Commit | Line | Data |
---|---|---|
5aabfad6 | 1 | # |
2 | # Trigonometric functions, mostly inherited from Math::Complex. | |
d54bf66f | 3 | # -- Jarkko Hietaniemi, since April 1997 |
5cd24f17 | 4 | # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex) |
5aabfad6 | 5 | # |
6 | ||
7 | require Exporter; | |
8 | package Math::Trig; | |
9 | ||
10 | use strict; | |
11 | ||
12 | use Math::Complex qw(:trig); | |
13 | ||
14 | use vars qw($VERSION $PACKAGE | |
15 | @ISA | |
d54bf66f | 16 | @EXPORT @EXPORT_OK %EXPORT_TAGS); |
5aabfad6 | 17 | |
18 | @ISA = qw(Exporter); | |
19 | ||
20 | $VERSION = 1.00; | |
21 | ||
ace5de91 GS |
22 | my @angcnv = qw(rad2deg rad2grad |
23 | deg2rad deg2grad | |
24 | grad2rad grad2deg); | |
5aabfad6 | 25 | |
26 | @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}}, | |
27 | @angcnv); | |
28 | ||
d54bf66f JH |
29 | my @rdlcnv = qw(cartesian_to_cylindrical |
30 | cartesian_to_spherical | |
31 | cylindrical_to_cartesian | |
32 | cylindrical_to_spherical | |
33 | spherical_to_cartesian | |
34 | spherical_to_cylindrical); | |
35 | ||
36 | @EXPORT_OK = (@rdlcnv, 'great_circle_distance'); | |
37 | ||
38 | %EXPORT_TAGS = ('radial' => [ @rdlcnv ]); | |
39 | ||
40 | use constant pi2 => 2 * pi; | |
41 | use constant pip2 => pi / 2; | |
42 | use constant DR => pi2/360; | |
43 | use constant RD => 360/pi2; | |
44 | use constant DG => 400/360; | |
45 | use constant GD => 360/400; | |
46 | use constant RG => 400/pi2; | |
47 | use constant GR => pi2/400; | |
5aabfad6 | 48 | |
49 | # | |
50 | # Truncating remainder. | |
51 | # | |
52 | ||
53 | sub remt ($$) { | |
54 | # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available. | |
55 | $_[0] - $_[1] * int($_[0] / $_[1]); | |
56 | } | |
57 | ||
58 | # | |
59 | # Angle conversions. | |
60 | # | |
61 | ||
ace5de91 | 62 | sub rad2deg ($) { remt(RD * $_[0], 360) } |
5aabfad6 | 63 | |
ace5de91 | 64 | sub deg2rad ($) { remt(DR * $_[0], pi2) } |
5aabfad6 | 65 | |
ace5de91 | 66 | sub grad2deg ($) { remt(GD * $_[0], 360) } |
5aabfad6 | 67 | |
ace5de91 | 68 | sub deg2grad ($) { remt(DG * $_[0], 400) } |
5aabfad6 | 69 | |
ace5de91 | 70 | sub rad2grad ($) { remt(RG * $_[0], 400) } |
5aabfad6 | 71 | |
ace5de91 | 72 | sub grad2rad ($) { remt(GR * $_[0], pi2) } |
5aabfad6 | 73 | |
d54bf66f JH |
74 | sub cartesian_to_spherical { |
75 | my ( $x, $y, $z ) = @_; | |
76 | ||
77 | my $rho = sqrt( $x * $x + $y * $y + $z * $z ); | |
78 | ||
79 | return ( $rho, | |
80 | atan2( $y, $x ), | |
81 | $rho ? acos( $z / $rho ) : 0 ); | |
82 | } | |
83 | ||
84 | sub spherical_to_cartesian { | |
85 | my ( $rho, $theta, $phi ) = @_; | |
86 | ||
87 | return ( $rho * cos( $theta ) * sin( $phi ), | |
88 | $rho * sin( $theta ) * sin( $phi ), | |
89 | $rho * cos( $phi ) ); | |
90 | } | |
91 | ||
92 | sub spherical_to_cylindrical { | |
93 | my ( $x, $y, $z ) = spherical_to_cartesian( @_ ); | |
94 | ||
95 | return ( sqrt( $x * $x + $y * $y ), $_[1], $z ); | |
96 | } | |
97 | ||
98 | sub cartesian_to_cylindrical { | |
99 | my ( $x, $y, $z ) = @_; | |
100 | ||
101 | return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z ); | |
102 | } | |
103 | ||
104 | sub cylindrical_to_cartesian { | |
105 | my ( $rho, $theta, $z ) = @_; | |
106 | ||
107 | return ( $rho * cos( $theta ), $rho * sin( $theta ), $z ); | |
108 | } | |
109 | ||
110 | sub cylindrical_to_spherical { | |
111 | return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) ); | |
112 | } | |
113 | ||
114 | sub great_circle_distance { | |
115 | my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_; | |
116 | ||
117 | $rho = 1 unless defined $rho; # Default to the unit sphere. | |
118 | ||
119 | my $lat0 = pip2 - $phi0; | |
120 | my $lat1 = pip2 - $phi1; | |
121 | ||
122 | return $rho * | |
123 | acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) + | |
124 | sin( $lat0 ) * sin( $lat1 ) ); | |
125 | } | |
126 | ||
127 | =pod | |
128 | ||
5aabfad6 | 129 | =head1 NAME |
130 | ||
131 | Math::Trig - trigonometric functions | |
132 | ||
133 | =head1 SYNOPSIS | |
134 | ||
135 | use Math::Trig; | |
136 | ||
137 | $x = tan(0.9); | |
138 | $y = acos(3.7); | |
139 | $z = asin(2.4); | |
140 | ||
141 | $halfpi = pi/2; | |
142 | ||
ace5de91 | 143 | $rad = deg2rad(120); |
5aabfad6 | 144 | |
145 | =head1 DESCRIPTION | |
146 | ||
147 | C<Math::Trig> defines many trigonometric functions not defined by the | |
4ae80833 | 148 | core Perl which defines only the C<sin()> and C<cos()>. The constant |
5aabfad6 | 149 | B<pi> is also defined as are a few convenience functions for angle |
150 | conversions. | |
151 | ||
152 | =head1 TRIGONOMETRIC FUNCTIONS | |
153 | ||
154 | The tangent | |
155 | ||
d54bf66f JH |
156 | =over 4 |
157 | ||
158 | =item B<tan> | |
159 | ||
160 | =back | |
5aabfad6 | 161 | |
162 | The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot | |
163 | are aliases) | |
164 | ||
d54bf66f | 165 | B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan> |
5aabfad6 | 166 | |
167 | The arcus (also known as the inverse) functions of the sine, cosine, | |
168 | and tangent | |
169 | ||
d54bf66f | 170 | B<asin>, B<acos>, B<atan> |
5aabfad6 | 171 | |
172 | The principal value of the arc tangent of y/x | |
173 | ||
d54bf66f | 174 | B<atan2>(y, x) |
5aabfad6 | 175 | |
176 | The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc | |
177 | and acotan/acot are aliases) | |
178 | ||
d54bf66f | 179 | B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan> |
5aabfad6 | 180 | |
181 | The hyperbolic sine, cosine, and tangent | |
182 | ||
d54bf66f | 183 | B<sinh>, B<cosh>, B<tanh> |
5aabfad6 | 184 | |
185 | The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch | |
186 | and cotanh/coth are aliases) | |
187 | ||
d54bf66f | 188 | B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh> |
5aabfad6 | 189 | |
190 | The arcus (also known as the inverse) functions of the hyperbolic | |
191 | sine, cosine, and tangent | |
192 | ||
d54bf66f | 193 | B<asinh>, B<acosh>, B<atanh> |
5aabfad6 | 194 | |
195 | The arcus cofunctions of the hyperbolic sine, cosine, and tangent | |
196 | (acsch/acosech and acoth/acotanh are aliases) | |
197 | ||
d54bf66f | 198 | B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh> |
5aabfad6 | 199 | |
200 | The trigonometric constant B<pi> is also defined. | |
201 | ||
d54bf66f | 202 | $pi2 = 2 * B<pi>; |
5aabfad6 | 203 | |
5cd24f17 | 204 | =head2 ERRORS DUE TO DIVISION BY ZERO |
205 | ||
206 | The following functions | |
207 | ||
d54bf66f | 208 | acoth |
5cd24f17 | 209 | acsc |
5cd24f17 | 210 | acsch |
d54bf66f JH |
211 | asec |
212 | asech | |
213 | atanh | |
214 | cot | |
215 | coth | |
216 | csc | |
217 | csch | |
218 | sec | |
219 | sech | |
220 | tan | |
221 | tanh | |
5cd24f17 | 222 | |
223 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
224 | by zero or taking logarithm of zero. These situations cause fatal |
225 | runtime errors looking like this | |
5cd24f17 | 226 | |
227 | cot(0): Division by zero. | |
228 | (Because in the definition of cot(0), the divisor sin(0) is 0) | |
229 | Died at ... | |
230 | ||
8c03c583 JH |
231 | or |
232 | ||
233 | atanh(-1): Logarithm of zero. | |
234 | Died at... | |
235 | ||
236 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
237 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |
238 | C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the | |
239 | C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the | |
240 | C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * | |
241 | pi>, where I<k> is any integer. | |
5cd24f17 | 242 | |
243 | =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS | |
5aabfad6 | 244 | |
245 | Please note that some of the trigonometric functions can break out | |
246 | from the B<real axis> into the B<complex plane>. For example | |
247 | C<asin(2)> has no definition for plain real numbers but it has | |
248 | definition for complex numbers. | |
249 | ||
250 | In Perl terms this means that supplying the usual Perl numbers (also | |
251 | known as scalars, please see L<perldata>) as input for the | |
252 | trigonometric functions might produce as output results that no more | |
253 | are simple real numbers: instead they are complex numbers. | |
254 | ||
255 | The C<Math::Trig> handles this by using the C<Math::Complex> package | |
256 | which knows how to handle complex numbers, please see L<Math::Complex> | |
257 | for more information. In practice you need not to worry about getting | |
258 | complex numbers as results because the C<Math::Complex> takes care of | |
259 | details like for example how to display complex numbers. For example: | |
260 | ||
261 | print asin(2), "\n"; | |
262 | ||
263 | should produce something like this (take or leave few last decimals): | |
264 | ||
265 | 1.5707963267949-1.31695789692482i | |
266 | ||
5cd24f17 | 267 | That is, a complex number with the real part of approximately C<1.571> |
268 | and the imaginary part of approximately C<-1.317>. | |
5aabfad6 | 269 | |
d54bf66f | 270 | =head1 PLANE ANGLE CONVERSIONS |
5aabfad6 | 271 | |
272 | (Plane, 2-dimensional) angles may be converted with the following functions. | |
273 | ||
ace5de91 GS |
274 | $radians = deg2rad($degrees); |
275 | $radians = grad2rad($gradians); | |
5aabfad6 | 276 | |
ace5de91 GS |
277 | $degrees = rad2deg($radians); |
278 | $degrees = grad2deg($gradians); | |
5aabfad6 | 279 | |
ace5de91 GS |
280 | $gradians = deg2grad($degrees); |
281 | $gradians = rad2grad($radians); | |
5aabfad6 | 282 | |
5cd24f17 | 283 | The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians. |
5aabfad6 | 284 | |
d54bf66f JH |
285 | =head1 RADIAL COORDINATE CONVERSIONS |
286 | ||
287 | B<Radial coordinate systems> are the B<spherical> and the B<cylindrical> | |
288 | systems, explained shortly in more detail. | |
289 | ||
290 | You can import radial coordinate conversion functions by using the | |
291 | C<:radial> tag: | |
292 | ||
293 | use Math::Trig ':radial'; | |
294 | ||
295 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
296 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
297 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
298 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
299 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
300 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
301 | ||
302 | B<All angles are in radians>. | |
303 | ||
304 | =head2 COORDINATE SYSTEMS | |
305 | ||
306 | B<Cartesian> coordinates are the usual rectangular I<(x, y, | |
307 | z)>-coordinates. | |
308 | ||
309 | Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional | |
310 | coordinates which define a point in three-dimensional space. They are | |
311 | based on a sphere surface. The radius of the sphere is B<rho>, also | |
312 | known as the I<radial> coordinate. The angle in the I<xy>-plane | |
313 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
314 | coordinate. The angle from the I<z>-axis is B<phi>, also known as the | |
315 | I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and | |
316 | the `Bay of Guinea' (think of the missing big chunk of Africa) I<0, | |
317 | pi/2, rho>. | |
318 | ||
319 | B<Beware>: some texts define I<theta> and I<phi> the other way round, | |
320 | some texts define the I<phi> to start from the horizontal plane, some | |
321 | texts use I<r> in place of I<rho>. | |
322 | ||
323 | Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional | |
324 | coordinates which define a point in three-dimensional space. They are | |
325 | based on a cylinder surface. The radius of the cylinder is B<rho>, | |
326 | also known as the I<radial> coordinate. The angle in the I<xy>-plane | |
327 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal> | |
328 | coordinate. The third coordinate is the I<z>, pointing up from the | |
329 | B<theta>-plane. | |
330 | ||
331 | =head2 3-D ANGLE CONVERSIONS | |
332 | ||
333 | Conversions to and from spherical and cylindrical coordinates are | |
334 | available. Please notice that the conversions are not necessarily | |
335 | reversible because of the equalities like I<pi> angles being equal to | |
336 | I<-pi> angles. | |
337 | ||
338 | =over 4 | |
339 | ||
340 | =item cartesian_to_cylindrical | |
341 | ||
342 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); | |
343 | ||
344 | =item cartesian_to_spherical | |
345 | ||
346 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); | |
347 | ||
348 | =item cylindrical_to_cartesian | |
349 | ||
350 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); | |
351 | ||
352 | =item cylindrical_to_spherical | |
353 | ||
354 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); | |
355 | ||
356 | Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>. | |
357 | ||
358 | =item spherical_to_cartesian | |
359 | ||
360 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); | |
361 | ||
362 | =item spherical_to_cylindrical | |
363 | ||
364 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); | |
365 | ||
366 | Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>. | |
367 | ||
368 | =back | |
369 | ||
370 | =head1 GREAT CIRCLE DISTANCES | |
371 | ||
372 | You can compute spherical distances, called B<great circle distances>, | |
373 | by importing the C<great_circle_distance> function: | |
374 | ||
375 | use Math::Trig 'great_circle_distance' | |
376 | ||
377 | $distance = great_circle_distance($theta0, $phi0, $theta1, $phi, [, $rho]); | |
378 | ||
379 | The I<great circle distance> is the shortest distance between two | |
380 | points on a sphere. The distance is in C<$rho> units. The C<$rho> is | |
381 | optional, it defaults to 1 (the unit sphere), therefore the distance | |
382 | defaults to radians. | |
383 | ||
51301382 | 384 | =head1 EXAMPLES |
d54bf66f JH |
385 | |
386 | To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N | |
387 | 139.8E) in kilometers: | |
388 | ||
389 | use Math::Trig qw(great_circle_distance deg2rad); | |
390 | ||
391 | # Notice the 90 - latitude: phi zero is at the North Pole. | |
392 | @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); | |
393 | @T = (deg2rad(139.8),deg2rad(90 - 35.7)); | |
394 | ||
395 | $km = great_circle_distance(@L, @T, 6378); | |
396 | ||
397 | The answer may be off by up to 0.3% because of the irregular (slightly | |
398 | aspherical) form of the Earth. | |
399 | ||
5cd24f17 | 400 | =head1 BUGS |
5aabfad6 | 401 | |
5cd24f17 | 402 | Saying C<use Math::Trig;> exports many mathematical routines in the |
403 | caller environment and even overrides some (C<sin>, C<cos>). This is | |
404 | construed as a feature by the Authors, actually... ;-) | |
5aabfad6 | 405 | |
5cd24f17 | 406 | The code is not optimized for speed, especially because we use |
407 | C<Math::Complex> and thus go quite near complex numbers while doing | |
408 | the computations even when the arguments are not. This, however, | |
409 | cannot be completely avoided if we want things like C<asin(2)> to give | |
410 | an answer instead of giving a fatal runtime error. | |
5aabfad6 | 411 | |
5cd24f17 | 412 | =head1 AUTHORS |
5aabfad6 | 413 | |
ace5de91 GS |
414 | Jarkko Hietaniemi <F<jhi@iki.fi>> and |
415 | Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>>. | |
5aabfad6 | 416 | |
417 | =cut | |
418 | ||
419 | # eof |