Commit | Line | Data |
---|---|---|
a0d0e21e LW |
1 | =head1 NAME |
2 | ||
3 | perlguts - Perl's Internal Functions | |
4 | ||
5 | =head1 DESCRIPTION | |
6 | ||
7 | This document attempts to describe some of the internal functions of the | |
8 | Perl executable. It is far from complete and probably contains many errors. | |
9 | Please refer any questions or comments to the author below. | |
10 | ||
0a753a76 | 11 | =head1 Variables |
12 | ||
5f05dabc | 13 | =head2 Datatypes |
a0d0e21e LW |
14 | |
15 | Perl has three typedefs that handle Perl's three main data types: | |
16 | ||
17 | SV Scalar Value | |
18 | AV Array Value | |
19 | HV Hash Value | |
20 | ||
d1b91892 | 21 | Each typedef has specific routines that manipulate the various data types. |
a0d0e21e LW |
22 | |
23 | =head2 What is an "IV"? | |
24 | ||
5f05dabc | 25 | Perl uses a special typedef IV which is a simple integer type that is |
26 | guaranteed to be large enough to hold a pointer (as well as an integer). | |
a0d0e21e | 27 | |
d1b91892 AD |
28 | Perl also uses two special typedefs, I32 and I16, which will always be at |
29 | least 32-bits and 16-bits long, respectively. | |
a0d0e21e | 30 | |
54310121 | 31 | =head2 Working with SVs |
a0d0e21e LW |
32 | |
33 | An SV can be created and loaded with one command. There are four types of | |
34 | values that can be loaded: an integer value (IV), a double (NV), a string, | |
35 | (PV), and another scalar (SV). | |
36 | ||
9da1e3b5 | 37 | The six routines are: |
a0d0e21e LW |
38 | |
39 | SV* newSViv(IV); | |
40 | SV* newSVnv(double); | |
08105a92 GS |
41 | SV* newSVpv(const char*, int); |
42 | SV* newSVpvn(const char*, int); | |
46fc3d4c | 43 | SV* newSVpvf(const char*, ...); |
a0d0e21e LW |
44 | SV* newSVsv(SV*); |
45 | ||
deb3007b | 46 | To change the value of an *already-existing* SV, there are seven routines: |
a0d0e21e LW |
47 | |
48 | void sv_setiv(SV*, IV); | |
deb3007b | 49 | void sv_setuv(SV*, UV); |
a0d0e21e | 50 | void sv_setnv(SV*, double); |
08105a92 GS |
51 | void sv_setpv(SV*, const char*); |
52 | void sv_setpvn(SV*, const char*, int) | |
46fc3d4c | 53 | void sv_setpvf(SV*, const char*, ...); |
9abd00ed | 54 | void sv_setpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool); |
a0d0e21e LW |
55 | void sv_setsv(SV*, SV*); |
56 | ||
57 | Notice that you can choose to specify the length of the string to be | |
9da1e3b5 MUN |
58 | assigned by using C<sv_setpvn>, C<newSVpvn>, or C<newSVpv>, or you may |
59 | allow Perl to calculate the length by using C<sv_setpv> or by specifying | |
60 | 0 as the second argument to C<newSVpv>. Be warned, though, that Perl will | |
61 | determine the string's length by using C<strlen>, which depends on the | |
9abd00ed GS |
62 | string terminating with a NUL character. |
63 | ||
64 | The arguments of C<sv_setpvf> are processed like C<sprintf>, and the | |
65 | formatted output becomes the value. | |
66 | ||
67 | C<sv_setpvfn> is an analogue of C<vsprintf>, but it allows you to specify | |
68 | either a pointer to a variable argument list or the address and length of | |
69 | an array of SVs. The last argument points to a boolean; on return, if that | |
70 | boolean is true, then locale-specific information has been used to format | |
c2611fb3 | 71 | the string, and the string's contents are therefore untrustworthy (see |
9abd00ed GS |
72 | L<perlsec>). This pointer may be NULL if that information is not |
73 | important. Note that this function requires you to specify the length of | |
74 | the format. | |
75 | ||
9da1e3b5 MUN |
76 | The C<sv_set*()> functions are not generic enough to operate on values |
77 | that have "magic". See L<Magic Virtual Tables> later in this document. | |
a0d0e21e | 78 | |
a3cb178b GS |
79 | All SVs that contain strings should be terminated with a NUL character. |
80 | If it is not NUL-terminated there is a risk of | |
5f05dabc | 81 | core dumps and corruptions from code which passes the string to C |
82 | functions or system calls which expect a NUL-terminated string. | |
83 | Perl's own functions typically add a trailing NUL for this reason. | |
84 | Nevertheless, you should be very careful when you pass a string stored | |
85 | in an SV to a C function or system call. | |
86 | ||
a0d0e21e LW |
87 | To access the actual value that an SV points to, you can use the macros: |
88 | ||
89 | SvIV(SV*) | |
90 | SvNV(SV*) | |
91 | SvPV(SV*, STRLEN len) | |
1fa8b10d | 92 | SvPV_nolen(SV*) |
a0d0e21e LW |
93 | |
94 | which will automatically coerce the actual scalar type into an IV, double, | |
95 | or string. | |
96 | ||
97 | In the C<SvPV> macro, the length of the string returned is placed into the | |
1fa8b10d JD |
98 | variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do |
99 | not care what the length of the data is, use the C<SvPV_nolen> macro. | |
100 | Historically the C<SvPV> macro with the global variable C<PL_na> has been | |
101 | used in this case. But that can be quite inefficient because C<PL_na> must | |
102 | be accessed in thread-local storage in threaded Perl. In any case, remember | |
103 | that Perl allows arbitrary strings of data that may both contain NULs and | |
104 | might not be terminated by a NUL. | |
a0d0e21e | 105 | |
ce2f5d8f KA |
106 | Also remember that C doesn't allow you to safely say C<foo(SvPV(s, len), |
107 | len);>. It might work with your compiler, but it won't work for everyone. | |
108 | Break this sort of statement up into separate assignments: | |
109 | ||
110 | STRLEN len; | |
111 | char * ptr; | |
112 | ptr = SvPV(len); | |
113 | foo(ptr, len); | |
114 | ||
07fa94a1 | 115 | If you want to know if the scalar value is TRUE, you can use: |
a0d0e21e LW |
116 | |
117 | SvTRUE(SV*) | |
118 | ||
119 | Although Perl will automatically grow strings for you, if you need to force | |
120 | Perl to allocate more memory for your SV, you can use the macro | |
121 | ||
122 | SvGROW(SV*, STRLEN newlen) | |
123 | ||
124 | which will determine if more memory needs to be allocated. If so, it will | |
125 | call the function C<sv_grow>. Note that C<SvGROW> can only increase, not | |
5f05dabc | 126 | decrease, the allocated memory of an SV and that it does not automatically |
127 | add a byte for the a trailing NUL (perl's own string functions typically do | |
8ebc5c01 | 128 | C<SvGROW(sv, len + 1)>). |
a0d0e21e LW |
129 | |
130 | If you have an SV and want to know what kind of data Perl thinks is stored | |
131 | in it, you can use the following macros to check the type of SV you have. | |
132 | ||
133 | SvIOK(SV*) | |
134 | SvNOK(SV*) | |
135 | SvPOK(SV*) | |
136 | ||
137 | You can get and set the current length of the string stored in an SV with | |
138 | the following macros: | |
139 | ||
140 | SvCUR(SV*) | |
141 | SvCUR_set(SV*, I32 val) | |
142 | ||
cb1a09d0 AD |
143 | You can also get a pointer to the end of the string stored in the SV |
144 | with the macro: | |
145 | ||
146 | SvEND(SV*) | |
147 | ||
148 | But note that these last three macros are valid only if C<SvPOK()> is true. | |
a0d0e21e | 149 | |
d1b91892 AD |
150 | If you want to append something to the end of string stored in an C<SV*>, |
151 | you can use the following functions: | |
152 | ||
08105a92 | 153 | void sv_catpv(SV*, const char*); |
e65f3abd | 154 | void sv_catpvn(SV*, const char*, STRLEN); |
46fc3d4c | 155 | void sv_catpvf(SV*, const char*, ...); |
9abd00ed | 156 | void sv_catpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool); |
d1b91892 AD |
157 | void sv_catsv(SV*, SV*); |
158 | ||
159 | The first function calculates the length of the string to be appended by | |
160 | using C<strlen>. In the second, you specify the length of the string | |
46fc3d4c | 161 | yourself. The third function processes its arguments like C<sprintf> and |
9abd00ed GS |
162 | appends the formatted output. The fourth function works like C<vsprintf>. |
163 | You can specify the address and length of an array of SVs instead of the | |
164 | va_list argument. The fifth function extends the string stored in the first | |
165 | SV with the string stored in the second SV. It also forces the second SV | |
166 | to be interpreted as a string. | |
167 | ||
168 | The C<sv_cat*()> functions are not generic enough to operate on values that | |
169 | have "magic". See L<Magic Virtual Tables> later in this document. | |
d1b91892 | 170 | |
a0d0e21e LW |
171 | If you know the name of a scalar variable, you can get a pointer to its SV |
172 | by using the following: | |
173 | ||
5f05dabc | 174 | SV* perl_get_sv("package::varname", FALSE); |
a0d0e21e LW |
175 | |
176 | This returns NULL if the variable does not exist. | |
177 | ||
d1b91892 | 178 | If you want to know if this variable (or any other SV) is actually C<defined>, |
a0d0e21e LW |
179 | you can call: |
180 | ||
181 | SvOK(SV*) | |
182 | ||
9cde0e7f | 183 | The scalar C<undef> value is stored in an SV instance called C<PL_sv_undef>. Its |
a0d0e21e LW |
184 | address can be used whenever an C<SV*> is needed. |
185 | ||
9cde0e7f GS |
186 | There are also the two values C<PL_sv_yes> and C<PL_sv_no>, which contain Boolean |
187 | TRUE and FALSE values, respectively. Like C<PL_sv_undef>, their addresses can | |
a0d0e21e LW |
188 | be used whenever an C<SV*> is needed. |
189 | ||
9cde0e7f | 190 | Do not be fooled into thinking that C<(SV *) 0> is the same as C<&PL_sv_undef>. |
a0d0e21e LW |
191 | Take this code: |
192 | ||
193 | SV* sv = (SV*) 0; | |
194 | if (I-am-to-return-a-real-value) { | |
195 | sv = sv_2mortal(newSViv(42)); | |
196 | } | |
197 | sv_setsv(ST(0), sv); | |
198 | ||
199 | This code tries to return a new SV (which contains the value 42) if it should | |
04343c6d | 200 | return a real value, or undef otherwise. Instead it has returned a NULL |
a0d0e21e | 201 | pointer which, somewhere down the line, will cause a segmentation violation, |
9cde0e7f | 202 | bus error, or just weird results. Change the zero to C<&PL_sv_undef> in the first |
5f05dabc | 203 | line and all will be well. |
a0d0e21e LW |
204 | |
205 | To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this | |
3fe9a6f1 | 206 | call is not necessary (see L<Reference Counts and Mortality>). |
a0d0e21e | 207 | |
d1b91892 | 208 | =head2 What's Really Stored in an SV? |
a0d0e21e LW |
209 | |
210 | Recall that the usual method of determining the type of scalar you have is | |
5f05dabc | 211 | to use C<Sv*OK> macros. Because a scalar can be both a number and a string, |
d1b91892 | 212 | usually these macros will always return TRUE and calling the C<Sv*V> |
a0d0e21e LW |
213 | macros will do the appropriate conversion of string to integer/double or |
214 | integer/double to string. | |
215 | ||
216 | If you I<really> need to know if you have an integer, double, or string | |
217 | pointer in an SV, you can use the following three macros instead: | |
218 | ||
219 | SvIOKp(SV*) | |
220 | SvNOKp(SV*) | |
221 | SvPOKp(SV*) | |
222 | ||
223 | These will tell you if you truly have an integer, double, or string pointer | |
d1b91892 | 224 | stored in your SV. The "p" stands for private. |
a0d0e21e | 225 | |
07fa94a1 | 226 | In general, though, it's best to use the C<Sv*V> macros. |
a0d0e21e | 227 | |
54310121 | 228 | =head2 Working with AVs |
a0d0e21e | 229 | |
07fa94a1 JO |
230 | There are two ways to create and load an AV. The first method creates an |
231 | empty AV: | |
a0d0e21e LW |
232 | |
233 | AV* newAV(); | |
234 | ||
54310121 | 235 | The second method both creates the AV and initially populates it with SVs: |
a0d0e21e LW |
236 | |
237 | AV* av_make(I32 num, SV **ptr); | |
238 | ||
5f05dabc | 239 | The second argument points to an array containing C<num> C<SV*>'s. Once the |
54310121 | 240 | AV has been created, the SVs can be destroyed, if so desired. |
a0d0e21e | 241 | |
54310121 | 242 | Once the AV has been created, the following operations are possible on AVs: |
a0d0e21e LW |
243 | |
244 | void av_push(AV*, SV*); | |
245 | SV* av_pop(AV*); | |
246 | SV* av_shift(AV*); | |
247 | void av_unshift(AV*, I32 num); | |
248 | ||
249 | These should be familiar operations, with the exception of C<av_unshift>. | |
250 | This routine adds C<num> elements at the front of the array with the C<undef> | |
251 | value. You must then use C<av_store> (described below) to assign values | |
252 | to these new elements. | |
253 | ||
254 | Here are some other functions: | |
255 | ||
5f05dabc | 256 | I32 av_len(AV*); |
a0d0e21e | 257 | SV** av_fetch(AV*, I32 key, I32 lval); |
a0d0e21e | 258 | SV** av_store(AV*, I32 key, SV* val); |
a0d0e21e | 259 | |
5f05dabc | 260 | The C<av_len> function returns the highest index value in array (just |
261 | like $#array in Perl). If the array is empty, -1 is returned. The | |
262 | C<av_fetch> function returns the value at index C<key>, but if C<lval> | |
263 | is non-zero, then C<av_fetch> will store an undef value at that index. | |
04343c6d GS |
264 | The C<av_store> function stores the value C<val> at index C<key>, and does |
265 | not increment the reference count of C<val>. Thus the caller is responsible | |
266 | for taking care of that, and if C<av_store> returns NULL, the caller will | |
267 | have to decrement the reference count to avoid a memory leak. Note that | |
268 | C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their | |
269 | return value. | |
d1b91892 | 270 | |
a0d0e21e | 271 | void av_clear(AV*); |
a0d0e21e | 272 | void av_undef(AV*); |
cb1a09d0 | 273 | void av_extend(AV*, I32 key); |
5f05dabc | 274 | |
275 | The C<av_clear> function deletes all the elements in the AV* array, but | |
276 | does not actually delete the array itself. The C<av_undef> function will | |
277 | delete all the elements in the array plus the array itself. The | |
adc882cf GS |
278 | C<av_extend> function extends the array so that it contains at least C<key+1> |
279 | elements. If C<key+1> is less than the currently allocated length of the array, | |
280 | then nothing is done. | |
a0d0e21e LW |
281 | |
282 | If you know the name of an array variable, you can get a pointer to its AV | |
283 | by using the following: | |
284 | ||
5f05dabc | 285 | AV* perl_get_av("package::varname", FALSE); |
a0d0e21e LW |
286 | |
287 | This returns NULL if the variable does not exist. | |
288 | ||
04343c6d GS |
289 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
290 | information on how to use the array access functions on tied arrays. | |
291 | ||
54310121 | 292 | =head2 Working with HVs |
a0d0e21e LW |
293 | |
294 | To create an HV, you use the following routine: | |
295 | ||
296 | HV* newHV(); | |
297 | ||
54310121 | 298 | Once the HV has been created, the following operations are possible on HVs: |
a0d0e21e | 299 | |
08105a92 GS |
300 | SV** hv_store(HV*, const char* key, U32 klen, SV* val, U32 hash); |
301 | SV** hv_fetch(HV*, const char* key, U32 klen, I32 lval); | |
a0d0e21e | 302 | |
5f05dabc | 303 | The C<klen> parameter is the length of the key being passed in (Note that |
304 | you cannot pass 0 in as a value of C<klen> to tell Perl to measure the | |
305 | length of the key). The C<val> argument contains the SV pointer to the | |
54310121 | 306 | scalar being stored, and C<hash> is the precomputed hash value (zero if |
5f05dabc | 307 | you want C<hv_store> to calculate it for you). The C<lval> parameter |
308 | indicates whether this fetch is actually a part of a store operation, in | |
309 | which case a new undefined value will be added to the HV with the supplied | |
310 | key and C<hv_fetch> will return as if the value had already existed. | |
a0d0e21e | 311 | |
5f05dabc | 312 | Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just |
313 | C<SV*>. To access the scalar value, you must first dereference the return | |
314 | value. However, you should check to make sure that the return value is | |
315 | not NULL before dereferencing it. | |
a0d0e21e LW |
316 | |
317 | These two functions check if a hash table entry exists, and deletes it. | |
318 | ||
08105a92 GS |
319 | bool hv_exists(HV*, const char* key, U32 klen); |
320 | SV* hv_delete(HV*, const char* key, U32 klen, I32 flags); | |
a0d0e21e | 321 | |
5f05dabc | 322 | If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will |
323 | create and return a mortal copy of the deleted value. | |
324 | ||
a0d0e21e LW |
325 | And more miscellaneous functions: |
326 | ||
327 | void hv_clear(HV*); | |
a0d0e21e | 328 | void hv_undef(HV*); |
5f05dabc | 329 | |
330 | Like their AV counterparts, C<hv_clear> deletes all the entries in the hash | |
331 | table but does not actually delete the hash table. The C<hv_undef> deletes | |
332 | both the entries and the hash table itself. | |
a0d0e21e | 333 | |
d1b91892 AD |
334 | Perl keeps the actual data in linked list of structures with a typedef of HE. |
335 | These contain the actual key and value pointers (plus extra administrative | |
336 | overhead). The key is a string pointer; the value is an C<SV*>. However, | |
337 | once you have an C<HE*>, to get the actual key and value, use the routines | |
338 | specified below. | |
339 | ||
a0d0e21e LW |
340 | I32 hv_iterinit(HV*); |
341 | /* Prepares starting point to traverse hash table */ | |
342 | HE* hv_iternext(HV*); | |
343 | /* Get the next entry, and return a pointer to a | |
344 | structure that has both the key and value */ | |
345 | char* hv_iterkey(HE* entry, I32* retlen); | |
346 | /* Get the key from an HE structure and also return | |
347 | the length of the key string */ | |
cb1a09d0 | 348 | SV* hv_iterval(HV*, HE* entry); |
a0d0e21e LW |
349 | /* Return a SV pointer to the value of the HE |
350 | structure */ | |
cb1a09d0 | 351 | SV* hv_iternextsv(HV*, char** key, I32* retlen); |
d1b91892 AD |
352 | /* This convenience routine combines hv_iternext, |
353 | hv_iterkey, and hv_iterval. The key and retlen | |
354 | arguments are return values for the key and its | |
355 | length. The value is returned in the SV* argument */ | |
a0d0e21e LW |
356 | |
357 | If you know the name of a hash variable, you can get a pointer to its HV | |
358 | by using the following: | |
359 | ||
5f05dabc | 360 | HV* perl_get_hv("package::varname", FALSE); |
a0d0e21e LW |
361 | |
362 | This returns NULL if the variable does not exist. | |
363 | ||
8ebc5c01 | 364 | The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro: |
a0d0e21e | 365 | |
a0d0e21e | 366 | hash = 0; |
ab192400 GS |
367 | while (klen--) |
368 | hash = (hash * 33) + *key++; | |
87275199 | 369 | hash = hash + (hash >> 5); /* after 5.6 */ |
ab192400 | 370 | |
87275199 | 371 | The last step was added in version 5.6 to improve distribution of |
ab192400 | 372 | lower bits in the resulting hash value. |
a0d0e21e | 373 | |
04343c6d GS |
374 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
375 | information on how to use the hash access functions on tied hashes. | |
376 | ||
1e422769 | 377 | =head2 Hash API Extensions |
378 | ||
379 | Beginning with version 5.004, the following functions are also supported: | |
380 | ||
381 | HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash); | |
382 | HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash); | |
383 | ||
384 | bool hv_exists_ent (HV* tb, SV* key, U32 hash); | |
385 | SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash); | |
386 | ||
387 | SV* hv_iterkeysv (HE* entry); | |
388 | ||
389 | Note that these functions take C<SV*> keys, which simplifies writing | |
390 | of extension code that deals with hash structures. These functions | |
391 | also allow passing of C<SV*> keys to C<tie> functions without forcing | |
392 | you to stringify the keys (unlike the previous set of functions). | |
393 | ||
394 | They also return and accept whole hash entries (C<HE*>), making their | |
395 | use more efficient (since the hash number for a particular string | |
396 | doesn't have to be recomputed every time). See L<API LISTING> later in | |
397 | this document for detailed descriptions. | |
398 | ||
399 | The following macros must always be used to access the contents of hash | |
400 | entries. Note that the arguments to these macros must be simple | |
401 | variables, since they may get evaluated more than once. See | |
402 | L<API LISTING> later in this document for detailed descriptions of these | |
403 | macros. | |
404 | ||
405 | HePV(HE* he, STRLEN len) | |
406 | HeVAL(HE* he) | |
407 | HeHASH(HE* he) | |
408 | HeSVKEY(HE* he) | |
409 | HeSVKEY_force(HE* he) | |
410 | HeSVKEY_set(HE* he, SV* sv) | |
411 | ||
412 | These two lower level macros are defined, but must only be used when | |
413 | dealing with keys that are not C<SV*>s: | |
414 | ||
415 | HeKEY(HE* he) | |
416 | HeKLEN(HE* he) | |
417 | ||
04343c6d GS |
418 | Note that both C<hv_store> and C<hv_store_ent> do not increment the |
419 | reference count of the stored C<val>, which is the caller's responsibility. | |
420 | If these functions return a NULL value, the caller will usually have to | |
421 | decrement the reference count of C<val> to avoid a memory leak. | |
1e422769 | 422 | |
a0d0e21e LW |
423 | =head2 References |
424 | ||
d1b91892 AD |
425 | References are a special type of scalar that point to other data types |
426 | (including references). | |
a0d0e21e | 427 | |
07fa94a1 | 428 | To create a reference, use either of the following functions: |
a0d0e21e | 429 | |
5f05dabc | 430 | SV* newRV_inc((SV*) thing); |
431 | SV* newRV_noinc((SV*) thing); | |
a0d0e21e | 432 | |
5f05dabc | 433 | The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The |
07fa94a1 JO |
434 | functions are identical except that C<newRV_inc> increments the reference |
435 | count of the C<thing>, while C<newRV_noinc> does not. For historical | |
436 | reasons, C<newRV> is a synonym for C<newRV_inc>. | |
437 | ||
438 | Once you have a reference, you can use the following macro to dereference | |
439 | the reference: | |
a0d0e21e LW |
440 | |
441 | SvRV(SV*) | |
442 | ||
443 | then call the appropriate routines, casting the returned C<SV*> to either an | |
d1b91892 | 444 | C<AV*> or C<HV*>, if required. |
a0d0e21e | 445 | |
d1b91892 | 446 | To determine if an SV is a reference, you can use the following macro: |
a0d0e21e LW |
447 | |
448 | SvROK(SV*) | |
449 | ||
07fa94a1 JO |
450 | To discover what type of value the reference refers to, use the following |
451 | macro and then check the return value. | |
d1b91892 AD |
452 | |
453 | SvTYPE(SvRV(SV*)) | |
454 | ||
455 | The most useful types that will be returned are: | |
456 | ||
457 | SVt_IV Scalar | |
458 | SVt_NV Scalar | |
459 | SVt_PV Scalar | |
5f05dabc | 460 | SVt_RV Scalar |
d1b91892 AD |
461 | SVt_PVAV Array |
462 | SVt_PVHV Hash | |
463 | SVt_PVCV Code | |
5f05dabc | 464 | SVt_PVGV Glob (possible a file handle) |
465 | SVt_PVMG Blessed or Magical Scalar | |
466 | ||
467 | See the sv.h header file for more details. | |
d1b91892 | 468 | |
cb1a09d0 AD |
469 | =head2 Blessed References and Class Objects |
470 | ||
471 | References are also used to support object-oriented programming. In the | |
472 | OO lexicon, an object is simply a reference that has been blessed into a | |
473 | package (or class). Once blessed, the programmer may now use the reference | |
474 | to access the various methods in the class. | |
475 | ||
476 | A reference can be blessed into a package with the following function: | |
477 | ||
478 | SV* sv_bless(SV* sv, HV* stash); | |
479 | ||
480 | The C<sv> argument must be a reference. The C<stash> argument specifies | |
3fe9a6f1 | 481 | which class the reference will belong to. See |
2ae324a7 | 482 | L<Stashes and Globs> for information on converting class names into stashes. |
cb1a09d0 AD |
483 | |
484 | /* Still under construction */ | |
485 | ||
486 | Upgrades rv to reference if not already one. Creates new SV for rv to | |
8ebc5c01 | 487 | point to. If C<classname> is non-null, the SV is blessed into the specified |
488 | class. SV is returned. | |
cb1a09d0 | 489 | |
08105a92 | 490 | SV* newSVrv(SV* rv, const char* classname); |
cb1a09d0 | 491 | |
8ebc5c01 | 492 | Copies integer or double into an SV whose reference is C<rv>. SV is blessed |
493 | if C<classname> is non-null. | |
cb1a09d0 | 494 | |
08105a92 GS |
495 | SV* sv_setref_iv(SV* rv, const char* classname, IV iv); |
496 | SV* sv_setref_nv(SV* rv, const char* classname, NV iv); | |
cb1a09d0 | 497 | |
5f05dabc | 498 | Copies the pointer value (I<the address, not the string!>) into an SV whose |
8ebc5c01 | 499 | reference is rv. SV is blessed if C<classname> is non-null. |
cb1a09d0 | 500 | |
08105a92 | 501 | SV* sv_setref_pv(SV* rv, const char* classname, PV iv); |
cb1a09d0 | 502 | |
8ebc5c01 | 503 | Copies string into an SV whose reference is C<rv>. Set length to 0 to let |
504 | Perl calculate the string length. SV is blessed if C<classname> is non-null. | |
cb1a09d0 | 505 | |
e65f3abd | 506 | SV* sv_setref_pvn(SV* rv, const char* classname, PV iv, STRLEN length); |
cb1a09d0 | 507 | |
9abd00ed GS |
508 | Tests whether the SV is blessed into the specified class. It does not |
509 | check inheritance relationships. | |
510 | ||
08105a92 | 511 | int sv_isa(SV* sv, const char* name); |
9abd00ed GS |
512 | |
513 | Tests whether the SV is a reference to a blessed object. | |
514 | ||
515 | int sv_isobject(SV* sv); | |
516 | ||
517 | Tests whether the SV is derived from the specified class. SV can be either | |
518 | a reference to a blessed object or a string containing a class name. This | |
519 | is the function implementing the C<UNIVERSAL::isa> functionality. | |
520 | ||
08105a92 | 521 | bool sv_derived_from(SV* sv, const char* name); |
9abd00ed GS |
522 | |
523 | To check if you've got an object derived from a specific class you have | |
524 | to write: | |
525 | ||
526 | if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... } | |
cb1a09d0 | 527 | |
5f05dabc | 528 | =head2 Creating New Variables |
cb1a09d0 | 529 | |
5f05dabc | 530 | To create a new Perl variable with an undef value which can be accessed from |
531 | your Perl script, use the following routines, depending on the variable type. | |
cb1a09d0 | 532 | |
5f05dabc | 533 | SV* perl_get_sv("package::varname", TRUE); |
534 | AV* perl_get_av("package::varname", TRUE); | |
535 | HV* perl_get_hv("package::varname", TRUE); | |
cb1a09d0 AD |
536 | |
537 | Notice the use of TRUE as the second parameter. The new variable can now | |
538 | be set, using the routines appropriate to the data type. | |
539 | ||
5f05dabc | 540 | There are additional macros whose values may be bitwise OR'ed with the |
541 | C<TRUE> argument to enable certain extra features. Those bits are: | |
cb1a09d0 | 542 | |
5f05dabc | 543 | GV_ADDMULTI Marks the variable as multiply defined, thus preventing the |
54310121 | 544 | "Name <varname> used only once: possible typo" warning. |
07fa94a1 JO |
545 | GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if |
546 | the variable did not exist before the function was called. | |
cb1a09d0 | 547 | |
07fa94a1 JO |
548 | If you do not specify a package name, the variable is created in the current |
549 | package. | |
cb1a09d0 | 550 | |
5f05dabc | 551 | =head2 Reference Counts and Mortality |
a0d0e21e | 552 | |
54310121 | 553 | Perl uses an reference count-driven garbage collection mechanism. SVs, |
554 | AVs, or HVs (xV for short in the following) start their life with a | |
55497cff | 555 | reference count of 1. If the reference count of an xV ever drops to 0, |
07fa94a1 | 556 | then it will be destroyed and its memory made available for reuse. |
55497cff | 557 | |
558 | This normally doesn't happen at the Perl level unless a variable is | |
5f05dabc | 559 | undef'ed or the last variable holding a reference to it is changed or |
560 | overwritten. At the internal level, however, reference counts can be | |
55497cff | 561 | manipulated with the following macros: |
562 | ||
563 | int SvREFCNT(SV* sv); | |
5f05dabc | 564 | SV* SvREFCNT_inc(SV* sv); |
55497cff | 565 | void SvREFCNT_dec(SV* sv); |
566 | ||
567 | However, there is one other function which manipulates the reference | |
07fa94a1 JO |
568 | count of its argument. The C<newRV_inc> function, you will recall, |
569 | creates a reference to the specified argument. As a side effect, | |
570 | it increments the argument's reference count. If this is not what | |
571 | you want, use C<newRV_noinc> instead. | |
572 | ||
573 | For example, imagine you want to return a reference from an XSUB function. | |
574 | Inside the XSUB routine, you create an SV which initially has a reference | |
575 | count of one. Then you call C<newRV_inc>, passing it the just-created SV. | |
5f05dabc | 576 | This returns the reference as a new SV, but the reference count of the |
577 | SV you passed to C<newRV_inc> has been incremented to two. Now you | |
07fa94a1 JO |
578 | return the reference from the XSUB routine and forget about the SV. |
579 | But Perl hasn't! Whenever the returned reference is destroyed, the | |
580 | reference count of the original SV is decreased to one and nothing happens. | |
581 | The SV will hang around without any way to access it until Perl itself | |
582 | terminates. This is a memory leak. | |
5f05dabc | 583 | |
584 | The correct procedure, then, is to use C<newRV_noinc> instead of | |
faed5253 JO |
585 | C<newRV_inc>. Then, if and when the last reference is destroyed, |
586 | the reference count of the SV will go to zero and it will be destroyed, | |
07fa94a1 | 587 | stopping any memory leak. |
55497cff | 588 | |
5f05dabc | 589 | There are some convenience functions available that can help with the |
54310121 | 590 | destruction of xVs. These functions introduce the concept of "mortality". |
07fa94a1 JO |
591 | An xV that is mortal has had its reference count marked to be decremented, |
592 | but not actually decremented, until "a short time later". Generally the | |
593 | term "short time later" means a single Perl statement, such as a call to | |
54310121 | 594 | an XSUB function. The actual determinant for when mortal xVs have their |
07fa94a1 JO |
595 | reference count decremented depends on two macros, SAVETMPS and FREETMPS. |
596 | See L<perlcall> and L<perlxs> for more details on these macros. | |
55497cff | 597 | |
598 | "Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>. | |
599 | However, if you mortalize a variable twice, the reference count will | |
600 | later be decremented twice. | |
601 | ||
602 | You should be careful about creating mortal variables. Strange things | |
603 | can happen if you make the same value mortal within multiple contexts, | |
5f05dabc | 604 | or if you make a variable mortal multiple times. |
a0d0e21e LW |
605 | |
606 | To create a mortal variable, use the functions: | |
607 | ||
608 | SV* sv_newmortal() | |
609 | SV* sv_2mortal(SV*) | |
610 | SV* sv_mortalcopy(SV*) | |
611 | ||
5f05dabc | 612 | The first call creates a mortal SV, the second converts an existing |
613 | SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the | |
614 | third creates a mortal copy of an existing SV. | |
a0d0e21e | 615 | |
54310121 | 616 | The mortal routines are not just for SVs -- AVs and HVs can be |
faed5253 | 617 | made mortal by passing their address (type-casted to C<SV*>) to the |
07fa94a1 | 618 | C<sv_2mortal> or C<sv_mortalcopy> routines. |
a0d0e21e | 619 | |
5f05dabc | 620 | =head2 Stashes and Globs |
a0d0e21e | 621 | |
aa689395 | 622 | A "stash" is a hash that contains all of the different objects that |
623 | are contained within a package. Each key of the stash is a symbol | |
624 | name (shared by all the different types of objects that have the same | |
625 | name), and each value in the hash table is a GV (Glob Value). This GV | |
626 | in turn contains references to the various objects of that name, | |
627 | including (but not limited to) the following: | |
cb1a09d0 | 628 | |
a0d0e21e LW |
629 | Scalar Value |
630 | Array Value | |
631 | Hash Value | |
a3cb178b | 632 | I/O Handle |
a0d0e21e LW |
633 | Format |
634 | Subroutine | |
635 | ||
9cde0e7f | 636 | There is a single stash called "PL_defstash" that holds the items that exist |
5f05dabc | 637 | in the "main" package. To get at the items in other packages, append the |
638 | string "::" to the package name. The items in the "Foo" package are in | |
9cde0e7f | 639 | the stash "Foo::" in PL_defstash. The items in the "Bar::Baz" package are |
5f05dabc | 640 | in the stash "Baz::" in "Bar::"'s stash. |
a0d0e21e | 641 | |
d1b91892 | 642 | To get the stash pointer for a particular package, use the function: |
a0d0e21e | 643 | |
08105a92 | 644 | HV* gv_stashpv(const char* name, I32 create) |
a0d0e21e LW |
645 | HV* gv_stashsv(SV*, I32 create) |
646 | ||
647 | The first function takes a literal string, the second uses the string stored | |
d1b91892 | 648 | in the SV. Remember that a stash is just a hash table, so you get back an |
cb1a09d0 | 649 | C<HV*>. The C<create> flag will create a new package if it is set. |
a0d0e21e LW |
650 | |
651 | The name that C<gv_stash*v> wants is the name of the package whose symbol table | |
652 | you want. The default package is called C<main>. If you have multiply nested | |
d1b91892 AD |
653 | packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl |
654 | language itself. | |
a0d0e21e LW |
655 | |
656 | Alternately, if you have an SV that is a blessed reference, you can find | |
657 | out the stash pointer by using: | |
658 | ||
659 | HV* SvSTASH(SvRV(SV*)); | |
660 | ||
661 | then use the following to get the package name itself: | |
662 | ||
663 | char* HvNAME(HV* stash); | |
664 | ||
5f05dabc | 665 | If you need to bless or re-bless an object you can use the following |
666 | function: | |
a0d0e21e LW |
667 | |
668 | SV* sv_bless(SV*, HV* stash) | |
669 | ||
670 | where the first argument, an C<SV*>, must be a reference, and the second | |
671 | argument is a stash. The returned C<SV*> can now be used in the same way | |
672 | as any other SV. | |
673 | ||
d1b91892 AD |
674 | For more information on references and blessings, consult L<perlref>. |
675 | ||
54310121 | 676 | =head2 Double-Typed SVs |
0a753a76 | 677 | |
678 | Scalar variables normally contain only one type of value, an integer, | |
679 | double, pointer, or reference. Perl will automatically convert the | |
680 | actual scalar data from the stored type into the requested type. | |
681 | ||
682 | Some scalar variables contain more than one type of scalar data. For | |
683 | example, the variable C<$!> contains either the numeric value of C<errno> | |
684 | or its string equivalent from either C<strerror> or C<sys_errlist[]>. | |
685 | ||
686 | To force multiple data values into an SV, you must do two things: use the | |
687 | C<sv_set*v> routines to add the additional scalar type, then set a flag | |
688 | so that Perl will believe it contains more than one type of data. The | |
689 | four macros to set the flags are: | |
690 | ||
691 | SvIOK_on | |
692 | SvNOK_on | |
693 | SvPOK_on | |
694 | SvROK_on | |
695 | ||
696 | The particular macro you must use depends on which C<sv_set*v> routine | |
697 | you called first. This is because every C<sv_set*v> routine turns on | |
698 | only the bit for the particular type of data being set, and turns off | |
699 | all the rest. | |
700 | ||
701 | For example, to create a new Perl variable called "dberror" that contains | |
702 | both the numeric and descriptive string error values, you could use the | |
703 | following code: | |
704 | ||
705 | extern int dberror; | |
706 | extern char *dberror_list; | |
707 | ||
708 | SV* sv = perl_get_sv("dberror", TRUE); | |
709 | sv_setiv(sv, (IV) dberror); | |
710 | sv_setpv(sv, dberror_list[dberror]); | |
711 | SvIOK_on(sv); | |
712 | ||
713 | If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the | |
714 | macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>. | |
715 | ||
716 | =head2 Magic Variables | |
a0d0e21e | 717 | |
d1b91892 AD |
718 | [This section still under construction. Ignore everything here. Post no |
719 | bills. Everything not permitted is forbidden.] | |
720 | ||
d1b91892 AD |
721 | Any SV may be magical, that is, it has special features that a normal |
722 | SV does not have. These features are stored in the SV structure in a | |
5f05dabc | 723 | linked list of C<struct magic>'s, typedef'ed to C<MAGIC>. |
d1b91892 AD |
724 | |
725 | struct magic { | |
726 | MAGIC* mg_moremagic; | |
727 | MGVTBL* mg_virtual; | |
728 | U16 mg_private; | |
729 | char mg_type; | |
730 | U8 mg_flags; | |
731 | SV* mg_obj; | |
732 | char* mg_ptr; | |
733 | I32 mg_len; | |
734 | }; | |
735 | ||
736 | Note this is current as of patchlevel 0, and could change at any time. | |
737 | ||
738 | =head2 Assigning Magic | |
739 | ||
740 | Perl adds magic to an SV using the sv_magic function: | |
741 | ||
08105a92 | 742 | void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen); |
d1b91892 AD |
743 | |
744 | The C<sv> argument is a pointer to the SV that is to acquire a new magical | |
745 | feature. | |
746 | ||
747 | If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to | |
748 | set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding | |
749 | it to the beginning of the linked list of magical features. Any prior | |
750 | entry of the same type of magic is deleted. Note that this can be | |
5fb8527f | 751 | overridden, and multiple instances of the same type of magic can be |
d1b91892 AD |
752 | associated with an SV. |
753 | ||
54310121 | 754 | The C<name> and C<namlen> arguments are used to associate a string with |
755 | the magic, typically the name of a variable. C<namlen> is stored in the | |
756 | C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd | |
d1b91892 AD |
757 | copy of the name is stored in C<mg_ptr> field. |
758 | ||
759 | The sv_magic function uses C<how> to determine which, if any, predefined | |
760 | "Magic Virtual Table" should be assigned to the C<mg_virtual> field. | |
cb1a09d0 AD |
761 | See the "Magic Virtual Table" section below. The C<how> argument is also |
762 | stored in the C<mg_type> field. | |
d1b91892 AD |
763 | |
764 | The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC> | |
765 | structure. If it is not the same as the C<sv> argument, the reference | |
766 | count of the C<obj> object is incremented. If it is the same, or if | |
04343c6d | 767 | the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is |
d1b91892 AD |
768 | merely stored, without the reference count being incremented. |
769 | ||
cb1a09d0 AD |
770 | There is also a function to add magic to an C<HV>: |
771 | ||
772 | void hv_magic(HV *hv, GV *gv, int how); | |
773 | ||
774 | This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>. | |
775 | ||
776 | To remove the magic from an SV, call the function sv_unmagic: | |
777 | ||
778 | void sv_unmagic(SV *sv, int type); | |
779 | ||
780 | The C<type> argument should be equal to the C<how> value when the C<SV> | |
781 | was initially made magical. | |
782 | ||
d1b91892 AD |
783 | =head2 Magic Virtual Tables |
784 | ||
785 | The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a | |
786 | C<MGVTBL>, which is a structure of function pointers and stands for | |
787 | "Magic Virtual Table" to handle the various operations that might be | |
788 | applied to that variable. | |
789 | ||
790 | The C<MGVTBL> has five pointers to the following routine types: | |
791 | ||
792 | int (*svt_get)(SV* sv, MAGIC* mg); | |
793 | int (*svt_set)(SV* sv, MAGIC* mg); | |
794 | U32 (*svt_len)(SV* sv, MAGIC* mg); | |
795 | int (*svt_clear)(SV* sv, MAGIC* mg); | |
796 | int (*svt_free)(SV* sv, MAGIC* mg); | |
797 | ||
798 | This MGVTBL structure is set at compile-time in C<perl.h> and there are | |
799 | currently 19 types (or 21 with overloading turned on). These different | |
800 | structures contain pointers to various routines that perform additional | |
801 | actions depending on which function is being called. | |
802 | ||
803 | Function pointer Action taken | |
804 | ---------------- ------------ | |
805 | svt_get Do something after the value of the SV is retrieved. | |
806 | svt_set Do something after the SV is assigned a value. | |
807 | svt_len Report on the SV's length. | |
808 | svt_clear Clear something the SV represents. | |
809 | svt_free Free any extra storage associated with the SV. | |
810 | ||
811 | For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds | |
812 | to an C<mg_type> of '\0') contains: | |
813 | ||
814 | { magic_get, magic_set, magic_len, 0, 0 } | |
815 | ||
816 | Thus, when an SV is determined to be magical and of type '\0', if a get | |
817 | operation is being performed, the routine C<magic_get> is called. All | |
818 | the various routines for the various magical types begin with C<magic_>. | |
819 | ||
820 | The current kinds of Magic Virtual Tables are: | |
821 | ||
bdbeb323 | 822 | mg_type MGVTBL Type of magic |
5f05dabc | 823 | ------- ------ ---------------------------- |
bdbeb323 SM |
824 | \0 vtbl_sv Special scalar variable |
825 | A vtbl_amagic %OVERLOAD hash | |
826 | a vtbl_amagicelem %OVERLOAD hash element | |
827 | c (none) Holds overload table (AMT) on stash | |
828 | B vtbl_bm Boyer-Moore (fast string search) | |
d1b91892 AD |
829 | E vtbl_env %ENV hash |
830 | e vtbl_envelem %ENV hash element | |
bdbeb323 SM |
831 | f vtbl_fm Formline ('compiled' format) |
832 | g vtbl_mglob m//g target / study()ed string | |
d1b91892 AD |
833 | I vtbl_isa @ISA array |
834 | i vtbl_isaelem @ISA array element | |
bdbeb323 SM |
835 | k vtbl_nkeys scalar(keys()) lvalue |
836 | L (none) Debugger %_<filename | |
837 | l vtbl_dbline Debugger %_<filename element | |
44a8e56a | 838 | o vtbl_collxfrm Locale transformation |
bdbeb323 SM |
839 | P vtbl_pack Tied array or hash |
840 | p vtbl_packelem Tied array or hash element | |
841 | q vtbl_packelem Tied scalar or handle | |
842 | S vtbl_sig %SIG hash | |
843 | s vtbl_sigelem %SIG hash element | |
d1b91892 | 844 | t vtbl_taint Taintedness |
bdbeb323 SM |
845 | U vtbl_uvar Available for use by extensions |
846 | v vtbl_vec vec() lvalue | |
847 | x vtbl_substr substr() lvalue | |
848 | y vtbl_defelem Shadow "foreach" iterator variable / | |
849 | smart parameter vivification | |
850 | * vtbl_glob GV (typeglob) | |
851 | # vtbl_arylen Array length ($#ary) | |
852 | . vtbl_pos pos() lvalue | |
853 | ~ (none) Available for use by extensions | |
d1b91892 | 854 | |
68dc0745 | 855 | When an uppercase and lowercase letter both exist in the table, then the |
856 | uppercase letter is used to represent some kind of composite type (a list | |
857 | or a hash), and the lowercase letter is used to represent an element of | |
d1b91892 AD |
858 | that composite type. |
859 | ||
bdbeb323 SM |
860 | The '~' and 'U' magic types are defined specifically for use by |
861 | extensions and will not be used by perl itself. Extensions can use | |
862 | '~' magic to 'attach' private information to variables (typically | |
863 | objects). This is especially useful because there is no way for | |
864 | normal perl code to corrupt this private information (unlike using | |
865 | extra elements of a hash object). | |
866 | ||
867 | Similarly, 'U' magic can be used much like tie() to call a C function | |
868 | any time a scalar's value is used or changed. The C<MAGIC>'s | |
869 | C<mg_ptr> field points to a C<ufuncs> structure: | |
870 | ||
871 | struct ufuncs { | |
872 | I32 (*uf_val)(IV, SV*); | |
873 | I32 (*uf_set)(IV, SV*); | |
874 | IV uf_index; | |
875 | }; | |
876 | ||
877 | When the SV is read from or written to, the C<uf_val> or C<uf_set> | |
878 | function will be called with C<uf_index> as the first arg and a | |
1526ead6 AB |
879 | pointer to the SV as the second. A simple example of how to add 'U' |
880 | magic is shown below. Note that the ufuncs structure is copied by | |
881 | sv_magic, so you can safely allocate it on the stack. | |
882 | ||
883 | void | |
884 | Umagic(sv) | |
885 | SV *sv; | |
886 | PREINIT: | |
887 | struct ufuncs uf; | |
888 | CODE: | |
889 | uf.uf_val = &my_get_fn; | |
890 | uf.uf_set = &my_set_fn; | |
891 | uf.uf_index = 0; | |
892 | sv_magic(sv, 0, 'U', (char*)&uf, sizeof(uf)); | |
5f05dabc | 893 | |
bdbeb323 SM |
894 | Note that because multiple extensions may be using '~' or 'U' magic, |
895 | it is important for extensions to take extra care to avoid conflict. | |
896 | Typically only using the magic on objects blessed into the same class | |
897 | as the extension is sufficient. For '~' magic, it may also be | |
898 | appropriate to add an I32 'signature' at the top of the private data | |
899 | area and check that. | |
5f05dabc | 900 | |
ef50df4b GS |
901 | Also note that the C<sv_set*()> and C<sv_cat*()> functions described |
902 | earlier do B<not> invoke 'set' magic on their targets. This must | |
903 | be done by the user either by calling the C<SvSETMAGIC()> macro after | |
904 | calling these functions, or by using one of the C<sv_set*_mg()> or | |
905 | C<sv_cat*_mg()> functions. Similarly, generic C code must call the | |
906 | C<SvGETMAGIC()> macro to invoke any 'get' magic if they use an SV | |
907 | obtained from external sources in functions that don't handle magic. | |
908 | L<API LISTING> later in this document identifies such functions. | |
189b2af5 GS |
909 | For example, calls to the C<sv_cat*()> functions typically need to be |
910 | followed by C<SvSETMAGIC()>, but they don't need a prior C<SvGETMAGIC()> | |
911 | since their implementation handles 'get' magic. | |
912 | ||
d1b91892 AD |
913 | =head2 Finding Magic |
914 | ||
915 | MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */ | |
916 | ||
917 | This routine returns a pointer to the C<MAGIC> structure stored in the SV. | |
918 | If the SV does not have that magical feature, C<NULL> is returned. Also, | |
54310121 | 919 | if the SV is not of type SVt_PVMG, Perl may core dump. |
d1b91892 | 920 | |
08105a92 | 921 | int mg_copy(SV* sv, SV* nsv, const char* key, STRLEN klen); |
d1b91892 AD |
922 | |
923 | This routine checks to see what types of magic C<sv> has. If the mg_type | |
68dc0745 | 924 | field is an uppercase letter, then the mg_obj is copied to C<nsv>, but |
925 | the mg_type field is changed to be the lowercase letter. | |
a0d0e21e | 926 | |
04343c6d GS |
927 | =head2 Understanding the Magic of Tied Hashes and Arrays |
928 | ||
929 | Tied hashes and arrays are magical beasts of the 'P' magic type. | |
9edb2b46 GS |
930 | |
931 | WARNING: As of the 5.004 release, proper usage of the array and hash | |
932 | access functions requires understanding a few caveats. Some | |
933 | of these caveats are actually considered bugs in the API, to be fixed | |
934 | in later releases, and are bracketed with [MAYCHANGE] below. If | |
935 | you find yourself actually applying such information in this section, be | |
936 | aware that the behavior may change in the future, umm, without warning. | |
04343c6d | 937 | |
1526ead6 AB |
938 | The perl tie function associates a variable with an object that implements |
939 | the various GET, SET etc methods. To perform the equivalent of the perl | |
940 | tie function from an XSUB, you must mimic this behaviour. The code below | |
941 | carries out the necessary steps - firstly it creates a new hash, and then | |
942 | creates a second hash which it blesses into the class which will implement | |
943 | the tie methods. Lastly it ties the two hashes together, and returns a | |
944 | reference to the new tied hash. Note that the code below does NOT call the | |
945 | TIEHASH method in the MyTie class - | |
946 | see L<Calling Perl Routines from within C Programs> for details on how | |
947 | to do this. | |
948 | ||
949 | SV* | |
950 | mytie() | |
951 | PREINIT: | |
952 | HV *hash; | |
953 | HV *stash; | |
954 | SV *tie; | |
955 | CODE: | |
956 | hash = newHV(); | |
957 | tie = newRV_noinc((SV*)newHV()); | |
958 | stash = gv_stashpv("MyTie", TRUE); | |
959 | sv_bless(tie, stash); | |
960 | hv_magic(hash, tie, 'P'); | |
961 | RETVAL = newRV_noinc(hash); | |
962 | OUTPUT: | |
963 | RETVAL | |
964 | ||
04343c6d GS |
965 | The C<av_store> function, when given a tied array argument, merely |
966 | copies the magic of the array onto the value to be "stored", using | |
967 | C<mg_copy>. It may also return NULL, indicating that the value did not | |
9edb2b46 GS |
968 | actually need to be stored in the array. [MAYCHANGE] After a call to |
969 | C<av_store> on a tied array, the caller will usually need to call | |
970 | C<mg_set(val)> to actually invoke the perl level "STORE" method on the | |
971 | TIEARRAY object. If C<av_store> did return NULL, a call to | |
972 | C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory | |
973 | leak. [/MAYCHANGE] | |
04343c6d GS |
974 | |
975 | The previous paragraph is applicable verbatim to tied hash access using the | |
976 | C<hv_store> and C<hv_store_ent> functions as well. | |
977 | ||
978 | C<av_fetch> and the corresponding hash functions C<hv_fetch> and | |
979 | C<hv_fetch_ent> actually return an undefined mortal value whose magic | |
980 | has been initialized using C<mg_copy>. Note the value so returned does not | |
9edb2b46 GS |
981 | need to be deallocated, as it is already mortal. [MAYCHANGE] But you will |
982 | need to call C<mg_get()> on the returned value in order to actually invoke | |
983 | the perl level "FETCH" method on the underlying TIE object. Similarly, | |
04343c6d GS |
984 | you may also call C<mg_set()> on the return value after possibly assigning |
985 | a suitable value to it using C<sv_setsv>, which will invoke the "STORE" | |
9edb2b46 | 986 | method on the TIE object. [/MAYCHANGE] |
04343c6d | 987 | |
9edb2b46 | 988 | [MAYCHANGE] |
04343c6d GS |
989 | In other words, the array or hash fetch/store functions don't really |
990 | fetch and store actual values in the case of tied arrays and hashes. They | |
991 | merely call C<mg_copy> to attach magic to the values that were meant to be | |
992 | "stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually | |
993 | do the job of invoking the TIE methods on the underlying objects. Thus | |
9edb2b46 | 994 | the magic mechanism currently implements a kind of lazy access to arrays |
04343c6d GS |
995 | and hashes. |
996 | ||
997 | Currently (as of perl version 5.004), use of the hash and array access | |
998 | functions requires the user to be aware of whether they are operating on | |
9edb2b46 GS |
999 | "normal" hashes and arrays, or on their tied variants. The API may be |
1000 | changed to provide more transparent access to both tied and normal data | |
1001 | types in future versions. | |
1002 | [/MAYCHANGE] | |
04343c6d GS |
1003 | |
1004 | You would do well to understand that the TIEARRAY and TIEHASH interfaces | |
1005 | are mere sugar to invoke some perl method calls while using the uniform hash | |
1006 | and array syntax. The use of this sugar imposes some overhead (typically | |
1007 | about two to four extra opcodes per FETCH/STORE operation, in addition to | |
1008 | the creation of all the mortal variables required to invoke the methods). | |
1009 | This overhead will be comparatively small if the TIE methods are themselves | |
1010 | substantial, but if they are only a few statements long, the overhead | |
1011 | will not be insignificant. | |
1012 | ||
d1c897a1 IZ |
1013 | =head2 Localizing changes |
1014 | ||
1015 | Perl has a very handy construction | |
1016 | ||
1017 | { | |
1018 | local $var = 2; | |
1019 | ... | |
1020 | } | |
1021 | ||
1022 | This construction is I<approximately> equivalent to | |
1023 | ||
1024 | { | |
1025 | my $oldvar = $var; | |
1026 | $var = 2; | |
1027 | ... | |
1028 | $var = $oldvar; | |
1029 | } | |
1030 | ||
1031 | The biggest difference is that the first construction would | |
1032 | reinstate the initial value of $var, irrespective of how control exits | |
1033 | the block: C<goto>, C<return>, C<die>/C<eval> etc. It is a little bit | |
1034 | more efficient as well. | |
1035 | ||
1036 | There is a way to achieve a similar task from C via Perl API: create a | |
1037 | I<pseudo-block>, and arrange for some changes to be automatically | |
1038 | undone at the end of it, either explicit, or via a non-local exit (via | |
1039 | die()). A I<block>-like construct is created by a pair of | |
b687b08b TC |
1040 | C<ENTER>/C<LEAVE> macros (see L<perlcall/"Returning a Scalar">). |
1041 | Such a construct may be created specially for some important localized | |
1042 | task, or an existing one (like boundaries of enclosing Perl | |
1043 | subroutine/block, or an existing pair for freeing TMPs) may be | |
1044 | used. (In the second case the overhead of additional localization must | |
1045 | be almost negligible.) Note that any XSUB is automatically enclosed in | |
1046 | an C<ENTER>/C<LEAVE> pair. | |
d1c897a1 IZ |
1047 | |
1048 | Inside such a I<pseudo-block> the following service is available: | |
1049 | ||
1050 | =over | |
1051 | ||
1052 | =item C<SAVEINT(int i)> | |
1053 | ||
1054 | =item C<SAVEIV(IV i)> | |
1055 | ||
1056 | =item C<SAVEI32(I32 i)> | |
1057 | ||
1058 | =item C<SAVELONG(long i)> | |
1059 | ||
1060 | These macros arrange things to restore the value of integer variable | |
1061 | C<i> at the end of enclosing I<pseudo-block>. | |
1062 | ||
1063 | =item C<SAVESPTR(s)> | |
1064 | ||
1065 | =item C<SAVEPPTR(p)> | |
1066 | ||
1067 | These macros arrange things to restore the value of pointers C<s> and | |
1068 | C<p>. C<s> must be a pointer of a type which survives conversion to | |
1069 | C<SV*> and back, C<p> should be able to survive conversion to C<char*> | |
1070 | and back. | |
1071 | ||
1072 | =item C<SAVEFREESV(SV *sv)> | |
1073 | ||
1074 | The refcount of C<sv> would be decremented at the end of | |
1075 | I<pseudo-block>. This is similar to C<sv_2mortal>, which should (?) be | |
1076 | used instead. | |
1077 | ||
1078 | =item C<SAVEFREEOP(OP *op)> | |
1079 | ||
1080 | The C<OP *> is op_free()ed at the end of I<pseudo-block>. | |
1081 | ||
1082 | =item C<SAVEFREEPV(p)> | |
1083 | ||
1084 | The chunk of memory which is pointed to by C<p> is Safefree()ed at the | |
1085 | end of I<pseudo-block>. | |
1086 | ||
1087 | =item C<SAVECLEARSV(SV *sv)> | |
1088 | ||
1089 | Clears a slot in the current scratchpad which corresponds to C<sv> at | |
1090 | the end of I<pseudo-block>. | |
1091 | ||
1092 | =item C<SAVEDELETE(HV *hv, char *key, I32 length)> | |
1093 | ||
1094 | The key C<key> of C<hv> is deleted at the end of I<pseudo-block>. The | |
1095 | string pointed to by C<key> is Safefree()ed. If one has a I<key> in | |
1096 | short-lived storage, the corresponding string may be reallocated like | |
1097 | this: | |
1098 | ||
9cde0e7f | 1099 | SAVEDELETE(PL_defstash, savepv(tmpbuf), strlen(tmpbuf)); |
d1c897a1 IZ |
1100 | |
1101 | =item C<SAVEDESTRUCTOR(f,p)> | |
1102 | ||
1103 | At the end of I<pseudo-block> the function C<f> is called with the | |
1104 | only argument (of type C<void*>) C<p>. | |
1105 | ||
1106 | =item C<SAVESTACK_POS()> | |
1107 | ||
1108 | The current offset on the Perl internal stack (cf. C<SP>) is restored | |
1109 | at the end of I<pseudo-block>. | |
1110 | ||
1111 | =back | |
1112 | ||
1113 | The following API list contains functions, thus one needs to | |
1114 | provide pointers to the modifiable data explicitly (either C pointers, | |
1115 | or Perlish C<GV *>s). Where the above macros take C<int>, a similar | |
1116 | function takes C<int *>. | |
1117 | ||
1118 | =over | |
1119 | ||
1120 | =item C<SV* save_scalar(GV *gv)> | |
1121 | ||
1122 | Equivalent to Perl code C<local $gv>. | |
1123 | ||
1124 | =item C<AV* save_ary(GV *gv)> | |
1125 | ||
1126 | =item C<HV* save_hash(GV *gv)> | |
1127 | ||
1128 | Similar to C<save_scalar>, but localize C<@gv> and C<%gv>. | |
1129 | ||
1130 | =item C<void save_item(SV *item)> | |
1131 | ||
1132 | Duplicates the current value of C<SV>, on the exit from the current | |
1133 | C<ENTER>/C<LEAVE> I<pseudo-block> will restore the value of C<SV> | |
1134 | using the stored value. | |
1135 | ||
1136 | =item C<void save_list(SV **sarg, I32 maxsarg)> | |
1137 | ||
1138 | A variant of C<save_item> which takes multiple arguments via an array | |
1139 | C<sarg> of C<SV*> of length C<maxsarg>. | |
1140 | ||
1141 | =item C<SV* save_svref(SV **sptr)> | |
1142 | ||
1143 | Similar to C<save_scalar>, but will reinstate a C<SV *>. | |
1144 | ||
1145 | =item C<void save_aptr(AV **aptr)> | |
1146 | ||
1147 | =item C<void save_hptr(HV **hptr)> | |
1148 | ||
1149 | Similar to C<save_svref>, but localize C<AV *> and C<HV *>. | |
1150 | ||
1151 | =back | |
1152 | ||
1153 | The C<Alias> module implements localization of the basic types within the | |
1154 | I<caller's scope>. People who are interested in how to localize things in | |
1155 | the containing scope should take a look there too. | |
1156 | ||
0a753a76 | 1157 | =head1 Subroutines |
a0d0e21e | 1158 | |
68dc0745 | 1159 | =head2 XSUBs and the Argument Stack |
5f05dabc | 1160 | |
1161 | The XSUB mechanism is a simple way for Perl programs to access C subroutines. | |
1162 | An XSUB routine will have a stack that contains the arguments from the Perl | |
1163 | program, and a way to map from the Perl data structures to a C equivalent. | |
1164 | ||
1165 | The stack arguments are accessible through the C<ST(n)> macro, which returns | |
1166 | the C<n>'th stack argument. Argument 0 is the first argument passed in the | |
1167 | Perl subroutine call. These arguments are C<SV*>, and can be used anywhere | |
1168 | an C<SV*> is used. | |
1169 | ||
1170 | Most of the time, output from the C routine can be handled through use of | |
1171 | the RETVAL and OUTPUT directives. However, there are some cases where the | |
1172 | argument stack is not already long enough to handle all the return values. | |
1173 | An example is the POSIX tzname() call, which takes no arguments, but returns | |
1174 | two, the local time zone's standard and summer time abbreviations. | |
1175 | ||
1176 | To handle this situation, the PPCODE directive is used and the stack is | |
1177 | extended using the macro: | |
1178 | ||
924508f0 | 1179 | EXTEND(SP, num); |
5f05dabc | 1180 | |
924508f0 GS |
1181 | where C<SP> is the macro that represents the local copy of the stack pointer, |
1182 | and C<num> is the number of elements the stack should be extended by. | |
5f05dabc | 1183 | |
1184 | Now that there is room on the stack, values can be pushed on it using the | |
54310121 | 1185 | macros to push IVs, doubles, strings, and SV pointers respectively: |
5f05dabc | 1186 | |
1187 | PUSHi(IV) | |
1188 | PUSHn(double) | |
1189 | PUSHp(char*, I32) | |
1190 | PUSHs(SV*) | |
1191 | ||
1192 | And now the Perl program calling C<tzname>, the two values will be assigned | |
1193 | as in: | |
1194 | ||
1195 | ($standard_abbrev, $summer_abbrev) = POSIX::tzname; | |
1196 | ||
1197 | An alternate (and possibly simpler) method to pushing values on the stack is | |
1198 | to use the macros: | |
1199 | ||
1200 | XPUSHi(IV) | |
1201 | XPUSHn(double) | |
1202 | XPUSHp(char*, I32) | |
1203 | XPUSHs(SV*) | |
1204 | ||
1205 | These macros automatically adjust the stack for you, if needed. Thus, you | |
1206 | do not need to call C<EXTEND> to extend the stack. | |
1207 | ||
1208 | For more information, consult L<perlxs> and L<perlxstut>. | |
1209 | ||
1210 | =head2 Calling Perl Routines from within C Programs | |
a0d0e21e LW |
1211 | |
1212 | There are four routines that can be used to call a Perl subroutine from | |
1213 | within a C program. These four are: | |
1214 | ||
1215 | I32 perl_call_sv(SV*, I32); | |
08105a92 GS |
1216 | I32 perl_call_pv(const char*, I32); |
1217 | I32 perl_call_method(const char*, I32); | |
1218 | I32 perl_call_argv(const char*, I32, register char**); | |
a0d0e21e | 1219 | |
d1b91892 AD |
1220 | The routine most often used is C<perl_call_sv>. The C<SV*> argument |
1221 | contains either the name of the Perl subroutine to be called, or a | |
1222 | reference to the subroutine. The second argument consists of flags | |
1223 | that control the context in which the subroutine is called, whether | |
1224 | or not the subroutine is being passed arguments, how errors should be | |
1225 | trapped, and how to treat return values. | |
a0d0e21e LW |
1226 | |
1227 | All four routines return the number of arguments that the subroutine returned | |
1228 | on the Perl stack. | |
1229 | ||
d1b91892 AD |
1230 | When using any of these routines (except C<perl_call_argv>), the programmer |
1231 | must manipulate the Perl stack. These include the following macros and | |
1232 | functions: | |
a0d0e21e LW |
1233 | |
1234 | dSP | |
924508f0 | 1235 | SP |
a0d0e21e LW |
1236 | PUSHMARK() |
1237 | PUTBACK | |
1238 | SPAGAIN | |
1239 | ENTER | |
1240 | SAVETMPS | |
1241 | FREETMPS | |
1242 | LEAVE | |
1243 | XPUSH*() | |
cb1a09d0 | 1244 | POP*() |
a0d0e21e | 1245 | |
5f05dabc | 1246 | For a detailed description of calling conventions from C to Perl, |
1247 | consult L<perlcall>. | |
a0d0e21e | 1248 | |
5f05dabc | 1249 | =head2 Memory Allocation |
a0d0e21e | 1250 | |
86058a2d GS |
1251 | All memory meant to be used with the Perl API functions should be manipulated |
1252 | using the macros described in this section. The macros provide the necessary | |
1253 | transparency between differences in the actual malloc implementation that is | |
1254 | used within perl. | |
1255 | ||
1256 | It is suggested that you enable the version of malloc that is distributed | |
5f05dabc | 1257 | with Perl. It keeps pools of various sizes of unallocated memory in |
07fa94a1 JO |
1258 | order to satisfy allocation requests more quickly. However, on some |
1259 | platforms, it may cause spurious malloc or free errors. | |
d1b91892 AD |
1260 | |
1261 | New(x, pointer, number, type); | |
1262 | Newc(x, pointer, number, type, cast); | |
1263 | Newz(x, pointer, number, type); | |
1264 | ||
07fa94a1 | 1265 | These three macros are used to initially allocate memory. |
5f05dabc | 1266 | |
1267 | The first argument C<x> was a "magic cookie" that was used to keep track | |
1268 | of who called the macro, to help when debugging memory problems. However, | |
07fa94a1 JO |
1269 | the current code makes no use of this feature (most Perl developers now |
1270 | use run-time memory checkers), so this argument can be any number. | |
5f05dabc | 1271 | |
1272 | The second argument C<pointer> should be the name of a variable that will | |
1273 | point to the newly allocated memory. | |
d1b91892 | 1274 | |
d1b91892 AD |
1275 | The third and fourth arguments C<number> and C<type> specify how many of |
1276 | the specified type of data structure should be allocated. The argument | |
1277 | C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>, | |
1278 | should be used if the C<pointer> argument is different from the C<type> | |
1279 | argument. | |
1280 | ||
1281 | Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero> | |
1282 | to zero out all the newly allocated memory. | |
1283 | ||
1284 | Renew(pointer, number, type); | |
1285 | Renewc(pointer, number, type, cast); | |
1286 | Safefree(pointer) | |
1287 | ||
1288 | These three macros are used to change a memory buffer size or to free a | |
1289 | piece of memory no longer needed. The arguments to C<Renew> and C<Renewc> | |
1290 | match those of C<New> and C<Newc> with the exception of not needing the | |
1291 | "magic cookie" argument. | |
1292 | ||
1293 | Move(source, dest, number, type); | |
1294 | Copy(source, dest, number, type); | |
1295 | Zero(dest, number, type); | |
1296 | ||
1297 | These three macros are used to move, copy, or zero out previously allocated | |
1298 | memory. The C<source> and C<dest> arguments point to the source and | |
1299 | destination starting points. Perl will move, copy, or zero out C<number> | |
1300 | instances of the size of the C<type> data structure (using the C<sizeof> | |
1301 | function). | |
a0d0e21e | 1302 | |
5f05dabc | 1303 | =head2 PerlIO |
ce3d39e2 | 1304 | |
5f05dabc | 1305 | The most recent development releases of Perl has been experimenting with |
1306 | removing Perl's dependency on the "normal" standard I/O suite and allowing | |
1307 | other stdio implementations to be used. This involves creating a new | |
1308 | abstraction layer that then calls whichever implementation of stdio Perl | |
68dc0745 | 1309 | was compiled with. All XSUBs should now use the functions in the PerlIO |
5f05dabc | 1310 | abstraction layer and not make any assumptions about what kind of stdio |
1311 | is being used. | |
1312 | ||
1313 | For a complete description of the PerlIO abstraction, consult L<perlapio>. | |
1314 | ||
8ebc5c01 | 1315 | =head2 Putting a C value on Perl stack |
ce3d39e2 IZ |
1316 | |
1317 | A lot of opcodes (this is an elementary operation in the internal perl | |
1318 | stack machine) put an SV* on the stack. However, as an optimization | |
1319 | the corresponding SV is (usually) not recreated each time. The opcodes | |
1320 | reuse specially assigned SVs (I<target>s) which are (as a corollary) | |
1321 | not constantly freed/created. | |
1322 | ||
0a753a76 | 1323 | Each of the targets is created only once (but see |
ce3d39e2 IZ |
1324 | L<Scratchpads and recursion> below), and when an opcode needs to put |
1325 | an integer, a double, or a string on stack, it just sets the | |
1326 | corresponding parts of its I<target> and puts the I<target> on stack. | |
1327 | ||
1328 | The macro to put this target on stack is C<PUSHTARG>, and it is | |
1329 | directly used in some opcodes, as well as indirectly in zillions of | |
1330 | others, which use it via C<(X)PUSH[pni]>. | |
1331 | ||
8ebc5c01 | 1332 | =head2 Scratchpads |
ce3d39e2 | 1333 | |
54310121 | 1334 | The question remains on when the SVs which are I<target>s for opcodes |
5f05dabc | 1335 | are created. The answer is that they are created when the current unit -- |
1336 | a subroutine or a file (for opcodes for statements outside of | |
1337 | subroutines) -- is compiled. During this time a special anonymous Perl | |
ce3d39e2 IZ |
1338 | array is created, which is called a scratchpad for the current |
1339 | unit. | |
1340 | ||
54310121 | 1341 | A scratchpad keeps SVs which are lexicals for the current unit and are |
ce3d39e2 IZ |
1342 | targets for opcodes. One can deduce that an SV lives on a scratchpad |
1343 | by looking on its flags: lexicals have C<SVs_PADMY> set, and | |
1344 | I<target>s have C<SVs_PADTMP> set. | |
1345 | ||
54310121 | 1346 | The correspondence between OPs and I<target>s is not 1-to-1. Different |
1347 | OPs in the compile tree of the unit can use the same target, if this | |
ce3d39e2 IZ |
1348 | would not conflict with the expected life of the temporary. |
1349 | ||
2ae324a7 | 1350 | =head2 Scratchpads and recursion |
ce3d39e2 IZ |
1351 | |
1352 | In fact it is not 100% true that a compiled unit contains a pointer to | |
1353 | the scratchpad AV. In fact it contains a pointer to an AV of | |
1354 | (initially) one element, and this element is the scratchpad AV. Why do | |
1355 | we need an extra level of indirection? | |
1356 | ||
1357 | The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both | |
1358 | these can create several execution pointers going into the same | |
1359 | subroutine. For the subroutine-child not write over the temporaries | |
1360 | for the subroutine-parent (lifespan of which covers the call to the | |
1361 | child), the parent and the child should have different | |
1362 | scratchpads. (I<And> the lexicals should be separate anyway!) | |
1363 | ||
5f05dabc | 1364 | So each subroutine is born with an array of scratchpads (of length 1). |
1365 | On each entry to the subroutine it is checked that the current | |
ce3d39e2 IZ |
1366 | depth of the recursion is not more than the length of this array, and |
1367 | if it is, new scratchpad is created and pushed into the array. | |
1368 | ||
1369 | The I<target>s on this scratchpad are C<undef>s, but they are already | |
1370 | marked with correct flags. | |
1371 | ||
0a753a76 | 1372 | =head1 Compiled code |
1373 | ||
1374 | =head2 Code tree | |
1375 | ||
1376 | Here we describe the internal form your code is converted to by | |
1377 | Perl. Start with a simple example: | |
1378 | ||
1379 | $a = $b + $c; | |
1380 | ||
1381 | This is converted to a tree similar to this one: | |
1382 | ||
1383 | assign-to | |
1384 | / \ | |
1385 | + $a | |
1386 | / \ | |
1387 | $b $c | |
1388 | ||
7b8d334a | 1389 | (but slightly more complicated). This tree reflects the way Perl |
0a753a76 | 1390 | parsed your code, but has nothing to do with the execution order. |
1391 | There is an additional "thread" going through the nodes of the tree | |
1392 | which shows the order of execution of the nodes. In our simplified | |
1393 | example above it looks like: | |
1394 | ||
1395 | $b ---> $c ---> + ---> $a ---> assign-to | |
1396 | ||
1397 | But with the actual compile tree for C<$a = $b + $c> it is different: | |
1398 | some nodes I<optimized away>. As a corollary, though the actual tree | |
1399 | contains more nodes than our simplified example, the execution order | |
1400 | is the same as in our example. | |
1401 | ||
1402 | =head2 Examining the tree | |
1403 | ||
1404 | If you have your perl compiled for debugging (usually done with C<-D | |
1405 | optimize=-g> on C<Configure> command line), you may examine the | |
1406 | compiled tree by specifying C<-Dx> on the Perl command line. The | |
1407 | output takes several lines per node, and for C<$b+$c> it looks like | |
1408 | this: | |
1409 | ||
1410 | 5 TYPE = add ===> 6 | |
1411 | TARG = 1 | |
1412 | FLAGS = (SCALAR,KIDS) | |
1413 | { | |
1414 | TYPE = null ===> (4) | |
1415 | (was rv2sv) | |
1416 | FLAGS = (SCALAR,KIDS) | |
1417 | { | |
1418 | 3 TYPE = gvsv ===> 4 | |
1419 | FLAGS = (SCALAR) | |
1420 | GV = main::b | |
1421 | } | |
1422 | } | |
1423 | { | |
1424 | TYPE = null ===> (5) | |
1425 | (was rv2sv) | |
1426 | FLAGS = (SCALAR,KIDS) | |
1427 | { | |
1428 | 4 TYPE = gvsv ===> 5 | |
1429 | FLAGS = (SCALAR) | |
1430 | GV = main::c | |
1431 | } | |
1432 | } | |
1433 | ||
1434 | This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are | |
1435 | not optimized away (one per number in the left column). The immediate | |
1436 | children of the given node correspond to C<{}> pairs on the same level | |
1437 | of indentation, thus this listing corresponds to the tree: | |
1438 | ||
1439 | add | |
1440 | / \ | |
1441 | null null | |
1442 | | | | |
1443 | gvsv gvsv | |
1444 | ||
1445 | The execution order is indicated by C<===E<gt>> marks, thus it is C<3 | |
1446 | 4 5 6> (node C<6> is not included into above listing), i.e., | |
1447 | C<gvsv gvsv add whatever>. | |
1448 | ||
1449 | =head2 Compile pass 1: check routines | |
1450 | ||
1451 | The tree is created by the I<pseudo-compiler> while yacc code feeds it | |
1452 | the constructions it recognizes. Since yacc works bottom-up, so does | |
1453 | the first pass of perl compilation. | |
1454 | ||
1455 | What makes this pass interesting for perl developers is that some | |
1456 | optimization may be performed on this pass. This is optimization by | |
1457 | so-called I<check routines>. The correspondence between node names | |
1458 | and corresponding check routines is described in F<opcode.pl> (do not | |
1459 | forget to run C<make regen_headers> if you modify this file). | |
1460 | ||
1461 | A check routine is called when the node is fully constructed except | |
7b8d334a | 1462 | for the execution-order thread. Since at this time there are no |
0a753a76 | 1463 | back-links to the currently constructed node, one can do most any |
1464 | operation to the top-level node, including freeing it and/or creating | |
1465 | new nodes above/below it. | |
1466 | ||
1467 | The check routine returns the node which should be inserted into the | |
1468 | tree (if the top-level node was not modified, check routine returns | |
1469 | its argument). | |
1470 | ||
1471 | By convention, check routines have names C<ck_*>. They are usually | |
1472 | called from C<new*OP> subroutines (or C<convert>) (which in turn are | |
1473 | called from F<perly.y>). | |
1474 | ||
1475 | =head2 Compile pass 1a: constant folding | |
1476 | ||
1477 | Immediately after the check routine is called the returned node is | |
1478 | checked for being compile-time executable. If it is (the value is | |
1479 | judged to be constant) it is immediately executed, and a I<constant> | |
1480 | node with the "return value" of the corresponding subtree is | |
1481 | substituted instead. The subtree is deleted. | |
1482 | ||
1483 | If constant folding was not performed, the execution-order thread is | |
1484 | created. | |
1485 | ||
1486 | =head2 Compile pass 2: context propagation | |
1487 | ||
1488 | When a context for a part of compile tree is known, it is propagated | |
a3cb178b | 1489 | down through the tree. At this time the context can have 5 values |
0a753a76 | 1490 | (instead of 2 for runtime context): void, boolean, scalar, list, and |
1491 | lvalue. In contrast with the pass 1 this pass is processed from top | |
1492 | to bottom: a node's context determines the context for its children. | |
1493 | ||
1494 | Additional context-dependent optimizations are performed at this time. | |
1495 | Since at this moment the compile tree contains back-references (via | |
1496 | "thread" pointers), nodes cannot be free()d now. To allow | |
1497 | optimized-away nodes at this stage, such nodes are null()ified instead | |
1498 | of free()ing (i.e. their type is changed to OP_NULL). | |
1499 | ||
1500 | =head2 Compile pass 3: peephole optimization | |
1501 | ||
1502 | After the compile tree for a subroutine (or for an C<eval> or a file) | |
1503 | is created, an additional pass over the code is performed. This pass | |
1504 | is neither top-down or bottom-up, but in the execution order (with | |
7b8d334a | 1505 | additional complications for conditionals). These optimizations are |
0a753a76 | 1506 | done in the subroutine peep(). Optimizations performed at this stage |
1507 | are subject to the same restrictions as in the pass 2. | |
1508 | ||
1509 | =head1 API LISTING | |
a0d0e21e | 1510 | |
cb1a09d0 AD |
1511 | This is a listing of functions, macros, flags, and variables that may be |
1512 | useful to extension writers or that may be found while reading other | |
1513 | extensions. | |
9cde0e7f GS |
1514 | |
1515 | Note that all Perl API global variables must be referenced with the C<PL_> | |
1516 | prefix. Some macros are provided for compatibility with the older, | |
1517 | unadorned names, but this support will be removed in a future release. | |
1518 | ||
1519 | It is strongly recommended that all Perl API functions that don't begin | |
1520 | with C<perl> be referenced with an explicit C<Perl_> prefix. | |
1521 | ||
e89caa19 | 1522 | The sort order of the listing is case insensitive, with any |
b5a41e52 | 1523 | occurrences of '_' ignored for the purpose of sorting. |
a0d0e21e | 1524 | |
cb1a09d0 | 1525 | =over 8 |
a0d0e21e | 1526 | |
cb1a09d0 AD |
1527 | =item av_clear |
1528 | ||
0146554f GA |
1529 | Clears an array, making it empty. Does not free the memory used by the |
1530 | array itself. | |
cb1a09d0 | 1531 | |
ef50df4b | 1532 | void av_clear (AV* ar) |
cb1a09d0 AD |
1533 | |
1534 | =item av_extend | |
1535 | ||
1536 | Pre-extend an array. The C<key> is the index to which the array should be | |
1537 | extended. | |
1538 | ||
ef50df4b | 1539 | void av_extend (AV* ar, I32 key) |
cb1a09d0 AD |
1540 | |
1541 | =item av_fetch | |
1542 | ||
1543 | Returns the SV at the specified index in the array. The C<key> is the | |
1544 | index. If C<lval> is set then the fetch will be part of a store. Check | |
1545 | that the return value is non-null before dereferencing it to a C<SV*>. | |
1546 | ||
04343c6d GS |
1547 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1548 | information on how to use this function on tied arrays. | |
1549 | ||
ef50df4b | 1550 | SV** av_fetch (AV* ar, I32 key, I32 lval) |
cb1a09d0 | 1551 | |
e89caa19 GA |
1552 | =item AvFILL |
1553 | ||
95906810 | 1554 | Same as C<av_len()>. Deprecated, use C<av_len()> instead. |
e89caa19 | 1555 | |
cb1a09d0 AD |
1556 | =item av_len |
1557 | ||
1558 | Returns the highest index in the array. Returns -1 if the array is empty. | |
1559 | ||
ef50df4b | 1560 | I32 av_len (AV* ar) |
cb1a09d0 AD |
1561 | |
1562 | =item av_make | |
1563 | ||
5fb8527f | 1564 | Creates a new AV and populates it with a list of SVs. The SVs are copied |
1565 | into the array, so they may be freed after the call to av_make. The new AV | |
5f05dabc | 1566 | will have a reference count of 1. |
cb1a09d0 | 1567 | |
ef50df4b | 1568 | AV* av_make (I32 size, SV** svp) |
cb1a09d0 AD |
1569 | |
1570 | =item av_pop | |
1571 | ||
9cde0e7f | 1572 | Pops an SV off the end of the array. Returns C<&PL_sv_undef> if the array is |
cb1a09d0 AD |
1573 | empty. |
1574 | ||
ef50df4b | 1575 | SV* av_pop (AV* ar) |
cb1a09d0 AD |
1576 | |
1577 | =item av_push | |
1578 | ||
5fb8527f | 1579 | Pushes an SV onto the end of the array. The array will grow automatically |
1580 | to accommodate the addition. | |
cb1a09d0 | 1581 | |
ef50df4b | 1582 | void av_push (AV* ar, SV* val) |
cb1a09d0 AD |
1583 | |
1584 | =item av_shift | |
1585 | ||
1586 | Shifts an SV off the beginning of the array. | |
1587 | ||
ef50df4b | 1588 | SV* av_shift (AV* ar) |
cb1a09d0 AD |
1589 | |
1590 | =item av_store | |
1591 | ||
1592 | Stores an SV in an array. The array index is specified as C<key>. The | |
04343c6d GS |
1593 | return value will be NULL if the operation failed or if the value did not |
1594 | need to be actually stored within the array (as in the case of tied arrays). | |
1595 | Otherwise it can be dereferenced to get the original C<SV*>. Note that the | |
1596 | caller is responsible for suitably incrementing the reference count of C<val> | |
1597 | before the call, and decrementing it if the function returned NULL. | |
1598 | ||
1599 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
1600 | information on how to use this function on tied arrays. | |
cb1a09d0 | 1601 | |
ef50df4b | 1602 | SV** av_store (AV* ar, I32 key, SV* val) |
cb1a09d0 AD |
1603 | |
1604 | =item av_undef | |
1605 | ||
0146554f | 1606 | Undefines the array. Frees the memory used by the array itself. |
cb1a09d0 | 1607 | |
ef50df4b | 1608 | void av_undef (AV* ar) |
cb1a09d0 AD |
1609 | |
1610 | =item av_unshift | |
1611 | ||
0146554f GA |
1612 | Unshift the given number of C<undef> values onto the beginning of the |
1613 | array. The array will grow automatically to accommodate the addition. | |
1614 | You must then use C<av_store> to assign values to these new elements. | |
cb1a09d0 | 1615 | |
ef50df4b | 1616 | void av_unshift (AV* ar, I32 num) |
cb1a09d0 AD |
1617 | |
1618 | =item CLASS | |
1619 | ||
1620 | Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS | |
5fb8527f | 1621 | constructor. This is always a C<char*>. See C<THIS> and |
1622 | L<perlxs/"Using XS With C++">. | |
cb1a09d0 AD |
1623 | |
1624 | =item Copy | |
1625 | ||
1626 | The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the | |
1627 | source, C<d> is the destination, C<n> is the number of items, and C<t> is | |
0146554f | 1628 | the type. May fail on overlapping copies. See also C<Move>. |
cb1a09d0 | 1629 | |
e89caa19 | 1630 | void Copy( s, d, n, t ) |
cb1a09d0 AD |
1631 | |
1632 | =item croak | |
1633 | ||
1634 | This is the XSUB-writer's interface to Perl's C<die> function. Use this | |
1635 | function the same way you use the C C<printf> function. See C<warn>. | |
1636 | ||
1637 | =item CvSTASH | |
1638 | ||
1639 | Returns the stash of the CV. | |
1640 | ||
e89caa19 | 1641 | HV* CvSTASH( SV* sv ) |
cb1a09d0 | 1642 | |
9cde0e7f | 1643 | =item PL_DBsingle |
cb1a09d0 AD |
1644 | |
1645 | When Perl is run in debugging mode, with the B<-d> switch, this SV is a | |
1646 | boolean which indicates whether subs are being single-stepped. | |
5fb8527f | 1647 | Single-stepping is automatically turned on after every step. This is the C |
9cde0e7f | 1648 | variable which corresponds to Perl's $DB::single variable. See C<PL_DBsub>. |
cb1a09d0 | 1649 | |
9cde0e7f | 1650 | =item PL_DBsub |
cb1a09d0 AD |
1651 | |
1652 | When Perl is run in debugging mode, with the B<-d> switch, this GV contains | |
5fb8527f | 1653 | the SV which holds the name of the sub being debugged. This is the C |
9cde0e7f | 1654 | variable which corresponds to Perl's $DB::sub variable. See C<PL_DBsingle>. |
cb1a09d0 AD |
1655 | The sub name can be found by |
1656 | ||
2d8e6c8d | 1657 | SvPV( GvSV( PL_DBsub ), len ) |
cb1a09d0 | 1658 | |
9cde0e7f | 1659 | =item PL_DBtrace |
5fb8527f | 1660 | |
1661 | Trace variable used when Perl is run in debugging mode, with the B<-d> | |
1662 | switch. This is the C variable which corresponds to Perl's $DB::trace | |
9cde0e7f | 1663 | variable. See C<PL_DBsingle>. |
5fb8527f | 1664 | |
cb1a09d0 AD |
1665 | =item dMARK |
1666 | ||
5fb8527f | 1667 | Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and |
1668 | C<dORIGMARK>. | |
cb1a09d0 AD |
1669 | |
1670 | =item dORIGMARK | |
1671 | ||
1672 | Saves the original stack mark for the XSUB. See C<ORIGMARK>. | |
1673 | ||
9cde0e7f | 1674 | =item PL_dowarn |
5fb8527f | 1675 | |
1676 | The C variable which corresponds to Perl's $^W warning variable. | |
1677 | ||
cb1a09d0 AD |
1678 | =item dSP |
1679 | ||
924508f0 GS |
1680 | Declares a local copy of perl's stack pointer for the XSUB, available via |
1681 | the C<SP> macro. See C<SP>. | |
cb1a09d0 AD |
1682 | |
1683 | =item dXSARGS | |
1684 | ||
1685 | Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is | |
1686 | usually handled automatically by C<xsubpp>. Declares the C<items> variable | |
1687 | to indicate the number of items on the stack. | |
1688 | ||
5fb8527f | 1689 | =item dXSI32 |
1690 | ||
1691 | Sets up the C<ix> variable for an XSUB which has aliases. This is usually | |
1692 | handled automatically by C<xsubpp>. | |
1693 | ||
491527d0 GS |
1694 | =item do_binmode |
1695 | ||
1696 | Switches filehandle to binmode. C<iotype> is what C<IoTYPE(io)> would | |
1697 | contain. | |
1698 | ||
1699 | do_binmode(fp, iotype, TRUE); | |
1700 | ||
cb1a09d0 AD |
1701 | =item ENTER |
1702 | ||
1703 | Opening bracket on a callback. See C<LEAVE> and L<perlcall>. | |
1704 | ||
1705 | ENTER; | |
1706 | ||
1707 | =item EXTEND | |
1708 | ||
1709 | Used to extend the argument stack for an XSUB's return values. | |
1710 | ||
ef50df4b | 1711 | EXTEND( sp, int x ) |
cb1a09d0 | 1712 | |
e89caa19 GA |
1713 | =item fbm_compile |
1714 | ||
1715 | Analyses the string in order to make fast searches on it using fbm_instr() -- | |
1716 | the Boyer-Moore algorithm. | |
1717 | ||
411d5715 | 1718 | void fbm_compile(SV* sv, U32 flags) |
e89caa19 GA |
1719 | |
1720 | =item fbm_instr | |
1721 | ||
1722 | Returns the location of the SV in the string delimited by C<str> and | |
1723 | C<strend>. It returns C<Nullch> if the string can't be found. The | |
1724 | C<sv> does not have to be fbm_compiled, but the search will not be as | |
1725 | fast then. | |
1726 | ||
411d5715 | 1727 | char* fbm_instr(char *str, char *strend, SV *sv, U32 flags) |
e89caa19 | 1728 | |
cb1a09d0 AD |
1729 | =item FREETMPS |
1730 | ||
1731 | Closing bracket for temporaries on a callback. See C<SAVETMPS> and | |
1732 | L<perlcall>. | |
1733 | ||
1734 | FREETMPS; | |
1735 | ||
1736 | =item G_ARRAY | |
1737 | ||
54310121 | 1738 | Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>. |
cb1a09d0 AD |
1739 | |
1740 | =item G_DISCARD | |
1741 | ||
1742 | Indicates that arguments returned from a callback should be discarded. See | |
1743 | L<perlcall>. | |
1744 | ||
1745 | =item G_EVAL | |
1746 | ||
1747 | Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>. | |
1748 | ||
1749 | =item GIMME | |
1750 | ||
54310121 | 1751 | A backward-compatible version of C<GIMME_V> which can only return |
1752 | C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>. | |
1753 | ||
1754 | =item GIMME_V | |
1755 | ||
1756 | The XSUB-writer's equivalent to Perl's C<wantarray>. Returns | |
1757 | C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array | |
1758 | context, respectively. | |
cb1a09d0 AD |
1759 | |
1760 | =item G_NOARGS | |
1761 | ||
1762 | Indicates that no arguments are being sent to a callback. See L<perlcall>. | |
1763 | ||
1764 | =item G_SCALAR | |
1765 | ||
54310121 | 1766 | Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>. |
1767 | ||
faed5253 JO |
1768 | =item gv_fetchmeth |
1769 | ||
1770 | Returns the glob with the given C<name> and a defined subroutine or | |
9607fc9c | 1771 | C<NULL>. The glob lives in the given C<stash>, or in the stashes |
f86cebdf | 1772 | accessible via @ISA and @UNIVERSAL. |
faed5253 | 1773 | |
9607fc9c | 1774 | The argument C<level> should be either 0 or -1. If C<level==0>, as a |
0a753a76 | 1775 | side-effect creates a glob with the given C<name> in the given |
1776 | C<stash> which in the case of success contains an alias for the | |
1777 | subroutine, and sets up caching info for this glob. Similarly for all | |
1778 | the searched stashes. | |
1779 | ||
9607fc9c | 1780 | This function grants C<"SUPER"> token as a postfix of the stash name. |
1781 | ||
0a753a76 | 1782 | The GV returned from C<gv_fetchmeth> may be a method cache entry, |
1783 | which is not visible to Perl code. So when calling C<perl_call_sv>, | |
1784 | you should not use the GV directly; instead, you should use the | |
1785 | method's CV, which can be obtained from the GV with the C<GvCV> macro. | |
faed5253 | 1786 | |
08105a92 | 1787 | GV* gv_fetchmeth (HV* stash, const char* name, STRLEN len, I32 level) |
faed5253 JO |
1788 | |
1789 | =item gv_fetchmethod | |
1790 | ||
dc848c6f | 1791 | =item gv_fetchmethod_autoload |
1792 | ||
faed5253 | 1793 | Returns the glob which contains the subroutine to call to invoke the |
c2611fb3 | 1794 | method on the C<stash>. In fact in the presence of autoloading this may |
dc848c6f | 1795 | be the glob for "AUTOLOAD". In this case the corresponding variable |
faed5253 JO |
1796 | $AUTOLOAD is already setup. |
1797 | ||
dc848c6f | 1798 | The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD |
1799 | lookup is performed if the given method is not present: non-zero means | |
1800 | yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling | |
1801 | C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a | |
1802 | non-zero C<autoload> parameter. | |
1803 | ||
1804 | These functions grant C<"SUPER"> token as a prefix of the method name. | |
1805 | ||
1806 | Note that if you want to keep the returned glob for a long time, you | |
1807 | need to check for it being "AUTOLOAD", since at the later time the call | |
faed5253 JO |
1808 | may load a different subroutine due to $AUTOLOAD changing its value. |
1809 | Use the glob created via a side effect to do this. | |
1810 | ||
dc848c6f | 1811 | These functions have the same side-effects and as C<gv_fetchmeth> with |
1812 | C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>. | |
0a753a76 | 1813 | The warning against passing the GV returned by C<gv_fetchmeth> to |
dc848c6f | 1814 | C<perl_call_sv> apply equally to these functions. |
faed5253 | 1815 | |
08105a92 GS |
1816 | GV* gv_fetchmethod (HV* stash, const char* name) |
1817 | GV* gv_fetchmethod_autoload (HV* stash, const char* name, I32 autoload) | |
faed5253 | 1818 | |
e89caa19 GA |
1819 | =item G_VOID |
1820 | ||
1821 | Used to indicate void context. See C<GIMME_V> and L<perlcall>. | |
1822 | ||
cb1a09d0 AD |
1823 | =item gv_stashpv |
1824 | ||
1825 | Returns a pointer to the stash for a specified package. If C<create> is set | |
1826 | then the package will be created if it does not already exist. If C<create> | |
1827 | is not set and the package does not exist then NULL is returned. | |
1828 | ||
08105a92 | 1829 | HV* gv_stashpv (const char* name, I32 create) |
cb1a09d0 AD |
1830 | |
1831 | =item gv_stashsv | |
1832 | ||
1833 | Returns a pointer to the stash for a specified package. See C<gv_stashpv>. | |
1834 | ||
ef50df4b | 1835 | HV* gv_stashsv (SV* sv, I32 create) |
cb1a09d0 | 1836 | |
e5581bf4 | 1837 | =item GvSV |
cb1a09d0 | 1838 | |
e5581bf4 | 1839 | Return the SV from the GV. |
44a8e56a | 1840 | |
1e422769 | 1841 | =item HEf_SVKEY |
1842 | ||
1843 | This flag, used in the length slot of hash entries and magic | |
1844 | structures, specifies the structure contains a C<SV*> pointer where a | |
1845 | C<char*> pointer is to be expected. (For information only--not to be used). | |
1846 | ||
1e422769 | 1847 | =item HeHASH |
1848 | ||
e89caa19 | 1849 | Returns the computed hash stored in the hash entry. |
1e422769 | 1850 | |
e89caa19 | 1851 | U32 HeHASH(HE* he) |
1e422769 | 1852 | |
1853 | =item HeKEY | |
1854 | ||
1855 | Returns the actual pointer stored in the key slot of the hash entry. | |
1856 | The pointer may be either C<char*> or C<SV*>, depending on the value of | |
1857 | C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros | |
1858 | are usually preferable for finding the value of a key. | |
1859 | ||
e89caa19 | 1860 | char* HeKEY(HE* he) |
1e422769 | 1861 | |
1862 | =item HeKLEN | |
1863 | ||
1864 | If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry | |
1865 | holds an C<SV*> key. Otherwise, holds the actual length of the key. | |
1866 | Can be assigned to. The C<HePV()> macro is usually preferable for finding | |
1867 | key lengths. | |
1868 | ||
e89caa19 | 1869 | int HeKLEN(HE* he) |
1e422769 | 1870 | |
1871 | =item HePV | |
1872 | ||
1873 | Returns the key slot of the hash entry as a C<char*> value, doing any | |
1874 | necessary dereferencing of possibly C<SV*> keys. The length of | |
1875 | the string is placed in C<len> (this is a macro, so do I<not> use | |
1876 | C<&len>). If you do not care about what the length of the key is, | |
2d8e6c8d GS |
1877 | you may use the global variable C<PL_na>, though this is rather less |
1878 | efficient than using a local variable. Remember though, that hash | |
1e422769 | 1879 | keys in perl are free to contain embedded nulls, so using C<strlen()> |
1880 | or similar is not a good way to find the length of hash keys. | |
1881 | This is very similar to the C<SvPV()> macro described elsewhere in | |
1882 | this document. | |
1883 | ||
e89caa19 | 1884 | char* HePV(HE* he, STRLEN len) |
1e422769 | 1885 | |
1886 | =item HeSVKEY | |
1887 | ||
1888 | Returns the key as an C<SV*>, or C<Nullsv> if the hash entry | |
1889 | does not contain an C<SV*> key. | |
1890 | ||
1891 | HeSVKEY(HE* he) | |
1892 | ||
1893 | =item HeSVKEY_force | |
1894 | ||
1895 | Returns the key as an C<SV*>. Will create and return a temporary | |
1896 | mortal C<SV*> if the hash entry contains only a C<char*> key. | |
1897 | ||
1898 | HeSVKEY_force(HE* he) | |
1899 | ||
1900 | =item HeSVKEY_set | |
1901 | ||
1902 | Sets the key to a given C<SV*>, taking care to set the appropriate flags | |
1903 | to indicate the presence of an C<SV*> key, and returns the same C<SV*>. | |
1904 | ||
1905 | HeSVKEY_set(HE* he, SV* sv) | |
1906 | ||
1907 | =item HeVAL | |
1908 | ||
1909 | Returns the value slot (type C<SV*>) stored in the hash entry. | |
1910 | ||
1911 | HeVAL(HE* he) | |
1912 | ||
cb1a09d0 AD |
1913 | =item hv_clear |
1914 | ||
1915 | Clears a hash, making it empty. | |
1916 | ||
ef50df4b | 1917 | void hv_clear (HV* tb) |
cb1a09d0 AD |
1918 | |
1919 | =item hv_delete | |
1920 | ||
1921 | Deletes a key/value pair in the hash. The value SV is removed from the hash | |
5fb8527f | 1922 | and returned to the caller. The C<klen> is the length of the key. The |
04343c6d | 1923 | C<flags> value will normally be zero; if set to G_DISCARD then NULL will be |
cb1a09d0 AD |
1924 | returned. |
1925 | ||
08105a92 | 1926 | SV* hv_delete (HV* tb, const char* key, U32 klen, I32 flags) |
cb1a09d0 | 1927 | |
1e422769 | 1928 | =item hv_delete_ent |
1929 | ||
1930 | Deletes a key/value pair in the hash. The value SV is removed from the hash | |
1931 | and returned to the caller. The C<flags> value will normally be zero; if set | |
04343c6d | 1932 | to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed |
1e422769 | 1933 | hash value, or 0 to ask for it to be computed. |
1934 | ||
ef50df4b | 1935 | SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash) |
1e422769 | 1936 | |
cb1a09d0 AD |
1937 | =item hv_exists |
1938 | ||
1939 | Returns a boolean indicating whether the specified hash key exists. The | |
5fb8527f | 1940 | C<klen> is the length of the key. |
cb1a09d0 | 1941 | |
08105a92 | 1942 | bool hv_exists (HV* tb, const char* key, U32 klen) |
cb1a09d0 | 1943 | |
1e422769 | 1944 | =item hv_exists_ent |
1945 | ||
1946 | Returns a boolean indicating whether the specified hash key exists. C<hash> | |
54310121 | 1947 | can be a valid precomputed hash value, or 0 to ask for it to be computed. |
1e422769 | 1948 | |
ef50df4b | 1949 | bool hv_exists_ent (HV* tb, SV* key, U32 hash) |
1e422769 | 1950 | |
cb1a09d0 AD |
1951 | =item hv_fetch |
1952 | ||
1953 | Returns the SV which corresponds to the specified key in the hash. The | |
5fb8527f | 1954 | C<klen> is the length of the key. If C<lval> is set then the fetch will be |
cb1a09d0 AD |
1955 | part of a store. Check that the return value is non-null before |
1956 | dereferencing it to a C<SV*>. | |
1957 | ||
04343c6d GS |
1958 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1959 | information on how to use this function on tied hashes. | |
1960 | ||
08105a92 | 1961 | SV** hv_fetch (HV* tb, const char* key, U32 klen, I32 lval) |
cb1a09d0 | 1962 | |
1e422769 | 1963 | =item hv_fetch_ent |
1964 | ||
1965 | Returns the hash entry which corresponds to the specified key in the hash. | |
54310121 | 1966 | C<hash> must be a valid precomputed hash number for the given C<key>, or |
1e422769 | 1967 | 0 if you want the function to compute it. IF C<lval> is set then the |
1968 | fetch will be part of a store. Make sure the return value is non-null | |
1969 | before accessing it. The return value when C<tb> is a tied hash | |
1970 | is a pointer to a static location, so be sure to make a copy of the | |
1971 | structure if you need to store it somewhere. | |
1972 | ||
04343c6d GS |
1973 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1974 | information on how to use this function on tied hashes. | |
1975 | ||
ef50df4b | 1976 | HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash) |
1e422769 | 1977 | |
cb1a09d0 AD |
1978 | =item hv_iterinit |
1979 | ||
1980 | Prepares a starting point to traverse a hash table. | |
1981 | ||
ef50df4b | 1982 | I32 hv_iterinit (HV* tb) |
cb1a09d0 | 1983 | |
c6601927 SI |
1984 | Returns the number of keys in the hash (i.e. the same as C<HvKEYS(tb)>). |
1985 | The return value is currently only meaningful for hashes without tie | |
1986 | magic. | |
1987 | ||
1988 | NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number | |
1989 | of hash buckets that happen to be in use. If you still need that | |
1990 | esoteric value, you can get it through the macro C<HvFILL(tb)>. | |
fb73857a | 1991 | |
cb1a09d0 AD |
1992 | =item hv_iterkey |
1993 | ||
1994 | Returns the key from the current position of the hash iterator. See | |
1995 | C<hv_iterinit>. | |
1996 | ||
ef50df4b | 1997 | char* hv_iterkey (HE* entry, I32* retlen) |
cb1a09d0 | 1998 | |
1e422769 | 1999 | =item hv_iterkeysv |
3fe9a6f1 | 2000 | |
1e422769 | 2001 | Returns the key as an C<SV*> from the current position of the hash |
2002 | iterator. The return value will always be a mortal copy of the | |
2003 | key. Also see C<hv_iterinit>. | |
2004 | ||
ef50df4b | 2005 | SV* hv_iterkeysv (HE* entry) |
1e422769 | 2006 | |
cb1a09d0 AD |
2007 | =item hv_iternext |
2008 | ||
2009 | Returns entries from a hash iterator. See C<hv_iterinit>. | |
2010 | ||
ef50df4b | 2011 | HE* hv_iternext (HV* tb) |
cb1a09d0 AD |
2012 | |
2013 | =item hv_iternextsv | |
2014 | ||
2015 | Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one | |
2016 | operation. | |
2017 | ||
e89caa19 | 2018 | SV* hv_iternextsv (HV* hv, char** key, I32* retlen) |
cb1a09d0 AD |
2019 | |
2020 | =item hv_iterval | |
2021 | ||
2022 | Returns the value from the current position of the hash iterator. See | |
2023 | C<hv_iterkey>. | |
2024 | ||
ef50df4b | 2025 | SV* hv_iterval (HV* tb, HE* entry) |
cb1a09d0 AD |
2026 | |
2027 | =item hv_magic | |
2028 | ||
2029 | Adds magic to a hash. See C<sv_magic>. | |
2030 | ||
ef50df4b | 2031 | void hv_magic (HV* hv, GV* gv, int how) |
cb1a09d0 AD |
2032 | |
2033 | =item HvNAME | |
2034 | ||
2035 | Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>. | |
2036 | ||
e89caa19 | 2037 | char* HvNAME (HV* stash) |
cb1a09d0 AD |
2038 | |
2039 | =item hv_store | |
2040 | ||
2041 | Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is | |
54310121 | 2042 | the length of the key. The C<hash> parameter is the precomputed hash |
cb1a09d0 | 2043 | value; if it is zero then Perl will compute it. The return value will be |
04343c6d GS |
2044 | NULL if the operation failed or if the value did not need to be actually |
2045 | stored within the hash (as in the case of tied hashes). Otherwise it can | |
2046 | be dereferenced to get the original C<SV*>. Note that the caller is | |
2047 | responsible for suitably incrementing the reference count of C<val> | |
2048 | before the call, and decrementing it if the function returned NULL. | |
2049 | ||
2050 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
2051 | information on how to use this function on tied hashes. | |
cb1a09d0 | 2052 | |
08105a92 | 2053 | SV** hv_store (HV* tb, const char* key, U32 klen, SV* val, U32 hash) |
cb1a09d0 | 2054 | |
1e422769 | 2055 | =item hv_store_ent |
2056 | ||
2057 | Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash> | |
54310121 | 2058 | parameter is the precomputed hash value; if it is zero then Perl will |
1e422769 | 2059 | compute it. The return value is the new hash entry so created. It will be |
04343c6d GS |
2060 | NULL if the operation failed or if the value did not need to be actually |
2061 | stored within the hash (as in the case of tied hashes). Otherwise the | |
2062 | contents of the return value can be accessed using the C<He???> macros | |
2063 | described here. Note that the caller is responsible for suitably | |
2064 | incrementing the reference count of C<val> before the call, and decrementing | |
2065 | it if the function returned NULL. | |
2066 | ||
2067 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
2068 | information on how to use this function on tied hashes. | |
1e422769 | 2069 | |
ef50df4b | 2070 | HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash) |
1e422769 | 2071 | |
cb1a09d0 AD |
2072 | =item hv_undef |
2073 | ||
2074 | Undefines the hash. | |
2075 | ||
ef50df4b | 2076 | void hv_undef (HV* tb) |
cb1a09d0 AD |
2077 | |
2078 | =item isALNUM | |
2079 | ||
2080 | Returns a boolean indicating whether the C C<char> is an ascii alphanumeric | |
5f05dabc | 2081 | character or digit. |
cb1a09d0 | 2082 | |
e89caa19 | 2083 | int isALNUM (char c) |
cb1a09d0 AD |
2084 | |
2085 | =item isALPHA | |
2086 | ||
5fb8527f | 2087 | Returns a boolean indicating whether the C C<char> is an ascii alphabetic |
cb1a09d0 AD |
2088 | character. |
2089 | ||
e89caa19 | 2090 | int isALPHA (char c) |
cb1a09d0 AD |
2091 | |
2092 | =item isDIGIT | |
2093 | ||
2094 | Returns a boolean indicating whether the C C<char> is an ascii digit. | |
2095 | ||
e89caa19 | 2096 | int isDIGIT (char c) |
cb1a09d0 AD |
2097 | |
2098 | =item isLOWER | |
2099 | ||
2100 | Returns a boolean indicating whether the C C<char> is a lowercase character. | |
2101 | ||
e89caa19 | 2102 | int isLOWER (char c) |
cb1a09d0 AD |
2103 | |
2104 | =item isSPACE | |
2105 | ||
2106 | Returns a boolean indicating whether the C C<char> is whitespace. | |
2107 | ||
e89caa19 | 2108 | int isSPACE (char c) |
cb1a09d0 AD |
2109 | |
2110 | =item isUPPER | |
2111 | ||
2112 | Returns a boolean indicating whether the C C<char> is an uppercase character. | |
2113 | ||
e89caa19 | 2114 | int isUPPER (char c) |
cb1a09d0 AD |
2115 | |
2116 | =item items | |
2117 | ||
2118 | Variable which is setup by C<xsubpp> to indicate the number of items on the | |
5fb8527f | 2119 | stack. See L<perlxs/"Variable-length Parameter Lists">. |
2120 | ||
2121 | =item ix | |
2122 | ||
2123 | Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases | |
2124 | was used to invoke it. See L<perlxs/"The ALIAS: Keyword">. | |
cb1a09d0 AD |
2125 | |
2126 | =item LEAVE | |
2127 | ||
2128 | Closing bracket on a callback. See C<ENTER> and L<perlcall>. | |
2129 | ||
2130 | LEAVE; | |
2131 | ||
e89caa19 GA |
2132 | =item looks_like_number |
2133 | ||
2134 | Test if an the content of an SV looks like a number (or is a number). | |
2135 | ||
2136 | int looks_like_number(SV*) | |
2137 | ||
2138 | ||
cb1a09d0 AD |
2139 | =item MARK |
2140 | ||
5fb8527f | 2141 | Stack marker variable for the XSUB. See C<dMARK>. |
cb1a09d0 AD |
2142 | |
2143 | =item mg_clear | |
2144 | ||
2145 | Clear something magical that the SV represents. See C<sv_magic>. | |
2146 | ||
ef50df4b | 2147 | int mg_clear (SV* sv) |
cb1a09d0 AD |
2148 | |
2149 | =item mg_copy | |
2150 | ||
2151 | Copies the magic from one SV to another. See C<sv_magic>. | |
2152 | ||
08105a92 | 2153 | int mg_copy (SV *, SV *, const char *, STRLEN) |
cb1a09d0 AD |
2154 | |
2155 | =item mg_find | |
2156 | ||
2157 | Finds the magic pointer for type matching the SV. See C<sv_magic>. | |
2158 | ||
ef50df4b | 2159 | MAGIC* mg_find (SV* sv, int type) |
cb1a09d0 AD |
2160 | |
2161 | =item mg_free | |
2162 | ||
2163 | Free any magic storage used by the SV. See C<sv_magic>. | |
2164 | ||
ef50df4b | 2165 | int mg_free (SV* sv) |
cb1a09d0 AD |
2166 | |
2167 | =item mg_get | |
2168 | ||
2169 | Do magic after a value is retrieved from the SV. See C<sv_magic>. | |
2170 | ||
ef50df4b | 2171 | int mg_get (SV* sv) |
cb1a09d0 AD |
2172 | |
2173 | =item mg_len | |
2174 | ||
2175 | Report on the SV's length. See C<sv_magic>. | |
2176 | ||
ef50df4b | 2177 | U32 mg_len (SV* sv) |
cb1a09d0 AD |
2178 | |
2179 | =item mg_magical | |
2180 | ||
2181 | Turns on the magical status of an SV. See C<sv_magic>. | |
2182 | ||
ef50df4b | 2183 | void mg_magical (SV* sv) |
cb1a09d0 AD |
2184 | |
2185 | =item mg_set | |
2186 | ||
2187 | Do magic after a value is assigned to the SV. See C<sv_magic>. | |
2188 | ||
ef50df4b | 2189 | int mg_set (SV* sv) |
cb1a09d0 | 2190 | |
b0fffe30 JP |
2191 | =item modglobal |
2192 | ||
2193 | C<modglobal> is a general purpose, interpreter global HV for use by | |
db696efe GS |
2194 | extensions that need to keep information on a per-interpreter basis. |
2195 | In a pinch, it can also be used as a symbol table for extensions | |
2196 | to share data among each other. It is a good idea to use keys | |
2197 | prefixed by the package name of the extension that owns the data. | |
b0fffe30 | 2198 | |
cb1a09d0 AD |
2199 | =item Move |
2200 | ||
2201 | The XSUB-writer's interface to the C C<memmove> function. The C<s> is the | |
2202 | source, C<d> is the destination, C<n> is the number of items, and C<t> is | |
0146554f | 2203 | the type. Can do overlapping moves. See also C<Copy>. |
cb1a09d0 | 2204 | |
e89caa19 | 2205 | void Move( s, d, n, t ) |
cb1a09d0 | 2206 | |
9cde0e7f | 2207 | =item PL_na |
cb1a09d0 | 2208 | |
2d8e6c8d GS |
2209 | A convenience variable which is typically used with C<SvPV> when one doesn't |
2210 | care about the length of the string. It is usually more efficient to | |
1fa8b10d JD |
2211 | either declare a local variable and use that instead or to use the C<SvPV_nolen> |
2212 | macro. | |
cb1a09d0 AD |
2213 | |
2214 | =item New | |
2215 | ||
2216 | The XSUB-writer's interface to the C C<malloc> function. | |
2217 | ||
e89caa19 | 2218 | void* New( x, void *ptr, int size, type ) |
cb1a09d0 AD |
2219 | |
2220 | =item newAV | |
2221 | ||
5f05dabc | 2222 | Creates a new AV. The reference count is set to 1. |
cb1a09d0 | 2223 | |
ef50df4b | 2224 | AV* newAV (void) |
cb1a09d0 | 2225 | |
e89caa19 GA |
2226 | =item Newc |
2227 | ||
2228 | The XSUB-writer's interface to the C C<malloc> function, with cast. | |
2229 | ||
2230 | void* Newc( x, void *ptr, int size, type, cast ) | |
2231 | ||
5476c433 JD |
2232 | =item newCONSTSUB |
2233 | ||
2234 | Creates a constant sub equivalent to Perl C<sub FOO () { 123 }> | |
2235 | which is eligible for inlining at compile-time. | |
2236 | ||
2237 | void newCONSTSUB(HV* stash, char* name, SV* sv) | |
2238 | ||
cb1a09d0 AD |
2239 | =item newHV |
2240 | ||
5f05dabc | 2241 | Creates a new HV. The reference count is set to 1. |
cb1a09d0 | 2242 | |
ef50df4b | 2243 | HV* newHV (void) |
cb1a09d0 | 2244 | |
5f05dabc | 2245 | =item newRV_inc |
cb1a09d0 | 2246 | |
5f05dabc | 2247 | Creates an RV wrapper for an SV. The reference count for the original SV is |
cb1a09d0 AD |
2248 | incremented. |
2249 | ||
ef50df4b | 2250 | SV* newRV_inc (SV* ref) |
5f05dabc | 2251 | |
2252 | For historical reasons, "newRV" is a synonym for "newRV_inc". | |
2253 | ||
2254 | =item newRV_noinc | |
2255 | ||
2256 | Creates an RV wrapper for an SV. The reference count for the original | |
2257 | SV is B<not> incremented. | |
2258 | ||
ef50df4b | 2259 | SV* newRV_noinc (SV* ref) |
cb1a09d0 | 2260 | |
8c52afec | 2261 | =item NEWSV |
cb1a09d0 | 2262 | |
e89caa19 GA |
2263 | Creates a new SV. A non-zero C<len> parameter indicates the number of |
2264 | bytes of preallocated string space the SV should have. An extra byte | |
2265 | for a tailing NUL is also reserved. (SvPOK is not set for the SV even | |
2266 | if string space is allocated.) The reference count for the new SV is | |
2267 | set to 1. C<id> is an integer id between 0 and 1299 (used to identify | |
2268 | leaks). | |
cb1a09d0 | 2269 | |
ef50df4b | 2270 | SV* NEWSV (int id, STRLEN len) |
cb1a09d0 AD |
2271 | |
2272 | =item newSViv | |
2273 | ||
07fa94a1 JO |
2274 | Creates a new SV and copies an integer into it. The reference count for the |
2275 | SV is set to 1. | |
cb1a09d0 | 2276 | |
ef50df4b | 2277 | SV* newSViv (IV i) |
cb1a09d0 AD |
2278 | |
2279 | =item newSVnv | |
2280 | ||
07fa94a1 JO |
2281 | Creates a new SV and copies a double into it. The reference count for the |
2282 | SV is set to 1. | |
cb1a09d0 | 2283 | |
ef50df4b | 2284 | SV* newSVnv (NV i) |
cb1a09d0 AD |
2285 | |
2286 | =item newSVpv | |
2287 | ||
07fa94a1 | 2288 | Creates a new SV and copies a string into it. The reference count for the |
79cb57f6 GS |
2289 | SV is set to 1. If C<len> is zero, Perl will compute the length using |
2290 | strlen(). For efficiency, consider using C<newSVpvn> instead. | |
cb1a09d0 | 2291 | |
08105a92 | 2292 | SV* newSVpv (const char* s, STRLEN len) |
cb1a09d0 | 2293 | |
e89caa19 GA |
2294 | =item newSVpvf |
2295 | ||
2296 | Creates a new SV an initialize it with the string formatted like | |
2297 | C<sprintf>. | |
2298 | ||
79cb57f6 | 2299 | SV* newSVpvf(const char* pat, ...) |
e89caa19 | 2300 | |
9da1e3b5 MUN |
2301 | =item newSVpvn |
2302 | ||
2303 | Creates a new SV and copies a string into it. The reference count for the | |
79cb57f6 GS |
2304 | SV is set to 1. Note that if C<len> is zero, Perl will create a zero length |
2305 | string. You are responsible for ensuring that the source string is at least | |
2306 | C<len> bytes long. | |
9da1e3b5 | 2307 | |
08105a92 | 2308 | SV* newSVpvn (const char* s, STRLEN len) |
9da1e3b5 | 2309 | |
cb1a09d0 AD |
2310 | =item newSVrv |
2311 | ||
2312 | Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then | |
5fb8527f | 2313 | it will be upgraded to one. If C<classname> is non-null then the new SV will |
cb1a09d0 | 2314 | be blessed in the specified package. The new SV is returned and its |
5f05dabc | 2315 | reference count is 1. |
8ebc5c01 | 2316 | |
08105a92 | 2317 | SV* newSVrv (SV* rv, const char* classname) |
cb1a09d0 AD |
2318 | |
2319 | =item newSVsv | |
2320 | ||
5fb8527f | 2321 | Creates a new SV which is an exact duplicate of the original SV. |
cb1a09d0 | 2322 | |
ef50df4b | 2323 | SV* newSVsv (SV* old) |
cb1a09d0 AD |
2324 | |
2325 | =item newXS | |
2326 | ||
2327 | Used by C<xsubpp> to hook up XSUBs as Perl subs. | |
2328 | ||
2329 | =item newXSproto | |
2330 | ||
2331 | Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to | |
2332 | the subs. | |
2333 | ||
e89caa19 GA |
2334 | =item Newz |
2335 | ||
2336 | The XSUB-writer's interface to the C C<malloc> function. The allocated | |
2337 | memory is zeroed with C<memzero>. | |
2338 | ||
2339 | void* Newz( x, void *ptr, int size, type ) | |
2340 | ||
cb1a09d0 AD |
2341 | =item Nullav |
2342 | ||
2343 | Null AV pointer. | |
2344 | ||
2345 | =item Nullch | |
2346 | ||
2347 | Null character pointer. | |
2348 | ||
2349 | =item Nullcv | |
2350 | ||
2351 | Null CV pointer. | |
2352 | ||
2353 | =item Nullhv | |
2354 | ||
2355 | Null HV pointer. | |
2356 | ||
2357 | =item Nullsv | |
2358 | ||
2359 | Null SV pointer. | |
2360 | ||
2361 | =item ORIGMARK | |
2362 | ||
2363 | The original stack mark for the XSUB. See C<dORIGMARK>. | |
2364 | ||
2365 | =item perl_alloc | |
2366 | ||
2367 | Allocates a new Perl interpreter. See L<perlembed>. | |
2368 | ||
2369 | =item perl_call_argv | |
2370 | ||
2371 | Performs a callback to the specified Perl sub. See L<perlcall>. | |
2372 | ||
08105a92 | 2373 | I32 perl_call_argv (const char* subname, I32 flags, char** argv) |
cb1a09d0 AD |
2374 | |
2375 | =item perl_call_method | |
2376 | ||
2377 | Performs a callback to the specified Perl method. The blessed object must | |
2378 | be on the stack. See L<perlcall>. | |
2379 | ||
08105a92 | 2380 | I32 perl_call_method (const char* methname, I32 flags) |
cb1a09d0 AD |
2381 | |
2382 | =item perl_call_pv | |
2383 | ||
2384 | Performs a callback to the specified Perl sub. See L<perlcall>. | |
2385 | ||
08105a92 | 2386 | I32 perl_call_pv (const char* subname, I32 flags) |
cb1a09d0 AD |
2387 | |
2388 | =item perl_call_sv | |
2389 | ||
2390 | Performs a callback to the Perl sub whose name is in the SV. See | |
2391 | L<perlcall>. | |
2392 | ||
ef50df4b | 2393 | I32 perl_call_sv (SV* sv, I32 flags) |
cb1a09d0 AD |
2394 | |
2395 | =item perl_construct | |
2396 | ||
2397 | Initializes a new Perl interpreter. See L<perlembed>. | |
2398 | ||
2399 | =item perl_destruct | |
2400 | ||
2401 | Shuts down a Perl interpreter. See L<perlembed>. | |
2402 | ||
2403 | =item perl_eval_sv | |
2404 | ||
2405 | Tells Perl to C<eval> the string in the SV. | |
2406 | ||
ef50df4b | 2407 | I32 perl_eval_sv (SV* sv, I32 flags) |
cb1a09d0 | 2408 | |
137443ea | 2409 | =item perl_eval_pv |
2410 | ||
2411 | Tells Perl to C<eval> the given string and return an SV* result. | |
2412 | ||
08105a92 | 2413 | SV* perl_eval_pv (const char* p, I32 croak_on_error) |
137443ea | 2414 | |
cb1a09d0 AD |
2415 | =item perl_free |
2416 | ||
2417 | Releases a Perl interpreter. See L<perlembed>. | |
2418 | ||
2419 | =item perl_get_av | |
2420 | ||
2421 | Returns the AV of the specified Perl array. If C<create> is set and the | |
2422 | Perl variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2423 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2424 | |
08105a92 | 2425 | AV* perl_get_av (const char* name, I32 create) |
cb1a09d0 AD |
2426 | |
2427 | =item perl_get_cv | |
2428 | ||
f6ec51f7 GS |
2429 | Returns the CV of the specified Perl subroutine. If C<create> is set and |
2430 | the Perl subroutine does not exist then it will be declared (which has | |
2431 | the same effect as saying C<sub name;>). If C<create> is not | |
2432 | set and the subroutine does not exist then NULL is returned. | |
cb1a09d0 | 2433 | |
08105a92 | 2434 | CV* perl_get_cv (const char* name, I32 create) |
cb1a09d0 AD |
2435 | |
2436 | =item perl_get_hv | |
2437 | ||
2438 | Returns the HV of the specified Perl hash. If C<create> is set and the Perl | |
2439 | variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2440 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2441 | |
08105a92 | 2442 | HV* perl_get_hv (const char* name, I32 create) |
cb1a09d0 AD |
2443 | |
2444 | =item perl_get_sv | |
2445 | ||
2446 | Returns the SV of the specified Perl scalar. If C<create> is set and the | |
2447 | Perl variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2448 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2449 | |
08105a92 | 2450 | SV* perl_get_sv (const char* name, I32 create) |
cb1a09d0 AD |
2451 | |
2452 | =item perl_parse | |
2453 | ||
2454 | Tells a Perl interpreter to parse a Perl script. See L<perlembed>. | |
2455 | ||
2456 | =item perl_require_pv | |
2457 | ||
2458 | Tells Perl to C<require> a module. | |
2459 | ||
08105a92 | 2460 | void perl_require_pv (const char* pv) |
cb1a09d0 AD |
2461 | |
2462 | =item perl_run | |
2463 | ||
2464 | Tells a Perl interpreter to run. See L<perlembed>. | |
2465 | ||
2466 | =item POPi | |
2467 | ||
2468 | Pops an integer off the stack. | |
2469 | ||
e89caa19 | 2470 | int POPi() |
cb1a09d0 AD |
2471 | |
2472 | =item POPl | |
2473 | ||
2474 | Pops a long off the stack. | |
2475 | ||
e89caa19 | 2476 | long POPl() |
cb1a09d0 AD |
2477 | |
2478 | =item POPp | |
2479 | ||
2480 | Pops a string off the stack. | |
2481 | ||
e89caa19 | 2482 | char* POPp() |
cb1a09d0 AD |
2483 | |
2484 | =item POPn | |
2485 | ||
2486 | Pops a double off the stack. | |
2487 | ||
e89caa19 | 2488 | double POPn() |
cb1a09d0 AD |
2489 | |
2490 | =item POPs | |
2491 | ||
2492 | Pops an SV off the stack. | |
2493 | ||
e89caa19 | 2494 | SV* POPs() |
cb1a09d0 AD |
2495 | |
2496 | =item PUSHMARK | |
2497 | ||
2498 | Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>. | |
2499 | ||
2500 | PUSHMARK(p) | |
2501 | ||
2502 | =item PUSHi | |
2503 | ||
2504 | Push an integer onto the stack. The stack must have room for this element. | |
189b2af5 | 2505 | Handles 'set' magic. See C<XPUSHi>. |
cb1a09d0 | 2506 | |
e89caa19 | 2507 | void PUSHi(int d) |
cb1a09d0 AD |
2508 | |
2509 | =item PUSHn | |
2510 | ||
2511 | Push a double onto the stack. The stack must have room for this element. | |
189b2af5 | 2512 | Handles 'set' magic. See C<XPUSHn>. |
cb1a09d0 | 2513 | |
e89caa19 | 2514 | void PUSHn(double d) |
cb1a09d0 AD |
2515 | |
2516 | =item PUSHp | |
2517 | ||
2518 | Push a string onto the stack. The stack must have room for this element. | |
189b2af5 GS |
2519 | The C<len> indicates the length of the string. Handles 'set' magic. See |
2520 | C<XPUSHp>. | |
cb1a09d0 | 2521 | |
e89caa19 | 2522 | void PUSHp(char *c, int len ) |
cb1a09d0 AD |
2523 | |
2524 | =item PUSHs | |
2525 | ||
189b2af5 GS |
2526 | Push an SV onto the stack. The stack must have room for this element. Does |
2527 | not handle 'set' magic. See C<XPUSHs>. | |
cb1a09d0 | 2528 | |
e89caa19 GA |
2529 | void PUSHs(sv) |
2530 | ||
2531 | =item PUSHu | |
2532 | ||
2533 | Push an unsigned integer onto the stack. The stack must have room for | |
2534 | this element. See C<XPUSHu>. | |
2535 | ||
2536 | void PUSHu(unsigned int d) | |
2537 | ||
cb1a09d0 AD |
2538 | |
2539 | =item PUTBACK | |
2540 | ||
2541 | Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>. | |
2542 | See C<PUSHMARK> and L<perlcall> for other uses. | |
2543 | ||
2544 | PUTBACK; | |
2545 | ||
2546 | =item Renew | |
2547 | ||
2548 | The XSUB-writer's interface to the C C<realloc> function. | |
2549 | ||
e89caa19 | 2550 | void* Renew( void *ptr, int size, type ) |
cb1a09d0 AD |
2551 | |
2552 | =item Renewc | |
2553 | ||
2554 | The XSUB-writer's interface to the C C<realloc> function, with cast. | |
2555 | ||
e89caa19 | 2556 | void* Renewc( void *ptr, int size, type, cast ) |
cb1a09d0 AD |
2557 | |
2558 | =item RETVAL | |
2559 | ||
2560 | Variable which is setup by C<xsubpp> to hold the return value for an XSUB. | |
5fb8527f | 2561 | This is always the proper type for the XSUB. |
2562 | See L<perlxs/"The RETVAL Variable">. | |
cb1a09d0 AD |
2563 | |
2564 | =item safefree | |
2565 | ||
2566 | The XSUB-writer's interface to the C C<free> function. | |
2567 | ||
2568 | =item safemalloc | |
2569 | ||
2570 | The XSUB-writer's interface to the C C<malloc> function. | |
2571 | ||
2572 | =item saferealloc | |
2573 | ||
2574 | The XSUB-writer's interface to the C C<realloc> function. | |
2575 | ||
2576 | =item savepv | |
2577 | ||
2578 | Copy a string to a safe spot. This does not use an SV. | |
2579 | ||
08105a92 | 2580 | char* savepv (const char* sv) |
cb1a09d0 AD |
2581 | |
2582 | =item savepvn | |
2583 | ||
2584 | Copy a string to a safe spot. The C<len> indicates number of bytes to | |
2585 | copy. This does not use an SV. | |
2586 | ||
08105a92 | 2587 | char* savepvn (const char* sv, I32 len) |
cb1a09d0 AD |
2588 | |
2589 | =item SAVETMPS | |
2590 | ||
2591 | Opening bracket for temporaries on a callback. See C<FREETMPS> and | |
2592 | L<perlcall>. | |
2593 | ||
2594 | SAVETMPS; | |
2595 | ||
2596 | =item SP | |
2597 | ||
2598 | Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and | |
2599 | C<SPAGAIN>. | |
2600 | ||
2601 | =item SPAGAIN | |
2602 | ||
54310121 | 2603 | Refetch the stack pointer. Used after a callback. See L<perlcall>. |
cb1a09d0 AD |
2604 | |
2605 | SPAGAIN; | |
2606 | ||
2607 | =item ST | |
2608 | ||
2609 | Used to access elements on the XSUB's stack. | |
2610 | ||
e89caa19 | 2611 | SV* ST(int x) |
cb1a09d0 AD |
2612 | |
2613 | =item strEQ | |
2614 | ||
2615 | Test two strings to see if they are equal. Returns true or false. | |
2616 | ||
e89caa19 | 2617 | int strEQ( char *s1, char *s2 ) |
cb1a09d0 AD |
2618 | |
2619 | =item strGE | |
2620 | ||
2621 | Test two strings to see if the first, C<s1>, is greater than or equal to the | |
2622 | second, C<s2>. Returns true or false. | |
2623 | ||
e89caa19 | 2624 | int strGE( char *s1, char *s2 ) |
cb1a09d0 AD |
2625 | |
2626 | =item strGT | |
2627 | ||
2628 | Test two strings to see if the first, C<s1>, is greater than the second, | |
2629 | C<s2>. Returns true or false. | |
2630 | ||
e89caa19 | 2631 | int strGT( char *s1, char *s2 ) |
cb1a09d0 AD |
2632 | |
2633 | =item strLE | |
2634 | ||
2635 | Test two strings to see if the first, C<s1>, is less than or equal to the | |
2636 | second, C<s2>. Returns true or false. | |
2637 | ||
e89caa19 | 2638 | int strLE( char *s1, char *s2 ) |
cb1a09d0 AD |
2639 | |
2640 | =item strLT | |
2641 | ||
2642 | Test two strings to see if the first, C<s1>, is less than the second, | |
2643 | C<s2>. Returns true or false. | |
2644 | ||
e89caa19 | 2645 | int strLT( char *s1, char *s2 ) |
cb1a09d0 AD |
2646 | |
2647 | =item strNE | |
2648 | ||
2649 | Test two strings to see if they are different. Returns true or false. | |
2650 | ||
e89caa19 | 2651 | int strNE( char *s1, char *s2 ) |
cb1a09d0 AD |
2652 | |
2653 | =item strnEQ | |
2654 | ||
2655 | Test two strings to see if they are equal. The C<len> parameter indicates | |
2656 | the number of bytes to compare. Returns true or false. | |
2657 | ||
e89caa19 | 2658 | int strnEQ( char *s1, char *s2 ) |
cb1a09d0 AD |
2659 | |
2660 | =item strnNE | |
2661 | ||
2662 | Test two strings to see if they are different. The C<len> parameter | |
2663 | indicates the number of bytes to compare. Returns true or false. | |
2664 | ||
e89caa19 | 2665 | int strnNE( char *s1, char *s2, int len ) |
cb1a09d0 AD |
2666 | |
2667 | =item sv_2mortal | |
2668 | ||
2669 | Marks an SV as mortal. The SV will be destroyed when the current context | |
2670 | ends. | |
2671 | ||
ef50df4b | 2672 | SV* sv_2mortal (SV* sv) |
cb1a09d0 AD |
2673 | |
2674 | =item sv_bless | |
2675 | ||
2676 | Blesses an SV into a specified package. The SV must be an RV. The package | |
07fa94a1 JO |
2677 | must be designated by its stash (see C<gv_stashpv()>). The reference count |
2678 | of the SV is unaffected. | |
cb1a09d0 | 2679 | |
ef50df4b | 2680 | SV* sv_bless (SV* sv, HV* stash) |
cb1a09d0 | 2681 | |
ef50df4b | 2682 | =item sv_catpv |
189b2af5 | 2683 | |
ef50df4b GS |
2684 | Concatenates the string onto the end of the string which is in the SV. |
2685 | Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>. | |
189b2af5 | 2686 | |
08105a92 | 2687 | void sv_catpv (SV* sv, const char* ptr) |
189b2af5 | 2688 | |
ef50df4b | 2689 | =item sv_catpv_mg |
cb1a09d0 | 2690 | |
ef50df4b | 2691 | Like C<sv_catpv>, but also handles 'set' magic. |
cb1a09d0 | 2692 | |
08105a92 | 2693 | void sv_catpvn (SV* sv, const char* ptr) |
cb1a09d0 AD |
2694 | |
2695 | =item sv_catpvn | |
2696 | ||
2697 | Concatenates the string onto the end of the string which is in the SV. The | |
189b2af5 | 2698 | C<len> indicates number of bytes to copy. Handles 'get' magic, but not |
ef50df4b | 2699 | 'set' magic. See C<sv_catpvn_mg>. |
cb1a09d0 | 2700 | |
08105a92 | 2701 | void sv_catpvn (SV* sv, const char* ptr, STRLEN len) |
ef50df4b GS |
2702 | |
2703 | =item sv_catpvn_mg | |
2704 | ||
2705 | Like C<sv_catpvn>, but also handles 'set' magic. | |
2706 | ||
08105a92 | 2707 | void sv_catpvn_mg (SV* sv, const char* ptr, STRLEN len) |
cb1a09d0 | 2708 | |
46fc3d4c | 2709 | =item sv_catpvf |
2710 | ||
2711 | Processes its arguments like C<sprintf> and appends the formatted output | |
189b2af5 GS |
2712 | to an SV. Handles 'get' magic, but not 'set' magic. C<SvSETMAGIC()> must |
2713 | typically be called after calling this function to handle 'set' magic. | |
46fc3d4c | 2714 | |
ef50df4b GS |
2715 | void sv_catpvf (SV* sv, const char* pat, ...) |
2716 | ||
2717 | =item sv_catpvf_mg | |
2718 | ||
2719 | Like C<sv_catpvf>, but also handles 'set' magic. | |
2720 | ||
2721 | void sv_catpvf_mg (SV* sv, const char* pat, ...) | |
46fc3d4c | 2722 | |
cb1a09d0 AD |
2723 | =item sv_catsv |
2724 | ||
5fb8527f | 2725 | Concatenates the string from SV C<ssv> onto the end of the string in SV |
ef50df4b GS |
2726 | C<dsv>. Handles 'get' magic, but not 'set' magic. See C<sv_catsv_mg>. |
2727 | ||
2728 | void sv_catsv (SV* dsv, SV* ssv) | |
2729 | ||
2730 | =item sv_catsv_mg | |
cb1a09d0 | 2731 | |
ef50df4b GS |
2732 | Like C<sv_catsv>, but also handles 'set' magic. |
2733 | ||
2734 | void sv_catsv_mg (SV* dsv, SV* ssv) | |
cb1a09d0 | 2735 | |
e89caa19 GA |
2736 | =item sv_chop |
2737 | ||
2738 | Efficient removal of characters from the beginning of the string | |
2739 | buffer. SvPOK(sv) must be true and the C<ptr> must be a pointer to | |
2740 | somewhere inside the string buffer. The C<ptr> becomes the first | |
2741 | character of the adjusted string. | |
2742 | ||
08105a92 | 2743 | void sv_chop(SV* sv, const char *ptr) |
e89caa19 GA |
2744 | |
2745 | ||
5fb8527f | 2746 | =item sv_cmp |
2747 | ||
2748 | Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the | |
2749 | string in C<sv1> is less than, equal to, or greater than the string in | |
2750 | C<sv2>. | |
2751 | ||
ef50df4b | 2752 | I32 sv_cmp (SV* sv1, SV* sv2) |
5fb8527f | 2753 | |
cb1a09d0 AD |
2754 | =item SvCUR |
2755 | ||
2756 | Returns the length of the string which is in the SV. See C<SvLEN>. | |
2757 | ||
e89caa19 | 2758 | int SvCUR (SV* sv) |
cb1a09d0 AD |
2759 | |
2760 | =item SvCUR_set | |
2761 | ||
2762 | Set the length of the string which is in the SV. See C<SvCUR>. | |
2763 | ||
08105a92 | 2764 | void SvCUR_set (SV* sv, int val) |
cb1a09d0 | 2765 | |
5fb8527f | 2766 | =item sv_dec |
2767 | ||
5f05dabc | 2768 | Auto-decrement of the value in the SV. |
5fb8527f | 2769 | |
ef50df4b | 2770 | void sv_dec (SV* sv) |
5fb8527f | 2771 | |
e89caa19 GA |
2772 | =item sv_derived_from |
2773 | ||
9abd00ed GS |
2774 | Returns a boolean indicating whether the SV is derived from the specified |
2775 | class. This is the function that implements C<UNIVERSAL::isa>. It works | |
2776 | for class names as well as for objects. | |
2777 | ||
20ce7b12 | 2778 | bool sv_derived_from (SV* sv, const char* name); |
9abd00ed | 2779 | |
cb1a09d0 AD |
2780 | =item SvEND |
2781 | ||
2782 | Returns a pointer to the last character in the string which is in the SV. | |
2783 | See C<SvCUR>. Access the character as | |
2784 | ||
e89caa19 | 2785 | char* SvEND(sv) |
cb1a09d0 | 2786 | |
5fb8527f | 2787 | =item sv_eq |
2788 | ||
2789 | Returns a boolean indicating whether the strings in the two SVs are | |
2790 | identical. | |
2791 | ||
ef50df4b | 2792 | I32 sv_eq (SV* sv1, SV* sv2) |
5fb8527f | 2793 | |
189b2af5 GS |
2794 | =item SvGETMAGIC |
2795 | ||
2796 | Invokes C<mg_get> on an SV if it has 'get' magic. This macro evaluates | |
2797 | its argument more than once. | |
2798 | ||
08105a92 | 2799 | void SvGETMAGIC(SV *sv) |
189b2af5 | 2800 | |
cb1a09d0 AD |
2801 | =item SvGROW |
2802 | ||
e89caa19 GA |
2803 | Expands the character buffer in the SV so that it has room for the |
2804 | indicated number of bytes (remember to reserve space for an extra | |
2805 | trailing NUL character). Calls C<sv_grow> to perform the expansion if | |
2806 | necessary. Returns a pointer to the character buffer. | |
cb1a09d0 | 2807 | |
08105a92 | 2808 | char* SvGROW(SV* sv, STRLEN len) |
cb1a09d0 | 2809 | |
5fb8527f | 2810 | =item sv_grow |
2811 | ||
2812 | Expands the character buffer in the SV. This will use C<sv_unref> and will | |
2813 | upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer. | |
2814 | Use C<SvGROW>. | |
2815 | ||
2816 | =item sv_inc | |
2817 | ||
07fa94a1 | 2818 | Auto-increment of the value in the SV. |
5fb8527f | 2819 | |
ef50df4b | 2820 | void sv_inc (SV* sv) |
5fb8527f | 2821 | |
e89caa19 GA |
2822 | =item sv_insert |
2823 | ||
2824 | Inserts a string at the specified offset/length within the SV. | |
2825 | Similar to the Perl substr() function. | |
2826 | ||
2827 | void sv_insert(SV *sv, STRLEN offset, STRLEN len, | |
2828 | char *str, STRLEN strlen) | |
2829 | ||
cb1a09d0 AD |
2830 | =item SvIOK |
2831 | ||
2832 | Returns a boolean indicating whether the SV contains an integer. | |
2833 | ||
e89caa19 | 2834 | int SvIOK (SV* SV) |
cb1a09d0 AD |
2835 | |
2836 | =item SvIOK_off | |
2837 | ||
2838 | Unsets the IV status of an SV. | |
2839 | ||
e89caa19 | 2840 | void SvIOK_off (SV* sv) |
cb1a09d0 AD |
2841 | |
2842 | =item SvIOK_on | |
2843 | ||
2844 | Tells an SV that it is an integer. | |
2845 | ||
e89caa19 | 2846 | void SvIOK_on (SV* sv) |
cb1a09d0 | 2847 | |
5fb8527f | 2848 | =item SvIOK_only |
2849 | ||
2850 | Tells an SV that it is an integer and disables all other OK bits. | |
2851 | ||
e89caa19 | 2852 | void SvIOK_only (SV* sv) |
5fb8527f | 2853 | |
cb1a09d0 AD |
2854 | =item SvIOKp |
2855 | ||
2856 | Returns a boolean indicating whether the SV contains an integer. Checks the | |
2857 | B<private> setting. Use C<SvIOK>. | |
2858 | ||
e89caa19 | 2859 | int SvIOKp (SV* SV) |
cb1a09d0 AD |
2860 | |
2861 | =item sv_isa | |
2862 | ||
2863 | Returns a boolean indicating whether the SV is blessed into the specified | |
9abd00ed | 2864 | class. This does not check for subtypes; use C<sv_derived_from> to verify |
cb1a09d0 AD |
2865 | an inheritance relationship. |
2866 | ||
ef50df4b | 2867 | int sv_isa (SV* sv, char* name) |
cb1a09d0 | 2868 | |
cb1a09d0 AD |
2869 | =item sv_isobject |
2870 | ||
2871 | Returns a boolean indicating whether the SV is an RV pointing to a blessed | |
2872 | object. If the SV is not an RV, or if the object is not blessed, then this | |
2873 | will return false. | |
2874 | ||
ef50df4b | 2875 | int sv_isobject (SV* sv) |
cb1a09d0 | 2876 | |
e89caa19 GA |
2877 | =item SvIV |
2878 | ||
5c68b227 | 2879 | Coerces the given SV to an integer and returns it. |
e89caa19 | 2880 | |
9abd00ed | 2881 | int SvIV (SV* sv) |
a59f3522 | 2882 | |
cb1a09d0 AD |
2883 | =item SvIVX |
2884 | ||
5c68b227 | 2885 | Returns the integer which is stored in the SV, assuming SvIOK is true. |
cb1a09d0 | 2886 | |
e89caa19 | 2887 | int SvIVX (SV* sv) |
cb1a09d0 AD |
2888 | |
2889 | =item SvLEN | |
2890 | ||
2891 | Returns the size of the string buffer in the SV. See C<SvCUR>. | |
2892 | ||
e89caa19 | 2893 | int SvLEN (SV* sv) |
cb1a09d0 | 2894 | |
5fb8527f | 2895 | =item sv_len |
2896 | ||
2897 | Returns the length of the string in the SV. Use C<SvCUR>. | |
2898 | ||
ef50df4b | 2899 | STRLEN sv_len (SV* sv) |
5fb8527f | 2900 | |
cb1a09d0 AD |
2901 | =item sv_magic |
2902 | ||
2903 | Adds magic to an SV. | |
2904 | ||
08105a92 | 2905 | void sv_magic (SV* sv, SV* obj, int how, const char* name, I32 namlen) |
cb1a09d0 AD |
2906 | |
2907 | =item sv_mortalcopy | |
2908 | ||
2909 | Creates a new SV which is a copy of the original SV. The new SV is marked | |
5f05dabc | 2910 | as mortal. |
cb1a09d0 | 2911 | |
ef50df4b | 2912 | SV* sv_mortalcopy (SV* oldsv) |
cb1a09d0 | 2913 | |
cb1a09d0 AD |
2914 | =item sv_newmortal |
2915 | ||
5f05dabc | 2916 | Creates a new SV which is mortal. The reference count of the SV is set to 1. |
cb1a09d0 | 2917 | |
ef50df4b | 2918 | SV* sv_newmortal (void) |
cb1a09d0 | 2919 | |
cb1a09d0 AD |
2920 | =item SvNIOK |
2921 | ||
2922 | Returns a boolean indicating whether the SV contains a number, integer or | |
2923 | double. | |
2924 | ||
e89caa19 | 2925 | int SvNIOK (SV* SV) |
cb1a09d0 AD |
2926 | |
2927 | =item SvNIOK_off | |
2928 | ||
2929 | Unsets the NV/IV status of an SV. | |
2930 | ||
e89caa19 | 2931 | void SvNIOK_off (SV* sv) |
cb1a09d0 AD |
2932 | |
2933 | =item SvNIOKp | |
2934 | ||
2935 | Returns a boolean indicating whether the SV contains a number, integer or | |
2936 | double. Checks the B<private> setting. Use C<SvNIOK>. | |
2937 | ||
e89caa19 GA |
2938 | int SvNIOKp (SV* SV) |
2939 | ||
9cde0e7f | 2940 | =item PL_sv_no |
e89caa19 | 2941 | |
9cde0e7f | 2942 | This is the C<false> SV. See C<PL_sv_yes>. Always refer to this as C<&PL_sv_no>. |
cb1a09d0 AD |
2943 | |
2944 | =item SvNOK | |
2945 | ||
2946 | Returns a boolean indicating whether the SV contains a double. | |
2947 | ||
e89caa19 | 2948 | int SvNOK (SV* SV) |
cb1a09d0 AD |
2949 | |
2950 | =item SvNOK_off | |
2951 | ||
2952 | Unsets the NV status of an SV. | |
2953 | ||
e89caa19 | 2954 | void SvNOK_off (SV* sv) |
cb1a09d0 AD |
2955 | |
2956 | =item SvNOK_on | |
2957 | ||
2958 | Tells an SV that it is a double. | |
2959 | ||
e89caa19 | 2960 | void SvNOK_on (SV* sv) |
cb1a09d0 | 2961 | |
5fb8527f | 2962 | =item SvNOK_only |
2963 | ||
2964 | Tells an SV that it is a double and disables all other OK bits. | |
2965 | ||
e89caa19 | 2966 | void SvNOK_only (SV* sv) |
5fb8527f | 2967 | |
cb1a09d0 AD |
2968 | =item SvNOKp |
2969 | ||
2970 | Returns a boolean indicating whether the SV contains a double. Checks the | |
2971 | B<private> setting. Use C<SvNOK>. | |
2972 | ||
e89caa19 | 2973 | int SvNOKp (SV* SV) |
cb1a09d0 AD |
2974 | |
2975 | =item SvNV | |
2976 | ||
5c68b227 | 2977 | Coerce the given SV to a double and return it. |
cb1a09d0 | 2978 | |
e89caa19 | 2979 | double SvNV (SV* sv) |
cb1a09d0 AD |
2980 | |
2981 | =item SvNVX | |
2982 | ||
5c68b227 | 2983 | Returns the double which is stored in the SV, assuming SvNOK is true. |
cb1a09d0 | 2984 | |
e89caa19 GA |
2985 | double SvNVX (SV* sv) |
2986 | ||
2987 | =item SvOK | |
2988 | ||
2989 | Returns a boolean indicating whether the value is an SV. | |
2990 | ||
2991 | int SvOK (SV* sv) | |
2992 | ||
2993 | =item SvOOK | |
2994 | ||
2995 | Returns a boolean indicating whether the SvIVX is a valid offset value | |
2996 | for the SvPVX. This hack is used internally to speed up removal of | |
2997 | characters from the beginning of a SvPV. When SvOOK is true, then the | |
2998 | start of the allocated string buffer is really (SvPVX - SvIVX). | |
2999 | ||
9cde0e7f | 3000 | int SvOOK(SV* sv) |
cb1a09d0 AD |
3001 | |
3002 | =item SvPOK | |
3003 | ||
3004 | Returns a boolean indicating whether the SV contains a character string. | |
3005 | ||
e89caa19 | 3006 | int SvPOK (SV* SV) |
cb1a09d0 AD |
3007 | |
3008 | =item SvPOK_off | |
3009 | ||
3010 | Unsets the PV status of an SV. | |
3011 | ||
e89caa19 | 3012 | void SvPOK_off (SV* sv) |
cb1a09d0 AD |
3013 | |
3014 | =item SvPOK_on | |
3015 | ||
3016 | Tells an SV that it is a string. | |
3017 | ||
e89caa19 | 3018 | void SvPOK_on (SV* sv) |
cb1a09d0 | 3019 | |
5fb8527f | 3020 | =item SvPOK_only |
3021 | ||
3022 | Tells an SV that it is a string and disables all other OK bits. | |
3023 | ||
e89caa19 | 3024 | void SvPOK_only (SV* sv) |
5fb8527f | 3025 | |
cb1a09d0 AD |
3026 | =item SvPOKp |
3027 | ||
3028 | Returns a boolean indicating whether the SV contains a character string. | |
3029 | Checks the B<private> setting. Use C<SvPOK>. | |
3030 | ||
e89caa19 | 3031 | int SvPOKp (SV* SV) |
cb1a09d0 AD |
3032 | |
3033 | =item SvPV | |
3034 | ||
3035 | Returns a pointer to the string in the SV, or a stringified form of the SV | |
2d8e6c8d | 3036 | if the SV does not contain a string. Handles 'get' magic. |
cb1a09d0 | 3037 | |
e65f3abd | 3038 | char* SvPV (SV* sv, STRLEN len) |
e89caa19 GA |
3039 | |
3040 | =item SvPV_force | |
3041 | ||
3042 | Like <SvPV> but will force the SV into becoming a string (SvPOK). You | |
3043 | want force if you are going to update the SvPVX directly. | |
3044 | ||
e65f3abd | 3045 | char* SvPV_force(SV* sv, STRLEN len) |
e89caa19 | 3046 | |
1fa8b10d JD |
3047 | =item SvPV_nolen |
3048 | ||
3049 | Returns a pointer to the string in the SV, or a stringified form of the SV | |
3050 | if the SV does not contain a string. Handles 'get' magic. | |
3051 | ||
e65f3abd | 3052 | char* SvPV_nolen (SV* sv) |
cb1a09d0 AD |
3053 | |
3054 | =item SvPVX | |
3055 | ||
3056 | Returns a pointer to the string in the SV. The SV must contain a string. | |
3057 | ||
e89caa19 | 3058 | char* SvPVX (SV* sv) |
cb1a09d0 AD |
3059 | |
3060 | =item SvREFCNT | |
3061 | ||
5f05dabc | 3062 | Returns the value of the object's reference count. |
cb1a09d0 | 3063 | |
e89caa19 | 3064 | int SvREFCNT (SV* sv) |
cb1a09d0 AD |
3065 | |
3066 | =item SvREFCNT_dec | |
3067 | ||
5f05dabc | 3068 | Decrements the reference count of the given SV. |
cb1a09d0 | 3069 | |
e89caa19 | 3070 | void SvREFCNT_dec (SV* sv) |
cb1a09d0 AD |
3071 | |
3072 | =item SvREFCNT_inc | |
3073 | ||
5f05dabc | 3074 | Increments the reference count of the given SV. |
cb1a09d0 | 3075 | |
e89caa19 | 3076 | void SvREFCNT_inc (SV* sv) |
cb1a09d0 AD |
3077 | |
3078 | =item SvROK | |
3079 | ||
3080 | Tests if the SV is an RV. | |
3081 | ||
e89caa19 | 3082 | int SvROK (SV* sv) |
cb1a09d0 AD |
3083 | |
3084 | =item SvROK_off | |
3085 | ||
3086 | Unsets the RV status of an SV. | |
3087 | ||
e89caa19 | 3088 | void SvROK_off (SV* sv) |
cb1a09d0 AD |
3089 | |
3090 | =item SvROK_on | |
3091 | ||
3092 | Tells an SV that it is an RV. | |
3093 | ||
e89caa19 | 3094 | void SvROK_on (SV* sv) |
cb1a09d0 AD |
3095 | |
3096 | =item SvRV | |
3097 | ||
3098 | Dereferences an RV to return the SV. | |
3099 | ||
ef50df4b | 3100 | SV* SvRV (SV* sv) |
cb1a09d0 | 3101 | |
189b2af5 GS |
3102 | =item SvSETMAGIC |
3103 | ||
3104 | Invokes C<mg_set> on an SV if it has 'set' magic. This macro evaluates | |
3105 | its argument more than once. | |
3106 | ||
3107 | void SvSETMAGIC( SV *sv ) | |
3108 | ||
ef50df4b | 3109 | =item sv_setiv |
189b2af5 | 3110 | |
ef50df4b GS |
3111 | Copies an integer into the given SV. Does not handle 'set' magic. |
3112 | See C<sv_setiv_mg>. | |
189b2af5 | 3113 | |
ef50df4b | 3114 | void sv_setiv (SV* sv, IV num) |
189b2af5 | 3115 | |
ef50df4b | 3116 | =item sv_setiv_mg |
189b2af5 | 3117 | |
ef50df4b | 3118 | Like C<sv_setiv>, but also handles 'set' magic. |
189b2af5 | 3119 | |
ef50df4b | 3120 | void sv_setiv_mg (SV* sv, IV num) |
189b2af5 | 3121 | |
ef50df4b | 3122 | =item sv_setnv |
189b2af5 | 3123 | |
ef50df4b GS |
3124 | Copies a double into the given SV. Does not handle 'set' magic. |
3125 | See C<sv_setnv_mg>. | |
189b2af5 | 3126 | |
ef50df4b | 3127 | void sv_setnv (SV* sv, double num) |
189b2af5 | 3128 | |
ef50df4b | 3129 | =item sv_setnv_mg |
189b2af5 | 3130 | |
ef50df4b | 3131 | Like C<sv_setnv>, but also handles 'set' magic. |
189b2af5 | 3132 | |
ef50df4b | 3133 | void sv_setnv_mg (SV* sv, double num) |
189b2af5 | 3134 | |
ef50df4b | 3135 | =item sv_setpv |
189b2af5 | 3136 | |
ef50df4b GS |
3137 | Copies a string into an SV. The string must be null-terminated. |
3138 | Does not handle 'set' magic. See C<sv_setpv_mg>. | |
189b2af5 | 3139 | |
08105a92 | 3140 | void sv_setpv (SV* sv, const char* ptr) |
189b2af5 | 3141 | |
ef50df4b | 3142 | =item sv_setpv_mg |
189b2af5 | 3143 | |
ef50df4b | 3144 | Like C<sv_setpv>, but also handles 'set' magic. |
189b2af5 | 3145 | |
08105a92 | 3146 | void sv_setpv_mg (SV* sv, const char* ptr) |
189b2af5 | 3147 | |
ef50df4b | 3148 | =item sv_setpviv |
cb1a09d0 | 3149 | |
ef50df4b GS |
3150 | Copies an integer into the given SV, also updating its string value. |
3151 | Does not handle 'set' magic. See C<sv_setpviv_mg>. | |
cb1a09d0 | 3152 | |
ef50df4b | 3153 | void sv_setpviv (SV* sv, IV num) |
cb1a09d0 | 3154 | |
ef50df4b | 3155 | =item sv_setpviv_mg |
cb1a09d0 | 3156 | |
ef50df4b | 3157 | Like C<sv_setpviv>, but also handles 'set' magic. |
cb1a09d0 | 3158 | |
ef50df4b | 3159 | void sv_setpviv_mg (SV* sv, IV num) |
cb1a09d0 | 3160 | |
ef50df4b | 3161 | =item sv_setpvn |
cb1a09d0 | 3162 | |
ef50df4b GS |
3163 | Copies a string into an SV. The C<len> parameter indicates the number of |
3164 | bytes to be copied. Does not handle 'set' magic. See C<sv_setpvn_mg>. | |
cb1a09d0 | 3165 | |
08105a92 | 3166 | void sv_setpvn (SV* sv, const char* ptr, STRLEN len) |
cb1a09d0 | 3167 | |
ef50df4b | 3168 | =item sv_setpvn_mg |
189b2af5 | 3169 | |
ef50df4b | 3170 | Like C<sv_setpvn>, but also handles 'set' magic. |
189b2af5 | 3171 | |
08105a92 | 3172 | void sv_setpvn_mg (SV* sv, const char* ptr, STRLEN len) |
189b2af5 | 3173 | |
ef50df4b | 3174 | =item sv_setpvf |
cb1a09d0 | 3175 | |
ef50df4b GS |
3176 | Processes its arguments like C<sprintf> and sets an SV to the formatted |
3177 | output. Does not handle 'set' magic. See C<sv_setpvf_mg>. | |
cb1a09d0 | 3178 | |
ef50df4b | 3179 | void sv_setpvf (SV* sv, const char* pat, ...) |
cb1a09d0 | 3180 | |
ef50df4b | 3181 | =item sv_setpvf_mg |
46fc3d4c | 3182 | |
ef50df4b | 3183 | Like C<sv_setpvf>, but also handles 'set' magic. |
46fc3d4c | 3184 | |
ef50df4b | 3185 | void sv_setpvf_mg (SV* sv, const char* pat, ...) |
46fc3d4c | 3186 | |
cb1a09d0 AD |
3187 | =item sv_setref_iv |
3188 | ||
5fb8527f | 3189 | Copies an integer into a new SV, optionally blessing the SV. The C<rv> |
3190 | argument will be upgraded to an RV. That RV will be modified to point to | |
3191 | the new SV. The C<classname> argument indicates the package for the | |
3192 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3193 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3194 | |
ef50df4b | 3195 | SV* sv_setref_iv (SV *rv, char *classname, IV iv) |
cb1a09d0 AD |
3196 | |
3197 | =item sv_setref_nv | |
3198 | ||
5fb8527f | 3199 | Copies a double into a new SV, optionally blessing the SV. The C<rv> |
3200 | argument will be upgraded to an RV. That RV will be modified to point to | |
3201 | the new SV. The C<classname> argument indicates the package for the | |
3202 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3203 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3204 | |
ef50df4b | 3205 | SV* sv_setref_nv (SV *rv, char *classname, double nv) |
cb1a09d0 AD |
3206 | |
3207 | =item sv_setref_pv | |
3208 | ||
5fb8527f | 3209 | Copies a pointer into a new SV, optionally blessing the SV. The C<rv> |
3210 | argument will be upgraded to an RV. That RV will be modified to point to | |
9cde0e7f | 3211 | the new SV. If the C<pv> argument is NULL then C<PL_sv_undef> will be placed |
5fb8527f | 3212 | into the SV. The C<classname> argument indicates the package for the |
3213 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3214 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3215 | |
ef50df4b | 3216 | SV* sv_setref_pv (SV *rv, char *classname, void* pv) |
cb1a09d0 AD |
3217 | |
3218 | Do not use with integral Perl types such as HV, AV, SV, CV, because those | |
3219 | objects will become corrupted by the pointer copy process. | |
3220 | ||
3221 | Note that C<sv_setref_pvn> copies the string while this copies the pointer. | |
3222 | ||
3223 | =item sv_setref_pvn | |
3224 | ||
5fb8527f | 3225 | Copies a string into a new SV, optionally blessing the SV. The length of the |
3226 | string must be specified with C<n>. The C<rv> argument will be upgraded to | |
3227 | an RV. That RV will be modified to point to the new SV. The C<classname> | |
cb1a09d0 AD |
3228 | argument indicates the package for the blessing. Set C<classname> to |
3229 | C<Nullch> to avoid the blessing. The new SV will be returned and will have | |
5f05dabc | 3230 | a reference count of 1. |
cb1a09d0 | 3231 | |
ef50df4b | 3232 | SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n) |
cb1a09d0 AD |
3233 | |
3234 | Note that C<sv_setref_pv> copies the pointer while this copies the string. | |
3235 | ||
189b2af5 GS |
3236 | =item SvSetSV |
3237 | ||
3238 | Calls C<sv_setsv> if dsv is not the same as ssv. May evaluate arguments | |
3239 | more than once. | |
3240 | ||
3241 | void SvSetSV (SV* dsv, SV* ssv) | |
3242 | ||
3243 | =item SvSetSV_nosteal | |
3244 | ||
3245 | Calls a non-destructive version of C<sv_setsv> if dsv is not the same as ssv. | |
3246 | May evaluate arguments more than once. | |
3247 | ||
3248 | void SvSetSV_nosteal (SV* dsv, SV* ssv) | |
3249 | ||
cb1a09d0 AD |
3250 | =item sv_setsv |
3251 | ||
3252 | Copies the contents of the source SV C<ssv> into the destination SV C<dsv>. | |
189b2af5 | 3253 | The source SV may be destroyed if it is mortal. Does not handle 'set' magic. |
ef50df4b GS |
3254 | See the macro forms C<SvSetSV>, C<SvSetSV_nosteal> and C<sv_setsv_mg>. |
3255 | ||
3256 | void sv_setsv (SV* dsv, SV* ssv) | |
3257 | ||
3258 | =item sv_setsv_mg | |
3259 | ||
3260 | Like C<sv_setsv>, but also handles 'set' magic. | |
cb1a09d0 | 3261 | |
ef50df4b | 3262 | void sv_setsv_mg (SV* dsv, SV* ssv) |
cb1a09d0 | 3263 | |
189b2af5 GS |
3264 | =item sv_setuv |
3265 | ||
3266 | Copies an unsigned integer into the given SV. Does not handle 'set' magic. | |
ef50df4b | 3267 | See C<sv_setuv_mg>. |
189b2af5 | 3268 | |
ef50df4b GS |
3269 | void sv_setuv (SV* sv, UV num) |
3270 | ||
3271 | =item sv_setuv_mg | |
3272 | ||
3273 | Like C<sv_setuv>, but also handles 'set' magic. | |
3274 | ||
3275 | void sv_setuv_mg (SV* sv, UV num) | |
189b2af5 | 3276 | |
cb1a09d0 AD |
3277 | =item SvSTASH |
3278 | ||
3279 | Returns the stash of the SV. | |
3280 | ||
e89caa19 GA |
3281 | HV* SvSTASH (SV* sv) |
3282 | ||
3283 | =item SvTAINT | |
3284 | ||
3285 | Taints an SV if tainting is enabled | |
3286 | ||
3287 | void SvTAINT (SV* sv) | |
3288 | ||
3289 | =item SvTAINTED | |
3290 | ||
3291 | Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not. | |
3292 | ||
3293 | int SvTAINTED (SV* sv) | |
3294 | ||
3295 | =item SvTAINTED_off | |
3296 | ||
3297 | Untaints an SV. Be I<very> careful with this routine, as it short-circuits | |
3298 | some of Perl's fundamental security features. XS module authors should | |
3299 | not use this function unless they fully understand all the implications | |
3300 | of unconditionally untainting the value. Untainting should be done in | |
3301 | the standard perl fashion, via a carefully crafted regexp, rather than | |
3302 | directly untainting variables. | |
3303 | ||
3304 | void SvTAINTED_off (SV* sv) | |
3305 | ||
3306 | =item SvTAINTED_on | |
3307 | ||
3308 | Marks an SV as tainted. | |
3309 | ||
3310 | void SvTAINTED_on (SV* sv) | |
cb1a09d0 AD |
3311 | |
3312 | =item SVt_IV | |
3313 | ||
3314 | Integer type flag for scalars. See C<svtype>. | |
3315 | ||
3316 | =item SVt_PV | |
3317 | ||
3318 | Pointer type flag for scalars. See C<svtype>. | |
3319 | ||
3320 | =item SVt_PVAV | |
3321 | ||
3322 | Type flag for arrays. See C<svtype>. | |
3323 | ||
3324 | =item SVt_PVCV | |
3325 | ||
3326 | Type flag for code refs. See C<svtype>. | |
3327 | ||
3328 | =item SVt_PVHV | |
3329 | ||
3330 | Type flag for hashes. See C<svtype>. | |
3331 | ||
3332 | =item SVt_PVMG | |
3333 | ||
3334 | Type flag for blessed scalars. See C<svtype>. | |
3335 | ||
3336 | =item SVt_NV | |
3337 | ||
3338 | Double type flag for scalars. See C<svtype>. | |
3339 | ||
3340 | =item SvTRUE | |
3341 | ||
3342 | Returns a boolean indicating whether Perl would evaluate the SV as true or | |
189b2af5 | 3343 | false, defined or undefined. Does not handle 'get' magic. |
cb1a09d0 | 3344 | |
e89caa19 | 3345 | int SvTRUE (SV* sv) |
cb1a09d0 AD |
3346 | |
3347 | =item SvTYPE | |
3348 | ||
3349 | Returns the type of the SV. See C<svtype>. | |
3350 | ||
3351 | svtype SvTYPE (SV* sv) | |
3352 | ||
3353 | =item svtype | |
3354 | ||
3355 | An enum of flags for Perl types. These are found in the file B<sv.h> in the | |
3356 | C<svtype> enum. Test these flags with the C<SvTYPE> macro. | |
3357 | ||
9cde0e7f | 3358 | =item PL_sv_undef |
cb1a09d0 | 3359 | |
9cde0e7f | 3360 | This is the C<undef> SV. Always refer to this as C<&PL_sv_undef>. |
cb1a09d0 | 3361 | |
5fb8527f | 3362 | =item sv_unref |
3363 | ||
07fa94a1 JO |
3364 | Unsets the RV status of the SV, and decrements the reference count of |
3365 | whatever was being referenced by the RV. This can almost be thought of | |
3366 | as a reversal of C<newSVrv>. See C<SvROK_off>. | |
5fb8527f | 3367 | |
ef50df4b | 3368 | void sv_unref (SV* sv) |
189b2af5 | 3369 | |
e89caa19 GA |
3370 | =item SvUPGRADE |
3371 | ||
3372 | Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform | |
3373 | the upgrade if necessary. See C<svtype>. | |
3374 | ||
3375 | bool SvUPGRADE (SV* sv, svtype mt) | |
3376 | ||
3377 | =item sv_upgrade | |
3378 | ||
3379 | Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>. | |
3380 | ||
cb1a09d0 AD |
3381 | =item sv_usepvn |
3382 | ||
3383 | Tells an SV to use C<ptr> to find its string value. Normally the string is | |
5fb8527f | 3384 | stored inside the SV but sv_usepvn allows the SV to use an outside string. |
3385 | The C<ptr> should point to memory that was allocated by C<malloc>. The | |
cb1a09d0 AD |
3386 | string length, C<len>, must be supplied. This function will realloc the |
3387 | memory pointed to by C<ptr>, so that pointer should not be freed or used by | |
189b2af5 | 3388 | the programmer after giving it to sv_usepvn. Does not handle 'set' magic. |
ef50df4b GS |
3389 | See C<sv_usepvn_mg>. |
3390 | ||
3391 | void sv_usepvn (SV* sv, char* ptr, STRLEN len) | |
3392 | ||
3393 | =item sv_usepvn_mg | |
3394 | ||
3395 | Like C<sv_usepvn>, but also handles 'set' magic. | |
cb1a09d0 | 3396 | |
ef50df4b | 3397 | void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len) |
cb1a09d0 | 3398 | |
9abd00ed GS |
3399 | =item sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, used_locale) |
3400 | ||
3401 | Processes its arguments like C<vsprintf> and appends the formatted output | |
3402 | to an SV. Uses an array of SVs if the C style variable argument list is | |
3403 | missing (NULL). Indicates if locale information has been used for formatting. | |
3404 | ||
20ce7b12 GS |
3405 | void sv_catpvfn (SV* sv, const char* pat, STRLEN patlen, |
3406 | va_list *args, SV **svargs, I32 svmax, | |
3407 | bool *used_locale); | |
9abd00ed GS |
3408 | |
3409 | =item sv_vsetpvfn(sv, pat, patlen, args, svargs, svmax, used_locale) | |
3410 | ||
3411 | Works like C<vcatpvfn> but copies the text into the SV instead of | |
3412 | appending it. | |
3413 | ||
20ce7b12 GS |
3414 | void sv_setpvfn (SV* sv, const char* pat, STRLEN patlen, |
3415 | va_list *args, SV **svargs, I32 svmax, | |
3416 | bool *used_locale); | |
9abd00ed | 3417 | |
e89caa19 GA |
3418 | =item SvUV |
3419 | ||
5c68b227 | 3420 | Coerces the given SV to an unsigned integer and returns it. |
e89caa19 GA |
3421 | |
3422 | UV SvUV(SV* sv) | |
3423 | ||
3424 | =item SvUVX | |
3425 | ||
5c68b227 | 3426 | Returns the unsigned integer which is stored in the SV, assuming SvIOK is true. |
e89caa19 GA |
3427 | |
3428 | UV SvUVX(SV* sv) | |
3429 | ||
9cde0e7f | 3430 | =item PL_sv_yes |
cb1a09d0 | 3431 | |
9cde0e7f | 3432 | This is the C<true> SV. See C<PL_sv_no>. Always refer to this as C<&PL_sv_yes>. |
cb1a09d0 AD |
3433 | |
3434 | =item THIS | |
3435 | ||
3436 | Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB. | |
3437 | This is always the proper type for the C++ object. See C<CLASS> and | |
5fb8527f | 3438 | L<perlxs/"Using XS With C++">. |
cb1a09d0 AD |
3439 | |
3440 | =item toLOWER | |
3441 | ||
3442 | Converts the specified character to lowercase. | |
3443 | ||
e89caa19 | 3444 | int toLOWER (char c) |
cb1a09d0 AD |
3445 | |
3446 | =item toUPPER | |
3447 | ||
3448 | Converts the specified character to uppercase. | |
3449 | ||
e89caa19 | 3450 | int toUPPER (char c) |
cb1a09d0 AD |
3451 | |
3452 | =item warn | |
3453 | ||
3454 | This is the XSUB-writer's interface to Perl's C<warn> function. Use this | |
3455 | function the same way you use the C C<printf> function. See C<croak()>. | |
3456 | ||
3457 | =item XPUSHi | |
3458 | ||
189b2af5 GS |
3459 | Push an integer onto the stack, extending the stack if necessary. Handles |
3460 | 'set' magic. See C<PUSHi>. | |
cb1a09d0 AD |
3461 | |
3462 | XPUSHi(int d) | |
3463 | ||
3464 | =item XPUSHn | |
3465 | ||
189b2af5 GS |
3466 | Push a double onto the stack, extending the stack if necessary. Handles 'set' |
3467 | magic. See C<PUSHn>. | |
cb1a09d0 AD |
3468 | |
3469 | XPUSHn(double d) | |
3470 | ||
3471 | =item XPUSHp | |
3472 | ||
3473 | Push a string onto the stack, extending the stack if necessary. The C<len> | |
189b2af5 | 3474 | indicates the length of the string. Handles 'set' magic. See C<PUSHp>. |
cb1a09d0 AD |
3475 | |
3476 | XPUSHp(char *c, int len) | |
3477 | ||
3478 | =item XPUSHs | |
3479 | ||
189b2af5 GS |
3480 | Push an SV onto the stack, extending the stack if necessary. Does not |
3481 | handle 'set' magic. See C<PUSHs>. | |
cb1a09d0 AD |
3482 | |
3483 | XPUSHs(sv) | |
3484 | ||
e89caa19 GA |
3485 | =item XPUSHu |
3486 | ||
3487 | Push an unsigned integer onto the stack, extending the stack if | |
3488 | necessary. See C<PUSHu>. | |
3489 | ||
5fb8527f | 3490 | =item XS |
3491 | ||
3492 | Macro to declare an XSUB and its C parameter list. This is handled by | |
3493 | C<xsubpp>. | |
3494 | ||
cb1a09d0 AD |
3495 | =item XSRETURN |
3496 | ||
3497 | Return from XSUB, indicating number of items on the stack. This is usually | |
3498 | handled by C<xsubpp>. | |
3499 | ||
ef50df4b | 3500 | XSRETURN(int x) |
cb1a09d0 AD |
3501 | |
3502 | =item XSRETURN_EMPTY | |
3503 | ||
5fb8527f | 3504 | Return an empty list from an XSUB immediately. |
cb1a09d0 AD |
3505 | |
3506 | XSRETURN_EMPTY; | |
3507 | ||
5fb8527f | 3508 | =item XSRETURN_IV |
3509 | ||
3510 | Return an integer from an XSUB immediately. Uses C<XST_mIV>. | |
3511 | ||
ef50df4b | 3512 | XSRETURN_IV(IV v) |
5fb8527f | 3513 | |
cb1a09d0 AD |
3514 | =item XSRETURN_NO |
3515 | ||
9cde0e7f | 3516 | Return C<&PL_sv_no> from an XSUB immediately. Uses C<XST_mNO>. |
cb1a09d0 AD |
3517 | |
3518 | XSRETURN_NO; | |
3519 | ||
5fb8527f | 3520 | =item XSRETURN_NV |
3521 | ||
3522 | Return an double from an XSUB immediately. Uses C<XST_mNV>. | |
3523 | ||
ef50df4b | 3524 | XSRETURN_NV(NV v) |
5fb8527f | 3525 | |
3526 | =item XSRETURN_PV | |
3527 | ||
3528 | Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>. | |
3529 | ||
ef50df4b | 3530 | XSRETURN_PV(char *v) |
5fb8527f | 3531 | |
cb1a09d0 AD |
3532 | =item XSRETURN_UNDEF |
3533 | ||
9cde0e7f | 3534 | Return C<&PL_sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>. |
cb1a09d0 AD |
3535 | |
3536 | XSRETURN_UNDEF; | |
3537 | ||
3538 | =item XSRETURN_YES | |
3539 | ||
9cde0e7f | 3540 | Return C<&PL_sv_yes> from an XSUB immediately. Uses C<XST_mYES>. |
cb1a09d0 AD |
3541 | |
3542 | XSRETURN_YES; | |
3543 | ||
5fb8527f | 3544 | =item XST_mIV |
3545 | ||
3546 | Place an integer into the specified position C<i> on the stack. The value is | |
3547 | stored in a new mortal SV. | |
3548 | ||
ef50df4b | 3549 | XST_mIV( int i, IV v ) |
5fb8527f | 3550 | |
3551 | =item XST_mNV | |
3552 | ||
3553 | Place a double into the specified position C<i> on the stack. The value is | |
3554 | stored in a new mortal SV. | |
3555 | ||
ef50df4b | 3556 | XST_mNV( int i, NV v ) |
5fb8527f | 3557 | |
3558 | =item XST_mNO | |
3559 | ||
9cde0e7f | 3560 | Place C<&PL_sv_no> into the specified position C<i> on the stack. |
5fb8527f | 3561 | |
ef50df4b | 3562 | XST_mNO( int i ) |
5fb8527f | 3563 | |
3564 | =item XST_mPV | |
3565 | ||
3566 | Place a copy of a string into the specified position C<i> on the stack. The | |
3567 | value is stored in a new mortal SV. | |
3568 | ||
ef50df4b | 3569 | XST_mPV( int i, char *v ) |
5fb8527f | 3570 | |
3571 | =item XST_mUNDEF | |
3572 | ||
9cde0e7f | 3573 | Place C<&PL_sv_undef> into the specified position C<i> on the stack. |
5fb8527f | 3574 | |
ef50df4b | 3575 | XST_mUNDEF( int i ) |
5fb8527f | 3576 | |
3577 | =item XST_mYES | |
3578 | ||
9cde0e7f | 3579 | Place C<&PL_sv_yes> into the specified position C<i> on the stack. |
5fb8527f | 3580 | |
ef50df4b | 3581 | XST_mYES( int i ) |
5fb8527f | 3582 | |
3583 | =item XS_VERSION | |
3584 | ||
3585 | The version identifier for an XS module. This is usually handled | |
3586 | automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>. | |
3587 | ||
3588 | =item XS_VERSION_BOOTCHECK | |
3589 | ||
3590 | Macro to verify that a PM module's $VERSION variable matches the XS module's | |
3591 | C<XS_VERSION> variable. This is usually handled automatically by | |
3592 | C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">. | |
3593 | ||
cb1a09d0 AD |
3594 | =item Zero |
3595 | ||
3596 | The XSUB-writer's interface to the C C<memzero> function. The C<d> is the | |
3597 | destination, C<n> is the number of items, and C<t> is the type. | |
3598 | ||
e89caa19 | 3599 | void Zero( d, n, t ) |
cb1a09d0 AD |
3600 | |
3601 | =back | |
3602 | ||
9cecd9f2 | 3603 | =head1 AUTHORS |
cb1a09d0 | 3604 | |
9cecd9f2 GA |
3605 | Until May 1997, this document was maintained by Jeff Okamoto |
3606 | <okamoto@corp.hp.com>. It is now maintained as part of Perl itself. | |
cb1a09d0 AD |
3607 | |
3608 | With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, | |
3609 | Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil | |
189b2af5 GS |
3610 | Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer, |
3611 | Stephen McCamant, and Gurusamy Sarathy. | |
cb1a09d0 | 3612 | |
9cecd9f2 | 3613 | API Listing originally by Dean Roehrich <roehrich@cray.com>. |