357284 JH |
92 | my %DISPLAY_FORMAT = ('style' => 'cartesian', |
93 | 'polar_pretty_print' => 1); | |
94 | my $eps = 1e-14; # Epsilon | |
66730be0 RM |
95 | |
96 | # | |
97 | # Object attributes (internal): | |
98 | # cartesian [real, imaginary] -- cartesian form | |
99 | # polar [rho, theta] -- polar form | |
100 | # c_dirty cartesian form not up-to-date | |
101 | # p_dirty polar form not up-to-date | |
102 | # display display format (package's global when not set) | |
103 | # | |
104 | ||
b42d0ec9 JH |
105 | # Die on bad *make() arguments. |
106 | ||
107 | sub _cannot_make { | |
108 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n"; | |
109 | } | |
110 | ||
66730be0 RM |
111 | # |
112 | # ->make | |
113 | # | |
114 | # Create a new complex number (cartesian form) | |
115 | # | |
116 | sub make { | |
117 | my $self = bless {}, shift; | |
118 | my ($re, $im) = @_; | |
b42d0ec9 JH |
119 | my $rre = ref $re; |
120 | if ( $rre ) { | |
121 | if ( $rre eq ref $self ) { | |
122 | $re = Re($re); | |
123 | } else { | |
124 | _cannot_make("real part", $rre); | |
125 | } | |
126 | } | |
127 | my $rim = ref $im; | |
128 | if ( $rim ) { | |
129 | if ( $rim eq ref $self ) { | |
130 | $im = Im($im); | |
131 | } else { | |
132 | _cannot_make("imaginary part", $rim); | |
133 | } | |
134 | } | |
135 | $self->{'cartesian'} = [ $re, $im ]; | |
66730be0 RM |
136 | $self->{c_dirty} = 0; |
137 | $self->{p_dirty} = 1; | |
b42d0ec9 | 138 | $self->display_format('cartesian'); |
66730be0 RM |
139 | return $self; |
140 | } | |
141 | ||
142 | # | |
143 | # ->emake | |
144 | # | |
145 | # Create a new complex number (exponential form) | |
146 | # | |
147 | sub emake { | |
148 | my $self = bless {}, shift; | |
149 | my ($rho, $theta) = @_; | |
b42d0ec9 JH |
150 | my $rrh = ref $rho; |
151 | if ( $rrh ) { | |
152 | if ( $rrh eq ref $self ) { | |
153 | $rho = rho($rho); | |
154 | } else { | |
155 | _cannot_make("rho", $rrh); | |
156 | } | |
157 | } | |
158 | my $rth = ref $theta; | |
159 | if ( $rth ) { | |
160 | if ( $rth eq ref $self ) { | |
161 | $theta = theta($theta); | |
162 | } else { | |
163 | _cannot_make("theta", $rth); | |
164 | } | |
165 | } | |
fb73857a | 166 | if ($rho < 0) { |
167 | $rho = -$rho; | |
168 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
169 | } | |
170 | $self->{'polar'} = [$rho, $theta]; | |
66730be0 RM |
171 | $self->{p_dirty} = 0; |
172 | $self->{c_dirty} = 1; | |
b42d0ec9 | 173 | $self->display_format('polar'); |
66730be0 RM |
174 | return $self; |
175 | } | |
176 | ||
177 | sub new { &make } # For backward compatibility only. | |
178 | ||
179 | # | |
180 | # cplx | |
181 | # | |
182 | # Creates a complex number from a (re, im) tuple. | |
183 | # This avoids the burden of writing Math::Complex->make(re, im). | |
184 | # | |
185 | sub cplx { | |
186 | my ($re, $im) = @_; | |
16357284 | 187 | return __PACKAGE__->make($re, defined $im ? $im : 0); |
66730be0 RM |
188 | } |
189 | ||
190 | # | |
191 | # cplxe | |
192 | # | |
193 | # Creates a complex number from a (rho, theta) tuple. | |
194 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
195 | # | |
196 | sub cplxe { | |
197 | my ($rho, $theta) = @_; | |
16357284 | 198 | return __PACKAGE__->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
199 | } |
200 | ||
201 | # | |
202 | # pi | |
203 | # | |
fb73857a | 204 | # The number defined as pi = 180 degrees |
66730be0 | 205 | # |
6570f784 | 206 | sub pi () { 4 * CORE::atan2(1, 1) } |
5cd24f17 | 207 | |
208 | # | |
fb73857a | 209 | # pit2 |
5cd24f17 | 210 | # |
fb73857a | 211 | # The full circle |
212 | # | |
6570f784 | 213 | sub pit2 () { 2 * pi } |
fb73857a | 214 | |
5cd24f17 | 215 | # |
fb73857a | 216 | # pip2 |
217 | # | |
218 | # The quarter circle | |
219 | # | |
6570f784 | 220 | sub pip2 () { pi / 2 } |
5cd24f17 | 221 | |
fb73857a | 222 | # |
d09ae4e6 JH |
223 | # deg1 |
224 | # | |
225 | # One degree in radians, used in stringify_polar. | |
226 | # | |
227 | ||
6570f784 | 228 | sub deg1 () { pi / 180 } |
d09ae4e6 JH |
229 | |
230 | # | |
fb73857a | 231 | # uplog10 |
232 | # | |
233 | # Used in log10(). | |
234 | # | |
6570f784 | 235 | sub uplog10 () { 1 / CORE::log(10) } |
66730be0 RM |
236 | |
237 | # | |
238 | # i | |
239 | # | |
240 | # The number defined as i*i = -1; | |
241 | # | |
242 | sub i () { | |
5cd24f17 | 243 | return $i if ($i); |
244 | $i = bless {}; | |
40da2db3 | 245 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 246 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
247 | $i->{c_dirty} = 0; |
248 | $i->{p_dirty} = 0; | |
249 | return $i; | |
250 | } | |
251 | ||
252 | # | |
1fa12f56 JH |
253 | # ip2 |
254 | # | |
255 | # Half of i. | |
256 | # | |
257 | sub ip2 () { i / 2 } | |
258 | ||
259 | # | |
66730be0 RM |
260 | # Attribute access/set routines |
261 | # | |
262 | ||
0c721ce2 JH |
263 | sub cartesian {$_[0]->{c_dirty} ? |
264 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
265 | sub polar {$_[0]->{p_dirty} ? | |
266 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 267 | |
40da2db3 JH |
268 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
269 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
270 | |
271 | # | |
272 | # ->update_cartesian | |
273 | # | |
274 | # Recompute and return the cartesian form, given accurate polar form. | |
275 | # | |
276 | sub update_cartesian { | |
277 | my $self = shift; | |
40da2db3 | 278 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 279 | $self->{c_dirty} = 0; |
a8693bd3 | 280 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
66730be0 RM |
281 | } |
282 | ||
283 | # | |
284 | # | |
285 | # ->update_polar | |
286 | # | |
287 | # Recompute and return the polar form, given accurate cartesian form. | |
288 | # | |
289 | sub update_polar { | |
290 | my $self = shift; | |
40da2db3 | 291 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 292 | $self->{p_dirty} = 0; |
40da2db3 | 293 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
1fa12f56 JH |
294 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), |
295 | CORE::atan2($y, $x)]; | |
66730be0 RM |
296 | } |
297 | ||
298 | # | |
299 | # (plus) | |
300 | # | |
301 | # Computes z1+z2. | |
302 | # | |
303 | sub plus { | |
304 | my ($z1, $z2, $regular) = @_; | |
305 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 306 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 307 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
308 | unless (defined $regular) { |
309 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
310 | return $z1; | |
311 | } | |
312 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
313 | } | |
314 | ||
315 | # | |
316 | # (minus) | |
317 | # | |
318 | # Computes z1-z2. | |
319 | # | |
320 | sub minus { | |
321 | my ($z1, $z2, $inverted) = @_; | |
322 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
323 | $z2 = cplx($z2) unless ref $z2; |
324 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
325 | unless (defined $inverted) { |
326 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
327 | return $z1; | |
328 | } | |
329 | return $inverted ? | |
330 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
331 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 332 | |
66730be0 RM |
333 | } |
334 | ||
335 | # | |
336 | # (multiply) | |
337 | # | |
338 | # Computes z1*z2. | |
339 | # | |
340 | sub multiply { | |
fb73857a | 341 | my ($z1, $z2, $regular) = @_; |
342 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
343 | # if both polar better use polar to avoid rounding errors | |
344 | my ($r1, $t1) = @{$z1->polar}; | |
345 | my ($r2, $t2) = @{$z2->polar}; | |
346 | my $t = $t1 + $t2; | |
347 | if ($t > pi()) { $t -= pit2 } | |
348 | elsif ($t <= -pi()) { $t += pit2 } | |
349 | unless (defined $regular) { | |
350 | $z1->set_polar([$r1 * $r2, $t]); | |
66730be0 | 351 | return $z1; |
fb73857a | 352 | } |
353 | return (ref $z1)->emake($r1 * $r2, $t); | |
354 | } else { | |
355 | my ($x1, $y1) = @{$z1->cartesian}; | |
356 | if (ref $z2) { | |
357 | my ($x2, $y2) = @{$z2->cartesian}; | |
358 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
359 | } else { | |
360 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
361 | } | |
66730be0 | 362 | } |
66730be0 RM |
363 | } |
364 | ||
365 | # | |
0e505df1 | 366 | # _divbyzero |
0c721ce2 JH |
367 | # |
368 | # Die on division by zero. | |
369 | # | |
0e505df1 | 370 | sub _divbyzero { |
5cd24f17 | 371 | my $mess = "$_[0]: Division by zero.\n"; |
372 | ||
373 | if (defined $_[1]) { | |
374 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
1fa12f56 | 375 | $mess .= "$_[1] " unless ("$_[1]" eq '0'); |
5cd24f17 | 376 | $mess .= "is 0)\n"; |
377 | } | |
378 | ||
0c721ce2 | 379 | my @up = caller(1); |
fb73857a | 380 | |
5cd24f17 | 381 | $mess .= "Died at $up[1] line $up[2].\n"; |
382 | ||
383 | die $mess; | |
0c721ce2 JH |
384 | } |
385 | ||
386 | # | |
66730be0 RM |
387 | # (divide) |
388 | # | |
389 | # Computes z1/z2. | |
390 | # | |
391 | sub divide { | |
392 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 393 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
394 | # if both polar better use polar to avoid rounding errors | |
395 | my ($r1, $t1) = @{$z1->polar}; | |
396 | my ($r2, $t2) = @{$z2->polar}; | |
397 | my $t; | |
398 | if ($inverted) { | |
0e505df1 | 399 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 400 | $t = $t2 - $t1; |
401 | if ($t > pi()) { $t -= pit2 } | |
402 | elsif ($t <= -pi()) { $t += pit2 } | |
403 | return (ref $z1)->emake($r2 / $r1, $t); | |
404 | } else { | |
0e505df1 | 405 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 406 | $t = $t1 - $t2; |
407 | if ($t > pi()) { $t -= pit2 } | |
408 | elsif ($t <= -pi()) { $t += pit2 } | |
409 | return (ref $z1)->emake($r1 / $r2, $t); | |
410 | } | |
411 | } else { | |
412 | my ($d, $x2, $y2); | |
413 | if ($inverted) { | |
414 | ($x2, $y2) = @{$z1->cartesian}; | |
415 | $d = $x2*$x2 + $y2*$y2; | |
416 | _divbyzero "$z2/0" if $d == 0; | |
417 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
418 | } else { | |
419 | my ($x1, $y1) = @{$z1->cartesian}; | |
420 | if (ref $z2) { | |
421 | ($x2, $y2) = @{$z2->cartesian}; | |
422 | $d = $x2*$x2 + $y2*$y2; | |
423 | _divbyzero "$z1/0" if $d == 0; | |
424 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
425 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
426 | return (ref $z1)->make($u, $v); | |
427 | } else { | |
428 | _divbyzero "$z1/0" if $z2 == 0; | |
429 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
430 | } | |
431 | } | |
0c721ce2 | 432 | } |
66730be0 RM |
433 | } |
434 | ||
435 | # | |
436 | # (power) | |
437 | # | |
438 | # Computes z1**z2 = exp(z2 * log z1)). | |
439 | # | |
440 | sub power { | |
441 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 | 442 | if ($inverted) { |
2820d885 DL |
443 | return 1 if $z1 == 0 || $z2 == 1; |
444 | return 0 if $z2 == 0 && Re($z1) > 0; | |
ace5de91 | 445 | } else { |
2820d885 DL |
446 | return 1 if $z2 == 0 || $z1 == 1; |
447 | return 0 if $z1 == 0 && Re($z2) > 0; | |
ace5de91 | 448 | } |
1fa12f56 JH |
449 | my $w = $inverted ? &exp($z1 * &log($z2)) |
450 | : &exp($z2 * &log($z1)); | |
d09ae4e6 JH |
451 | # If both arguments cartesian, return cartesian, else polar. |
452 | return $z1->{c_dirty} == 0 && | |
453 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |
454 | cplx(@{$w->cartesian}) : $w; | |
66730be0 RM |
455 | } |
456 | ||
457 | # | |
458 | # (spaceship) | |
459 | # | |
460 | # Computes z1 <=> z2. | |
2820d885 | 461 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
66730be0 RM |
462 | # |
463 | sub spaceship { | |
464 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 465 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
466 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
467 | my $sgn = $inverted ? -1 : 1; |
468 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
469 | return $sgn * ($im1 <=> $im2); | |
470 | } | |
471 | ||
472 | # | |
1fa12f56 JH |
473 | # (numeq) |
474 | # | |
475 | # Computes z1 == z2. | |
476 | # | |
477 | # (Required in addition to spaceship() because of NaNs.) | |
478 | sub numeq { | |
479 | my ($z1, $z2, $inverted) = @_; | |
480 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); | |
481 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
482 | return $re1 == $re2 && $im1 == $im2 ? 1 : 0; | |
483 | } | |
484 | ||
485 | # | |
66730be0 RM |
486 | # (negate) |
487 | # | |
488 | # Computes -z. | |
489 | # | |
490 | sub negate { | |
491 | my ($z) = @_; | |
492 | if ($z->{c_dirty}) { | |
493 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 494 | $t = ($t <= 0) ? $t + pi : $t - pi; |
495 | return (ref $z)->emake($r, $t); | |
66730be0 RM |
496 | } |
497 | my ($re, $im) = @{$z->cartesian}; | |
498 | return (ref $z)->make(-$re, -$im); | |
499 | } | |
500 | ||
501 | # | |
502 | # (conjugate) | |
503 | # | |
504 | # Compute complex's conjugate. | |
505 | # | |
506 | sub conjugate { | |
507 | my ($z) = @_; | |
508 | if ($z->{c_dirty}) { | |
509 | my ($r, $t) = @{$z->polar}; | |
510 | return (ref $z)->emake($r, -$t); | |
511 | } | |
512 | my ($re, $im) = @{$z->cartesian}; | |
513 | return (ref $z)->make($re, -$im); | |
514 | } | |
515 | ||
516 | # | |
517 | # (abs) | |
518 | # | |
b42d0ec9 | 519 | # Compute or set complex's norm (rho). |
66730be0 RM |
520 | # |
521 | sub abs { | |
b42d0ec9 | 522 | my ($z, $rho) = @_; |
1fa12f56 JH |
523 | unless (ref $z) { |
524 | if (@_ == 2) { | |
525 | $_[0] = $_[1]; | |
526 | } else { | |
527 | return CORE::abs($z); | |
528 | } | |
529 | } | |
b42d0ec9 JH |
530 | if (defined $rho) { |
531 | $z->{'polar'} = [ $rho, ${$z->polar}[1] ]; | |
532 | $z->{p_dirty} = 0; | |
533 | $z->{c_dirty} = 1; | |
534 | return $rho; | |
535 | } else { | |
536 | return ${$z->polar}[0]; | |
537 | } | |
538 | } | |
539 | ||
540 | sub _theta { | |
541 | my $theta = $_[0]; | |
542 | ||
543 | if ($$theta > pi()) { $$theta -= pit2 } | |
544 | elsif ($$theta <= -pi()) { $$theta += pit2 } | |
66730be0 RM |
545 | } |
546 | ||
547 | # | |
548 | # arg | |
549 | # | |
b42d0ec9 | 550 | # Compute or set complex's argument (theta). |
66730be0 RM |
551 | # |
552 | sub arg { | |
b42d0ec9 JH |
553 | my ($z, $theta) = @_; |
554 | return $z unless ref $z; | |
555 | if (defined $theta) { | |
556 | _theta(\$theta); | |
557 | $z->{'polar'} = [ ${$z->polar}[0], $theta ]; | |
558 | $z->{p_dirty} = 0; | |
559 | $z->{c_dirty} = 1; | |
560 | } else { | |
561 | $theta = ${$z->polar}[1]; | |
562 | _theta(\$theta); | |
563 | } | |
564 | return $theta; | |
66730be0 RM |
565 | } |
566 | ||
567 | # | |
568 | # (sqrt) | |
569 | # | |
0c721ce2 | 570 | # Compute sqrt(z). |
66730be0 | 571 | # |
b42d0ec9 JH |
572 | # It is quite tempting to use wantarray here so that in list context |
573 | # sqrt() would return the two solutions. This, however, would | |
574 | # break things like | |
575 | # | |
576 | # print "sqrt(z) = ", sqrt($z), "\n"; | |
577 | # | |
578 | # The two values would be printed side by side without no intervening | |
579 | # whitespace, quite confusing. | |
580 | # Therefore if you want the two solutions use the root(). | |
581 | # | |
66730be0 RM |
582 | sub sqrt { |
583 | my ($z) = @_; | |
b42d0ec9 | 584 | my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0); |
1fa12f56 JH |
585 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) |
586 | if $im == 0; | |
66730be0 | 587 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 588 | return (ref $z)->emake(CORE::sqrt($r), $t/2); |
66730be0 RM |
589 | } |
590 | ||
591 | # | |
592 | # cbrt | |
593 | # | |
0c721ce2 | 594 | # Compute cbrt(z) (cubic root). |
66730be0 | 595 | # |
b42d0ec9 JH |
596 | # Why are we not returning three values? The same answer as for sqrt(). |
597 | # | |
66730be0 RM |
598 | sub cbrt { |
599 | my ($z) = @_; | |
1fa12f56 JH |
600 | return $z < 0 ? |
601 | -CORE::exp(CORE::log(-$z)/3) : | |
602 | ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) | |
fb73857a | 603 | unless ref $z; |
66730be0 | 604 | my ($r, $t) = @{$z->polar}; |
1fa12f56 | 605 | return 0 if $r == 0; |
a8693bd3 | 606 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
66730be0 RM |
607 | } |
608 | ||
609 | # | |
0e505df1 JH |
610 | # _rootbad |
611 | # | |
612 | # Die on bad root. | |
613 | # | |
614 | sub _rootbad { | |
1fa12f56 | 615 | my $mess = "Root $_[0] illegal, root rank must be positive integer.\n"; |
0e505df1 JH |
616 | |
617 | my @up = caller(1); | |
fb73857a | 618 | |
0e505df1 JH |
619 | $mess .= "Died at $up[1] line $up[2].\n"; |
620 | ||
621 | die $mess; | |
622 | } | |
623 | ||
624 | # | |
66730be0 RM |
625 | # root |
626 | # | |
627 | # Computes all nth root for z, returning an array whose size is n. | |
628 | # `n' must be a positive integer. | |
629 | # | |
630 | # The roots are given by (for k = 0..n-1): | |
631 | # | |
632 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
633 | # | |
634 | sub root { | |
635 | my ($z, $n) = @_; | |
0e505df1 | 636 | _rootbad($n) if ($n < 1 or int($n) != $n); |
1fa12f56 JH |
637 | my ($r, $t) = ref $z ? |
638 | @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); | |
66730be0 RM |
639 | my @root; |
640 | my $k; | |
fb73857a | 641 | my $theta_inc = pit2 / $n; |
66730be0 RM |
642 | my $rho = $r ** (1/$n); |
643 | my $theta; | |
d09ae4e6 | 644 | my $cartesian = ref $z && $z->{c_dirty} == 0; |
66730be0 | 645 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { |
d09ae4e6 JH |
646 | my $w = cplxe($rho, $theta); |
647 | # Yes, $cartesian is loop invariant. | |
648 | push @root, $cartesian ? cplx(@{$w->cartesian}) : $w; | |
a0d0e21e | 649 | } |
66730be0 | 650 | return @root; |
a0d0e21e LW |
651 | } |
652 | ||
66730be0 RM |
653 | # |
654 | # Re | |
655 | # | |
b42d0ec9 | 656 | # Return or set Re(z). |
66730be0 | 657 | # |
a0d0e21e | 658 | sub Re { |
b42d0ec9 | 659 | my ($z, $Re) = @_; |
66730be0 | 660 | return $z unless ref $z; |
b42d0ec9 JH |
661 | if (defined $Re) { |
662 | $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ]; | |
663 | $z->{c_dirty} = 0; | |
664 | $z->{p_dirty} = 1; | |
665 | } else { | |
666 | return ${$z->cartesian}[0]; | |
667 | } | |
a0d0e21e LW |
668 | } |
669 | ||
66730be0 RM |
670 | # |
671 | # Im | |
672 | # | |
b42d0ec9 | 673 | # Return or set Im(z). |
66730be0 | 674 | # |
a0d0e21e | 675 | sub Im { |
b42d0ec9 | 676 | my ($z, $Im) = @_; |
178326e7 | 677 | return 0 unless ref $z; |
b42d0ec9 JH |
678 | if (defined $Im) { |
679 | $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ]; | |
680 | $z->{c_dirty} = 0; | |
681 | $z->{p_dirty} = 1; | |
682 | } else { | |
683 | return ${$z->cartesian}[1]; | |
684 | } | |
685 | } | |
686 | ||
687 | # | |
688 | # rho | |
689 | # | |
690 | # Return or set rho(w). | |
691 | # | |
692 | sub rho { | |
693 | Math::Complex::abs(@_); | |
694 | } | |
695 | ||
696 | # | |
697 | # theta | |
698 | # | |
699 | # Return or set theta(w). | |
700 | # | |
701 | sub theta { | |
702 | Math::Complex::arg(@_); | |
a0d0e21e LW |
703 | } |
704 | ||
66730be0 RM |
705 | # |
706 | # (exp) | |
707 | # | |
708 | # Computes exp(z). | |
709 | # | |
710 | sub exp { | |
711 | my ($z) = @_; | |
712 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 713 | return (ref $z)->emake(CORE::exp($x), $y); |
66730be0 RM |
714 | } |
715 | ||
716 | # | |
8c03c583 JH |
717 | # _logofzero |
718 | # | |
fb73857a | 719 | # Die on logarithm of zero. |
8c03c583 JH |
720 | # |
721 | sub _logofzero { | |
722 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
723 | ||
724 | if (defined $_[1]) { | |
725 | $mess .= "(Because in the definition of $_[0], the argument "; | |
726 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
727 | $mess .= "is 0)\n"; | |
728 | } | |
729 | ||
730 | my @up = caller(1); | |
fb73857a | 731 | |
8c03c583 JH |
732 | $mess .= "Died at $up[1] line $up[2].\n"; |
733 | ||
734 | die $mess; | |
735 | } | |
736 | ||
737 | # | |
66730be0 RM |
738 | # (log) |
739 | # | |
740 | # Compute log(z). | |
741 | # | |
742 | sub log { | |
743 | my ($z) = @_; | |
fb73857a | 744 | unless (ref $z) { |
745 | _logofzero("log") if $z == 0; | |
a8693bd3 | 746 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
fb73857a | 747 | } |
5cd24f17 | 748 | my ($r, $t) = @{$z->polar}; |
fb73857a | 749 | _logofzero("log") if $r == 0; |
750 | if ($t > pi()) { $t -= pit2 } | |
751 | elsif ($t <= -pi()) { $t += pit2 } | |
a8693bd3 | 752 | return (ref $z)->make(CORE::log($r), $t); |
66730be0 RM |
753 | } |
754 | ||
755 | # | |
0c721ce2 JH |
756 | # ln |
757 | # | |
758 | # Alias for log(). | |
759 | # | |
760 | sub ln { Math::Complex::log(@_) } | |
761 | ||
762 | # | |
66730be0 RM |
763 | # log10 |
764 | # | |
765 | # Compute log10(z). | |
766 | # | |
5cd24f17 | 767 | |
66730be0 | 768 | sub log10 { |
fb73857a | 769 | return Math::Complex::log($_[0]) * uplog10; |
66730be0 RM |
770 | } |
771 | ||
772 | # | |
773 | # logn | |
774 | # | |
775 | # Compute logn(z,n) = log(z) / log(n) | |
776 | # | |
777 | sub logn { | |
778 | my ($z, $n) = @_; | |
0c721ce2 | 779 | $z = cplx($z, 0) unless ref $z; |
9fbe1b12 JH |
780 | my $logn = $LOGN{$n}; |
781 | $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) | |
1fa12f56 | 782 | return &log($z) / $logn; |
66730be0 RM |
783 | } |
784 | ||
785 | # | |
786 | # (cos) | |
787 | # | |
788 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
789 | # | |
790 | sub cos { | |
791 | my ($z) = @_; | |
1fa12f56 | 792 | return CORE::cos($z) unless ref $z; |
66730be0 | 793 | my ($x, $y) = @{$z->cartesian}; |
a8693bd3 | 794 | my $ey = CORE::exp($y); |
1fa12f56 JH |
795 | my $sx = CORE::sin($x); |
796 | my $cx = CORE::cos($x); | |
797 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |
798 | return (ref $z)->make($cx * ($ey + $ey_1)/2, | |
799 | $sx * ($ey_1 - $ey)/2); | |
66730be0 RM |
800 | } |
801 | ||
802 | # | |
803 | # (sin) | |
804 | # | |
805 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
806 | # | |
807 | sub sin { | |
808 | my ($z) = @_; | |
1fa12f56 | 809 | return CORE::sin($z) unless ref $z; |
66730be0 | 810 | my ($x, $y) = @{$z->cartesian}; |
a8693bd3 | 811 | my $ey = CORE::exp($y); |
1fa12f56 JH |
812 | my $sx = CORE::sin($x); |
813 | my $cx = CORE::cos($x); | |
814 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |
815 | return (ref $z)->make($sx * ($ey + $ey_1)/2, | |
816 | $cx * ($ey - $ey_1)/2); | |
66730be0 RM |
817 | } |
818 | ||
819 | # | |
820 | # tan | |
821 | # | |
822 | # Compute tan(z) = sin(z) / cos(z). | |
823 | # | |
824 | sub tan { | |
825 | my ($z) = @_; | |
1fa12f56 JH |
826 | my $cz = &cos($z); |
827 | _divbyzero "tan($z)", "cos($z)" if $cz == 0; | |
828 | return &sin($z) / $cz; | |
66730be0 RM |
829 | } |
830 | ||
831 | # | |
0c721ce2 JH |
832 | # sec |
833 | # | |
834 | # Computes the secant sec(z) = 1 / cos(z). | |
835 | # | |
836 | sub sec { | |
837 | my ($z) = @_; | |
1fa12f56 | 838 | my $cz = &cos($z); |
0e505df1 | 839 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
840 | return 1 / $cz; |
841 | } | |
842 | ||
843 | # | |
844 | # csc | |
845 | # | |
846 | # Computes the cosecant csc(z) = 1 / sin(z). | |
847 | # | |
848 | sub csc { | |
849 | my ($z) = @_; | |
1fa12f56 | 850 | my $sz = &sin($z); |
0e505df1 | 851 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
852 | return 1 / $sz; |
853 | } | |
854 | ||
66730be0 | 855 | # |
0c721ce2 | 856 | # cosec |
66730be0 | 857 | # |
0c721ce2 JH |
858 | # Alias for csc(). |
859 | # | |
860 | sub cosec { Math::Complex::csc(@_) } | |
861 | ||
862 | # | |
863 | # cot | |
864 | # | |
fb73857a | 865 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
866 | # |
867 | sub cot { | |
66730be0 | 868 | my ($z) = @_; |
1fa12f56 | 869 | my $sz = &sin($z); |
0e505df1 | 870 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
1fa12f56 | 871 | return &cos($z) / $sz; |
66730be0 RM |
872 | } |
873 | ||
874 | # | |
0c721ce2 JH |
875 | # cotan |
876 | # | |
877 | # Alias for cot(). | |
878 | # | |
879 | sub cotan { Math::Complex::cot(@_) } | |
880 | ||
881 | # | |
66730be0 RM |
882 | # acos |
883 | # | |
884 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
885 | # | |
886 | sub acos { | |
fb73857a | 887 | my $z = $_[0]; |
1fa12f56 JH |
888 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) |
889 | if (! ref $z) && CORE::abs($z) <= 1; | |
40b904b7 JH |
890 | $z = cplx($z, 0) unless ref $z; |
891 | my ($x, $y) = @{$z->cartesian}; | |
1fa12f56 | 892 | return 0 if $x == 1 && $y == 0; |
a8693bd3 NIS |
893 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
894 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 895 | my $alpha = ($t1 + $t2)/2; |
896 | my $beta = ($t1 - $t2)/2; | |
897 | $alpha = 1 if $alpha < 1; | |
898 | if ($beta > 1) { $beta = 1 } | |
899 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
900 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
901 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 902 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
40b904b7 | 903 | return (ref $z)->make($u, $v); |
66730be0 RM |
904 | } |
905 | ||
906 | # | |
907 | # asin | |
908 | # | |
909 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
910 | # | |
911 | sub asin { | |
fb73857a | 912 | my $z = $_[0]; |
1fa12f56 JH |
913 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) |
914 | if (! ref $z) && CORE::abs($z) <= 1; | |
40b904b7 JH |
915 | $z = cplx($z, 0) unless ref $z; |
916 | my ($x, $y) = @{$z->cartesian}; | |
1fa12f56 | 917 | return 0 if $x == 0 && $y == 0; |
a8693bd3 NIS |
918 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
919 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 920 | my $alpha = ($t1 + $t2)/2; |
921 | my $beta = ($t1 - $t2)/2; | |
922 | $alpha = 1 if $alpha < 1; | |
923 | if ($beta > 1) { $beta = 1 } | |
924 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
925 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
926 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 927 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
40b904b7 | 928 | return (ref $z)->make($u, $v); |
66730be0 RM |
929 | } |
930 | ||
931 | # | |
932 | # atan | |
933 | # | |
0c721ce2 | 934 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
935 | # |
936 | sub atan { | |
937 | my ($z) = @_; | |
a8693bd3 | 938 | return CORE::atan2($z, 1) unless ref $z; |
1fa12f56 JH |
939 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
940 | return 0 if $x == 0 && $y == 0; | |
8c03c583 | 941 | _divbyzero "atan(i)" if ( $z == i); |
1fa12f56 JH |
942 | _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... |
943 | my $log = &log((i + $z) / (i - $z)); | |
944 | return ip2 * $log; | |
a0d0e21e LW |
945 | } |
946 | ||
66730be0 | 947 | # |
0c721ce2 JH |
948 | # asec |
949 | # | |
950 | # Computes the arc secant asec(z) = acos(1 / z). | |
951 | # | |
952 | sub asec { | |
953 | my ($z) = @_; | |
0e505df1 | 954 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 955 | return acos(1 / $z); |
0c721ce2 JH |
956 | } |
957 | ||
958 | # | |
5cd24f17 | 959 | # acsc |
0c721ce2 | 960 | # |
8c03c583 | 961 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 962 | # |
5cd24f17 | 963 | sub acsc { |
0c721ce2 | 964 | my ($z) = @_; |
0e505df1 | 965 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 966 | return asin(1 / $z); |
0c721ce2 JH |
967 | } |
968 | ||
969 | # | |
5cd24f17 | 970 | # acosec |
66730be0 | 971 | # |
5cd24f17 | 972 | # Alias for acsc(). |
0c721ce2 | 973 | # |
5cd24f17 | 974 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 975 | |
66730be0 | 976 | # |
0c721ce2 JH |
977 | # acot |
978 | # | |
8c03c583 | 979 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
980 | # |
981 | sub acot { | |
66730be0 | 982 | my ($z) = @_; |
1fa12f56 JH |
983 | _divbyzero "acot(0)" if $z == 0; |
984 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) | |
985 | unless ref $z; | |
986 | _divbyzero "acot(i)" if ($z - i == 0); | |
987 | _logofzero "acot(-i)" if ($z + i == 0); | |
8c03c583 | 988 | return atan(1 / $z); |
66730be0 RM |
989 | } |
990 | ||
991 | # | |
0c721ce2 JH |
992 | # acotan |
993 | # | |
994 | # Alias for acot(). | |
995 | # | |
996 | sub acotan { Math::Complex::acot(@_) } | |
997 | ||
998 | # | |
66730be0 RM |
999 | # cosh |
1000 | # | |
1001 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
1002 | # | |
1003 | sub cosh { | |
1004 | my ($z) = @_; | |
fb73857a | 1005 | my $ex; |
0e505df1 | 1006 | unless (ref $z) { |
a8693bd3 | 1007 | $ex = CORE::exp($z); |
1fa12f56 | 1008 | return $ex ? ($ex + 1/$ex)/2 : $Inf; |
0e505df1 JH |
1009 | } |
1010 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 1011 | $ex = CORE::exp($x); |
1fa12f56 | 1012 | my $ex_1 = $ex ? 1 / $ex : $Inf; |
a8693bd3 NIS |
1013 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
1014 | CORE::sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
1015 | } |
1016 | ||
1017 | # | |
1018 | # sinh | |
1019 | # | |
1020 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
1021 | # | |
1022 | sub sinh { | |
1023 | my ($z) = @_; | |
fb73857a | 1024 | my $ex; |
0e505df1 | 1025 | unless (ref $z) { |
1fa12f56 | 1026 | return 0 if $z == 0; |
a8693bd3 | 1027 | $ex = CORE::exp($z); |
1fa12f56 | 1028 | return $ex ? ($ex - 1/$ex)/2 : "-$Inf"; |
0e505df1 JH |
1029 | } |
1030 | my ($x, $y) = @{$z->cartesian}; | |
1fa12f56 JH |
1031 | my $cy = CORE::cos($y); |
1032 | my $sy = CORE::sin($y); | |
a8693bd3 | 1033 | $ex = CORE::exp($x); |
1fa12f56 | 1034 | my $ex_1 = $ex ? 1 / $ex : $Inf; |
5240e574 JH |
1035 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
1036 | CORE::sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
1037 | } |
1038 | ||
1039 | # | |
1040 | # tanh | |
1041 | # | |
1042 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
1043 | # | |
1044 | sub tanh { | |
1045 | my ($z) = @_; | |
0c721ce2 | 1046 | my $cz = cosh($z); |
0e505df1 | 1047 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 1048 | return sinh($z) / $cz; |
66730be0 RM |
1049 | } |
1050 | ||
1051 | # | |
0c721ce2 JH |
1052 | # sech |
1053 | # | |
1054 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
1055 | # | |
1056 | sub sech { | |
1057 | my ($z) = @_; | |
1058 | my $cz = cosh($z); | |
0e505df1 | 1059 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
1060 | return 1 / $cz; |
1061 | } | |
1062 | ||
1063 | # | |
1064 | # csch | |
1065 | # | |
1066 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 1067 | # |
0c721ce2 JH |
1068 | sub csch { |
1069 | my ($z) = @_; | |
1070 | my $sz = sinh($z); | |
0e505df1 | 1071 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
1072 | return 1 / $sz; |
1073 | } | |
1074 | ||
1075 | # | |
1076 | # cosech | |
1077 | # | |
1078 | # Alias for csch(). | |
1079 | # | |
1080 | sub cosech { Math::Complex::csch(@_) } | |
1081 | ||
66730be0 | 1082 | # |
0c721ce2 JH |
1083 | # coth |
1084 | # | |
1085 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
1086 | # | |
1087 | sub coth { | |
66730be0 | 1088 | my ($z) = @_; |
0c721ce2 | 1089 | my $sz = sinh($z); |
1fa12f56 | 1090 | _divbyzero "coth($z)", "sinh($z)" if $sz == 0; |
0c721ce2 | 1091 | return cosh($z) / $sz; |
66730be0 RM |
1092 | } |
1093 | ||
1094 | # | |
0c721ce2 JH |
1095 | # cotanh |
1096 | # | |
1097 | # Alias for coth(). | |
1098 | # | |
1099 | sub cotanh { Math::Complex::coth(@_) } | |
1100 | ||
1101 | # | |
66730be0 RM |
1102 | # acosh |
1103 | # | |
fb73857a | 1104 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
1105 | # |
1106 | sub acosh { | |
1107 | my ($z) = @_; | |
fb73857a | 1108 | unless (ref $z) { |
fb73857a | 1109 | $z = cplx($z, 0); |
1110 | } | |
8c03c583 | 1111 | my ($re, $im) = @{$z->cartesian}; |
fb73857a | 1112 | if ($im == 0) { |
1fa12f56 JH |
1113 | return CORE::log($re + CORE::sqrt($re*$re - 1)) |
1114 | if $re >= 1; | |
1115 | return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) | |
1116 | if CORE::abs($re) < 1; | |
fb73857a | 1117 | } |
9bc5fa8d | 1118 | my $t = &sqrt($z * $z - 1) + $z; |
40b904b7 JH |
1119 | # Try Taylor if looking bad (this usually means that |
1120 | # $z was large negative, therefore the sqrt is really | |
1121 | # close to abs(z), summing that with z...) | |
9bc5fa8d JH |
1122 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
1123 | if $t == 0; | |
1124 | my $u = &log($t); | |
40b904b7 | 1125 | $u->Im(-$u->Im) if $re < 0 && $im == 0; |
9bc5fa8d | 1126 | return $re < 0 ? -$u : $u; |
66730be0 RM |
1127 | } |
1128 | ||
1129 | # | |
1130 | # asinh | |
1131 | # | |
1fa12f56 | 1132 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) |
66730be0 RM |
1133 | # |
1134 | sub asinh { | |
1135 | my ($z) = @_; | |
1fa12f56 JH |
1136 | unless (ref $z) { |
1137 | my $t = $z + CORE::sqrt($z*$z + 1); | |
1138 | return CORE::log($t) if $t; | |
1139 | } | |
9bc5fa8d | 1140 | my $t = &sqrt($z * $z + 1) + $z; |
40b904b7 JH |
1141 | # Try Taylor if looking bad (this usually means that |
1142 | # $z was large negative, therefore the sqrt is really | |
1143 | # close to abs(z), summing that with z...) | |
9bc5fa8d JH |
1144 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
1145 | if $t == 0; | |
1fa12f56 | 1146 | return &log($t); |
66730be0 RM |
1147 | } |
1148 | ||
1149 | # | |
1150 | # atanh | |
1151 | # | |
1152 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
1153 | # | |
1154 | sub atanh { | |
1155 | my ($z) = @_; | |
fb73857a | 1156 | unless (ref $z) { |
a8693bd3 | 1157 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
fb73857a | 1158 | $z = cplx($z, 0); |
1159 | } | |
1fa12f56 JH |
1160 | _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); |
1161 | _logofzero 'atanh(-1)' if (1 + $z == 0); | |
1162 | return 0.5 * &log((1 + $z) / (1 - $z)); | |
66730be0 RM |
1163 | } |
1164 | ||
1165 | # | |
0c721ce2 JH |
1166 | # asech |
1167 | # | |
1168 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
1169 | # | |
1170 | sub asech { | |
1171 | my ($z) = @_; | |
1fa12f56 | 1172 | _divbyzero 'asech(0)', "$z" if ($z == 0); |
0c721ce2 JH |
1173 | return acosh(1 / $z); |
1174 | } | |
1175 | ||
1176 | # | |
1177 | # acsch | |
66730be0 | 1178 | # |
0c721ce2 | 1179 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 1180 | # |
0c721ce2 | 1181 | sub acsch { |
66730be0 | 1182 | my ($z) = @_; |
0e505df1 | 1183 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
1184 | return asinh(1 / $z); |
1185 | } | |
1186 | ||
1187 | # | |
1188 | # acosech | |
1189 | # | |
1190 | # Alias for acosh(). | |
1191 | # | |
1192 | sub acosech { Math::Complex::acsch(@_) } | |
1193 | ||
1194 | # | |
1195 | # acoth | |
1196 | # | |
1197 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1198 | # | |
1199 | sub acoth { | |
1200 | my ($z) = @_; | |
1fa12f56 | 1201 | _divbyzero 'acoth(0)' if ($z == 0); |
fb73857a | 1202 | unless (ref $z) { |
a8693bd3 | 1203 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
fb73857a | 1204 | $z = cplx($z, 0); |
1205 | } | |
1fa12f56 JH |
1206 | _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); |
1207 | _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); | |
1208 | return &log((1 + $z) / ($z - 1)) / 2; | |
66730be0 RM |
1209 | } |
1210 | ||
1211 | # | |
0c721ce2 JH |
1212 | # acotanh |
1213 | # | |
1214 | # Alias for acot(). | |
1215 | # | |
1216 | sub acotanh { Math::Complex::acoth(@_) } | |
1217 | ||
1218 | # | |
66730be0 RM |
1219 | # (atan2) |
1220 | # | |
1221 | # Compute atan(z1/z2). | |
1222 | # | |
1223 | sub atan2 { | |
1224 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1225 | my ($re1, $im1, $re2, $im2); |
1226 | if ($inverted) { | |
1227 | ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1228 | ($re2, $im2) = @{$z1->cartesian}; | |
66730be0 | 1229 | } else { |
fb73857a | 1230 | ($re1, $im1) = @{$z1->cartesian}; |
1231 | ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1232 | } | |
1233 | if ($im2 == 0) { | |
1fa12f56 JH |
1234 | return CORE::atan2($re1, $re2) if $im1 == 0; |
1235 | return ($im1<=>0) * pip2 if $re2 == 0; | |
66730be0 | 1236 | } |
fb73857a | 1237 | my $w = atan($z1/$z2); |
1238 | my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); | |
1239 | $u += pi if $re2 < 0; | |
1240 | $u -= pit2 if $u > pi; | |
1241 | return cplx($u, $v); | |
66730be0 RM |
1242 | } |
1243 | ||
1244 | # | |
1245 | # display_format | |
1246 | # ->display_format | |
1247 | # | |
16357284 | 1248 | # Set (get if no argument) the display format for all complex numbers that |
fb73857a | 1249 | # don't happen to have overridden it via ->display_format |
66730be0 | 1250 | # |
16357284 | 1251 | # When called as an object method, this actually sets the display format for |
66730be0 RM |
1252 | # the current object. |
1253 | # | |
1254 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1255 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1256 | # | |
1257 | sub display_format { | |
16357284 JH |
1258 | my $self = shift; |
1259 | my %display_format = %DISPLAY_FORMAT; | |
66730be0 | 1260 | |
16357284 JH |
1261 | if (ref $self) { # Called as an object method |
1262 | if (exists $self->{display_format}) { | |
1263 | my %obj = %{$self->{display_format}}; | |
1264 | @display_format{keys %obj} = values %obj; | |
1265 | } | |
476757f7 YN |
1266 | } |
1267 | if (@_ == 1) { | |
1268 | $display_format{style} = shift; | |
1269 | } else { | |
1270 | my %new = @_; | |
1271 | @display_format{keys %new} = values %new; | |
66730be0 RM |
1272 | } |
1273 | ||
476757f7 | 1274 | if (ref $self) { # Called as an object method |
16357284 JH |
1275 | $self->{display_format} = { %display_format }; |
1276 | return | |
1277 | wantarray ? | |
1278 | %{$self->{display_format}} : | |
1279 | $self->{display_format}->{style}; | |
66730be0 RM |
1280 | } |
1281 | ||
476757f7 | 1282 | # Called as a class method |
16357284 JH |
1283 | %DISPLAY_FORMAT = %display_format; |
1284 | return | |
1285 | wantarray ? | |
1286 | %DISPLAY_FORMAT : | |
1287 | $DISPLAY_FORMAT{style}; | |
66730be0 RM |
1288 | } |
1289 | ||
1290 | # | |
1291 | # (stringify) | |
1292 | # | |
1293 | # Show nicely formatted complex number under its cartesian or polar form, | |
1294 | # depending on the current display format: | |
1295 | # | |
1296 | # . If a specific display format has been recorded for this object, use it. | |
1297 | # . Otherwise, use the generic current default for all complex numbers, | |
1298 | # which is a package global variable. | |
1299 | # | |
a0d0e21e | 1300 | sub stringify { |
66730be0 | 1301 | my ($z) = shift; |
66730be0 | 1302 | |
16357284 JH |
1303 | my $style = $z->display_format; |
1304 | ||
1305 | $style = $DISPLAY_FORMAT{style} unless defined $style; | |
66730be0 | 1306 | |
16357284 | 1307 | return $z->stringify_polar if $style =~ /^p/i; |
66730be0 RM |
1308 | return $z->stringify_cartesian; |
1309 | } | |
1310 | ||
1311 | # | |
1312 | # ->stringify_cartesian | |
1313 | # | |
1314 | # Stringify as a cartesian representation 'a+bi'. | |
1315 | # | |
1316 | sub stringify_cartesian { | |
1317 | my $z = shift; | |
1318 | my ($x, $y) = @{$z->cartesian}; | |
1319 | my ($re, $im); | |
1320 | ||
16357284 JH |
1321 | my %format = $z->display_format; |
1322 | my $format = $format{format}; | |
1323 | ||
1fa12f56 JH |
1324 | if ($x) { |
1325 | if ($x =~ /^NaN[QS]?$/i) { | |
1326 | $re = $x; | |
1327 | } else { | |
1328 | if ($x =~ /^-?$Inf$/oi) { | |
1329 | $re = $x; | |
1330 | } else { | |
1331 | $re = defined $format ? sprintf($format, $x) : $x; | |
1332 | } | |
1333 | } | |
1334 | } else { | |
1335 | undef $re; | |
1336 | } | |
1337 | ||
1338 | if ($y) { | |
40b904b7 | 1339 | if ($y =~ /^(NaN[QS]?)$/i) { |
1fa12f56 JH |
1340 | $im = $y; |
1341 | } else { | |
1342 | if ($y =~ /^-?$Inf$/oi) { | |
1343 | $im = $y; | |
1344 | } else { | |
40b904b7 JH |
1345 | $im = |
1346 | defined $format ? | |
1347 | sprintf($format, $y) : | |
1348 | ($y == 1 ? "" : ($y == -1 ? "-" : $y)); | |
1fa12f56 JH |
1349 | } |
1350 | } | |
1351 | $im .= "i"; | |
1352 | } else { | |
1353 | undef $im; | |
16357284 | 1354 | } |
66730be0 | 1355 | |
1fa12f56 JH |
1356 | my $str = $re; |
1357 | ||
16357284 JH |
1358 | if (defined $im) { |
1359 | if ($y < 0) { | |
1360 | $str .= $im; | |
1fa12f56 | 1361 | } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { |
16357284 JH |
1362 | $str .= "+" if defined $re; |
1363 | $str .= $im; | |
1364 | } | |
1fa12f56 JH |
1365 | } elsif (!defined $re) { |
1366 | $str = "0"; | |
16357284 | 1367 | } |
66730be0 RM |
1368 | |
1369 | return $str; | |
1370 | } | |
1371 | ||
d09ae4e6 | 1372 | |
66730be0 RM |
1373 | # |
1374 | # ->stringify_polar | |
1375 | # | |
1376 | # Stringify as a polar representation '[r,t]'. | |
1377 | # | |
1378 | sub stringify_polar { | |
1379 | my $z = shift; | |
1380 | my ($r, $t) = @{$z->polar}; | |
1381 | my $theta; | |
1382 | ||
16357284 | 1383 | my %format = $z->display_format; |
1fa12f56 | 1384 | my $format = $format{format}; |
16357284 | 1385 | |
1fa12f56 JH |
1386 | if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) { |
1387 | $theta = $t; | |
1388 | } elsif ($t == pi) { | |
1389 | $theta = "pi"; | |
1390 | } elsif ($r == 0 || $t == 0) { | |
1391 | $theta = defined $format ? sprintf($format, $t) : $t; | |
55497cff | 1392 | } |
66730be0 | 1393 | |
1fa12f56 JH |
1394 | return "[$r,$theta]" if defined $theta; |
1395 | ||
66730be0 | 1396 | # |
1fa12f56 | 1397 | # Try to identify pi/n and friends. |
66730be0 RM |
1398 | # |
1399 | ||
1fa12f56 JH |
1400 | $t -= int(CORE::abs($t) / pit2) * pit2; |
1401 | ||
e97e26fa | 1402 | if ($format{polar_pretty_print} && $t) { |
1fa12f56 | 1403 | my ($a, $b); |
9bc5fa8d | 1404 | for $a (2..9) { |
1fa12f56 | 1405 | $b = $t * $a / pi; |
e97e26fa | 1406 | if ($b =~ /^-?\d+$/) { |
1fa12f56 JH |
1407 | $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; |
1408 | $theta = "${b}pi/$a"; | |
d09ae4e6 | 1409 | last; |
66730be0 | 1410 | } |
d09ae4e6 | 1411 | } |
66730be0 RM |
1412 | } |
1413 | ||
16357284 JH |
1414 | if (defined $format) { |
1415 | $r = sprintf($format, $r); | |
1fa12f56 JH |
1416 | $theta = sprintf($format, $theta) unless defined $theta; |
1417 | } else { | |
1418 | $theta = $t unless defined $theta; | |
16357284 JH |
1419 | } |
1420 | ||
1fa12f56 | 1421 | return "[$r,$theta]"; |
a0d0e21e | 1422 | } |
a5f75d66 AD |
1423 | |
1424 | 1; | |
1425 | __END__ | |
1426 | ||
1cf6bcb8 JH |
1427 | =pod |
1428 | ||
a5f75d66 AD |
1429 | =head1 NAME |
1430 | ||
66730be0 | 1431 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1432 | |
1433 | =head1 SYNOPSIS | |
1434 | ||
66730be0 | 1435 | use Math::Complex; |
fb73857a | 1436 | |
66730be0 RM |
1437 | $z = Math::Complex->make(5, 6); |
1438 | $t = 4 - 3*i + $z; | |
1439 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1440 | |
1441 | =head1 DESCRIPTION | |
1442 | ||
66730be0 RM |
1443 | This package lets you create and manipulate complex numbers. By default, |
1444 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1445 | full complex support, along with a full set of mathematical functions | |
1446 | typically associated with and/or extended to complex numbers. | |
1447 | ||
1448 | If you wonder what complex numbers are, they were invented to be able to solve | |
1449 | the following equation: | |
1450 | ||
1451 | x*x = -1 | |
1452 | ||
1453 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1454 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1455 | I<i> is a pure I<imaginary> number. | |
1456 | ||
1457 | The arithmetics with pure imaginary numbers works just like you would expect | |
1458 | it with real numbers... you just have to remember that | |
1459 | ||
1460 | i*i = -1 | |
1461 | ||
1462 | so you have: | |
1463 | ||
1464 | 5i + 7i = i * (5 + 7) = 12i | |
1465 | 4i - 3i = i * (4 - 3) = i | |
1466 | 4i * 2i = -8 | |
1467 | 6i / 2i = 3 | |
1468 | 1 / i = -i | |
1469 | ||
1470 | Complex numbers are numbers that have both a real part and an imaginary | |
1471 | part, and are usually noted: | |
1472 | ||
1473 | a + bi | |
1474 | ||
1475 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1476 | arithmetic with complex numbers is straightforward. You have to | |
1477 | keep track of the real and the imaginary parts, but otherwise the | |
1478 | rules used for real numbers just apply: | |
1479 | ||
1480 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1481 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1482 | ||
1483 | A graphical representation of complex numbers is possible in a plane | |
1484 | (also called the I<complex plane>, but it's really a 2D plane). | |
1485 | The number | |
1486 | ||
1487 | z = a + bi | |
1488 | ||
1489 | is the point whose coordinates are (a, b). Actually, it would | |
1490 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1491 | of two complex numbers is a vectorial addition. | |
1492 | ||
1493 | Since there is a bijection between a point in the 2D plane and a complex | |
1494 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1495 | can also be uniquely identified with polar coordinates: | |
1496 | ||
1497 | [rho, theta] | |
1498 | ||
1499 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1500 | the vector and the I<x> axis. There is a notation for this using the | |
1501 | exponential form, which is: | |
1502 | ||
1503 | rho * exp(i * theta) | |
1504 | ||
1505 | where I<i> is the famous imaginary number introduced above. Conversion | |
1506 | between this form and the cartesian form C<a + bi> is immediate: | |
1507 | ||
1508 | a = rho * cos(theta) | |
1509 | b = rho * sin(theta) | |
1510 | ||
1511 | which is also expressed by this formula: | |
1512 | ||
fb73857a | 1513 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1514 | |
1515 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1516 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1517 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1518 | noted C<abs(z)>. | |
1519 | ||
1520 | The polar notation (also known as the trigonometric | |
1521 | representation) is much more handy for performing multiplications and | |
1522 | divisions of complex numbers, whilst the cartesian notation is better | |
fb73857a | 1523 | suited for additions and subtractions. Real numbers are on the I<x> |
1524 | axis, and therefore I<theta> is zero or I<pi>. | |
66730be0 RM |
1525 | |
1526 | All the common operations that can be performed on a real number have | |
1527 | been defined to work on complex numbers as well, and are merely | |
1528 | I<extensions> of the operations defined on real numbers. This means | |
1529 | they keep their natural meaning when there is no imaginary part, provided | |
1530 | the number is within their definition set. | |
1531 | ||
1532 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1533 | its argument is only defined for non-negative real numbers and yields a |
1534 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1535 | If we allow it to return a complex number, then it can be extended to |
1536 | negative real numbers to become an application from B<R> to B<C> (the | |
1537 | set of complex numbers): | |
1538 | ||
1539 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1540 | ||
1541 | It can also be extended to be an application from B<C> to B<C>, | |
1542 | whilst its restriction to B<R> behaves as defined above by using | |
1543 | the following definition: | |
1544 | ||
1545 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1546 | ||
fb73857a | 1547 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1548 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1549 | number) and the above definition states that | |
66730be0 RM |
1550 | |
1551 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1552 | ||
1553 | which is exactly what we had defined for negative real numbers above. | |
b42d0ec9 JH |
1554 | The C<sqrt> returns only one of the solutions: if you want the both, |
1555 | use the C<root> function. | |
a5f75d66 | 1556 | |
66730be0 RM |
1557 | All the common mathematical functions defined on real numbers that |
1558 | are extended to complex numbers share that same property of working | |
1559 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1560 | be called an extension, would it?). | |
a5f75d66 | 1561 | |
66730be0 RM |
1562 | A I<new> operation possible on a complex number that is |
1563 | the identity for real numbers is called the I<conjugate>, and is noted | |
d1be9408 | 1564 | with a horizontal bar above the number, or C<~z> here. |
a5f75d66 | 1565 | |
66730be0 RM |
1566 | z = a + bi |
1567 | ~z = a - bi | |
a5f75d66 | 1568 | |
66730be0 | 1569 | Simple... Now look: |
a5f75d66 | 1570 | |
66730be0 | 1571 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1572 | |
66730be0 RM |
1573 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1574 | distance to the origin, also known as: | |
a5f75d66 | 1575 | |
66730be0 | 1576 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1577 | |
66730be0 RM |
1578 | so |
1579 | ||
1580 | z * ~z = abs(z) ** 2 | |
1581 | ||
1582 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1583 | ||
1584 | a * a = abs(a) ** 2 | |
1585 | ||
1586 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1587 | for the absolute value). This example explains why the norm of C<z> is | |
1588 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1589 | is the regular C<abs> we know when the complex number actually has no | |
1590 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1591 | notation for the norm. | |
1592 | ||
1593 | =head1 OPERATIONS | |
1594 | ||
1595 | Given the following notations: | |
1596 | ||
1597 | z1 = a + bi = r1 * exp(i * t1) | |
1598 | z2 = c + di = r2 * exp(i * t2) | |
1599 | z = <any complex or real number> | |
1600 | ||
1601 | the following (overloaded) operations are supported on complex numbers: | |
1602 | ||
1603 | z1 + z2 = (a + c) + i(b + d) | |
1604 | z1 - z2 = (a - c) + i(b - d) | |
1605 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1606 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1607 | z1 ** z2 = exp(z2 * log z1) | |
b42d0ec9 JH |
1608 | ~z = a - bi |
1609 | abs(z) = r1 = sqrt(a*a + b*b) | |
1610 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |
1611 | exp(z) = exp(a) * exp(i * b) | |
1612 | log(z) = log(r1) + i*t | |
1613 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
1614 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
66730be0 RM |
1615 | atan2(z1, z2) = atan(z1/z2) |
1616 | ||
1617 | The following extra operations are supported on both real and complex | |
1618 | numbers: | |
1619 | ||
1620 | Re(z) = a | |
1621 | Im(z) = b | |
1622 | arg(z) = t | |
b42d0ec9 | 1623 | abs(z) = r |
66730be0 RM |
1624 | |
1625 | cbrt(z) = z ** (1/3) | |
1626 | log10(z) = log(z) / log(10) | |
1627 | logn(z, n) = log(z) / log(n) | |
1628 | ||
1629 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1630 | |
5aabfad6 | 1631 | csc(z) = 1 / sin(z) |
1632 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1633 | cot(z) = 1 / tan(z) |
66730be0 RM |
1634 | |
1635 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1636 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1637 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1638 | |
5aabfad6 | 1639 | acsc(z) = asin(1 / z) |
1640 | asec(z) = acos(1 / z) | |
8c03c583 | 1641 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1642 | |
1643 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1644 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1645 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1646 | ||
5aabfad6 | 1647 | csch(z) = 1 / sinh(z) |
1648 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1649 | coth(z) = 1 / tanh(z) |
fb73857a | 1650 | |
66730be0 RM |
1651 | asinh(z) = log(z + sqrt(z*z+1)) |
1652 | acosh(z) = log(z + sqrt(z*z-1)) | |
1653 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1654 | |
5aabfad6 | 1655 | acsch(z) = asinh(1 / z) |
1656 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1657 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1658 | ||
b42d0ec9 JH |
1659 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, |
1660 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
1661 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
1662 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
d1be9408 | 1663 | C<rho>, and C<theta> can be used also as mutators. The C<cbrt> |
b42d0ec9 JH |
1664 | returns only one of the solutions: if you want all three, use the |
1665 | C<root> function. | |
0c721ce2 JH |
1666 | |
1667 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1668 | roots of some complex, where I<n> is a strictly positive integer. |
1669 | There are exactly I<n> such roots, returned as a list. Getting the | |
1670 | number mathematicians call C<j> such that: | |
1671 | ||
1672 | 1 + j + j*j = 0; | |
1673 | ||
1674 | is a simple matter of writing: | |
1675 | ||
1676 | $j = ((root(1, 3))[1]; | |
1677 | ||
1678 | The I<k>th root for C<z = [r,t]> is given by: | |
1679 | ||
1680 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1681 | ||
f4837644 JH |
1682 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1683 | order to ensure its restriction to real numbers is conform to what you | |
1684 | would expect, the comparison is run on the real part of the complex | |
1685 | number first, and imaginary parts are compared only when the real | |
1686 | parts match. | |
66730be0 RM |
1687 | |
1688 | =head1 CREATION | |
1689 | ||
1690 | To create a complex number, use either: | |
1691 | ||
1692 | $z = Math::Complex->make(3, 4); | |
1693 | $z = cplx(3, 4); | |
1694 | ||
1695 | if you know the cartesian form of the number, or | |
1696 | ||
1697 | $z = 3 + 4*i; | |
1698 | ||
fb73857a | 1699 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1700 | |
1701 | $z = Math::Complex->emake(5, pi/3); | |
1702 | $x = cplxe(5, pi/3); | |
1703 | ||
0c721ce2 | 1704 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1705 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1706 | notation for complex numbers in the polar form). | |
66730be0 RM |
1707 | |
1708 | It is possible to write: | |
1709 | ||
1710 | $x = cplxe(-3, pi/4); | |
1711 | ||
16357284 JH |
1712 | but that will be silently converted into C<[3,-3pi/4]>, since the |
1713 | modulus must be non-negative (it represents the distance to the origin | |
1714 | in the complex plane). | |
66730be0 | 1715 | |
b42d0ec9 JH |
1716 | It is also possible to have a complex number as either argument of |
1717 | either the C<make> or C<emake>: the appropriate component of | |
1718 | the argument will be used. | |
1719 | ||
1720 | $z1 = cplx(-2, 1); | |
1721 | $z2 = cplx($z1, 4); | |
1722 | ||
66730be0 RM |
1723 | =head1 STRINGIFICATION |
1724 | ||
1725 | When printed, a complex number is usually shown under its cartesian | |
16357284 | 1726 | style I<a+bi>, but there are legitimate cases where the polar style |
66730be0 RM |
1727 | I<[r,t]> is more appropriate. |
1728 | ||
16357284 JH |
1729 | By calling the class method C<Math::Complex::display_format> and |
1730 | supplying either C<"polar"> or C<"cartesian"> as an argument, you | |
5287f86b | 1731 | override the default display style, which is C<"cartesian">. Not |
16357284 | 1732 | supplying any argument returns the current settings. |
66730be0 RM |
1733 | |
1734 | This default can be overridden on a per-number basis by calling the | |
1735 | C<display_format> method instead. As before, not supplying any argument | |
5287f86b JH |
1736 | returns the current display style for this number. Otherwise whatever you |
1737 | specify will be the new display style for I<this> particular number. | |
66730be0 RM |
1738 | |
1739 | For instance: | |
1740 | ||
1741 | use Math::Complex; | |
1742 | ||
1743 | Math::Complex::display_format('polar'); | |
16357284 JH |
1744 | $j = (root(1, 3))[1]; |
1745 | print "j = $j\n"; # Prints "j = [1,2pi/3]" | |
66730be0 RM |
1746 | $j->display_format('cartesian'); |
1747 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1748 | ||
5287f86b | 1749 | The polar style attempts to emphasize arguments like I<k*pi/n> |
9bc5fa8d | 1750 | (where I<n> is a positive integer and I<k> an integer within [-9, +9]), |
5287f86b | 1751 | this is called I<polar pretty-printing>. |
66730be0 | 1752 | |
16357284 JH |
1753 | =head2 CHANGED IN PERL 5.6 |
1754 | ||
1755 | The C<display_format> class method and the corresponding | |
1756 | C<display_format> object method can now be called using | |
1757 | a parameter hash instead of just a one parameter. | |
1758 | ||
1759 | The old display format style, which can have values C<"cartesian"> or | |
40b904b7 JH |
1760 | C<"polar">, can be changed using the C<"style"> parameter. |
1761 | ||
1762 | $j->display_format(style => "polar"); | |
1763 | ||
1764 | The one parameter calling convention also still works. | |
1765 | ||
1766 | $j->display_format("polar"); | |
16357284 JH |
1767 | |
1768 | There are two new display parameters. | |
1769 | ||
40b904b7 JH |
1770 | The first one is C<"format">, which is a sprintf()-style format string |
1771 | to be used for both numeric parts of the complex number(s). The is | |
1772 | somewhat system-dependent but most often it corresponds to C<"%.15g">. | |
1773 | You can revert to the default by setting the C<format> to C<undef>. | |
16357284 JH |
1774 | |
1775 | # the $j from the above example | |
1776 | ||
1777 | $j->display_format('format' => '%.5f'); | |
1778 | print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |
40b904b7 | 1779 | $j->display_format('format' => undef); |
16357284 JH |
1780 | print "j = $j\n"; # Prints "j = -0.5+0.86603i" |
1781 | ||
1782 | Notice that this affects also the return values of the | |
1783 | C<display_format> methods: in list context the whole parameter hash | |
40b904b7 JH |
1784 | will be returned, as opposed to only the style parameter value. |
1785 | This is a potential incompatibility with earlier versions if you | |
1786 | have been calling the C<display_format> method in list context. | |
16357284 | 1787 | |
5287f86b JH |
1788 | The second new display parameter is C<"polar_pretty_print">, which can |
1789 | be set to true or false, the default being true. See the previous | |
1790 | section for what this means. | |
16357284 | 1791 | |
66730be0 RM |
1792 | =head1 USAGE |
1793 | ||
1794 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1795 | is simple and almost transparent. | |
1796 | ||
1797 | Here are some examples: | |
1798 | ||
1799 | use Math::Complex; | |
1800 | ||
1801 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1802 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1803 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1804 | ||
1805 | $z = -16 + 0*i; # Force it to be a complex | |
1806 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1807 | ||
1808 | $k = exp(i * 2*pi/3); | |
1809 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1810 | |
b42d0ec9 JH |
1811 | $z->Re(3); # Re, Im, arg, abs, |
1812 | $j->arg(2); # (the last two aka rho, theta) | |
1813 | # can be used also as mutators. | |
1814 | ||
1815 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |
5aabfad6 | 1816 | |
1817 | The division (/) and the following functions | |
1818 | ||
b42d0ec9 | 1819 | log ln log10 logn |
2820d885 | 1820 | tan sec csc cot |
b42d0ec9 JH |
1821 | atan asec acsc acot |
1822 | tanh sech csch coth | |
1823 | atanh asech acsch acoth | |
5aabfad6 | 1824 | |
1825 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1826 | by zero or taking logarithm of zero. These situations cause fatal |
1827 | runtime errors looking like this | |
5aabfad6 | 1828 | |
1829 | cot(0): Division by zero. | |
5cd24f17 | 1830 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1831 | Died at ... |
1832 | ||
8c03c583 JH |
1833 | or |
1834 | ||
1835 | atanh(-1): Logarithm of zero. | |
1836 | Died at... | |
1837 | ||
1838 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
d1be9408 | 1839 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the |
b42d0ec9 JH |
1840 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot |
1841 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
1842 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
1843 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
1844 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
1845 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
1846 | is any integer. | |
1847 | ||
1848 | Note that because we are operating on approximations of real numbers, | |
1849 | these errors can happen when merely `too close' to the singularities | |
40b904b7 | 1850 | listed above. |
b42d0ec9 JH |
1851 | |
1852 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
1853 | ||
1854 | The C<make> and C<emake> accept both real and complex arguments. | |
1855 | When they cannot recognize the arguments they will die with error | |
1856 | messages like the following | |
1857 | ||
1858 | Math::Complex::make: Cannot take real part of ... | |
1859 | Math::Complex::make: Cannot take real part of ... | |
1860 | Math::Complex::emake: Cannot take rho of ... | |
1861 | Math::Complex::emake: Cannot take theta of ... | |
5cd24f17 | 1862 | |
a5f75d66 AD |
1863 | =head1 BUGS |
1864 | ||
5cd24f17 | 1865 | Saying C<use Math::Complex;> exports many mathematical routines in the |
fb73857a | 1866 | caller environment and even overrides some (C<sqrt>, C<log>). |
1867 | This is construed as a feature by the Authors, actually... ;-) | |
a5f75d66 | 1868 | |
66730be0 RM |
1869 | All routines expect to be given real or complex numbers. Don't attempt to |
1870 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1871 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1872 | |
d09ae4e6 JH |
1873 | In Cray UNICOS there is some strange numerical instability that results |
1874 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
1875 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
1876 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
1877 | ||
0c721ce2 | 1878 | =head1 AUTHORS |
a5f75d66 | 1879 | |
6e238990 | 1880 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and |
ace5de91 | 1881 | Jarkko Hietaniemi <F<jhi@iki.fi>>. |
5cd24f17 | 1882 | |
fb73857a | 1883 | Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. |
1884 | ||
5cd24f17 | 1885 | =cut |
1886 | ||
b42d0ec9 JH |
1887 | 1; |
1888 | ||
5cd24f17 | 1889 | # eof |