Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
fb73857a | 3 | # -- Raphael Manfredi September 1996 |
4 | # -- Jarkko Hietaniemi March-October 1997 | |
5 | # -- Daniel S. Lewart September-October 1997 | |
6 | # | |
a0d0e21e LW |
7 | |
8 | require Exporter; | |
5aabfad6 | 9 | package Math::Complex; |
a0d0e21e | 10 | |
fb73857a | 11 | $VERSION = 1.05; |
12 | ||
13 | # $Id: Complex.pm,v 1.2 1997/10/15 10:08:39 jhi Exp $ | |
14 | ||
0c721ce2 JH |
15 | use strict; |
16 | ||
5aabfad6 | 17 | use vars qw($VERSION @ISA |
18 | @EXPORT %EXPORT_TAGS | |
19 | $package $display | |
fb73857a | 20 | $i $ip2 $logn %logn); |
0c721ce2 | 21 | |
5aabfad6 | 22 | @ISA = qw(Exporter); |
23 | ||
5aabfad6 | 24 | my @trig = qw( |
25 | pi | |
fb73857a | 26 | tan |
5aabfad6 | 27 | csc cosec sec cot cotan |
28 | asin acos atan | |
29 | acsc acosec asec acot acotan | |
30 | sinh cosh tanh | |
31 | csch cosech sech coth cotanh | |
32 | asinh acosh atanh | |
33 | acsch acosech asech acoth acotanh | |
34 | ); | |
35 | ||
36 | @EXPORT = (qw( | |
37 | i Re Im arg | |
fb73857a | 38 | sqrt log ln |
5aabfad6 | 39 | log10 logn cbrt root |
40 | cplx cplxe | |
41 | ), | |
42 | @trig); | |
43 | ||
44 | %EXPORT_TAGS = ( | |
45 | 'trig' => [@trig], | |
66730be0 | 46 | ); |
a0d0e21e | 47 | |
a5f75d66 | 48 | use overload |
0c721ce2 JH |
49 | '+' => \&plus, |
50 | '-' => \&minus, | |
51 | '*' => \&multiply, | |
52 | '/' => \÷, | |
66730be0 RM |
53 | '**' => \&power, |
54 | '<=>' => \&spaceship, | |
55 | 'neg' => \&negate, | |
0c721ce2 | 56 | '~' => \&conjugate, |
66730be0 RM |
57 | 'abs' => \&abs, |
58 | 'sqrt' => \&sqrt, | |
59 | 'exp' => \&exp, | |
60 | 'log' => \&log, | |
61 | 'sin' => \&sin, | |
62 | 'cos' => \&cos, | |
0c721ce2 | 63 | 'tan' => \&tan, |
66730be0 RM |
64 | 'atan2' => \&atan2, |
65 | qw("" stringify); | |
66 | ||
67 | # | |
68 | # Package globals | |
69 | # | |
70 | ||
71 | $package = 'Math::Complex'; # Package name | |
72 | $display = 'cartesian'; # Default display format | |
73 | ||
74 | # | |
75 | # Object attributes (internal): | |
76 | # cartesian [real, imaginary] -- cartesian form | |
77 | # polar [rho, theta] -- polar form | |
78 | # c_dirty cartesian form not up-to-date | |
79 | # p_dirty polar form not up-to-date | |
80 | # display display format (package's global when not set) | |
81 | # | |
82 | ||
83 | # | |
84 | # ->make | |
85 | # | |
86 | # Create a new complex number (cartesian form) | |
87 | # | |
88 | sub make { | |
89 | my $self = bless {}, shift; | |
90 | my ($re, $im) = @_; | |
40da2db3 | 91 | $self->{'cartesian'} = [$re, $im]; |
66730be0 RM |
92 | $self->{c_dirty} = 0; |
93 | $self->{p_dirty} = 1; | |
94 | return $self; | |
95 | } | |
96 | ||
97 | # | |
98 | # ->emake | |
99 | # | |
100 | # Create a new complex number (exponential form) | |
101 | # | |
102 | sub emake { | |
103 | my $self = bless {}, shift; | |
104 | my ($rho, $theta) = @_; | |
fb73857a | 105 | if ($rho < 0) { |
106 | $rho = -$rho; | |
107 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
108 | } | |
109 | $self->{'polar'} = [$rho, $theta]; | |
66730be0 RM |
110 | $self->{p_dirty} = 0; |
111 | $self->{c_dirty} = 1; | |
112 | return $self; | |
113 | } | |
114 | ||
115 | sub new { &make } # For backward compatibility only. | |
116 | ||
117 | # | |
118 | # cplx | |
119 | # | |
120 | # Creates a complex number from a (re, im) tuple. | |
121 | # This avoids the burden of writing Math::Complex->make(re, im). | |
122 | # | |
123 | sub cplx { | |
124 | my ($re, $im) = @_; | |
0c721ce2 | 125 | return $package->make($re, defined $im ? $im : 0); |
66730be0 RM |
126 | } |
127 | ||
128 | # | |
129 | # cplxe | |
130 | # | |
131 | # Creates a complex number from a (rho, theta) tuple. | |
132 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
133 | # | |
134 | sub cplxe { | |
135 | my ($rho, $theta) = @_; | |
0c721ce2 | 136 | return $package->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
137 | } |
138 | ||
139 | # | |
140 | # pi | |
141 | # | |
fb73857a | 142 | # The number defined as pi = 180 degrees |
66730be0 | 143 | # |
5cd24f17 | 144 | use constant pi => 4 * atan2(1, 1); |
145 | ||
146 | # | |
fb73857a | 147 | # pit2 |
5cd24f17 | 148 | # |
fb73857a | 149 | # The full circle |
150 | # | |
151 | use constant pit2 => 2 * pi; | |
152 | ||
5cd24f17 | 153 | # |
fb73857a | 154 | # pip2 |
155 | # | |
156 | # The quarter circle | |
157 | # | |
158 | use constant pip2 => pi / 2; | |
5cd24f17 | 159 | |
fb73857a | 160 | # |
161 | # uplog10 | |
162 | # | |
163 | # Used in log10(). | |
164 | # | |
165 | use constant uplog10 => 1 / log(10); | |
66730be0 RM |
166 | |
167 | # | |
168 | # i | |
169 | # | |
170 | # The number defined as i*i = -1; | |
171 | # | |
172 | sub i () { | |
5cd24f17 | 173 | return $i if ($i); |
174 | $i = bless {}; | |
40da2db3 | 175 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 176 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
177 | $i->{c_dirty} = 0; |
178 | $i->{p_dirty} = 0; | |
179 | return $i; | |
180 | } | |
181 | ||
182 | # | |
183 | # Attribute access/set routines | |
184 | # | |
185 | ||
0c721ce2 JH |
186 | sub cartesian {$_[0]->{c_dirty} ? |
187 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
188 | sub polar {$_[0]->{p_dirty} ? | |
189 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 190 | |
40da2db3 JH |
191 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
192 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
193 | |
194 | # | |
195 | # ->update_cartesian | |
196 | # | |
197 | # Recompute and return the cartesian form, given accurate polar form. | |
198 | # | |
199 | sub update_cartesian { | |
200 | my $self = shift; | |
40da2db3 | 201 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 202 | $self->{c_dirty} = 0; |
40da2db3 | 203 | return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; |
66730be0 RM |
204 | } |
205 | ||
206 | # | |
207 | # | |
208 | # ->update_polar | |
209 | # | |
210 | # Recompute and return the polar form, given accurate cartesian form. | |
211 | # | |
212 | sub update_polar { | |
213 | my $self = shift; | |
40da2db3 | 214 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 215 | $self->{p_dirty} = 0; |
40da2db3 JH |
216 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
217 | return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; | |
66730be0 RM |
218 | } |
219 | ||
220 | # | |
221 | # (plus) | |
222 | # | |
223 | # Computes z1+z2. | |
224 | # | |
225 | sub plus { | |
226 | my ($z1, $z2, $regular) = @_; | |
227 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 228 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 229 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
230 | unless (defined $regular) { |
231 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
232 | return $z1; | |
233 | } | |
234 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
235 | } | |
236 | ||
237 | # | |
238 | # (minus) | |
239 | # | |
240 | # Computes z1-z2. | |
241 | # | |
242 | sub minus { | |
243 | my ($z1, $z2, $inverted) = @_; | |
244 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
245 | $z2 = cplx($z2) unless ref $z2; |
246 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
247 | unless (defined $inverted) { |
248 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
249 | return $z1; | |
250 | } | |
251 | return $inverted ? | |
252 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
253 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 254 | |
66730be0 RM |
255 | } |
256 | ||
257 | # | |
258 | # (multiply) | |
259 | # | |
260 | # Computes z1*z2. | |
261 | # | |
262 | sub multiply { | |
fb73857a | 263 | my ($z1, $z2, $regular) = @_; |
264 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
265 | # if both polar better use polar to avoid rounding errors | |
266 | my ($r1, $t1) = @{$z1->polar}; | |
267 | my ($r2, $t2) = @{$z2->polar}; | |
268 | my $t = $t1 + $t2; | |
269 | if ($t > pi()) { $t -= pit2 } | |
270 | elsif ($t <= -pi()) { $t += pit2 } | |
271 | unless (defined $regular) { | |
272 | $z1->set_polar([$r1 * $r2, $t]); | |
66730be0 | 273 | return $z1; |
fb73857a | 274 | } |
275 | return (ref $z1)->emake($r1 * $r2, $t); | |
276 | } else { | |
277 | my ($x1, $y1) = @{$z1->cartesian}; | |
278 | if (ref $z2) { | |
279 | my ($x2, $y2) = @{$z2->cartesian}; | |
280 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
281 | } else { | |
282 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
283 | } | |
66730be0 | 284 | } |
66730be0 RM |
285 | } |
286 | ||
287 | # | |
0e505df1 | 288 | # _divbyzero |
0c721ce2 JH |
289 | # |
290 | # Die on division by zero. | |
291 | # | |
0e505df1 | 292 | sub _divbyzero { |
5cd24f17 | 293 | my $mess = "$_[0]: Division by zero.\n"; |
294 | ||
295 | if (defined $_[1]) { | |
296 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
297 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
298 | $mess .= "is 0)\n"; | |
299 | } | |
300 | ||
0c721ce2 | 301 | my @up = caller(1); |
fb73857a | 302 | |
5cd24f17 | 303 | $mess .= "Died at $up[1] line $up[2].\n"; |
304 | ||
305 | die $mess; | |
0c721ce2 JH |
306 | } |
307 | ||
308 | # | |
66730be0 RM |
309 | # (divide) |
310 | # | |
311 | # Computes z1/z2. | |
312 | # | |
313 | sub divide { | |
314 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 315 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
316 | # if both polar better use polar to avoid rounding errors | |
317 | my ($r1, $t1) = @{$z1->polar}; | |
318 | my ($r2, $t2) = @{$z2->polar}; | |
319 | my $t; | |
320 | if ($inverted) { | |
0e505df1 | 321 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 322 | $t = $t2 - $t1; |
323 | if ($t > pi()) { $t -= pit2 } | |
324 | elsif ($t <= -pi()) { $t += pit2 } | |
325 | return (ref $z1)->emake($r2 / $r1, $t); | |
326 | } else { | |
0e505df1 | 327 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 328 | $t = $t1 - $t2; |
329 | if ($t > pi()) { $t -= pit2 } | |
330 | elsif ($t <= -pi()) { $t += pit2 } | |
331 | return (ref $z1)->emake($r1 / $r2, $t); | |
332 | } | |
333 | } else { | |
334 | my ($d, $x2, $y2); | |
335 | if ($inverted) { | |
336 | ($x2, $y2) = @{$z1->cartesian}; | |
337 | $d = $x2*$x2 + $y2*$y2; | |
338 | _divbyzero "$z2/0" if $d == 0; | |
339 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
340 | } else { | |
341 | my ($x1, $y1) = @{$z1->cartesian}; | |
342 | if (ref $z2) { | |
343 | ($x2, $y2) = @{$z2->cartesian}; | |
344 | $d = $x2*$x2 + $y2*$y2; | |
345 | _divbyzero "$z1/0" if $d == 0; | |
346 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
347 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
348 | return (ref $z1)->make($u, $v); | |
349 | } else { | |
350 | _divbyzero "$z1/0" if $z2 == 0; | |
351 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
352 | } | |
353 | } | |
0c721ce2 | 354 | } |
66730be0 RM |
355 | } |
356 | ||
357 | # | |
0e505df1 JH |
358 | # _zerotozero |
359 | # | |
360 | # Die on zero raised to the zeroth. | |
361 | # | |
362 | sub _zerotozero { | |
363 | my $mess = "The zero raised to the zeroth power is not defined.\n"; | |
364 | ||
365 | my @up = caller(1); | |
fb73857a | 366 | |
0e505df1 JH |
367 | $mess .= "Died at $up[1] line $up[2].\n"; |
368 | ||
369 | die $mess; | |
370 | } | |
371 | ||
372 | # | |
66730be0 RM |
373 | # (power) |
374 | # | |
375 | # Computes z1**z2 = exp(z2 * log z1)). | |
376 | # | |
377 | sub power { | |
378 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 GS |
379 | my $z1z = $z1 == 0; |
380 | my $z2z = $z2 == 0; | |
381 | _zerotozero if ($z1z and $z2z); | |
382 | if ($inverted) { | |
383 | return 0 if ($z2z); | |
384 | return 1 if ($z1z or $z2 == 1); | |
385 | } else { | |
386 | return 0 if ($z1z); | |
387 | return 1 if ($z2z or $z1 == 1); | |
388 | } | |
fb73857a | 389 | return $inverted ? exp($z1 * log $z2) : exp($z2 * log $z1); |
66730be0 RM |
390 | } |
391 | ||
392 | # | |
393 | # (spaceship) | |
394 | # | |
395 | # Computes z1 <=> z2. | |
396 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. | |
397 | # | |
398 | sub spaceship { | |
399 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 400 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
401 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
402 | my $sgn = $inverted ? -1 : 1; |
403 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
404 | return $sgn * ($im1 <=> $im2); | |
405 | } | |
406 | ||
407 | # | |
408 | # (negate) | |
409 | # | |
410 | # Computes -z. | |
411 | # | |
412 | sub negate { | |
413 | my ($z) = @_; | |
414 | if ($z->{c_dirty}) { | |
415 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 416 | $t = ($t <= 0) ? $t + pi : $t - pi; |
417 | return (ref $z)->emake($r, $t); | |
66730be0 RM |
418 | } |
419 | my ($re, $im) = @{$z->cartesian}; | |
420 | return (ref $z)->make(-$re, -$im); | |
421 | } | |
422 | ||
423 | # | |
424 | # (conjugate) | |
425 | # | |
426 | # Compute complex's conjugate. | |
427 | # | |
428 | sub conjugate { | |
429 | my ($z) = @_; | |
430 | if ($z->{c_dirty}) { | |
431 | my ($r, $t) = @{$z->polar}; | |
432 | return (ref $z)->emake($r, -$t); | |
433 | } | |
434 | my ($re, $im) = @{$z->cartesian}; | |
435 | return (ref $z)->make($re, -$im); | |
436 | } | |
437 | ||
438 | # | |
439 | # (abs) | |
440 | # | |
441 | # Compute complex's norm (rho). | |
442 | # | |
443 | sub abs { | |
444 | my ($z) = @_; | |
445 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 446 | return $r; |
66730be0 RM |
447 | } |
448 | ||
449 | # | |
450 | # arg | |
451 | # | |
452 | # Compute complex's argument (theta). | |
453 | # | |
454 | sub arg { | |
455 | my ($z) = @_; | |
0c721ce2 | 456 | return ($z < 0 ? pi : 0) unless ref $z; |
66730be0 | 457 | my ($r, $t) = @{$z->polar}; |
fb73857a | 458 | if ($t > pi()) { $t -= pit2 } |
459 | elsif ($t <= -pi()) { $t += pit2 } | |
66730be0 RM |
460 | return $t; |
461 | } | |
462 | ||
463 | # | |
464 | # (sqrt) | |
465 | # | |
0c721ce2 | 466 | # Compute sqrt(z). |
66730be0 RM |
467 | # |
468 | sub sqrt { | |
469 | my ($z) = @_; | |
fb73857a | 470 | return $z >= 0 ? sqrt($z) : cplx(0, sqrt(-$z)) unless ref $z; |
471 | my ($re, $im) = @{$z->cartesian}; | |
472 | return cplx($re < 0 ? (0, sqrt(-$re)) : (sqrt($re), 0)) if $im == 0; | |
66730be0 RM |
473 | my ($r, $t) = @{$z->polar}; |
474 | return (ref $z)->emake(sqrt($r), $t/2); | |
475 | } | |
476 | ||
477 | # | |
478 | # cbrt | |
479 | # | |
0c721ce2 | 480 | # Compute cbrt(z) (cubic root). |
66730be0 RM |
481 | # |
482 | sub cbrt { | |
483 | my ($z) = @_; | |
fb73857a | 484 | return $z < 0 ? -exp(log(-$z)/3) : ($z > 0 ? exp(log($z)/3): 0) |
485 | unless ref $z; | |
66730be0 | 486 | my ($r, $t) = @{$z->polar}; |
fb73857a | 487 | return (ref $z)->emake(exp(log($r)/3), $t/3); |
66730be0 RM |
488 | } |
489 | ||
490 | # | |
0e505df1 JH |
491 | # _rootbad |
492 | # | |
493 | # Die on bad root. | |
494 | # | |
495 | sub _rootbad { | |
496 | my $mess = "Root $_[0] not defined, root must be positive integer.\n"; | |
497 | ||
498 | my @up = caller(1); | |
fb73857a | 499 | |
0e505df1 JH |
500 | $mess .= "Died at $up[1] line $up[2].\n"; |
501 | ||
502 | die $mess; | |
503 | } | |
504 | ||
505 | # | |
66730be0 RM |
506 | # root |
507 | # | |
508 | # Computes all nth root for z, returning an array whose size is n. | |
509 | # `n' must be a positive integer. | |
510 | # | |
511 | # The roots are given by (for k = 0..n-1): | |
512 | # | |
513 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
514 | # | |
515 | sub root { | |
516 | my ($z, $n) = @_; | |
0e505df1 | 517 | _rootbad($n) if ($n < 1 or int($n) != $n); |
66730be0 RM |
518 | my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); |
519 | my @root; | |
520 | my $k; | |
fb73857a | 521 | my $theta_inc = pit2 / $n; |
66730be0 RM |
522 | my $rho = $r ** (1/$n); |
523 | my $theta; | |
524 | my $complex = ref($z) || $package; | |
525 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { | |
526 | push(@root, $complex->emake($rho, $theta)); | |
a0d0e21e | 527 | } |
66730be0 | 528 | return @root; |
a0d0e21e LW |
529 | } |
530 | ||
66730be0 RM |
531 | # |
532 | # Re | |
533 | # | |
534 | # Return Re(z). | |
535 | # | |
a0d0e21e | 536 | sub Re { |
66730be0 RM |
537 | my ($z) = @_; |
538 | return $z unless ref $z; | |
539 | my ($re, $im) = @{$z->cartesian}; | |
540 | return $re; | |
a0d0e21e LW |
541 | } |
542 | ||
66730be0 RM |
543 | # |
544 | # Im | |
545 | # | |
546 | # Return Im(z). | |
547 | # | |
a0d0e21e | 548 | sub Im { |
66730be0 RM |
549 | my ($z) = @_; |
550 | return 0 unless ref $z; | |
551 | my ($re, $im) = @{$z->cartesian}; | |
552 | return $im; | |
a0d0e21e LW |
553 | } |
554 | ||
66730be0 RM |
555 | # |
556 | # (exp) | |
557 | # | |
558 | # Computes exp(z). | |
559 | # | |
560 | sub exp { | |
561 | my ($z) = @_; | |
562 | my ($x, $y) = @{$z->cartesian}; | |
563 | return (ref $z)->emake(exp($x), $y); | |
564 | } | |
565 | ||
566 | # | |
8c03c583 JH |
567 | # _logofzero |
568 | # | |
fb73857a | 569 | # Die on logarithm of zero. |
8c03c583 JH |
570 | # |
571 | sub _logofzero { | |
572 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
573 | ||
574 | if (defined $_[1]) { | |
575 | $mess .= "(Because in the definition of $_[0], the argument "; | |
576 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
577 | $mess .= "is 0)\n"; | |
578 | } | |
579 | ||
580 | my @up = caller(1); | |
fb73857a | 581 | |
8c03c583 JH |
582 | $mess .= "Died at $up[1] line $up[2].\n"; |
583 | ||
584 | die $mess; | |
585 | } | |
586 | ||
587 | # | |
66730be0 RM |
588 | # (log) |
589 | # | |
590 | # Compute log(z). | |
591 | # | |
592 | sub log { | |
593 | my ($z) = @_; | |
fb73857a | 594 | unless (ref $z) { |
595 | _logofzero("log") if $z == 0; | |
596 | return $z > 0 ? log($z) : cplx(log(-$z), pi); | |
597 | } | |
5cd24f17 | 598 | my ($r, $t) = @{$z->polar}; |
fb73857a | 599 | _logofzero("log") if $r == 0; |
600 | if ($t > pi()) { $t -= pit2 } | |
601 | elsif ($t <= -pi()) { $t += pit2 } | |
66730be0 RM |
602 | return (ref $z)->make(log($r), $t); |
603 | } | |
604 | ||
605 | # | |
0c721ce2 JH |
606 | # ln |
607 | # | |
608 | # Alias for log(). | |
609 | # | |
610 | sub ln { Math::Complex::log(@_) } | |
611 | ||
612 | # | |
66730be0 RM |
613 | # log10 |
614 | # | |
615 | # Compute log10(z). | |
616 | # | |
5cd24f17 | 617 | |
66730be0 | 618 | sub log10 { |
fb73857a | 619 | return Math::Complex::log($_[0]) * uplog10; |
66730be0 RM |
620 | } |
621 | ||
622 | # | |
623 | # logn | |
624 | # | |
625 | # Compute logn(z,n) = log(z) / log(n) | |
626 | # | |
627 | sub logn { | |
628 | my ($z, $n) = @_; | |
0c721ce2 | 629 | $z = cplx($z, 0) unless ref $z; |
66730be0 RM |
630 | my $logn = $logn{$n}; |
631 | $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) | |
0c721ce2 | 632 | return log($z) / $logn; |
66730be0 RM |
633 | } |
634 | ||
635 | # | |
636 | # (cos) | |
637 | # | |
638 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
639 | # | |
640 | sub cos { | |
641 | my ($z) = @_; | |
642 | my ($x, $y) = @{$z->cartesian}; | |
643 | my $ey = exp($y); | |
644 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
645 | return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, |
646 | sin($x) * ($ey_1 - $ey)/2); | |
66730be0 RM |
647 | } |
648 | ||
649 | # | |
650 | # (sin) | |
651 | # | |
652 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
653 | # | |
654 | sub sin { | |
655 | my ($z) = @_; | |
656 | my ($x, $y) = @{$z->cartesian}; | |
657 | my $ey = exp($y); | |
658 | my $ey_1 = 1 / $ey; | |
0c721ce2 JH |
659 | return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, |
660 | cos($x) * ($ey - $ey_1)/2); | |
66730be0 RM |
661 | } |
662 | ||
663 | # | |
664 | # tan | |
665 | # | |
666 | # Compute tan(z) = sin(z) / cos(z). | |
667 | # | |
668 | sub tan { | |
669 | my ($z) = @_; | |
0c721ce2 | 670 | my $cz = cos($z); |
0e505df1 | 671 | _divbyzero "tan($z)", "cos($z)" if ($cz == 0); |
0c721ce2 | 672 | return sin($z) / $cz; |
66730be0 RM |
673 | } |
674 | ||
675 | # | |
0c721ce2 JH |
676 | # sec |
677 | # | |
678 | # Computes the secant sec(z) = 1 / cos(z). | |
679 | # | |
680 | sub sec { | |
681 | my ($z) = @_; | |
682 | my $cz = cos($z); | |
0e505df1 | 683 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
684 | return 1 / $cz; |
685 | } | |
686 | ||
687 | # | |
688 | # csc | |
689 | # | |
690 | # Computes the cosecant csc(z) = 1 / sin(z). | |
691 | # | |
692 | sub csc { | |
693 | my ($z) = @_; | |
694 | my $sz = sin($z); | |
0e505df1 | 695 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
696 | return 1 / $sz; |
697 | } | |
698 | ||
66730be0 | 699 | # |
0c721ce2 | 700 | # cosec |
66730be0 | 701 | # |
0c721ce2 JH |
702 | # Alias for csc(). |
703 | # | |
704 | sub cosec { Math::Complex::csc(@_) } | |
705 | ||
706 | # | |
707 | # cot | |
708 | # | |
fb73857a | 709 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
710 | # |
711 | sub cot { | |
66730be0 | 712 | my ($z) = @_; |
0c721ce2 | 713 | my $sz = sin($z); |
0e505df1 | 714 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
0c721ce2 | 715 | return cos($z) / $sz; |
66730be0 RM |
716 | } |
717 | ||
718 | # | |
0c721ce2 JH |
719 | # cotan |
720 | # | |
721 | # Alias for cot(). | |
722 | # | |
723 | sub cotan { Math::Complex::cot(@_) } | |
724 | ||
725 | # | |
66730be0 RM |
726 | # acos |
727 | # | |
728 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
729 | # | |
730 | sub acos { | |
fb73857a | 731 | my $z = $_[0]; |
732 | return atan2(sqrt(1-$z*$z), $z) if (! ref $z) && abs($z) <= 1; | |
733 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); | |
734 | my $t1 = sqrt(($x+1)*($x+1) + $y*$y); | |
735 | my $t2 = sqrt(($x-1)*($x-1) + $y*$y); | |
736 | my $alpha = ($t1 + $t2)/2; | |
737 | my $beta = ($t1 - $t2)/2; | |
738 | $alpha = 1 if $alpha < 1; | |
739 | if ($beta > 1) { $beta = 1 } | |
740 | elsif ($beta < -1) { $beta = -1 } | |
741 | my $u = atan2(sqrt(1-$beta*$beta), $beta); | |
742 | my $v = log($alpha + sqrt($alpha*$alpha-1)); | |
743 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); | |
744 | return $package->make($u, $v); | |
66730be0 RM |
745 | } |
746 | ||
747 | # | |
748 | # asin | |
749 | # | |
750 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
751 | # | |
752 | sub asin { | |
fb73857a | 753 | my $z = $_[0]; |
754 | return atan2($z, sqrt(1-$z*$z)) if (! ref $z) && abs($z) <= 1; | |
755 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); | |
756 | my $t1 = sqrt(($x+1)*($x+1) + $y*$y); | |
757 | my $t2 = sqrt(($x-1)*($x-1) + $y*$y); | |
758 | my $alpha = ($t1 + $t2)/2; | |
759 | my $beta = ($t1 - $t2)/2; | |
760 | $alpha = 1 if $alpha < 1; | |
761 | if ($beta > 1) { $beta = 1 } | |
762 | elsif ($beta < -1) { $beta = -1 } | |
763 | my $u = atan2($beta, sqrt(1-$beta*$beta)); | |
764 | my $v = -log($alpha + sqrt($alpha*$alpha-1)); | |
765 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); | |
766 | return $package->make($u, $v); | |
66730be0 RM |
767 | } |
768 | ||
769 | # | |
770 | # atan | |
771 | # | |
0c721ce2 | 772 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
773 | # |
774 | sub atan { | |
775 | my ($z) = @_; | |
fb73857a | 776 | return atan2($z, 1) unless ref $z; |
8c03c583 JH |
777 | _divbyzero "atan(i)" if ( $z == i); |
778 | _divbyzero "atan(-i)" if (-$z == i); | |
fb73857a | 779 | my $log = log((i + $z) / (i - $z)); |
780 | $ip2 = 0.5 * i unless defined $ip2; | |
781 | return $ip2 * $log; | |
a0d0e21e LW |
782 | } |
783 | ||
66730be0 | 784 | # |
0c721ce2 JH |
785 | # asec |
786 | # | |
787 | # Computes the arc secant asec(z) = acos(1 / z). | |
788 | # | |
789 | sub asec { | |
790 | my ($z) = @_; | |
0e505df1 | 791 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 792 | return acos(1 / $z); |
0c721ce2 JH |
793 | } |
794 | ||
795 | # | |
5cd24f17 | 796 | # acsc |
0c721ce2 | 797 | # |
8c03c583 | 798 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 799 | # |
5cd24f17 | 800 | sub acsc { |
0c721ce2 | 801 | my ($z) = @_; |
0e505df1 | 802 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 803 | return asin(1 / $z); |
0c721ce2 JH |
804 | } |
805 | ||
806 | # | |
5cd24f17 | 807 | # acosec |
66730be0 | 808 | # |
5cd24f17 | 809 | # Alias for acsc(). |
0c721ce2 | 810 | # |
5cd24f17 | 811 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 812 | |
66730be0 | 813 | # |
0c721ce2 JH |
814 | # acot |
815 | # | |
8c03c583 | 816 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
817 | # |
818 | sub acot { | |
66730be0 | 819 | my ($z) = @_; |
fb73857a | 820 | return ($z >= 0) ? atan2(1, $z) : atan2(-1, -$z) unless ref $z; |
8c03c583 JH |
821 | _divbyzero "acot(i)", if ( $z == i); |
822 | _divbyzero "acot(-i)" if (-$z == i); | |
823 | return atan(1 / $z); | |
66730be0 RM |
824 | } |
825 | ||
826 | # | |
0c721ce2 JH |
827 | # acotan |
828 | # | |
829 | # Alias for acot(). | |
830 | # | |
831 | sub acotan { Math::Complex::acot(@_) } | |
832 | ||
833 | # | |
66730be0 RM |
834 | # cosh |
835 | # | |
836 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
837 | # | |
838 | sub cosh { | |
839 | my ($z) = @_; | |
fb73857a | 840 | my $ex; |
0e505df1 | 841 | unless (ref $z) { |
fb73857a | 842 | $ex = exp($z); |
843 | return ($ex + 1/$ex)/2; | |
0e505df1 JH |
844 | } |
845 | my ($x, $y) = @{$z->cartesian}; | |
fb73857a | 846 | $ex = exp($x); |
66730be0 | 847 | my $ex_1 = 1 / $ex; |
0c721ce2 JH |
848 | return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, |
849 | sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
850 | } |
851 | ||
852 | # | |
853 | # sinh | |
854 | # | |
855 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
856 | # | |
857 | sub sinh { | |
858 | my ($z) = @_; | |
fb73857a | 859 | my $ex; |
0e505df1 | 860 | unless (ref $z) { |
fb73857a | 861 | $ex = exp($z); |
862 | return ($ex - 1/$ex)/2; | |
0e505df1 JH |
863 | } |
864 | my ($x, $y) = @{$z->cartesian}; | |
fb73857a | 865 | $ex = exp($x); |
66730be0 | 866 | my $ex_1 = 1 / $ex; |
0c721ce2 JH |
867 | return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, |
868 | sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
869 | } |
870 | ||
871 | # | |
872 | # tanh | |
873 | # | |
874 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
875 | # | |
876 | sub tanh { | |
877 | my ($z) = @_; | |
0c721ce2 | 878 | my $cz = cosh($z); |
0e505df1 | 879 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 880 | return sinh($z) / $cz; |
66730be0 RM |
881 | } |
882 | ||
883 | # | |
0c721ce2 JH |
884 | # sech |
885 | # | |
886 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
887 | # | |
888 | sub sech { | |
889 | my ($z) = @_; | |
890 | my $cz = cosh($z); | |
0e505df1 | 891 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
892 | return 1 / $cz; |
893 | } | |
894 | ||
895 | # | |
896 | # csch | |
897 | # | |
898 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 899 | # |
0c721ce2 JH |
900 | sub csch { |
901 | my ($z) = @_; | |
902 | my $sz = sinh($z); | |
0e505df1 | 903 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
904 | return 1 / $sz; |
905 | } | |
906 | ||
907 | # | |
908 | # cosech | |
909 | # | |
910 | # Alias for csch(). | |
911 | # | |
912 | sub cosech { Math::Complex::csch(@_) } | |
913 | ||
66730be0 | 914 | # |
0c721ce2 JH |
915 | # coth |
916 | # | |
917 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
918 | # | |
919 | sub coth { | |
66730be0 | 920 | my ($z) = @_; |
0c721ce2 | 921 | my $sz = sinh($z); |
0e505df1 | 922 | _divbyzero "coth($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 | 923 | return cosh($z) / $sz; |
66730be0 RM |
924 | } |
925 | ||
926 | # | |
0c721ce2 JH |
927 | # cotanh |
928 | # | |
929 | # Alias for coth(). | |
930 | # | |
931 | sub cotanh { Math::Complex::coth(@_) } | |
932 | ||
933 | # | |
66730be0 RM |
934 | # acosh |
935 | # | |
fb73857a | 936 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
937 | # |
938 | sub acosh { | |
939 | my ($z) = @_; | |
fb73857a | 940 | unless (ref $z) { |
941 | return log($z + sqrt($z*$z-1)) if $z >= 1; | |
942 | $z = cplx($z, 0); | |
943 | } | |
8c03c583 | 944 | my ($re, $im) = @{$z->cartesian}; |
fb73857a | 945 | if ($im == 0) { |
946 | return cplx(log($re + sqrt($re*$re - 1)), 0) if $re >= 1; | |
947 | return cplx(0, atan2(sqrt(1-$re*$re), $re)) if abs($re) <= 1; | |
948 | } | |
0c721ce2 | 949 | return log($z + sqrt($z*$z - 1)); |
66730be0 RM |
950 | } |
951 | ||
952 | # | |
953 | # asinh | |
954 | # | |
955 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) | |
956 | # | |
957 | sub asinh { | |
958 | my ($z) = @_; | |
0c721ce2 | 959 | return log($z + sqrt($z*$z + 1)); |
66730be0 RM |
960 | } |
961 | ||
962 | # | |
963 | # atanh | |
964 | # | |
965 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
966 | # | |
967 | sub atanh { | |
968 | my ($z) = @_; | |
fb73857a | 969 | unless (ref $z) { |
970 | return log((1 + $z)/(1 - $z))/2 if abs($z) < 1; | |
971 | $z = cplx($z, 0); | |
972 | } | |
8c03c583 JH |
973 | _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); |
974 | _logofzero 'atanh(-1)' if ($z == -1); | |
fb73857a | 975 | return 0.5 * log((1 + $z) / (1 - $z)); |
66730be0 RM |
976 | } |
977 | ||
978 | # | |
0c721ce2 JH |
979 | # asech |
980 | # | |
981 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
982 | # | |
983 | sub asech { | |
984 | my ($z) = @_; | |
0e505df1 | 985 | _divbyzero 'asech(0)', $z if ($z == 0); |
0c721ce2 JH |
986 | return acosh(1 / $z); |
987 | } | |
988 | ||
989 | # | |
990 | # acsch | |
66730be0 | 991 | # |
0c721ce2 | 992 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 993 | # |
0c721ce2 | 994 | sub acsch { |
66730be0 | 995 | my ($z) = @_; |
0e505df1 | 996 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
997 | return asinh(1 / $z); |
998 | } | |
999 | ||
1000 | # | |
1001 | # acosech | |
1002 | # | |
1003 | # Alias for acosh(). | |
1004 | # | |
1005 | sub acosech { Math::Complex::acsch(@_) } | |
1006 | ||
1007 | # | |
1008 | # acoth | |
1009 | # | |
1010 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1011 | # | |
1012 | sub acoth { | |
1013 | my ($z) = @_; | |
fb73857a | 1014 | unless (ref $z) { |
1015 | return log(($z + 1)/($z - 1))/2 if abs($z) > 1; | |
1016 | $z = cplx($z, 0); | |
1017 | } | |
8c03c583 JH |
1018 | _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); |
1019 | _logofzero 'acoth(-1)' if ($z == -1); | |
8c03c583 | 1020 | return log((1 + $z) / ($z - 1)) / 2; |
66730be0 RM |
1021 | } |
1022 | ||
1023 | # | |
0c721ce2 JH |
1024 | # acotanh |
1025 | # | |
1026 | # Alias for acot(). | |
1027 | # | |
1028 | sub acotanh { Math::Complex::acoth(@_) } | |
1029 | ||
1030 | # | |
66730be0 RM |
1031 | # (atan2) |
1032 | # | |
1033 | # Compute atan(z1/z2). | |
1034 | # | |
1035 | sub atan2 { | |
1036 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1037 | my ($re1, $im1, $re2, $im2); |
1038 | if ($inverted) { | |
1039 | ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1040 | ($re2, $im2) = @{$z1->cartesian}; | |
66730be0 | 1041 | } else { |
fb73857a | 1042 | ($re1, $im1) = @{$z1->cartesian}; |
1043 | ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1044 | } | |
1045 | if ($im2 == 0) { | |
1046 | return cplx(atan2($re1, $re2), 0) if $im1 == 0; | |
1047 | return cplx(($im1<=>0) * pip2, 0) if $re2 == 0; | |
66730be0 | 1048 | } |
fb73857a | 1049 | my $w = atan($z1/$z2); |
1050 | my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); | |
1051 | $u += pi if $re2 < 0; | |
1052 | $u -= pit2 if $u > pi; | |
1053 | return cplx($u, $v); | |
66730be0 RM |
1054 | } |
1055 | ||
1056 | # | |
1057 | # display_format | |
1058 | # ->display_format | |
1059 | # | |
1060 | # Set (fetch if no argument) display format for all complex numbers that | |
fb73857a | 1061 | # don't happen to have overridden it via ->display_format |
66730be0 RM |
1062 | # |
1063 | # When called as a method, this actually sets the display format for | |
1064 | # the current object. | |
1065 | # | |
1066 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1067 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1068 | # | |
1069 | sub display_format { | |
1070 | my $self = shift; | |
1071 | my $format = undef; | |
1072 | ||
1073 | if (ref $self) { # Called as a method | |
1074 | $format = shift; | |
0c721ce2 | 1075 | } else { # Regular procedure call |
66730be0 RM |
1076 | $format = $self; |
1077 | undef $self; | |
1078 | } | |
1079 | ||
1080 | if (defined $self) { | |
1081 | return defined $self->{display} ? $self->{display} : $display | |
1082 | unless defined $format; | |
1083 | return $self->{display} = $format; | |
1084 | } | |
1085 | ||
1086 | return $display unless defined $format; | |
1087 | return $display = $format; | |
1088 | } | |
1089 | ||
1090 | # | |
1091 | # (stringify) | |
1092 | # | |
1093 | # Show nicely formatted complex number under its cartesian or polar form, | |
1094 | # depending on the current display format: | |
1095 | # | |
1096 | # . If a specific display format has been recorded for this object, use it. | |
1097 | # . Otherwise, use the generic current default for all complex numbers, | |
1098 | # which is a package global variable. | |
1099 | # | |
a0d0e21e | 1100 | sub stringify { |
66730be0 RM |
1101 | my ($z) = shift; |
1102 | my $format; | |
1103 | ||
1104 | $format = $display; | |
1105 | $format = $z->{display} if defined $z->{display}; | |
1106 | ||
1107 | return $z->stringify_polar if $format =~ /^p/i; | |
1108 | return $z->stringify_cartesian; | |
1109 | } | |
1110 | ||
1111 | # | |
1112 | # ->stringify_cartesian | |
1113 | # | |
1114 | # Stringify as a cartesian representation 'a+bi'. | |
1115 | # | |
1116 | sub stringify_cartesian { | |
1117 | my $z = shift; | |
1118 | my ($x, $y) = @{$z->cartesian}; | |
1119 | my ($re, $im); | |
fb73857a | 1120 | my $eps = 1e-14; |
66730be0 | 1121 | |
fb73857a | 1122 | $x = int($x + ($x < 0 ? -1 : 1) * $eps) |
1123 | if int(abs($x)) != int(abs($x) + $eps); | |
1124 | $y = int($y + ($y < 0 ? -1 : 1) * $eps) | |
1125 | if int(abs($y)) != int(abs($y) + $eps); | |
55497cff | 1126 | |
fb73857a | 1127 | $re = "$x" if abs($x) >= $eps; |
1128 | if ($y == 1) { $im = 'i' } | |
1129 | elsif ($y == -1) { $im = '-i' } | |
1130 | elsif (abs($y) >= $eps) { $im = $y . "i" } | |
66730be0 | 1131 | |
0c721ce2 | 1132 | my $str = ''; |
66730be0 RM |
1133 | $str = $re if defined $re; |
1134 | $str .= "+$im" if defined $im; | |
1135 | $str =~ s/\+-/-/; | |
1136 | $str =~ s/^\+//; | |
1137 | $str = '0' unless $str; | |
1138 | ||
1139 | return $str; | |
1140 | } | |
1141 | ||
1142 | # | |
1143 | # ->stringify_polar | |
1144 | # | |
1145 | # Stringify as a polar representation '[r,t]'. | |
1146 | # | |
1147 | sub stringify_polar { | |
1148 | my $z = shift; | |
1149 | my ($r, $t) = @{$z->polar}; | |
1150 | my $theta; | |
0c721ce2 | 1151 | my $eps = 1e-14; |
66730be0 | 1152 | |
0c721ce2 | 1153 | return '[0,0]' if $r <= $eps; |
a0d0e21e | 1154 | |
fb73857a | 1155 | my $nt = $t / pit2; |
1156 | $nt = ($nt - int($nt)) * pit2; | |
1157 | $nt += pit2 if $nt < 0; # Range [0, 2pi] | |
a0d0e21e | 1158 | |
0c721ce2 JH |
1159 | if (abs($nt) <= $eps) { $theta = 0 } |
1160 | elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } | |
66730be0 | 1161 | |
55497cff | 1162 | if (defined $theta) { |
0c721ce2 JH |
1163 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
1164 | if int(abs($r)) != int(abs($r) + $eps); | |
1165 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
1166 | if ($theta ne 'pi' and | |
1167 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 1168 | return "\[$r,$theta\]"; |
1169 | } | |
66730be0 RM |
1170 | |
1171 | # | |
1172 | # Okay, number is not a real. Try to identify pi/n and friends... | |
1173 | # | |
1174 | ||
fb73857a | 1175 | $nt -= pit2 if $nt > pi; |
66730be0 | 1176 | my ($n, $k, $kpi); |
fb73857a | 1177 | |
66730be0 RM |
1178 | for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { |
1179 | $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); | |
0c721ce2 JH |
1180 | if (abs($kpi/$n - $nt) <= $eps) { |
1181 | $theta = ($nt < 0 ? '-':''). | |
1182 | ($k == 1 ? 'pi':"${k}pi").'/'.abs($n); | |
66730be0 RM |
1183 | last; |
1184 | } | |
1185 | } | |
1186 | ||
1187 | $theta = $nt unless defined $theta; | |
1188 | ||
0c721ce2 JH |
1189 | $r = int($r + ($r < 0 ? -1 : 1) * $eps) |
1190 | if int(abs($r)) != int(abs($r) + $eps); | |
1191 | $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) | |
1192 | if ($theta !~ m(^-?\d*pi/\d+$) and | |
1193 | int(abs($theta)) != int(abs($theta) + $eps)); | |
55497cff | 1194 | |
66730be0 | 1195 | return "\[$r,$theta\]"; |
a0d0e21e | 1196 | } |
a5f75d66 AD |
1197 | |
1198 | 1; | |
1199 | __END__ | |
1200 | ||
1201 | =head1 NAME | |
1202 | ||
66730be0 | 1203 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1204 | |
1205 | =head1 SYNOPSIS | |
1206 | ||
66730be0 | 1207 | use Math::Complex; |
fb73857a | 1208 | |
66730be0 RM |
1209 | $z = Math::Complex->make(5, 6); |
1210 | $t = 4 - 3*i + $z; | |
1211 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1212 | |
1213 | =head1 DESCRIPTION | |
1214 | ||
66730be0 RM |
1215 | This package lets you create and manipulate complex numbers. By default, |
1216 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1217 | full complex support, along with a full set of mathematical functions | |
1218 | typically associated with and/or extended to complex numbers. | |
1219 | ||
1220 | If you wonder what complex numbers are, they were invented to be able to solve | |
1221 | the following equation: | |
1222 | ||
1223 | x*x = -1 | |
1224 | ||
1225 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1226 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1227 | I<i> is a pure I<imaginary> number. | |
1228 | ||
1229 | The arithmetics with pure imaginary numbers works just like you would expect | |
1230 | it with real numbers... you just have to remember that | |
1231 | ||
1232 | i*i = -1 | |
1233 | ||
1234 | so you have: | |
1235 | ||
1236 | 5i + 7i = i * (5 + 7) = 12i | |
1237 | 4i - 3i = i * (4 - 3) = i | |
1238 | 4i * 2i = -8 | |
1239 | 6i / 2i = 3 | |
1240 | 1 / i = -i | |
1241 | ||
1242 | Complex numbers are numbers that have both a real part and an imaginary | |
1243 | part, and are usually noted: | |
1244 | ||
1245 | a + bi | |
1246 | ||
1247 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1248 | arithmetic with complex numbers is straightforward. You have to | |
1249 | keep track of the real and the imaginary parts, but otherwise the | |
1250 | rules used for real numbers just apply: | |
1251 | ||
1252 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1253 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1254 | ||
1255 | A graphical representation of complex numbers is possible in a plane | |
1256 | (also called the I<complex plane>, but it's really a 2D plane). | |
1257 | The number | |
1258 | ||
1259 | z = a + bi | |
1260 | ||
1261 | is the point whose coordinates are (a, b). Actually, it would | |
1262 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1263 | of two complex numbers is a vectorial addition. | |
1264 | ||
1265 | Since there is a bijection between a point in the 2D plane and a complex | |
1266 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1267 | can also be uniquely identified with polar coordinates: | |
1268 | ||
1269 | [rho, theta] | |
1270 | ||
1271 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1272 | the vector and the I<x> axis. There is a notation for this using the | |
1273 | exponential form, which is: | |
1274 | ||
1275 | rho * exp(i * theta) | |
1276 | ||
1277 | where I<i> is the famous imaginary number introduced above. Conversion | |
1278 | between this form and the cartesian form C<a + bi> is immediate: | |
1279 | ||
1280 | a = rho * cos(theta) | |
1281 | b = rho * sin(theta) | |
1282 | ||
1283 | which is also expressed by this formula: | |
1284 | ||
fb73857a | 1285 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1286 | |
1287 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1288 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1289 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1290 | noted C<abs(z)>. | |
1291 | ||
1292 | The polar notation (also known as the trigonometric | |
1293 | representation) is much more handy for performing multiplications and | |
1294 | divisions of complex numbers, whilst the cartesian notation is better | |
fb73857a | 1295 | suited for additions and subtractions. Real numbers are on the I<x> |
1296 | axis, and therefore I<theta> is zero or I<pi>. | |
66730be0 RM |
1297 | |
1298 | All the common operations that can be performed on a real number have | |
1299 | been defined to work on complex numbers as well, and are merely | |
1300 | I<extensions> of the operations defined on real numbers. This means | |
1301 | they keep their natural meaning when there is no imaginary part, provided | |
1302 | the number is within their definition set. | |
1303 | ||
1304 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1305 | its argument is only defined for non-negative real numbers and yields a |
1306 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1307 | If we allow it to return a complex number, then it can be extended to |
1308 | negative real numbers to become an application from B<R> to B<C> (the | |
1309 | set of complex numbers): | |
1310 | ||
1311 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1312 | ||
1313 | It can also be extended to be an application from B<C> to B<C>, | |
1314 | whilst its restriction to B<R> behaves as defined above by using | |
1315 | the following definition: | |
1316 | ||
1317 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1318 | ||
fb73857a | 1319 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1320 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1321 | number) and the above definition states that | |
66730be0 RM |
1322 | |
1323 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1324 | ||
1325 | which is exactly what we had defined for negative real numbers above. | |
a5f75d66 | 1326 | |
66730be0 RM |
1327 | All the common mathematical functions defined on real numbers that |
1328 | are extended to complex numbers share that same property of working | |
1329 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1330 | be called an extension, would it?). | |
a5f75d66 | 1331 | |
66730be0 RM |
1332 | A I<new> operation possible on a complex number that is |
1333 | the identity for real numbers is called the I<conjugate>, and is noted | |
1334 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1335 | |
66730be0 RM |
1336 | z = a + bi |
1337 | ~z = a - bi | |
a5f75d66 | 1338 | |
66730be0 | 1339 | Simple... Now look: |
a5f75d66 | 1340 | |
66730be0 | 1341 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1342 | |
66730be0 RM |
1343 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1344 | distance to the origin, also known as: | |
a5f75d66 | 1345 | |
66730be0 | 1346 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1347 | |
66730be0 RM |
1348 | so |
1349 | ||
1350 | z * ~z = abs(z) ** 2 | |
1351 | ||
1352 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1353 | ||
1354 | a * a = abs(a) ** 2 | |
1355 | ||
1356 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1357 | for the absolute value). This example explains why the norm of C<z> is | |
1358 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1359 | is the regular C<abs> we know when the complex number actually has no | |
1360 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1361 | notation for the norm. | |
1362 | ||
1363 | =head1 OPERATIONS | |
1364 | ||
1365 | Given the following notations: | |
1366 | ||
1367 | z1 = a + bi = r1 * exp(i * t1) | |
1368 | z2 = c + di = r2 * exp(i * t2) | |
1369 | z = <any complex or real number> | |
1370 | ||
1371 | the following (overloaded) operations are supported on complex numbers: | |
1372 | ||
1373 | z1 + z2 = (a + c) + i(b + d) | |
1374 | z1 - z2 = (a - c) + i(b - d) | |
1375 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1376 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1377 | z1 ** z2 = exp(z2 * log z1) | |
1378 | ~z1 = a - bi | |
1379 | abs(z1) = r1 = sqrt(a*a + b*b) | |
1380 | sqrt(z1) = sqrt(r1) * exp(i * t1/2) | |
1381 | exp(z1) = exp(a) * exp(i * b) | |
1382 | log(z1) = log(r1) + i*t1 | |
1383 | sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) | |
1384 | cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) | |
66730be0 RM |
1385 | atan2(z1, z2) = atan(z1/z2) |
1386 | ||
1387 | The following extra operations are supported on both real and complex | |
1388 | numbers: | |
1389 | ||
1390 | Re(z) = a | |
1391 | Im(z) = b | |
1392 | arg(z) = t | |
1393 | ||
1394 | cbrt(z) = z ** (1/3) | |
1395 | log10(z) = log(z) / log(10) | |
1396 | logn(z, n) = log(z) / log(n) | |
1397 | ||
1398 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1399 | |
5aabfad6 | 1400 | csc(z) = 1 / sin(z) |
1401 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1402 | cot(z) = 1 / tan(z) |
66730be0 RM |
1403 | |
1404 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1405 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1406 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1407 | |
5aabfad6 | 1408 | acsc(z) = asin(1 / z) |
1409 | asec(z) = acos(1 / z) | |
8c03c583 | 1410 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1411 | |
1412 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1413 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1414 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1415 | ||
5aabfad6 | 1416 | csch(z) = 1 / sinh(z) |
1417 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1418 | coth(z) = 1 / tanh(z) |
fb73857a | 1419 | |
66730be0 RM |
1420 | asinh(z) = log(z + sqrt(z*z+1)) |
1421 | acosh(z) = log(z + sqrt(z*z-1)) | |
1422 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1423 | |
5aabfad6 | 1424 | acsch(z) = asinh(1 / z) |
1425 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1426 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1427 | ||
1428 | I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, I<coth>, | |
1429 | I<acosech>, I<acotanh>, have aliases I<ln>, I<cosec>, I<cotan>, | |
1430 | I<acosec>, I<acotan>, I<cosech>, I<cotanh>, I<acosech>, I<acotanh>, | |
1431 | respectively. | |
1432 | ||
1433 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1434 | roots of some complex, where I<n> is a strictly positive integer. |
1435 | There are exactly I<n> such roots, returned as a list. Getting the | |
1436 | number mathematicians call C<j> such that: | |
1437 | ||
1438 | 1 + j + j*j = 0; | |
1439 | ||
1440 | is a simple matter of writing: | |
1441 | ||
1442 | $j = ((root(1, 3))[1]; | |
1443 | ||
1444 | The I<k>th root for C<z = [r,t]> is given by: | |
1445 | ||
1446 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1447 | ||
f4837644 JH |
1448 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1449 | order to ensure its restriction to real numbers is conform to what you | |
1450 | would expect, the comparison is run on the real part of the complex | |
1451 | number first, and imaginary parts are compared only when the real | |
1452 | parts match. | |
66730be0 RM |
1453 | |
1454 | =head1 CREATION | |
1455 | ||
1456 | To create a complex number, use either: | |
1457 | ||
1458 | $z = Math::Complex->make(3, 4); | |
1459 | $z = cplx(3, 4); | |
1460 | ||
1461 | if you know the cartesian form of the number, or | |
1462 | ||
1463 | $z = 3 + 4*i; | |
1464 | ||
fb73857a | 1465 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1466 | |
1467 | $z = Math::Complex->emake(5, pi/3); | |
1468 | $x = cplxe(5, pi/3); | |
1469 | ||
0c721ce2 | 1470 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1471 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1472 | notation for complex numbers in the polar form). | |
66730be0 RM |
1473 | |
1474 | It is possible to write: | |
1475 | ||
1476 | $x = cplxe(-3, pi/4); | |
1477 | ||
1478 | but that will be silently converted into C<[3,-3pi/4]>, since the modulus | |
fb73857a | 1479 | must be non-negative (it represents the distance to the origin in the complex |
66730be0 RM |
1480 | plane). |
1481 | ||
1482 | =head1 STRINGIFICATION | |
1483 | ||
1484 | When printed, a complex number is usually shown under its cartesian | |
1485 | form I<a+bi>, but there are legitimate cases where the polar format | |
1486 | I<[r,t]> is more appropriate. | |
1487 | ||
1488 | By calling the routine C<Math::Complex::display_format> and supplying either | |
1489 | C<"polar"> or C<"cartesian">, you override the default display format, | |
1490 | which is C<"cartesian">. Not supplying any argument returns the current | |
1491 | setting. | |
1492 | ||
1493 | This default can be overridden on a per-number basis by calling the | |
1494 | C<display_format> method instead. As before, not supplying any argument | |
1495 | returns the current display format for this number. Otherwise whatever you | |
1496 | specify will be the new display format for I<this> particular number. | |
1497 | ||
1498 | For instance: | |
1499 | ||
1500 | use Math::Complex; | |
1501 | ||
1502 | Math::Complex::display_format('polar'); | |
1503 | $j = ((root(1, 3))[1]; | |
1504 | print "j = $j\n"; # Prints "j = [1,2pi/3] | |
1505 | $j->display_format('cartesian'); | |
1506 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1507 | ||
1508 | The polar format attempts to emphasize arguments like I<k*pi/n> | |
1509 | (where I<n> is a positive integer and I<k> an integer within [-9,+9]). | |
1510 | ||
1511 | =head1 USAGE | |
1512 | ||
1513 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1514 | is simple and almost transparent. | |
1515 | ||
1516 | Here are some examples: | |
1517 | ||
1518 | use Math::Complex; | |
1519 | ||
1520 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1521 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1522 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1523 | ||
1524 | $z = -16 + 0*i; # Force it to be a complex | |
1525 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1526 | ||
1527 | $k = exp(i * 2*pi/3); | |
1528 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1529 | |
5cd24f17 | 1530 | =head1 ERRORS DUE TO DIVISION BY ZERO |
5aabfad6 | 1531 | |
1532 | The division (/) and the following functions | |
1533 | ||
1534 | tan | |
1535 | sec | |
1536 | csc | |
1537 | cot | |
5cd24f17 | 1538 | asec |
1539 | acsc | |
5aabfad6 | 1540 | atan |
1541 | acot | |
1542 | tanh | |
1543 | sech | |
1544 | csch | |
1545 | coth | |
1546 | atanh | |
1547 | asech | |
1548 | acsch | |
1549 | acoth | |
1550 | ||
1551 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1552 | by zero or taking logarithm of zero. These situations cause fatal |
1553 | runtime errors looking like this | |
5aabfad6 | 1554 | |
1555 | cot(0): Division by zero. | |
5cd24f17 | 1556 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1557 | Died at ... |
1558 | ||
8c03c583 JH |
1559 | or |
1560 | ||
1561 | atanh(-1): Logarithm of zero. | |
1562 | Died at... | |
1563 | ||
1564 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
1565 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |
1566 | C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the | |
1567 | C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the | |
1568 | C<atan>, C<acot>, the argument cannot be C<i> (the imaginary unit). | |
1569 | For the C<atan>, C<acoth>, the argument cannot be C<-i> (the negative | |
1570 | imaginary unit). For the C<tan>, C<sec>, C<tanh>, C<sech>, the | |
1571 | argument cannot be I<pi/2 + k * pi>, where I<k> is any integer. | |
5cd24f17 | 1572 | |
a5f75d66 AD |
1573 | =head1 BUGS |
1574 | ||
5cd24f17 | 1575 | Saying C<use Math::Complex;> exports many mathematical routines in the |
fb73857a | 1576 | caller environment and even overrides some (C<sqrt>, C<log>). |
1577 | This is construed as a feature by the Authors, actually... ;-) | |
a5f75d66 | 1578 | |
66730be0 RM |
1579 | All routines expect to be given real or complex numbers. Don't attempt to |
1580 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1581 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1582 | |
0c721ce2 | 1583 | =head1 AUTHORS |
a5f75d66 | 1584 | |
ace5de91 GS |
1585 | Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> and |
1586 | Jarkko Hietaniemi <F<jhi@iki.fi>>. | |
5cd24f17 | 1587 | |
fb73857a | 1588 | Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. |
1589 | ||
5cd24f17 | 1590 | =cut |
1591 | ||
1592 | # eof |