Commit | Line | Data |
---|---|---|
a0d0e21e | 1 | /* sv.c |
79072805 | 2 | * |
1129b882 | 3 | * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
83706693 RGS |
4 | * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall |
5 | * and others | |
79072805 LW |
6 | * |
7 | * You may distribute under the terms of either the GNU General Public | |
8 | * License or the Artistic License, as specified in the README file. | |
9 | * | |
4ac71550 TC |
10 | */ |
11 | ||
12 | /* | |
13 | * 'I wonder what the Entish is for "yes" and "no",' he thought. | |
14 | * --Pippin | |
15 | * | |
16 | * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"] | |
17 | */ | |
18 | ||
19 | /* | |
645c22ef DM |
20 | * |
21 | * | |
5e045b90 AMS |
22 | * This file contains the code that creates, manipulates and destroys |
23 | * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the | |
24 | * structure of an SV, so their creation and destruction is handled | |
25 | * here; higher-level functions are in av.c, hv.c, and so on. Opcode | |
26 | * level functions (eg. substr, split, join) for each of the types are | |
27 | * in the pp*.c files. | |
79072805 LW |
28 | */ |
29 | ||
30 | #include "EXTERN.h" | |
864dbfa3 | 31 | #define PERL_IN_SV_C |
79072805 | 32 | #include "perl.h" |
d2f185dc | 33 | #include "regcomp.h" |
9d9a81f0 CB |
34 | #ifdef __VMS |
35 | # include <rms.h> | |
36 | #endif | |
79072805 | 37 | |
2f8ed50e OS |
38 | #ifdef __Lynx__ |
39 | /* Missing proto on LynxOS */ | |
40 | char *gconvert(double, int, int, char *); | |
41 | #endif | |
42 | ||
a4eca1d4 JH |
43 | #ifdef USE_QUADMATH |
44 | # define SNPRINTF_G(nv, buffer, size, ndig) \ | |
45 | quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv)) | |
46 | #else | |
47 | # define SNPRINTF_G(nv, buffer, size, ndig) \ | |
48 | PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer)) | |
49 | #endif | |
50 | ||
9f53080a | 51 | #ifndef SV_COW_THRESHOLD |
e8c6a474 | 52 | # define SV_COW_THRESHOLD 0 /* COW iff len > K */ |
9f53080a FC |
53 | #endif |
54 | #ifndef SV_COWBUF_THRESHOLD | |
e8c6a474 | 55 | # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */ |
9f53080a FC |
56 | #endif |
57 | #ifndef SV_COW_MAX_WASTE_THRESHOLD | |
e8c6a474 | 58 | # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */ |
9f53080a FC |
59 | #endif |
60 | #ifndef SV_COWBUF_WASTE_THRESHOLD | |
e8c6a474 | 61 | # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */ |
9f53080a FC |
62 | #endif |
63 | #ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD | |
e8c6a474 | 64 | # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */ |
9f53080a FC |
65 | #endif |
66 | #ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD | |
e8c6a474 | 67 | # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */ |
e8c6a474 YO |
68 | #endif |
69 | /* Work around compiler warnings about unsigned >= THRESHOLD when thres- | |
70 | hold is 0. */ | |
71 | #if SV_COW_THRESHOLD | |
72 | # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD) | |
73 | #else | |
74 | # define GE_COW_THRESHOLD(cur) 1 | |
75 | #endif | |
76 | #if SV_COWBUF_THRESHOLD | |
77 | # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD) | |
78 | #else | |
79 | # define GE_COWBUF_THRESHOLD(cur) 1 | |
80 | #endif | |
81 | #if SV_COW_MAX_WASTE_THRESHOLD | |
82 | # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD) | |
83 | #else | |
84 | # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1 | |
85 | #endif | |
86 | #if SV_COWBUF_WASTE_THRESHOLD | |
87 | # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD) | |
88 | #else | |
89 | # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1 | |
90 | #endif | |
91 | #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD | |
92 | # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur)) | |
93 | #else | |
94 | # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1 | |
95 | #endif | |
96 | #if SV_COWBUF_WASTE_FACTOR_THRESHOLD | |
97 | # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur)) | |
98 | #else | |
99 | # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1 | |
100 | #endif | |
101 | ||
102 | #define CHECK_COW_THRESHOLD(cur,len) (\ | |
103 | GE_COW_THRESHOLD((cur)) && \ | |
104 | GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \ | |
105 | GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \ | |
106 | ) | |
107 | #define CHECK_COWBUF_THRESHOLD(cur,len) (\ | |
108 | GE_COWBUF_THRESHOLD((cur)) && \ | |
109 | GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \ | |
110 | GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \ | |
111 | ) | |
cca0492e | 112 | |
e23c8137 | 113 | #ifdef PERL_UTF8_CACHE_ASSERT |
ab455f60 | 114 | /* if adding more checks watch out for the following tests: |
e23c8137 JH |
115 | * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t |
116 | * lib/utf8.t lib/Unicode/Collate/t/index.t | |
117 | * --jhi | |
118 | */ | |
6f207bd3 | 119 | # define ASSERT_UTF8_CACHE(cache) \ |
ab455f60 NC |
120 | STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \ |
121 | assert((cache)[2] <= (cache)[3]); \ | |
122 | assert((cache)[3] <= (cache)[1]);} \ | |
123 | } STMT_END | |
e23c8137 | 124 | #else |
6f207bd3 | 125 | # define ASSERT_UTF8_CACHE(cache) NOOP |
e23c8137 JH |
126 | #endif |
127 | ||
645c22ef DM |
128 | /* ============================================================================ |
129 | ||
130 | =head1 Allocation and deallocation of SVs. | |
d2a0f284 JC |
131 | An SV (or AV, HV, etc.) is allocated in two parts: the head (struct |
132 | sv, av, hv...) contains type and reference count information, and for | |
133 | many types, a pointer to the body (struct xrv, xpv, xpviv...), which | |
134 | contains fields specific to each type. Some types store all they need | |
135 | in the head, so don't have a body. | |
136 | ||
486ec47a | 137 | In all but the most memory-paranoid configurations (ex: PURIFY), heads |
d2a0f284 JC |
138 | and bodies are allocated out of arenas, which by default are |
139 | approximately 4K chunks of memory parcelled up into N heads or bodies. | |
93e68bfb JC |
140 | Sv-bodies are allocated by their sv-type, guaranteeing size |
141 | consistency needed to allocate safely from arrays. | |
142 | ||
d2a0f284 JC |
143 | For SV-heads, the first slot in each arena is reserved, and holds a |
144 | link to the next arena, some flags, and a note of the number of slots. | |
145 | Snaked through each arena chain is a linked list of free items; when | |
146 | this becomes empty, an extra arena is allocated and divided up into N | |
147 | items which are threaded into the free list. | |
148 | ||
149 | SV-bodies are similar, but they use arena-sets by default, which | |
150 | separate the link and info from the arena itself, and reclaim the 1st | |
151 | slot in the arena. SV-bodies are further described later. | |
645c22ef DM |
152 | |
153 | The following global variables are associated with arenas: | |
154 | ||
7fefc6c1 KW |
155 | PL_sv_arenaroot pointer to list of SV arenas |
156 | PL_sv_root pointer to list of free SV structures | |
645c22ef | 157 | |
7fefc6c1 KW |
158 | PL_body_arenas head of linked-list of body arenas |
159 | PL_body_roots[] array of pointers to list of free bodies of svtype | |
160 | arrays are indexed by the svtype needed | |
93e68bfb | 161 | |
d2a0f284 JC |
162 | A few special SV heads are not allocated from an arena, but are |
163 | instead directly created in the interpreter structure, eg PL_sv_undef. | |
93e68bfb JC |
164 | The size of arenas can be changed from the default by setting |
165 | PERL_ARENA_SIZE appropriately at compile time. | |
645c22ef DM |
166 | |
167 | The SV arena serves the secondary purpose of allowing still-live SVs | |
168 | to be located and destroyed during final cleanup. | |
169 | ||
170 | At the lowest level, the macros new_SV() and del_SV() grab and free | |
171 | an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv() | |
172 | to return the SV to the free list with error checking.) new_SV() calls | |
173 | more_sv() / sv_add_arena() to add an extra arena if the free list is empty. | |
174 | SVs in the free list have their SvTYPE field set to all ones. | |
175 | ||
ff276b08 | 176 | At the time of very final cleanup, sv_free_arenas() is called from |
645c22ef | 177 | perl_destruct() to physically free all the arenas allocated since the |
6a93a7e5 | 178 | start of the interpreter. |
645c22ef | 179 | |
645c22ef DM |
180 | The function visit() scans the SV arenas list, and calls a specified |
181 | function for each SV it finds which is still live - ie which has an SvTYPE | |
182 | other than all 1's, and a non-zero SvREFCNT. visit() is used by the | |
183 | following functions (specified as [function that calls visit()] / [function | |
184 | called by visit() for each SV]): | |
185 | ||
186 | sv_report_used() / do_report_used() | |
f2524eef | 187 | dump all remaining SVs (debugging aid) |
645c22ef | 188 | |
e4487e9b | 189 | sv_clean_objs() / do_clean_objs(),do_clean_named_objs(), |
e76981f9 | 190 | do_clean_named_io_objs(),do_curse() |
645c22ef | 191 | Attempt to free all objects pointed to by RVs, |
e76981f9 FC |
192 | try to do the same for all objects indir- |
193 | ectly referenced by typeglobs too, and | |
194 | then do a final sweep, cursing any | |
195 | objects that remain. Called once from | |
645c22ef DM |
196 | perl_destruct(), prior to calling sv_clean_all() |
197 | below. | |
198 | ||
199 | sv_clean_all() / do_clean_all() | |
200 | SvREFCNT_dec(sv) each remaining SV, possibly | |
201 | triggering an sv_free(). It also sets the | |
202 | SVf_BREAK flag on the SV to indicate that the | |
203 | refcnt has been artificially lowered, and thus | |
204 | stopping sv_free() from giving spurious warnings | |
205 | about SVs which unexpectedly have a refcnt | |
206 | of zero. called repeatedly from perl_destruct() | |
207 | until there are no SVs left. | |
208 | ||
93e68bfb | 209 | =head2 Arena allocator API Summary |
645c22ef DM |
210 | |
211 | Private API to rest of sv.c | |
212 | ||
213 | new_SV(), del_SV(), | |
214 | ||
df0f0429 | 215 | new_XPVNV(), del_XPVGV(), |
645c22ef DM |
216 | etc |
217 | ||
218 | Public API: | |
219 | ||
8cf8f3d1 | 220 | sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas() |
645c22ef | 221 | |
645c22ef DM |
222 | =cut |
223 | ||
3e8320cc | 224 | * ========================================================================= */ |
645c22ef | 225 | |
4561caa4 CS |
226 | /* |
227 | * "A time to plant, and a time to uproot what was planted..." | |
228 | */ | |
229 | ||
d7a2c63c MHM |
230 | #ifdef PERL_MEM_LOG |
231 | # define MEM_LOG_NEW_SV(sv, file, line, func) \ | |
232 | Perl_mem_log_new_sv(sv, file, line, func) | |
233 | # define MEM_LOG_DEL_SV(sv, file, line, func) \ | |
234 | Perl_mem_log_del_sv(sv, file, line, func) | |
235 | #else | |
236 | # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP | |
237 | # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP | |
238 | #endif | |
239 | ||
fd0854ff | 240 | #ifdef DEBUG_LEAKING_SCALARS |
484e6108 FC |
241 | # define FREE_SV_DEBUG_FILE(sv) STMT_START { \ |
242 | if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \ | |
243 | } STMT_END | |
d7a2c63c MHM |
244 | # define DEBUG_SV_SERIAL(sv) \ |
245 | DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \ | |
246 | PTR2UV(sv), (long)(sv)->sv_debug_serial)) | |
fd0854ff DM |
247 | #else |
248 | # define FREE_SV_DEBUG_FILE(sv) | |
d7a2c63c | 249 | # define DEBUG_SV_SERIAL(sv) NOOP |
fd0854ff DM |
250 | #endif |
251 | ||
48614a46 NC |
252 | #ifdef PERL_POISON |
253 | # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv) | |
daba3364 | 254 | # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val)) |
48614a46 NC |
255 | /* Whilst I'd love to do this, it seems that things like to check on |
256 | unreferenced scalars | |
ce5dbf61 | 257 | # define POISON_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV) |
48614a46 | 258 | */ |
ce5dbf61 | 259 | # define POISON_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \ |
7e337ee0 | 260 | PoisonNew(&SvREFCNT(sv), 1, U32) |
48614a46 NC |
261 | #else |
262 | # define SvARENA_CHAIN(sv) SvANY(sv) | |
3eef1deb | 263 | # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val) |
ce5dbf61 | 264 | # define POISON_SV_HEAD(sv) |
48614a46 NC |
265 | #endif |
266 | ||
990198f0 DM |
267 | /* Mark an SV head as unused, and add to free list. |
268 | * | |
269 | * If SVf_BREAK is set, skip adding it to the free list, as this SV had | |
270 | * its refcount artificially decremented during global destruction, so | |
271 | * there may be dangling pointers to it. The last thing we want in that | |
272 | * case is for it to be reused. */ | |
273 | ||
053fc874 GS |
274 | #define plant_SV(p) \ |
275 | STMT_START { \ | |
990198f0 | 276 | const U32 old_flags = SvFLAGS(p); \ |
d7a2c63c MHM |
277 | MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \ |
278 | DEBUG_SV_SERIAL(p); \ | |
fd0854ff | 279 | FREE_SV_DEBUG_FILE(p); \ |
ce5dbf61 | 280 | POISON_SV_HEAD(p); \ |
053fc874 | 281 | SvFLAGS(p) = SVTYPEMASK; \ |
990198f0 | 282 | if (!(old_flags & SVf_BREAK)) { \ |
3eef1deb | 283 | SvARENA_CHAIN_SET(p, PL_sv_root); \ |
990198f0 DM |
284 | PL_sv_root = (p); \ |
285 | } \ | |
053fc874 GS |
286 | --PL_sv_count; \ |
287 | } STMT_END | |
a0d0e21e | 288 | |
053fc874 GS |
289 | #define uproot_SV(p) \ |
290 | STMT_START { \ | |
291 | (p) = PL_sv_root; \ | |
daba3364 | 292 | PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \ |
053fc874 GS |
293 | ++PL_sv_count; \ |
294 | } STMT_END | |
295 | ||
645c22ef | 296 | |
cac9b346 NC |
297 | /* make some more SVs by adding another arena */ |
298 | ||
cac9b346 NC |
299 | STATIC SV* |
300 | S_more_sv(pTHX) | |
301 | { | |
302 | SV* sv; | |
9a87bd09 NC |
303 | char *chunk; /* must use New here to match call to */ |
304 | Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */ | |
305 | sv_add_arena(chunk, PERL_ARENA_SIZE, 0); | |
cac9b346 NC |
306 | uproot_SV(sv); |
307 | return sv; | |
308 | } | |
309 | ||
645c22ef DM |
310 | /* new_SV(): return a new, empty SV head */ |
311 | ||
eba0f806 DM |
312 | #ifdef DEBUG_LEAKING_SCALARS |
313 | /* provide a real function for a debugger to play with */ | |
314 | STATIC SV* | |
d7a2c63c | 315 | S_new_SV(pTHX_ const char *file, int line, const char *func) |
eba0f806 DM |
316 | { |
317 | SV* sv; | |
318 | ||
eba0f806 DM |
319 | if (PL_sv_root) |
320 | uproot_SV(sv); | |
321 | else | |
cac9b346 | 322 | sv = S_more_sv(aTHX); |
eba0f806 DM |
323 | SvANY(sv) = 0; |
324 | SvREFCNT(sv) = 1; | |
325 | SvFLAGS(sv) = 0; | |
fd0854ff | 326 | sv->sv_debug_optype = PL_op ? PL_op->op_type : 0; |
e385c3bf DM |
327 | sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE |
328 | ? PL_parser->copline | |
329 | : PL_curcop | |
f24aceb1 DM |
330 | ? CopLINE(PL_curcop) |
331 | : 0 | |
e385c3bf | 332 | ); |
fd0854ff | 333 | sv->sv_debug_inpad = 0; |
cd676548 | 334 | sv->sv_debug_parent = NULL; |
484e6108 | 335 | sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL; |
d7a2c63c MHM |
336 | |
337 | sv->sv_debug_serial = PL_sv_serial++; | |
338 | ||
339 | MEM_LOG_NEW_SV(sv, file, line, func); | |
340 | DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n", | |
341 | PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func)); | |
342 | ||
eba0f806 DM |
343 | return sv; |
344 | } | |
d7a2c63c | 345 | # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__) |
eba0f806 DM |
346 | |
347 | #else | |
348 | # define new_SV(p) \ | |
053fc874 | 349 | STMT_START { \ |
053fc874 GS |
350 | if (PL_sv_root) \ |
351 | uproot_SV(p); \ | |
352 | else \ | |
cac9b346 | 353 | (p) = S_more_sv(aTHX); \ |
053fc874 GS |
354 | SvANY(p) = 0; \ |
355 | SvREFCNT(p) = 1; \ | |
356 | SvFLAGS(p) = 0; \ | |
d7a2c63c | 357 | MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \ |
053fc874 | 358 | } STMT_END |
eba0f806 | 359 | #endif |
463ee0b2 | 360 | |
645c22ef DM |
361 | |
362 | /* del_SV(): return an empty SV head to the free list */ | |
363 | ||
a0d0e21e | 364 | #ifdef DEBUGGING |
4561caa4 | 365 | |
053fc874 GS |
366 | #define del_SV(p) \ |
367 | STMT_START { \ | |
aea4f609 | 368 | if (DEBUG_D_TEST) \ |
053fc874 GS |
369 | del_sv(p); \ |
370 | else \ | |
371 | plant_SV(p); \ | |
053fc874 | 372 | } STMT_END |
a0d0e21e | 373 | |
76e3520e | 374 | STATIC void |
cea2e8a9 | 375 | S_del_sv(pTHX_ SV *p) |
463ee0b2 | 376 | { |
7918f24d NC |
377 | PERL_ARGS_ASSERT_DEL_SV; |
378 | ||
aea4f609 | 379 | if (DEBUG_D_TEST) { |
4633a7c4 | 380 | SV* sva; |
a3b680e6 | 381 | bool ok = 0; |
daba3364 | 382 | for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) { |
53c1dcc0 AL |
383 | const SV * const sv = sva + 1; |
384 | const SV * const svend = &sva[SvREFCNT(sva)]; | |
c0ff570e | 385 | if (p >= sv && p < svend) { |
a0d0e21e | 386 | ok = 1; |
c0ff570e NC |
387 | break; |
388 | } | |
a0d0e21e LW |
389 | } |
390 | if (!ok) { | |
9b387841 NC |
391 | Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), |
392 | "Attempt to free non-arena SV: 0x%"UVxf | |
393 | pTHX__FORMAT, PTR2UV(p) pTHX__VALUE); | |
a0d0e21e LW |
394 | return; |
395 | } | |
396 | } | |
4561caa4 | 397 | plant_SV(p); |
463ee0b2 | 398 | } |
a0d0e21e | 399 | |
4561caa4 CS |
400 | #else /* ! DEBUGGING */ |
401 | ||
402 | #define del_SV(p) plant_SV(p) | |
403 | ||
404 | #endif /* DEBUGGING */ | |
463ee0b2 | 405 | |
dc6369ef EH |
406 | /* |
407 | * Bodyless IVs and NVs! | |
408 | * | |
409 | * Since 5.9.2, we can avoid allocating a body for SVt_IV-type SVs. | |
410 | * Since the larger IV-holding variants of SVs store their integer | |
411 | * values in their respective bodies, the family of SvIV() accessor | |
412 | * macros would naively have to branch on the SV type to find the | |
413 | * integer value either in the HEAD or BODY. In order to avoid this | |
414 | * expensive branch, a clever soul has deployed a great hack: | |
415 | * We set up the SvANY pointer such that instead of pointing to a | |
416 | * real body, it points into the memory before the location of the | |
417 | * head. We compute this pointer such that the location of | |
418 | * the integer member of the hypothetical body struct happens to | |
419 | * be the same as the location of the integer member of the bodyless | |
420 | * SV head. This now means that the SvIV() family of accessors can | |
421 | * always read from the (hypothetical or real) body via SvANY. | |
422 | * | |
423 | * Since the 5.21 dev series, we employ the same trick for NVs | |
424 | * if the architecture can support it (NVSIZE <= IVSIZE). | |
425 | */ | |
426 | ||
427 | /* The following two macros compute the necessary offsets for the above | |
428 | * trick and store them in SvANY for SvIV() (and friends) to use. */ | |
429 | #define SET_SVANY_FOR_BODYLESS_IV(sv) \ | |
430 | SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv)) | |
431 | ||
432 | #define SET_SVANY_FOR_BODYLESS_NV(sv) \ | |
433 | SvANY(sv) = (XPVNV*)((char*)&(sv->sv_u.svu_nv) - STRUCT_OFFSET(XPVNV, xnv_u.xnv_nv)) | |
645c22ef DM |
434 | |
435 | /* | |
ccfc67b7 JH |
436 | =head1 SV Manipulation Functions |
437 | ||
645c22ef DM |
438 | =for apidoc sv_add_arena |
439 | ||
440 | Given a chunk of memory, link it to the head of the list of arenas, | |
441 | and split it into a list of free SVs. | |
442 | ||
443 | =cut | |
444 | */ | |
445 | ||
d2bd4e7f NC |
446 | static void |
447 | S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags) | |
463ee0b2 | 448 | { |
daba3364 | 449 | SV *const sva = MUTABLE_SV(ptr); |
eb578fdb KW |
450 | SV* sv; |
451 | SV* svend; | |
4633a7c4 | 452 | |
7918f24d NC |
453 | PERL_ARGS_ASSERT_SV_ADD_ARENA; |
454 | ||
4633a7c4 | 455 | /* The first SV in an arena isn't an SV. */ |
3280af22 | 456 | SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */ |
4633a7c4 LW |
457 | SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */ |
458 | SvFLAGS(sva) = flags; /* FAKE if not to be freed */ | |
459 | ||
3280af22 NIS |
460 | PL_sv_arenaroot = sva; |
461 | PL_sv_root = sva + 1; | |
4633a7c4 LW |
462 | |
463 | svend = &sva[SvREFCNT(sva) - 1]; | |
464 | sv = sva + 1; | |
463ee0b2 | 465 | while (sv < svend) { |
3eef1deb | 466 | SvARENA_CHAIN_SET(sv, (sv + 1)); |
03e36789 | 467 | #ifdef DEBUGGING |
978b032e | 468 | SvREFCNT(sv) = 0; |
03e36789 | 469 | #endif |
4b69cbe3 | 470 | /* Must always set typemask because it's always checked in on cleanup |
03e36789 | 471 | when the arenas are walked looking for objects. */ |
8990e307 | 472 | SvFLAGS(sv) = SVTYPEMASK; |
463ee0b2 LW |
473 | sv++; |
474 | } | |
3eef1deb | 475 | SvARENA_CHAIN_SET(sv, 0); |
03e36789 NC |
476 | #ifdef DEBUGGING |
477 | SvREFCNT(sv) = 0; | |
478 | #endif | |
4633a7c4 LW |
479 | SvFLAGS(sv) = SVTYPEMASK; |
480 | } | |
481 | ||
055972dc DM |
482 | /* visit(): call the named function for each non-free SV in the arenas |
483 | * whose flags field matches the flags/mask args. */ | |
645c22ef | 484 | |
5226ed68 | 485 | STATIC I32 |
de37a194 | 486 | S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask) |
8990e307 | 487 | { |
4633a7c4 | 488 | SV* sva; |
5226ed68 | 489 | I32 visited = 0; |
8990e307 | 490 | |
7918f24d NC |
491 | PERL_ARGS_ASSERT_VISIT; |
492 | ||
daba3364 | 493 | for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) { |
eb578fdb KW |
494 | const SV * const svend = &sva[SvREFCNT(sva)]; |
495 | SV* sv; | |
4561caa4 | 496 | for (sv = sva + 1; sv < svend; ++sv) { |
e4787c0c | 497 | if (SvTYPE(sv) != (svtype)SVTYPEMASK |
055972dc DM |
498 | && (sv->sv_flags & mask) == flags |
499 | && SvREFCNT(sv)) | |
500 | { | |
942481a7 | 501 | (*f)(aTHX_ sv); |
5226ed68 JH |
502 | ++visited; |
503 | } | |
8990e307 LW |
504 | } |
505 | } | |
5226ed68 | 506 | return visited; |
8990e307 LW |
507 | } |
508 | ||
758a08c3 JH |
509 | #ifdef DEBUGGING |
510 | ||
645c22ef DM |
511 | /* called by sv_report_used() for each live SV */ |
512 | ||
513 | static void | |
5fa45a31 | 514 | do_report_used(pTHX_ SV *const sv) |
645c22ef | 515 | { |
e4787c0c | 516 | if (SvTYPE(sv) != (svtype)SVTYPEMASK) { |
645c22ef DM |
517 | PerlIO_printf(Perl_debug_log, "****\n"); |
518 | sv_dump(sv); | |
519 | } | |
520 | } | |
758a08c3 | 521 | #endif |
645c22ef DM |
522 | |
523 | /* | |
524 | =for apidoc sv_report_used | |
525 | ||
fde67290 | 526 | Dump the contents of all SVs not yet freed (debugging aid). |
645c22ef DM |
527 | |
528 | =cut | |
529 | */ | |
530 | ||
8990e307 | 531 | void |
864dbfa3 | 532 | Perl_sv_report_used(pTHX) |
4561caa4 | 533 | { |
ff270d3a | 534 | #ifdef DEBUGGING |
055972dc | 535 | visit(do_report_used, 0, 0); |
96a5add6 AL |
536 | #else |
537 | PERL_UNUSED_CONTEXT; | |
ff270d3a | 538 | #endif |
4561caa4 CS |
539 | } |
540 | ||
645c22ef DM |
541 | /* called by sv_clean_objs() for each live SV */ |
542 | ||
543 | static void | |
de37a194 | 544 | do_clean_objs(pTHX_ SV *const ref) |
645c22ef | 545 | { |
ea724faa NC |
546 | assert (SvROK(ref)); |
547 | { | |
823a54a3 AL |
548 | SV * const target = SvRV(ref); |
549 | if (SvOBJECT(target)) { | |
550 | DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref))); | |
551 | if (SvWEAKREF(ref)) { | |
552 | sv_del_backref(target, ref); | |
553 | SvWEAKREF_off(ref); | |
554 | SvRV_set(ref, NULL); | |
555 | } else { | |
556 | SvROK_off(ref); | |
557 | SvRV_set(ref, NULL); | |
fc2b2dca | 558 | SvREFCNT_dec_NN(target); |
823a54a3 | 559 | } |
645c22ef DM |
560 | } |
561 | } | |
645c22ef DM |
562 | } |
563 | ||
645c22ef | 564 | |
e4487e9b DM |
565 | /* clear any slots in a GV which hold objects - except IO; |
566 | * called by sv_clean_objs() for each live GV */ | |
567 | ||
645c22ef | 568 | static void |
f30de749 | 569 | do_clean_named_objs(pTHX_ SV *const sv) |
645c22ef | 570 | { |
57ef47cc | 571 | SV *obj; |
ea724faa | 572 | assert(SvTYPE(sv) == SVt_PVGV); |
d011219a | 573 | assert(isGV_with_GP(sv)); |
57ef47cc DM |
574 | if (!GvGP(sv)) |
575 | return; | |
576 | ||
577 | /* freeing GP entries may indirectly free the current GV; | |
578 | * hold onto it while we mess with the GP slots */ | |
579 | SvREFCNT_inc(sv); | |
580 | ||
581 | if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) { | |
582 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
583 | "Cleaning named glob SV object:\n "), sv_dump(obj))); | |
584 | GvSV(sv) = NULL; | |
fc2b2dca | 585 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
586 | } |
587 | if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) { | |
588 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
589 | "Cleaning named glob AV object:\n "), sv_dump(obj))); | |
590 | GvAV(sv) = NULL; | |
fc2b2dca | 591 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
592 | } |
593 | if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) { | |
594 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
595 | "Cleaning named glob HV object:\n "), sv_dump(obj))); | |
596 | GvHV(sv) = NULL; | |
fc2b2dca | 597 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
598 | } |
599 | if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) { | |
600 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
601 | "Cleaning named glob CV object:\n "), sv_dump(obj))); | |
c43ae56f | 602 | GvCV_set(sv, NULL); |
fc2b2dca | 603 | SvREFCNT_dec_NN(obj); |
57ef47cc | 604 | } |
fc2b2dca | 605 | SvREFCNT_dec_NN(sv); /* undo the inc above */ |
e4487e9b DM |
606 | } |
607 | ||
68b590d9 | 608 | /* clear any IO slots in a GV which hold objects (except stderr, defout); |
e4487e9b DM |
609 | * called by sv_clean_objs() for each live GV */ |
610 | ||
611 | static void | |
612 | do_clean_named_io_objs(pTHX_ SV *const sv) | |
613 | { | |
e4487e9b DM |
614 | SV *obj; |
615 | assert(SvTYPE(sv) == SVt_PVGV); | |
616 | assert(isGV_with_GP(sv)); | |
68b590d9 | 617 | if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv) |
e4487e9b DM |
618 | return; |
619 | ||
620 | SvREFCNT_inc(sv); | |
57ef47cc DM |
621 | if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) { |
622 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
623 | "Cleaning named glob IO object:\n "), sv_dump(obj))); | |
624 | GvIOp(sv) = NULL; | |
fc2b2dca | 625 | SvREFCNT_dec_NN(obj); |
645c22ef | 626 | } |
fc2b2dca | 627 | SvREFCNT_dec_NN(sv); /* undo the inc above */ |
645c22ef | 628 | } |
645c22ef | 629 | |
4155e4fe FC |
630 | /* Void wrapper to pass to visit() */ |
631 | static void | |
632 | do_curse(pTHX_ SV * const sv) { | |
c2910e6c FC |
633 | if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv) |
634 | || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv)) | |
4155e4fe FC |
635 | return; |
636 | (void)curse(sv, 0); | |
637 | } | |
638 | ||
645c22ef DM |
639 | /* |
640 | =for apidoc sv_clean_objs | |
641 | ||
fde67290 | 642 | Attempt to destroy all objects not yet freed. |
645c22ef DM |
643 | |
644 | =cut | |
645 | */ | |
646 | ||
4561caa4 | 647 | void |
864dbfa3 | 648 | Perl_sv_clean_objs(pTHX) |
4561caa4 | 649 | { |
68b590d9 | 650 | GV *olddef, *olderr; |
3280af22 | 651 | PL_in_clean_objs = TRUE; |
055972dc | 652 | visit(do_clean_objs, SVf_ROK, SVf_ROK); |
e4487e9b DM |
653 | /* Some barnacles may yet remain, clinging to typeglobs. |
654 | * Run the non-IO destructors first: they may want to output | |
655 | * error messages, close files etc */ | |
d011219a | 656 | visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP); |
e4487e9b | 657 | visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP); |
4155e4fe FC |
658 | /* And if there are some very tenacious barnacles clinging to arrays, |
659 | closures, or what have you.... */ | |
660 | visit(do_curse, SVs_OBJECT, SVs_OBJECT); | |
68b590d9 DM |
661 | olddef = PL_defoutgv; |
662 | PL_defoutgv = NULL; /* disable skip of PL_defoutgv */ | |
663 | if (olddef && isGV_with_GP(olddef)) | |
664 | do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef)); | |
665 | olderr = PL_stderrgv; | |
666 | PL_stderrgv = NULL; /* disable skip of PL_stderrgv */ | |
667 | if (olderr && isGV_with_GP(olderr)) | |
668 | do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr)); | |
669 | SvREFCNT_dec(olddef); | |
3280af22 | 670 | PL_in_clean_objs = FALSE; |
4561caa4 CS |
671 | } |
672 | ||
645c22ef DM |
673 | /* called by sv_clean_all() for each live SV */ |
674 | ||
675 | static void | |
de37a194 | 676 | do_clean_all(pTHX_ SV *const sv) |
645c22ef | 677 | { |
daba3364 | 678 | if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) { |
cddfcddc | 679 | /* don't clean pid table and strtab */ |
d17ea597 | 680 | return; |
cddfcddc | 681 | } |
645c22ef DM |
682 | DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) )); |
683 | SvFLAGS(sv) |= SVf_BREAK; | |
fc2b2dca | 684 | SvREFCNT_dec_NN(sv); |
645c22ef DM |
685 | } |
686 | ||
687 | /* | |
688 | =for apidoc sv_clean_all | |
689 | ||
690 | Decrement the refcnt of each remaining SV, possibly triggering a | |
fde67290 | 691 | cleanup. This function may have to be called multiple times to free |
ff276b08 | 692 | SVs which are in complex self-referential hierarchies. |
645c22ef DM |
693 | |
694 | =cut | |
695 | */ | |
696 | ||
5226ed68 | 697 | I32 |
864dbfa3 | 698 | Perl_sv_clean_all(pTHX) |
8990e307 | 699 | { |
5226ed68 | 700 | I32 cleaned; |
3280af22 | 701 | PL_in_clean_all = TRUE; |
055972dc | 702 | cleaned = visit(do_clean_all, 0,0); |
5226ed68 | 703 | return cleaned; |
8990e307 | 704 | } |
463ee0b2 | 705 | |
5e258f8c JC |
706 | /* |
707 | ARENASETS: a meta-arena implementation which separates arena-info | |
708 | into struct arena_set, which contains an array of struct | |
709 | arena_descs, each holding info for a single arena. By separating | |
710 | the meta-info from the arena, we recover the 1st slot, formerly | |
711 | borrowed for list management. The arena_set is about the size of an | |
39244528 | 712 | arena, avoiding the needless malloc overhead of a naive linked-list. |
5e258f8c JC |
713 | |
714 | The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused | |
715 | memory in the last arena-set (1/2 on average). In trade, we get | |
716 | back the 1st slot in each arena (ie 1.7% of a CV-arena, less for | |
d2a0f284 | 717 | smaller types). The recovery of the wasted space allows use of |
e15dad31 JC |
718 | small arenas for large, rare body types, by changing array* fields |
719 | in body_details_by_type[] below. | |
5e258f8c | 720 | */ |
5e258f8c | 721 | struct arena_desc { |
398c677b NC |
722 | char *arena; /* the raw storage, allocated aligned */ |
723 | size_t size; /* its size ~4k typ */ | |
e5973ed5 | 724 | svtype utype; /* bodytype stored in arena */ |
5e258f8c JC |
725 | }; |
726 | ||
e6148039 NC |
727 | struct arena_set; |
728 | ||
729 | /* Get the maximum number of elements in set[] such that struct arena_set | |
e15dad31 | 730 | will fit within PERL_ARENA_SIZE, which is probably just under 4K, and |
e6148039 NC |
731 | therefore likely to be 1 aligned memory page. */ |
732 | ||
733 | #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \ | |
734 | - 2 * sizeof(int)) / sizeof (struct arena_desc)) | |
5e258f8c JC |
735 | |
736 | struct arena_set { | |
737 | struct arena_set* next; | |
0a848332 NC |
738 | unsigned int set_size; /* ie ARENAS_PER_SET */ |
739 | unsigned int curr; /* index of next available arena-desc */ | |
5e258f8c JC |
740 | struct arena_desc set[ARENAS_PER_SET]; |
741 | }; | |
742 | ||
645c22ef DM |
743 | /* |
744 | =for apidoc sv_free_arenas | |
745 | ||
fde67290 | 746 | Deallocate the memory used by all arenas. Note that all the individual SV |
645c22ef DM |
747 | heads and bodies within the arenas must already have been freed. |
748 | ||
749 | =cut | |
7fefc6c1 | 750 | |
645c22ef | 751 | */ |
4633a7c4 | 752 | void |
864dbfa3 | 753 | Perl_sv_free_arenas(pTHX) |
4633a7c4 LW |
754 | { |
755 | SV* sva; | |
756 | SV* svanext; | |
0a848332 | 757 | unsigned int i; |
4633a7c4 LW |
758 | |
759 | /* Free arenas here, but be careful about fake ones. (We assume | |
760 | contiguity of the fake ones with the corresponding real ones.) */ | |
761 | ||
3280af22 | 762 | for (sva = PL_sv_arenaroot; sva; sva = svanext) { |
daba3364 | 763 | svanext = MUTABLE_SV(SvANY(sva)); |
4633a7c4 | 764 | while (svanext && SvFAKE(svanext)) |
daba3364 | 765 | svanext = MUTABLE_SV(SvANY(svanext)); |
4633a7c4 LW |
766 | |
767 | if (!SvFAKE(sva)) | |
1df70142 | 768 | Safefree(sva); |
4633a7c4 | 769 | } |
93e68bfb | 770 | |
5e258f8c | 771 | { |
0a848332 NC |
772 | struct arena_set *aroot = (struct arena_set*) PL_body_arenas; |
773 | ||
774 | while (aroot) { | |
775 | struct arena_set *current = aroot; | |
776 | i = aroot->curr; | |
777 | while (i--) { | |
5e258f8c JC |
778 | assert(aroot->set[i].arena); |
779 | Safefree(aroot->set[i].arena); | |
780 | } | |
0a848332 NC |
781 | aroot = aroot->next; |
782 | Safefree(current); | |
5e258f8c JC |
783 | } |
784 | } | |
dc8220bf | 785 | PL_body_arenas = 0; |
fdda85ca | 786 | |
0a848332 NC |
787 | i = PERL_ARENA_ROOTS_SIZE; |
788 | while (i--) | |
93e68bfb | 789 | PL_body_roots[i] = 0; |
93e68bfb | 790 | |
3280af22 NIS |
791 | PL_sv_arenaroot = 0; |
792 | PL_sv_root = 0; | |
4633a7c4 LW |
793 | } |
794 | ||
bd81e77b NC |
795 | /* |
796 | Here are mid-level routines that manage the allocation of bodies out | |
797 | of the various arenas. There are 5 kinds of arenas: | |
29489e7c | 798 | |
bd81e77b NC |
799 | 1. SV-head arenas, which are discussed and handled above |
800 | 2. regular body arenas | |
801 | 3. arenas for reduced-size bodies | |
802 | 4. Hash-Entry arenas | |
29489e7c | 803 | |
bd81e77b NC |
804 | Arena types 2 & 3 are chained by body-type off an array of |
805 | arena-root pointers, which is indexed by svtype. Some of the | |
806 | larger/less used body types are malloced singly, since a large | |
807 | unused block of them is wasteful. Also, several svtypes dont have | |
808 | bodies; the data fits into the sv-head itself. The arena-root | |
809 | pointer thus has a few unused root-pointers (which may be hijacked | |
810 | later for arena types 4,5) | |
29489e7c | 811 | |
bd81e77b NC |
812 | 3 differs from 2 as an optimization; some body types have several |
813 | unused fields in the front of the structure (which are kept in-place | |
814 | for consistency). These bodies can be allocated in smaller chunks, | |
815 | because the leading fields arent accessed. Pointers to such bodies | |
816 | are decremented to point at the unused 'ghost' memory, knowing that | |
817 | the pointers are used with offsets to the real memory. | |
29489e7c | 818 | |
d2a0f284 JC |
819 | |
820 | =head1 SV-Body Allocation | |
821 | ||
f554dfc5 MH |
822 | =cut |
823 | ||
d2a0f284 JC |
824 | Allocation of SV-bodies is similar to SV-heads, differing as follows; |
825 | the allocation mechanism is used for many body types, so is somewhat | |
826 | more complicated, it uses arena-sets, and has no need for still-live | |
827 | SV detection. | |
828 | ||
829 | At the outermost level, (new|del)_X*V macros return bodies of the | |
830 | appropriate type. These macros call either (new|del)_body_type or | |
831 | (new|del)_body_allocated macro pairs, depending on specifics of the | |
832 | type. Most body types use the former pair, the latter pair is used to | |
833 | allocate body types with "ghost fields". | |
834 | ||
835 | "ghost fields" are fields that are unused in certain types, and | |
69ba284b | 836 | consequently don't need to actually exist. They are declared because |
d2a0f284 JC |
837 | they're part of a "base type", which allows use of functions as |
838 | methods. The simplest examples are AVs and HVs, 2 aggregate types | |
839 | which don't use the fields which support SCALAR semantics. | |
840 | ||
69ba284b | 841 | For these types, the arenas are carved up into appropriately sized |
d2a0f284 JC |
842 | chunks, we thus avoid wasted memory for those unaccessed members. |
843 | When bodies are allocated, we adjust the pointer back in memory by the | |
69ba284b | 844 | size of the part not allocated, so it's as if we allocated the full |
d2a0f284 JC |
845 | structure. (But things will all go boom if you write to the part that |
846 | is "not there", because you'll be overwriting the last members of the | |
847 | preceding structure in memory.) | |
848 | ||
69ba284b | 849 | We calculate the correction using the STRUCT_OFFSET macro on the first |
a05ea1cf | 850 | member present. If the allocated structure is smaller (no initial NV |
69ba284b NC |
851 | actually allocated) then the net effect is to subtract the size of the NV |
852 | from the pointer, to return a new pointer as if an initial NV were actually | |
a05ea1cf | 853 | allocated. (We were using structures named *_allocated for this, but |
69ba284b NC |
854 | this turned out to be a subtle bug, because a structure without an NV |
855 | could have a lower alignment constraint, but the compiler is allowed to | |
856 | optimised accesses based on the alignment constraint of the actual pointer | |
857 | to the full structure, for example, using a single 64 bit load instruction | |
858 | because it "knows" that two adjacent 32 bit members will be 8-byte aligned.) | |
d2a0f284 | 859 | |
a05ea1cf | 860 | This is the same trick as was used for NV and IV bodies. Ironically it |
d2a0f284 | 861 | doesn't need to be used for NV bodies any more, because NV is now at |
5b306eef DD |
862 | the start of the structure. IV bodies, and also in some builds NV bodies, |
863 | don't need it either, because they are no longer allocated. | |
d2a0f284 JC |
864 | |
865 | In turn, the new_body_* allocators call S_new_body(), which invokes | |
866 | new_body_inline macro, which takes a lock, and takes a body off the | |
1e30fcd5 | 867 | linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if |
d2a0f284 JC |
868 | necessary to refresh an empty list. Then the lock is released, and |
869 | the body is returned. | |
870 | ||
99816f8d | 871 | Perl_more_bodies allocates a new arena, and carves it up into an array of N |
d2a0f284 JC |
872 | bodies, which it strings into a linked list. It looks up arena-size |
873 | and body-size from the body_details table described below, thus | |
874 | supporting the multiple body-types. | |
875 | ||
876 | If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and | |
877 | the (new|del)_X*V macros are mapped directly to malloc/free. | |
878 | ||
d2a0f284 JC |
879 | For each sv-type, struct body_details bodies_by_type[] carries |
880 | parameters which control these aspects of SV handling: | |
881 | ||
882 | Arena_size determines whether arenas are used for this body type, and if | |
883 | so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to | |
884 | zero, forcing individual mallocs and frees. | |
885 | ||
886 | Body_size determines how big a body is, and therefore how many fit into | |
887 | each arena. Offset carries the body-pointer adjustment needed for | |
69ba284b | 888 | "ghost fields", and is used in *_allocated macros. |
d2a0f284 JC |
889 | |
890 | But its main purpose is to parameterize info needed in | |
891 | Perl_sv_upgrade(). The info here dramatically simplifies the function | |
69ba284b | 892 | vs the implementation in 5.8.8, making it table-driven. All fields |
d2a0f284 JC |
893 | are used for this, except for arena_size. |
894 | ||
895 | For the sv-types that have no bodies, arenas are not used, so those | |
896 | PL_body_roots[sv_type] are unused, and can be overloaded. In | |
897 | something of a special case, SVt_NULL is borrowed for HE arenas; | |
c6f8b1d0 | 898 | PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the |
d2a0f284 | 899 | bodies_by_type[SVt_NULL] slot is not used, as the table is not |
c6f8b1d0 | 900 | available in hv.c. |
d2a0f284 | 901 | |
29489e7c DM |
902 | */ |
903 | ||
bd81e77b | 904 | struct body_details { |
0fb58b32 | 905 | U8 body_size; /* Size to allocate */ |
10666ae3 | 906 | U8 copy; /* Size of structure to copy (may be shorter) */ |
5b306eef DD |
907 | U8 offset; /* Size of unalloced ghost fields to first alloced field*/ |
908 | PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */ | |
909 | PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */ | |
910 | PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */ | |
911 | PERL_BITFIELD8 arena : 1; /* Allocated from an arena */ | |
912 | U32 arena_size; /* Size of arena to allocate */ | |
bd81e77b | 913 | }; |
29489e7c | 914 | |
bd81e77b NC |
915 | #define HADNV FALSE |
916 | #define NONV TRUE | |
29489e7c | 917 | |
d2a0f284 | 918 | |
bd81e77b NC |
919 | #ifdef PURIFY |
920 | /* With -DPURFIY we allocate everything directly, and don't use arenas. | |
921 | This seems a rather elegant way to simplify some of the code below. */ | |
922 | #define HASARENA FALSE | |
923 | #else | |
924 | #define HASARENA TRUE | |
925 | #endif | |
926 | #define NOARENA FALSE | |
29489e7c | 927 | |
d2a0f284 JC |
928 | /* Size the arenas to exactly fit a given number of bodies. A count |
929 | of 0 fits the max number bodies into a PERL_ARENA_SIZE.block, | |
930 | simplifying the default. If count > 0, the arena is sized to fit | |
931 | only that many bodies, allowing arenas to be used for large, rare | |
932 | bodies (XPVFM, XPVIO) without undue waste. The arena size is | |
933 | limited by PERL_ARENA_SIZE, so we can safely oversize the | |
934 | declarations. | |
935 | */ | |
95db5f15 MB |
936 | #define FIT_ARENA0(body_size) \ |
937 | ((size_t)(PERL_ARENA_SIZE / body_size) * body_size) | |
938 | #define FIT_ARENAn(count,body_size) \ | |
939 | ( count * body_size <= PERL_ARENA_SIZE) \ | |
940 | ? count * body_size \ | |
941 | : FIT_ARENA0 (body_size) | |
942 | #define FIT_ARENA(count,body_size) \ | |
cd1dc8e2 | 943 | (U32)(count \ |
95db5f15 | 944 | ? FIT_ARENAn (count, body_size) \ |
cd1dc8e2 | 945 | : FIT_ARENA0 (body_size)) |
d2a0f284 | 946 | |
bd81e77b NC |
947 | /* Calculate the length to copy. Specifically work out the length less any |
948 | final padding the compiler needed to add. See the comment in sv_upgrade | |
949 | for why copying the padding proved to be a bug. */ | |
29489e7c | 950 | |
bd81e77b NC |
951 | #define copy_length(type, last_member) \ |
952 | STRUCT_OFFSET(type, last_member) \ | |
daba3364 | 953 | + sizeof (((type*)SvANY((const SV *)0))->last_member) |
29489e7c | 954 | |
bd81e77b | 955 | static const struct body_details bodies_by_type[] = { |
829cd18a NC |
956 | /* HEs use this offset for their arena. */ |
957 | { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 }, | |
d2a0f284 | 958 | |
db93c0c4 NC |
959 | /* IVs are in the head, so the allocation size is 0. */ |
960 | { 0, | |
d2a0f284 | 961 | sizeof(IV), /* This is used to copy out the IV body. */ |
10666ae3 | 962 | STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV, |
db93c0c4 | 963 | NOARENA /* IVS don't need an arena */, 0 |
d2a0f284 JC |
964 | }, |
965 | ||
5b306eef DD |
966 | #if NVSIZE <= IVSIZE |
967 | { 0, sizeof(NV), | |
968 | STRUCT_OFFSET(XPVNV, xnv_u), | |
969 | SVt_NV, FALSE, HADNV, NOARENA, 0 }, | |
970 | #else | |
6e128786 NC |
971 | { sizeof(NV), sizeof(NV), |
972 | STRUCT_OFFSET(XPVNV, xnv_u), | |
973 | SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) }, | |
5b306eef | 974 | #endif |
d2a0f284 | 975 | |
bc337e5c | 976 | { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
977 | copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur), |
978 | + STRUCT_OFFSET(XPV, xpv_cur), | |
69ba284b | 979 | SVt_PV, FALSE, NONV, HASARENA, |
889d28b2 | 980 | FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) }, |
d2a0f284 | 981 | |
d361b004 KW |
982 | { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur), |
983 | copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur), | |
984 | + STRUCT_OFFSET(XPV, xpv_cur), | |
985 | SVt_INVLIST, TRUE, NONV, HASARENA, | |
986 | FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
e94d9b54 | 987 | |
bc337e5c | 988 | { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
989 | copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur), |
990 | + STRUCT_OFFSET(XPV, xpv_cur), | |
991 | SVt_PVIV, FALSE, NONV, HASARENA, | |
992 | FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
d2a0f284 | 993 | |
bc337e5c | 994 | { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
995 | copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur), |
996 | + STRUCT_OFFSET(XPV, xpv_cur), | |
997 | SVt_PVNV, FALSE, HADNV, HASARENA, | |
998 | FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
d2a0f284 | 999 | |
6e128786 | 1000 | { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV, |
d2a0f284 | 1001 | HASARENA, FIT_ARENA(0, sizeof(XPVMG)) }, |
4df7f6af | 1002 | |
601dfd0a NC |
1003 | { sizeof(regexp), |
1004 | sizeof(regexp), | |
1005 | 0, | |
ecff11eb | 1006 | SVt_REGEXP, TRUE, NONV, HASARENA, |
eaeb1e7f | 1007 | FIT_ARENA(0, sizeof(regexp)) |
5c35adbb | 1008 | }, |
4df7f6af | 1009 | |
10666ae3 | 1010 | { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV, |
d2a0f284 JC |
1011 | HASARENA, FIT_ARENA(0, sizeof(XPVGV)) }, |
1012 | ||
10666ae3 | 1013 | { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV, |
d2a0f284 JC |
1014 | HASARENA, FIT_ARENA(0, sizeof(XPVLV)) }, |
1015 | ||
601dfd0a | 1016 | { sizeof(XPVAV), |
4f7003f5 | 1017 | copy_length(XPVAV, xav_alloc), |
601dfd0a | 1018 | 0, |
69ba284b | 1019 | SVt_PVAV, TRUE, NONV, HASARENA, |
601dfd0a | 1020 | FIT_ARENA(0, sizeof(XPVAV)) }, |
d2a0f284 | 1021 | |
601dfd0a | 1022 | { sizeof(XPVHV), |
359164a0 | 1023 | copy_length(XPVHV, xhv_max), |
601dfd0a | 1024 | 0, |
69ba284b | 1025 | SVt_PVHV, TRUE, NONV, HASARENA, |
601dfd0a | 1026 | FIT_ARENA(0, sizeof(XPVHV)) }, |
d2a0f284 | 1027 | |
601dfd0a NC |
1028 | { sizeof(XPVCV), |
1029 | sizeof(XPVCV), | |
1030 | 0, | |
69ba284b | 1031 | SVt_PVCV, TRUE, NONV, HASARENA, |
601dfd0a | 1032 | FIT_ARENA(0, sizeof(XPVCV)) }, |
69ba284b | 1033 | |
601dfd0a NC |
1034 | { sizeof(XPVFM), |
1035 | sizeof(XPVFM), | |
1036 | 0, | |
69ba284b | 1037 | SVt_PVFM, TRUE, NONV, NOARENA, |
601dfd0a | 1038 | FIT_ARENA(20, sizeof(XPVFM)) }, |
d2a0f284 | 1039 | |
601dfd0a NC |
1040 | { sizeof(XPVIO), |
1041 | sizeof(XPVIO), | |
1042 | 0, | |
b6f60916 | 1043 | SVt_PVIO, TRUE, NONV, HASARENA, |
601dfd0a | 1044 | FIT_ARENA(24, sizeof(XPVIO)) }, |
bd81e77b | 1045 | }; |
29489e7c | 1046 | |
bd81e77b | 1047 | #define new_body_allocated(sv_type) \ |
d2a0f284 | 1048 | (void *)((char *)S_new_body(aTHX_ sv_type) \ |
bd81e77b | 1049 | - bodies_by_type[sv_type].offset) |
29489e7c | 1050 | |
26359cfa NC |
1051 | /* return a thing to the free list */ |
1052 | ||
1053 | #define del_body(thing, root) \ | |
1054 | STMT_START { \ | |
1055 | void ** const thing_copy = (void **)thing; \ | |
1056 | *thing_copy = *root; \ | |
1057 | *root = (void*)thing_copy; \ | |
1058 | } STMT_END | |
29489e7c | 1059 | |
bd81e77b | 1060 | #ifdef PURIFY |
5b306eef DD |
1061 | #if !(NVSIZE <= IVSIZE) |
1062 | # define new_XNV() safemalloc(sizeof(XPVNV)) | |
1063 | #endif | |
beeec492 NC |
1064 | #define new_XPVNV() safemalloc(sizeof(XPVNV)) |
1065 | #define new_XPVMG() safemalloc(sizeof(XPVMG)) | |
29489e7c | 1066 | |
beeec492 | 1067 | #define del_XPVGV(p) safefree(p) |
29489e7c | 1068 | |
bd81e77b | 1069 | #else /* !PURIFY */ |
29489e7c | 1070 | |
5b306eef DD |
1071 | #if !(NVSIZE <= IVSIZE) |
1072 | # define new_XNV() new_body_allocated(SVt_NV) | |
1073 | #endif | |
65ac1738 | 1074 | #define new_XPVNV() new_body_allocated(SVt_PVNV) |
65ac1738 | 1075 | #define new_XPVMG() new_body_allocated(SVt_PVMG) |
645c22ef | 1076 | |
26359cfa NC |
1077 | #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \ |
1078 | &PL_body_roots[SVt_PVGV]) | |
1d7c1841 | 1079 | |
bd81e77b | 1080 | #endif /* PURIFY */ |
93e68bfb | 1081 | |
bd81e77b | 1082 | /* no arena for you! */ |
93e68bfb | 1083 | |
bd81e77b | 1084 | #define new_NOARENA(details) \ |
beeec492 | 1085 | safemalloc((details)->body_size + (details)->offset) |
bd81e77b | 1086 | #define new_NOARENAZ(details) \ |
beeec492 | 1087 | safecalloc((details)->body_size + (details)->offset, 1) |
d2a0f284 | 1088 | |
1e30fcd5 NC |
1089 | void * |
1090 | Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size, | |
1091 | const size_t arena_size) | |
d2a0f284 | 1092 | { |
d2a0f284 | 1093 | void ** const root = &PL_body_roots[sv_type]; |
99816f8d NC |
1094 | struct arena_desc *adesc; |
1095 | struct arena_set *aroot = (struct arena_set *) PL_body_arenas; | |
1096 | unsigned int curr; | |
d2a0f284 JC |
1097 | char *start; |
1098 | const char *end; | |
02982131 | 1099 | const size_t good_arena_size = Perl_malloc_good_size(arena_size); |
20b7effb JH |
1100 | #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT) |
1101 | dVAR; | |
1102 | #endif | |
0b2d3faa | 1103 | #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE) |
23e9d66c NC |
1104 | static bool done_sanity_check; |
1105 | ||
0b2d3faa JH |
1106 | /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global |
1107 | * variables like done_sanity_check. */ | |
10666ae3 | 1108 | if (!done_sanity_check) { |
ea471437 | 1109 | unsigned int i = SVt_LAST; |
10666ae3 NC |
1110 | |
1111 | done_sanity_check = TRUE; | |
1112 | ||
1113 | while (i--) | |
1114 | assert (bodies_by_type[i].type == i); | |
1115 | } | |
1116 | #endif | |
1117 | ||
02982131 | 1118 | assert(arena_size); |
23e9d66c | 1119 | |
99816f8d NC |
1120 | /* may need new arena-set to hold new arena */ |
1121 | if (!aroot || aroot->curr >= aroot->set_size) { | |
1122 | struct arena_set *newroot; | |
1123 | Newxz(newroot, 1, struct arena_set); | |
1124 | newroot->set_size = ARENAS_PER_SET; | |
1125 | newroot->next = aroot; | |
1126 | aroot = newroot; | |
1127 | PL_body_arenas = (void *) newroot; | |
1128 | DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot)); | |
1129 | } | |
1130 | ||
1131 | /* ok, now have arena-set with at least 1 empty/available arena-desc */ | |
1132 | curr = aroot->curr++; | |
1133 | adesc = &(aroot->set[curr]); | |
1134 | assert(!adesc->arena); | |
1135 | ||
1136 | Newx(adesc->arena, good_arena_size, char); | |
1137 | adesc->size = good_arena_size; | |
1138 | adesc->utype = sv_type; | |
1139 | DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n", | |
1140 | curr, (void*)adesc->arena, (UV)good_arena_size)); | |
1141 | ||
1142 | start = (char *) adesc->arena; | |
d2a0f284 | 1143 | |
29657bb6 NC |
1144 | /* Get the address of the byte after the end of the last body we can fit. |
1145 | Remember, this is integer division: */ | |
02982131 | 1146 | end = start + good_arena_size / body_size * body_size; |
d2a0f284 | 1147 | |
486ec47a | 1148 | /* computed count doesn't reflect the 1st slot reservation */ |
d8fca402 NC |
1149 | #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE) |
1150 | DEBUG_m(PerlIO_printf(Perl_debug_log, | |
1151 | "arena %p end %p arena-size %d (from %d) type %d " | |
1152 | "size %d ct %d\n", | |
02982131 NC |
1153 | (void*)start, (void*)end, (int)good_arena_size, |
1154 | (int)arena_size, sv_type, (int)body_size, | |
1155 | (int)good_arena_size / (int)body_size)); | |
d8fca402 | 1156 | #else |
d2a0f284 JC |
1157 | DEBUG_m(PerlIO_printf(Perl_debug_log, |
1158 | "arena %p end %p arena-size %d type %d size %d ct %d\n", | |
6c9570dc | 1159 | (void*)start, (void*)end, |
02982131 NC |
1160 | (int)arena_size, sv_type, (int)body_size, |
1161 | (int)good_arena_size / (int)body_size)); | |
d8fca402 | 1162 | #endif |
d2a0f284 JC |
1163 | *root = (void *)start; |
1164 | ||
29657bb6 NC |
1165 | while (1) { |
1166 | /* Where the next body would start: */ | |
d2a0f284 | 1167 | char * const next = start + body_size; |
29657bb6 NC |
1168 | |
1169 | if (next >= end) { | |
1170 | /* This is the last body: */ | |
1171 | assert(next == end); | |
1172 | ||
1173 | *(void **)start = 0; | |
1174 | return *root; | |
1175 | } | |
1176 | ||
d2a0f284 JC |
1177 | *(void**) start = (void *)next; |
1178 | start = next; | |
1179 | } | |
d2a0f284 JC |
1180 | } |
1181 | ||
1182 | /* grab a new thing from the free list, allocating more if necessary. | |
1183 | The inline version is used for speed in hot routines, and the | |
1184 | function using it serves the rest (unless PURIFY). | |
1185 | */ | |
1186 | #define new_body_inline(xpv, sv_type) \ | |
1187 | STMT_START { \ | |
1188 | void ** const r3wt = &PL_body_roots[sv_type]; \ | |
11b79775 | 1189 | xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \ |
1e30fcd5 | 1190 | ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \ |
02982131 NC |
1191 | bodies_by_type[sv_type].body_size,\ |
1192 | bodies_by_type[sv_type].arena_size)); \ | |
d2a0f284 | 1193 | *(r3wt) = *(void**)(xpv); \ |
d2a0f284 JC |
1194 | } STMT_END |
1195 | ||
1196 | #ifndef PURIFY | |
1197 | ||
1198 | STATIC void * | |
de37a194 | 1199 | S_new_body(pTHX_ const svtype sv_type) |
d2a0f284 | 1200 | { |
d2a0f284 JC |
1201 | void *xpv; |
1202 | new_body_inline(xpv, sv_type); | |
1203 | return xpv; | |
1204 | } | |
1205 | ||
1206 | #endif | |
93e68bfb | 1207 | |
238b27b3 NC |
1208 | static const struct body_details fake_rv = |
1209 | { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 }; | |
1210 | ||
bd81e77b NC |
1211 | /* |
1212 | =for apidoc sv_upgrade | |
93e68bfb | 1213 | |
bd81e77b NC |
1214 | Upgrade an SV to a more complex form. Generally adds a new body type to the |
1215 | SV, then copies across as much information as possible from the old body. | |
9521ca61 FC |
1216 | It croaks if the SV is already in a more complex form than requested. You |
1217 | generally want to use the C<SvUPGRADE> macro wrapper, which checks the type | |
1218 | before calling C<sv_upgrade>, and hence does not croak. See also | |
1219 | C<svtype>. | |
93e68bfb | 1220 | |
bd81e77b | 1221 | =cut |
93e68bfb | 1222 | */ |
93e68bfb | 1223 | |
bd81e77b | 1224 | void |
5aaab254 | 1225 | Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type) |
cac9b346 | 1226 | { |
bd81e77b NC |
1227 | void* old_body; |
1228 | void* new_body; | |
42d0e0b7 | 1229 | const svtype old_type = SvTYPE(sv); |
d2a0f284 | 1230 | const struct body_details *new_type_details; |
238b27b3 | 1231 | const struct body_details *old_type_details |
bd81e77b | 1232 | = bodies_by_type + old_type; |
4df7f6af | 1233 | SV *referant = NULL; |
cac9b346 | 1234 | |
7918f24d NC |
1235 | PERL_ARGS_ASSERT_SV_UPGRADE; |
1236 | ||
1776cbe8 NC |
1237 | if (old_type == new_type) |
1238 | return; | |
1239 | ||
1240 | /* This clause was purposefully added ahead of the early return above to | |
1241 | the shared string hackery for (sort {$a <=> $b} keys %hash), with the | |
1242 | inference by Nick I-S that it would fix other troublesome cases. See | |
1243 | changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent) | |
1244 | ||
1245 | Given that shared hash key scalars are no longer PVIV, but PV, there is | |
1246 | no longer need to unshare so as to free up the IVX slot for its proper | |
1247 | purpose. So it's safe to move the early return earlier. */ | |
1248 | ||
093085a8 | 1249 | if (new_type > SVt_PVMG && SvIsCOW(sv)) { |
bd81e77b NC |
1250 | sv_force_normal_flags(sv, 0); |
1251 | } | |
cac9b346 | 1252 | |
bd81e77b | 1253 | old_body = SvANY(sv); |
de042e1d | 1254 | |
bd81e77b NC |
1255 | /* Copying structures onto other structures that have been neatly zeroed |
1256 | has a subtle gotcha. Consider XPVMG | |
cac9b346 | 1257 | |
bd81e77b NC |
1258 | +------+------+------+------+------+-------+-------+ |
1259 | | NV | CUR | LEN | IV | MAGIC | STASH | | |
1260 | +------+------+------+------+------+-------+-------+ | |
1261 | 0 4 8 12 16 20 24 28 | |
645c22ef | 1262 | |
bd81e77b NC |
1263 | where NVs are aligned to 8 bytes, so that sizeof that structure is |
1264 | actually 32 bytes long, with 4 bytes of padding at the end: | |
08742458 | 1265 | |
bd81e77b NC |
1266 | +------+------+------+------+------+-------+-------+------+ |
1267 | | NV | CUR | LEN | IV | MAGIC | STASH | ??? | | |
1268 | +------+------+------+------+------+-------+-------+------+ | |
1269 | 0 4 8 12 16 20 24 28 32 | |
08742458 | 1270 | |
bd81e77b | 1271 | so what happens if you allocate memory for this structure: |
30f9da9e | 1272 | |
bd81e77b NC |
1273 | +------+------+------+------+------+-------+-------+------+------+... |
1274 | | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME | | |
1275 | +------+------+------+------+------+-------+-------+------+------+... | |
1276 | 0 4 8 12 16 20 24 28 32 36 | |
bfc44f79 | 1277 | |
bd81e77b NC |
1278 | zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you |
1279 | expect, because you copy the area marked ??? onto GP. Now, ??? may have | |
1280 | started out as zero once, but it's quite possible that it isn't. So now, | |
1281 | rather than a nicely zeroed GP, you have it pointing somewhere random. | |
1282 | Bugs ensue. | |
bfc44f79 | 1283 | |
bd81e77b NC |
1284 | (In fact, GP ends up pointing at a previous GP structure, because the |
1285 | principle cause of the padding in XPVMG getting garbage is a copy of | |
6c9e42f7 NC |
1286 | sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now |
1287 | this happens to be moot because XPVGV has been re-ordered, with GP | |
1288 | no longer after STASH) | |
30f9da9e | 1289 | |
bd81e77b NC |
1290 | So we are careful and work out the size of used parts of all the |
1291 | structures. */ | |
bfc44f79 | 1292 | |
bd81e77b NC |
1293 | switch (old_type) { |
1294 | case SVt_NULL: | |
1295 | break; | |
1296 | case SVt_IV: | |
4df7f6af NC |
1297 | if (SvROK(sv)) { |
1298 | referant = SvRV(sv); | |
238b27b3 NC |
1299 | old_type_details = &fake_rv; |
1300 | if (new_type == SVt_NV) | |
1301 | new_type = SVt_PVNV; | |
4df7f6af NC |
1302 | } else { |
1303 | if (new_type < SVt_PVIV) { | |
1304 | new_type = (new_type == SVt_NV) | |
1305 | ? SVt_PVNV : SVt_PVIV; | |
1306 | } | |
bd81e77b NC |
1307 | } |
1308 | break; | |
1309 | case SVt_NV: | |
1310 | if (new_type < SVt_PVNV) { | |
1311 | new_type = SVt_PVNV; | |
bd81e77b NC |
1312 | } |
1313 | break; | |
bd81e77b NC |
1314 | case SVt_PV: |
1315 | assert(new_type > SVt_PV); | |
6d59e610 LM |
1316 | STATIC_ASSERT_STMT(SVt_IV < SVt_PV); |
1317 | STATIC_ASSERT_STMT(SVt_NV < SVt_PV); | |
bd81e77b NC |
1318 | break; |
1319 | case SVt_PVIV: | |
1320 | break; | |
1321 | case SVt_PVNV: | |
1322 | break; | |
1323 | case SVt_PVMG: | |
1324 | /* Because the XPVMG of PL_mess_sv isn't allocated from the arena, | |
1325 | there's no way that it can be safely upgraded, because perl.c | |
1326 | expects to Safefree(SvANY(PL_mess_sv)) */ | |
1327 | assert(sv != PL_mess_sv); | |
bd81e77b NC |
1328 | break; |
1329 | default: | |
2439e033 | 1330 | if (UNLIKELY(old_type_details->cant_upgrade)) |
c81225bc NC |
1331 | Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf, |
1332 | sv_reftype(sv, 0), (UV) old_type, (UV) new_type); | |
bd81e77b | 1333 | } |
3376de98 | 1334 | |
2439e033 | 1335 | if (UNLIKELY(old_type > new_type)) |
3376de98 NC |
1336 | Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d", |
1337 | (int)old_type, (int)new_type); | |
1338 | ||
2fa1109b | 1339 | new_type_details = bodies_by_type + new_type; |
645c22ef | 1340 | |
bd81e77b NC |
1341 | SvFLAGS(sv) &= ~SVTYPEMASK; |
1342 | SvFLAGS(sv) |= new_type; | |
932e9ff9 | 1343 | |
ab4416c0 NC |
1344 | /* This can't happen, as SVt_NULL is <= all values of new_type, so one of |
1345 | the return statements above will have triggered. */ | |
1346 | assert (new_type != SVt_NULL); | |
bd81e77b | 1347 | switch (new_type) { |
bd81e77b NC |
1348 | case SVt_IV: |
1349 | assert(old_type == SVt_NULL); | |
dc6369ef | 1350 | SET_SVANY_FOR_BODYLESS_IV(sv); |
bd81e77b NC |
1351 | SvIV_set(sv, 0); |
1352 | return; | |
1353 | case SVt_NV: | |
1354 | assert(old_type == SVt_NULL); | |
5b306eef | 1355 | #if NVSIZE <= IVSIZE |
dc6369ef | 1356 | SET_SVANY_FOR_BODYLESS_NV(sv); |
5b306eef | 1357 | #else |
bd81e77b | 1358 | SvANY(sv) = new_XNV(); |
5b306eef | 1359 | #endif |
bd81e77b NC |
1360 | SvNV_set(sv, 0); |
1361 | return; | |
bd81e77b | 1362 | case SVt_PVHV: |
bd81e77b | 1363 | case SVt_PVAV: |
d2a0f284 | 1364 | assert(new_type_details->body_size); |
c1ae03ae NC |
1365 | |
1366 | #ifndef PURIFY | |
1367 | assert(new_type_details->arena); | |
d2a0f284 | 1368 | assert(new_type_details->arena_size); |
c1ae03ae | 1369 | /* This points to the start of the allocated area. */ |
d2a0f284 JC |
1370 | new_body_inline(new_body, new_type); |
1371 | Zero(new_body, new_type_details->body_size, char); | |
c1ae03ae NC |
1372 | new_body = ((char *)new_body) - new_type_details->offset; |
1373 | #else | |
1374 | /* We always allocated the full length item with PURIFY. To do this | |
1375 | we fake things so that arena is false for all 16 types.. */ | |
1376 | new_body = new_NOARENAZ(new_type_details); | |
1377 | #endif | |
1378 | SvANY(sv) = new_body; | |
1379 | if (new_type == SVt_PVAV) { | |
1380 | AvMAX(sv) = -1; | |
1381 | AvFILLp(sv) = -1; | |
1382 | AvREAL_only(sv); | |
64484faa | 1383 | if (old_type_details->body_size) { |
ac572bf4 NC |
1384 | AvALLOC(sv) = 0; |
1385 | } else { | |
1386 | /* It will have been zeroed when the new body was allocated. | |
1387 | Lets not write to it, in case it confuses a write-back | |
1388 | cache. */ | |
1389 | } | |
78ac7dd9 NC |
1390 | } else { |
1391 | assert(!SvOK(sv)); | |
1392 | SvOK_off(sv); | |
1393 | #ifndef NODEFAULT_SHAREKEYS | |
1394 | HvSHAREKEYS_on(sv); /* key-sharing on by default */ | |
1395 | #endif | |
586fc6a3 SM |
1396 | /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */ |
1397 | HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX; | |
c1ae03ae | 1398 | } |
aeb18a1e | 1399 | |
bd81e77b NC |
1400 | /* SVt_NULL isn't the only thing upgraded to AV or HV. |
1401 | The target created by newSVrv also is, and it can have magic. | |
1402 | However, it never has SvPVX set. | |
1403 | */ | |
4df7f6af NC |
1404 | if (old_type == SVt_IV) { |
1405 | assert(!SvROK(sv)); | |
1406 | } else if (old_type >= SVt_PV) { | |
bd81e77b NC |
1407 | assert(SvPVX_const(sv) == 0); |
1408 | } | |
aeb18a1e | 1409 | |
bd81e77b | 1410 | if (old_type >= SVt_PVMG) { |
e736a858 | 1411 | SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic); |
bd81e77b | 1412 | SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash); |
797c7171 NC |
1413 | } else { |
1414 | sv->sv_u.svu_array = NULL; /* or svu_hash */ | |
bd81e77b NC |
1415 | } |
1416 | break; | |
93e68bfb | 1417 | |
bd81e77b NC |
1418 | case SVt_PVIV: |
1419 | /* XXX Is this still needed? Was it ever needed? Surely as there is | |
1420 | no route from NV to PVIV, NOK can never be true */ | |
1421 | assert(!SvNOKp(sv)); | |
1422 | assert(!SvNOK(sv)); | |
2b5060ae | 1423 | /* FALLTHROUGH */ |
bd81e77b NC |
1424 | case SVt_PVIO: |
1425 | case SVt_PVFM: | |
bd81e77b NC |
1426 | case SVt_PVGV: |
1427 | case SVt_PVCV: | |
1428 | case SVt_PVLV: | |
d361b004 | 1429 | case SVt_INVLIST: |
12c45b25 | 1430 | case SVt_REGEXP: |
bd81e77b NC |
1431 | case SVt_PVMG: |
1432 | case SVt_PVNV: | |
1433 | case SVt_PV: | |
93e68bfb | 1434 | |
d2a0f284 | 1435 | assert(new_type_details->body_size); |
bd81e77b NC |
1436 | /* We always allocated the full length item with PURIFY. To do this |
1437 | we fake things so that arena is false for all 16 types.. */ | |
1438 | if(new_type_details->arena) { | |
1439 | /* This points to the start of the allocated area. */ | |
d2a0f284 JC |
1440 | new_body_inline(new_body, new_type); |
1441 | Zero(new_body, new_type_details->body_size, char); | |
bd81e77b NC |
1442 | new_body = ((char *)new_body) - new_type_details->offset; |
1443 | } else { | |
1444 | new_body = new_NOARENAZ(new_type_details); | |
1445 | } | |
1446 | SvANY(sv) = new_body; | |
5e2fc214 | 1447 | |
bd81e77b | 1448 | if (old_type_details->copy) { |
f9ba3d20 NC |
1449 | /* There is now the potential for an upgrade from something without |
1450 | an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */ | |
1451 | int offset = old_type_details->offset; | |
1452 | int length = old_type_details->copy; | |
1453 | ||
1454 | if (new_type_details->offset > old_type_details->offset) { | |
d4c19fe8 | 1455 | const int difference |
f9ba3d20 NC |
1456 | = new_type_details->offset - old_type_details->offset; |
1457 | offset += difference; | |
1458 | length -= difference; | |
1459 | } | |
1460 | assert (length >= 0); | |
1461 | ||
1462 | Copy((char *)old_body + offset, (char *)new_body + offset, length, | |
1463 | char); | |
bd81e77b NC |
1464 | } |
1465 | ||
1466 | #ifndef NV_ZERO_IS_ALLBITS_ZERO | |
f2524eef | 1467 | /* If NV 0.0 is stores as all bits 0 then Zero() already creates a |
e5ce394c NC |
1468 | * correct 0.0 for us. Otherwise, if the old body didn't have an |
1469 | * NV slot, but the new one does, then we need to initialise the | |
1470 | * freshly created NV slot with whatever the correct bit pattern is | |
1471 | * for 0.0 */ | |
e22a937e NC |
1472 | if (old_type_details->zero_nv && !new_type_details->zero_nv |
1473 | && !isGV_with_GP(sv)) | |
bd81e77b | 1474 | SvNV_set(sv, 0); |
82048762 | 1475 | #endif |
5e2fc214 | 1476 | |
2439e033 | 1477 | if (UNLIKELY(new_type == SVt_PVIO)) { |
85dca89a | 1478 | IO * const io = MUTABLE_IO(sv); |
d963bf01 | 1479 | GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV); |
85dca89a NC |
1480 | |
1481 | SvOBJECT_on(io); | |
1482 | /* Clear the stashcache because a new IO could overrule a package | |
1483 | name */ | |
103f5a36 | 1484 | DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n")); |
85dca89a NC |
1485 | hv_clear(PL_stashcache); |
1486 | ||
85dca89a | 1487 | SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv)))); |
f2524eef | 1488 | IoPAGE_LEN(sv) = 60; |
85dca89a | 1489 | } |
2439e033 | 1490 | if (UNLIKELY(new_type == SVt_REGEXP)) |
8d919b0a FC |
1491 | sv->sv_u.svu_rx = (regexp *)new_body; |
1492 | else if (old_type < SVt_PV) { | |
4df7f6af NC |
1493 | /* referant will be NULL unless the old type was SVt_IV emulating |
1494 | SVt_RV */ | |
1495 | sv->sv_u.svu_rv = referant; | |
1496 | } | |
bd81e77b NC |
1497 | break; |
1498 | default: | |
afd78fd5 JH |
1499 | Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu", |
1500 | (unsigned long)new_type); | |
bd81e77b | 1501 | } |
73171d91 | 1502 | |
5b306eef DD |
1503 | /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV, |
1504 | and sometimes SVt_NV */ | |
1505 | if (old_type_details->body_size) { | |
bd81e77b | 1506 | #ifdef PURIFY |
beeec492 | 1507 | safefree(old_body); |
bd81e77b | 1508 | #else |
bc786448 GG |
1509 | /* Note that there is an assumption that all bodies of types that |
1510 | can be upgraded came from arenas. Only the more complex non- | |
1511 | upgradable types are allowed to be directly malloc()ed. */ | |
1512 | assert(old_type_details->arena); | |
bd81e77b NC |
1513 | del_body((void*)((char*)old_body + old_type_details->offset), |
1514 | &PL_body_roots[old_type]); | |
1515 | #endif | |
1516 | } | |
1517 | } | |
73171d91 | 1518 | |
bd81e77b NC |
1519 | /* |
1520 | =for apidoc sv_backoff | |
73171d91 | 1521 | |
fde67290 | 1522 | Remove any string offset. You should normally use the C<SvOOK_off> macro |
bd81e77b | 1523 | wrapper instead. |
73171d91 | 1524 | |
bd81e77b | 1525 | =cut |
73171d91 NC |
1526 | */ |
1527 | ||
bd81e77b | 1528 | int |
ddeaf645 | 1529 | Perl_sv_backoff(SV *const sv) |
bd81e77b | 1530 | { |
69240efd | 1531 | STRLEN delta; |
7a4bba22 | 1532 | const char * const s = SvPVX_const(sv); |
7918f24d NC |
1533 | |
1534 | PERL_ARGS_ASSERT_SV_BACKOFF; | |
7918f24d | 1535 | |
bd81e77b NC |
1536 | assert(SvOOK(sv)); |
1537 | assert(SvTYPE(sv) != SVt_PVHV); | |
1538 | assert(SvTYPE(sv) != SVt_PVAV); | |
7a4bba22 | 1539 | |
69240efd NC |
1540 | SvOOK_offset(sv, delta); |
1541 | ||
7a4bba22 NC |
1542 | SvLEN_set(sv, SvLEN(sv) + delta); |
1543 | SvPV_set(sv, SvPVX(sv) - delta); | |
1544 | Move(s, SvPVX(sv), SvCUR(sv)+1, char); | |
bd81e77b NC |
1545 | SvFLAGS(sv) &= ~SVf_OOK; |
1546 | return 0; | |
1547 | } | |
73171d91 | 1548 | |
bd81e77b NC |
1549 | /* |
1550 | =for apidoc sv_grow | |
73171d91 | 1551 | |
bd81e77b NC |
1552 | Expands the character buffer in the SV. If necessary, uses C<sv_unref> and |
1553 | upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer. | |
1554 | Use the C<SvGROW> wrapper instead. | |
93e68bfb | 1555 | |
bd81e77b NC |
1556 | =cut |
1557 | */ | |
93e68bfb | 1558 | |
e0060e30 FC |
1559 | static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags); |
1560 | ||
bd81e77b | 1561 | char * |
5aaab254 | 1562 | Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen) |
bd81e77b | 1563 | { |
eb578fdb | 1564 | char *s; |
93e68bfb | 1565 | |
7918f24d NC |
1566 | PERL_ARGS_ASSERT_SV_GROW; |
1567 | ||
bd81e77b NC |
1568 | if (SvROK(sv)) |
1569 | sv_unref(sv); | |
1570 | if (SvTYPE(sv) < SVt_PV) { | |
1571 | sv_upgrade(sv, SVt_PV); | |
1572 | s = SvPVX_mutable(sv); | |
1573 | } | |
1574 | else if (SvOOK(sv)) { /* pv is offset? */ | |
1575 | sv_backoff(sv); | |
1576 | s = SvPVX_mutable(sv); | |
1577 | if (newlen > SvLEN(sv)) | |
1578 | newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */ | |
bd81e77b NC |
1579 | } |
1580 | else | |
db2c6cb3 | 1581 | { |
e0060e30 | 1582 | if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0); |
bd81e77b | 1583 | s = SvPVX_mutable(sv); |
db2c6cb3 | 1584 | } |
aeb18a1e | 1585 | |
93c10d60 | 1586 | #ifdef PERL_COPY_ON_WRITE |
cbcb2a16 | 1587 | /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare) |
3c239bea | 1588 | * to store the COW count. So in general, allocate one more byte than |
cbcb2a16 DM |
1589 | * asked for, to make it likely this byte is always spare: and thus |
1590 | * make more strings COW-able. | |
1591 | * If the new size is a big power of two, don't bother: we assume the | |
1592 | * caller wanted a nice 2^N sized block and will be annoyed at getting | |
fa8f4f85 TC |
1593 | * 2^N+1. |
1594 | * Only increment if the allocation isn't MEM_SIZE_MAX, | |
1595 | * otherwise it will wrap to 0. | |
1596 | */ | |
1597 | if (newlen & 0xff && newlen != MEM_SIZE_MAX) | |
cbcb2a16 DM |
1598 | newlen++; |
1599 | #endif | |
1600 | ||
ce861ea7 YO |
1601 | #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size) |
1602 | #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC | |
1603 | #endif | |
1604 | ||
bd81e77b | 1605 | if (newlen > SvLEN(sv)) { /* need more room? */ |
f1200559 | 1606 | STRLEN minlen = SvCUR(sv); |
3c239bea | 1607 | minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10; |
f1200559 WH |
1608 | if (newlen < minlen) |
1609 | newlen = minlen; | |
ce861ea7 | 1610 | #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC |
7c641603 KW |
1611 | |
1612 | /* Don't round up on the first allocation, as odds are pretty good that | |
1613 | * the initial request is accurate as to what is really needed */ | |
ce861ea7 | 1614 | if (SvLEN(sv)) { |
9efda33a TC |
1615 | STRLEN rounded = PERL_STRLEN_ROUNDUP(newlen); |
1616 | if (rounded > newlen) | |
1617 | newlen = rounded; | |
ce861ea7 | 1618 | } |
bd81e77b | 1619 | #endif |
98653f18 | 1620 | if (SvLEN(sv) && s) { |
10edeb5d | 1621 | s = (char*)saferealloc(s, newlen); |
bd81e77b NC |
1622 | } |
1623 | else { | |
10edeb5d | 1624 | s = (char*)safemalloc(newlen); |
bd81e77b NC |
1625 | if (SvPVX_const(sv) && SvCUR(sv)) { |
1626 | Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char); | |
1627 | } | |
1628 | } | |
1629 | SvPV_set(sv, s); | |
ce861ea7 | 1630 | #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC |
98653f18 NC |
1631 | /* Do this here, do it once, do it right, and then we will never get |
1632 | called back into sv_grow() unless there really is some growing | |
1633 | needed. */ | |
ca7c1a29 | 1634 | SvLEN_set(sv, Perl_safesysmalloc_size(s)); |
98653f18 | 1635 | #else |
bd81e77b | 1636 | SvLEN_set(sv, newlen); |
98653f18 | 1637 | #endif |
bd81e77b NC |
1638 | } |
1639 | return s; | |
1640 | } | |
aeb18a1e | 1641 | |
bd81e77b NC |
1642 | /* |
1643 | =for apidoc sv_setiv | |
932e9ff9 | 1644 | |
bd81e77b NC |
1645 | Copies an integer into the given SV, upgrading first if necessary. |
1646 | Does not handle 'set' magic. See also C<sv_setiv_mg>. | |
463ee0b2 | 1647 | |
bd81e77b NC |
1648 | =cut |
1649 | */ | |
463ee0b2 | 1650 | |
bd81e77b | 1651 | void |
5aaab254 | 1652 | Perl_sv_setiv(pTHX_ SV *const sv, const IV i) |
bd81e77b | 1653 | { |
7918f24d NC |
1654 | PERL_ARGS_ASSERT_SV_SETIV; |
1655 | ||
bd81e77b NC |
1656 | SV_CHECK_THINKFIRST_COW_DROP(sv); |
1657 | switch (SvTYPE(sv)) { | |
1658 | case SVt_NULL: | |
bd81e77b | 1659 | case SVt_NV: |
3376de98 | 1660 | sv_upgrade(sv, SVt_IV); |
bd81e77b | 1661 | break; |
bd81e77b NC |
1662 | case SVt_PV: |
1663 | sv_upgrade(sv, SVt_PVIV); | |
1664 | break; | |
463ee0b2 | 1665 | |
bd81e77b | 1666 | case SVt_PVGV: |
6e592b3a BM |
1667 | if (!isGV_with_GP(sv)) |
1668 | break; | |
bd81e77b NC |
1669 | case SVt_PVAV: |
1670 | case SVt_PVHV: | |
1671 | case SVt_PVCV: | |
1672 | case SVt_PVFM: | |
1673 | case SVt_PVIO: | |
22e74366 | 1674 | /* diag_listed_as: Can't coerce %s to %s in %s */ |
bd81e77b NC |
1675 | Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0), |
1676 | OP_DESC(PL_op)); | |
0103ca14 | 1677 | break; |
42d0e0b7 | 1678 | default: NOOP; |
bd81e77b NC |
1679 | } |
1680 | (void)SvIOK_only(sv); /* validate number */ | |
1681 | SvIV_set(sv, i); | |
1682 | SvTAINT(sv); | |
1683 | } | |
932e9ff9 | 1684 | |
bd81e77b NC |
1685 | /* |
1686 | =for apidoc sv_setiv_mg | |
d33b2eba | 1687 | |
bd81e77b | 1688 | Like C<sv_setiv>, but also handles 'set' magic. |
1c846c1f | 1689 | |
bd81e77b NC |
1690 | =cut |
1691 | */ | |
d33b2eba | 1692 | |
bd81e77b | 1693 | void |
5aaab254 | 1694 | Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i) |
bd81e77b | 1695 | { |
7918f24d NC |
1696 | PERL_ARGS_ASSERT_SV_SETIV_MG; |
1697 | ||
bd81e77b NC |
1698 | sv_setiv(sv,i); |
1699 | SvSETMAGIC(sv); | |
1700 | } | |
727879eb | 1701 | |
bd81e77b NC |
1702 | /* |
1703 | =for apidoc sv_setuv | |
d33b2eba | 1704 | |
bd81e77b NC |
1705 | Copies an unsigned integer into the given SV, upgrading first if necessary. |
1706 | Does not handle 'set' magic. See also C<sv_setuv_mg>. | |
9b94d1dd | 1707 | |
bd81e77b NC |
1708 | =cut |
1709 | */ | |
d33b2eba | 1710 | |
bd81e77b | 1711 | void |
5aaab254 | 1712 | Perl_sv_setuv(pTHX_ SV *const sv, const UV u) |
bd81e77b | 1713 | { |
7918f24d NC |
1714 | PERL_ARGS_ASSERT_SV_SETUV; |
1715 | ||
013abb9b NC |
1716 | /* With the if statement to ensure that integers are stored as IVs whenever |
1717 | possible: | |
bd81e77b | 1718 | u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865 |
d33b2eba | 1719 | |
bd81e77b NC |
1720 | without |
1721 | u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865 | |
1c846c1f | 1722 | |
013abb9b NC |
1723 | If you wish to remove the following if statement, so that this routine |
1724 | (and its callers) always return UVs, please benchmark to see what the | |
1725 | effect is. Modern CPUs may be different. Or may not :-) | |
bd81e77b NC |
1726 | */ |
1727 | if (u <= (UV)IV_MAX) { | |
1728 | sv_setiv(sv, (IV)u); | |
1729 | return; | |
1730 | } | |
1731 | sv_setiv(sv, 0); | |
1732 | SvIsUV_on(sv); | |
1733 | SvUV_set(sv, u); | |
1734 | } | |
d33b2eba | 1735 | |
bd81e77b NC |
1736 | /* |
1737 | =for apidoc sv_setuv_mg | |
727879eb | 1738 | |
bd81e77b | 1739 | Like C<sv_setuv>, but also handles 'set' magic. |
9b94d1dd | 1740 | |
bd81e77b NC |
1741 | =cut |
1742 | */ | |
5e2fc214 | 1743 | |
bd81e77b | 1744 | void |
5aaab254 | 1745 | Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u) |
bd81e77b | 1746 | { |
7918f24d NC |
1747 | PERL_ARGS_ASSERT_SV_SETUV_MG; |
1748 | ||
bd81e77b NC |
1749 | sv_setuv(sv,u); |
1750 | SvSETMAGIC(sv); | |
1751 | } | |
5e2fc214 | 1752 | |
954c1994 | 1753 | /* |
bd81e77b | 1754 | =for apidoc sv_setnv |
954c1994 | 1755 | |
bd81e77b NC |
1756 | Copies a double into the given SV, upgrading first if necessary. |
1757 | Does not handle 'set' magic. See also C<sv_setnv_mg>. | |
954c1994 GS |
1758 | |
1759 | =cut | |
1760 | */ | |
1761 | ||
63f97190 | 1762 | void |
5aaab254 | 1763 | Perl_sv_setnv(pTHX_ SV *const sv, const NV num) |
79072805 | 1764 | { |
7918f24d NC |
1765 | PERL_ARGS_ASSERT_SV_SETNV; |
1766 | ||
bd81e77b NC |
1767 | SV_CHECK_THINKFIRST_COW_DROP(sv); |
1768 | switch (SvTYPE(sv)) { | |
79072805 | 1769 | case SVt_NULL: |
79072805 | 1770 | case SVt_IV: |
bd81e77b | 1771 | sv_upgrade(sv, SVt_NV); |
79072805 LW |
1772 | break; |
1773 | case SVt_PV: | |
79072805 | 1774 | case SVt_PVIV: |
bd81e77b | 1775 | sv_upgrade(sv, SVt_PVNV); |
79072805 | 1776 | break; |
bd4b1eb5 | 1777 | |
bd4b1eb5 | 1778 | case SVt_PVGV: |
6e592b3a BM |
1779 | if (!isGV_with_GP(sv)) |
1780 | break; | |
bd81e77b NC |
1781 | case SVt_PVAV: |
1782 | case SVt_PVHV: | |
79072805 | 1783 | case SVt_PVCV: |
bd81e77b NC |
1784 | case SVt_PVFM: |
1785 | case SVt_PVIO: | |
22e74366 | 1786 | /* diag_listed_as: Can't coerce %s to %s in %s */ |
bd81e77b | 1787 | Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0), |
94bbb3f4 | 1788 | OP_DESC(PL_op)); |
0103ca14 | 1789 | break; |
42d0e0b7 | 1790 | default: NOOP; |
2068cd4d | 1791 | } |
bd81e77b NC |
1792 | SvNV_set(sv, num); |
1793 | (void)SvNOK_only(sv); /* validate number */ | |
1794 | SvTAINT(sv); | |
79072805 LW |
1795 | } |
1796 | ||
645c22ef | 1797 | /* |
bd81e77b | 1798 | =for apidoc sv_setnv_mg |
645c22ef | 1799 | |
bd81e77b | 1800 | Like C<sv_setnv>, but also handles 'set' magic. |
645c22ef DM |
1801 | |
1802 | =cut | |
1803 | */ | |
1804 | ||
bd81e77b | 1805 | void |
5aaab254 | 1806 | Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num) |
79072805 | 1807 | { |
7918f24d NC |
1808 | PERL_ARGS_ASSERT_SV_SETNV_MG; |
1809 | ||
bd81e77b NC |
1810 | sv_setnv(sv,num); |
1811 | SvSETMAGIC(sv); | |
79072805 LW |
1812 | } |
1813 | ||
3f7602fa TC |
1814 | /* Return a cleaned-up, printable version of sv, for non-numeric, or |
1815 | * not incrementable warning display. | |
1816 | * Originally part of S_not_a_number(). | |
1817 | * The return value may be != tmpbuf. | |
bd81e77b | 1818 | */ |
954c1994 | 1819 | |
3f7602fa TC |
1820 | STATIC const char * |
1821 | S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) { | |
1822 | const char *pv; | |
94463019 | 1823 | |
3f7602fa | 1824 | PERL_ARGS_ASSERT_SV_DISPLAY; |
7918f24d | 1825 | |
94463019 | 1826 | if (DO_UTF8(sv)) { |
3f7602fa | 1827 | SV *dsv = newSVpvs_flags("", SVs_TEMP); |
37b8cdd1 | 1828 | pv = sv_uni_display(dsv, sv, 32, UNI_DISPLAY_ISPRINT); |
94463019 JH |
1829 | } else { |
1830 | char *d = tmpbuf; | |
3f7602fa | 1831 | const char * const limit = tmpbuf + tmpbuf_size - 8; |
94463019 JH |
1832 | /* each *s can expand to 4 chars + "...\0", |
1833 | i.e. need room for 8 chars */ | |
ecdeb87c | 1834 | |
00b6aa41 AL |
1835 | const char *s = SvPVX_const(sv); |
1836 | const char * const end = s + SvCUR(sv); | |
1837 | for ( ; s < end && d < limit; s++ ) { | |
94463019 | 1838 | int ch = *s & 0xFF; |
bd27cf70 | 1839 | if (! isASCII(ch) && !isPRINT_LC(ch)) { |
94463019 JH |
1840 | *d++ = 'M'; |
1841 | *d++ = '-'; | |
bd27cf70 KW |
1842 | |
1843 | /* Map to ASCII "equivalent" of Latin1 */ | |
1844 | ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127); | |
94463019 JH |
1845 | } |
1846 | if (ch == '\n') { | |
1847 | *d++ = '\\'; | |
1848 | *d++ = 'n'; | |
1849 | } | |
1850 | else if (ch == '\r') { | |
1851 | *d++ = '\\'; | |
1852 | *d++ = 'r'; | |
1853 | } | |
1854 | else if (ch == '\f') { | |
1855 | *d++ = '\\'; | |
1856 | *d++ = 'f'; | |
1857 | } | |
1858 | else if (ch == '\\') { | |
1859 | *d++ = '\\'; | |
1860 | *d++ = '\\'; | |
1861 | } | |
1862 | else if (ch == '\0') { | |
1863 | *d++ = '\\'; | |
1864 | *d++ = '0'; | |
1865 | } | |
1866 | else if (isPRINT_LC(ch)) | |
1867 | *d++ = ch; | |
1868 | else { | |
1869 | *d++ = '^'; | |
1870 | *d++ = toCTRL(ch); | |
1871 | } | |
1872 | } | |
1873 | if (s < end) { | |
1874 | *d++ = '.'; | |
1875 | *d++ = '.'; | |
1876 | *d++ = '.'; | |
1877 | } | |
1878 | *d = '\0'; | |
1879 | pv = tmpbuf; | |
a0d0e21e | 1880 | } |
a0d0e21e | 1881 | |
3f7602fa TC |
1882 | return pv; |
1883 | } | |
1884 | ||
1885 | /* Print an "isn't numeric" warning, using a cleaned-up, | |
1886 | * printable version of the offending string | |
1887 | */ | |
1888 | ||
1889 | STATIC void | |
1890 | S_not_a_number(pTHX_ SV *const sv) | |
1891 | { | |
3f7602fa TC |
1892 | char tmpbuf[64]; |
1893 | const char *pv; | |
1894 | ||
1895 | PERL_ARGS_ASSERT_NOT_A_NUMBER; | |
1896 | ||
1897 | pv = sv_display(sv, tmpbuf, sizeof(tmpbuf)); | |
1898 | ||
533c011a | 1899 | if (PL_op) |
9014280d | 1900 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), |
734856a2 | 1901 | /* diag_listed_as: Argument "%s" isn't numeric%s */ |
94463019 JH |
1902 | "Argument \"%s\" isn't numeric in %s", pv, |
1903 | OP_DESC(PL_op)); | |
a0d0e21e | 1904 | else |
9014280d | 1905 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), |
734856a2 | 1906 | /* diag_listed_as: Argument "%s" isn't numeric%s */ |
94463019 | 1907 | "Argument \"%s\" isn't numeric", pv); |
a0d0e21e LW |
1908 | } |
1909 | ||
3f7602fa TC |
1910 | STATIC void |
1911 | S_not_incrementable(pTHX_ SV *const sv) { | |
3f7602fa TC |
1912 | char tmpbuf[64]; |
1913 | const char *pv; | |
1914 | ||
1915 | PERL_ARGS_ASSERT_NOT_INCREMENTABLE; | |
1916 | ||
1917 | pv = sv_display(sv, tmpbuf, sizeof(tmpbuf)); | |
1918 | ||
1919 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), | |
1920 | "Argument \"%s\" treated as 0 in increment (++)", pv); | |
1921 | } | |
1922 | ||
c2988b20 NC |
1923 | /* |
1924 | =for apidoc looks_like_number | |
1925 | ||
645c22ef DM |
1926 | Test if the content of an SV looks like a number (or is a number). |
1927 | C<Inf> and C<Infinity> are treated as numbers (so will not issue a | |
f52e41ad FC |
1928 | non-numeric warning), even if your atof() doesn't grok them. Get-magic is |
1929 | ignored. | |
c2988b20 NC |
1930 | |
1931 | =cut | |
1932 | */ | |
1933 | ||
1934 | I32 | |
aad570aa | 1935 | Perl_looks_like_number(pTHX_ SV *const sv) |
c2988b20 | 1936 | { |
eb578fdb | 1937 | const char *sbegin; |
c2988b20 | 1938 | STRLEN len; |
ea2485eb | 1939 | int numtype; |
c2988b20 | 1940 | |
7918f24d NC |
1941 | PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER; |
1942 | ||
f52e41ad FC |
1943 | if (SvPOK(sv) || SvPOKp(sv)) { |
1944 | sbegin = SvPV_nomg_const(sv, len); | |
c2988b20 | 1945 | } |
c2988b20 | 1946 | else |
e0ab1c0e | 1947 | return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK); |
ea2485eb JH |
1948 | numtype = grok_number(sbegin, len, NULL); |
1949 | return ((numtype & IS_NUMBER_TRAILING)) ? 0 : numtype; | |
c2988b20 | 1950 | } |
25da4f38 | 1951 | |
19f6321d NC |
1952 | STATIC bool |
1953 | S_glob_2number(pTHX_ GV * const gv) | |
180488f8 | 1954 | { |
7918f24d NC |
1955 | PERL_ARGS_ASSERT_GLOB_2NUMBER; |
1956 | ||
675c862f AL |
1957 | /* We know that all GVs stringify to something that is not-a-number, |
1958 | so no need to test that. */ | |
1959 | if (ckWARN(WARN_NUMERIC)) | |
8e629ff4 FC |
1960 | { |
1961 | SV *const buffer = sv_newmortal(); | |
1962 | gv_efullname3(buffer, gv, "*"); | |
675c862f | 1963 | not_a_number(buffer); |
8e629ff4 | 1964 | } |
675c862f AL |
1965 | /* We just want something true to return, so that S_sv_2iuv_common |
1966 | can tail call us and return true. */ | |
19f6321d | 1967 | return TRUE; |
675c862f AL |
1968 | } |
1969 | ||
25da4f38 IZ |
1970 | /* Actually, ISO C leaves conversion of UV to IV undefined, but |
1971 | until proven guilty, assume that things are not that bad... */ | |
1972 | ||
645c22ef DM |
1973 | /* |
1974 | NV_PRESERVES_UV: | |
1975 | ||
1976 | As 64 bit platforms often have an NV that doesn't preserve all bits of | |
28e5dec8 JH |
1977 | an IV (an assumption perl has been based on to date) it becomes necessary |
1978 | to remove the assumption that the NV always carries enough precision to | |
1979 | recreate the IV whenever needed, and that the NV is the canonical form. | |
1980 | Instead, IV/UV and NV need to be given equal rights. So as to not lose | |
645c22ef | 1981 | precision as a side effect of conversion (which would lead to insanity |
28e5dec8 | 1982 | and the dragon(s) in t/op/numconvert.t getting very angry) the intent is |
8a4a3196 KW |
1983 | 1) to distinguish between IV/UV/NV slots that have a valid conversion cached |
1984 | where precision was lost, and IV/UV/NV slots that have a valid conversion | |
1985 | which has lost no precision | |
645c22ef | 1986 | 2) to ensure that if a numeric conversion to one form is requested that |
28e5dec8 JH |
1987 | would lose precision, the precise conversion (or differently |
1988 | imprecise conversion) is also performed and cached, to prevent | |
1989 | requests for different numeric formats on the same SV causing | |
1990 | lossy conversion chains. (lossless conversion chains are perfectly | |
1991 | acceptable (still)) | |
1992 | ||
1993 | ||
1994 | flags are used: | |
1995 | SvIOKp is true if the IV slot contains a valid value | |
1996 | SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true) | |
1997 | SvNOKp is true if the NV slot contains a valid value | |
1998 | SvNOK is true only if the NV value is accurate | |
1999 | ||
2000 | so | |
645c22ef | 2001 | while converting from PV to NV, check to see if converting that NV to an |
28e5dec8 JH |
2002 | IV(or UV) would lose accuracy over a direct conversion from PV to |
2003 | IV(or UV). If it would, cache both conversions, return NV, but mark | |
2004 | SV as IOK NOKp (ie not NOK). | |
2005 | ||
645c22ef | 2006 | While converting from PV to IV, check to see if converting that IV to an |
28e5dec8 JH |
2007 | NV would lose accuracy over a direct conversion from PV to NV. If it |
2008 | would, cache both conversions, flag similarly. | |
2009 | ||
2010 | Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite | |
2011 | correctly because if IV & NV were set NV *always* overruled. | |
645c22ef DM |
2012 | Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning |
2013 | changes - now IV and NV together means that the two are interchangeable: | |
28e5dec8 | 2014 | SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX; |
d460ef45 | 2015 | |
645c22ef DM |
2016 | The benefit of this is that operations such as pp_add know that if |
2017 | SvIOK is true for both left and right operands, then integer addition | |
2018 | can be used instead of floating point (for cases where the result won't | |
2019 | overflow). Before, floating point was always used, which could lead to | |
28e5dec8 JH |
2020 | loss of precision compared with integer addition. |
2021 | ||
2022 | * making IV and NV equal status should make maths accurate on 64 bit | |
2023 | platforms | |
2024 | * may speed up maths somewhat if pp_add and friends start to use | |
645c22ef | 2025 | integers when possible instead of fp. (Hopefully the overhead in |
28e5dec8 JH |
2026 | looking for SvIOK and checking for overflow will not outweigh the |
2027 | fp to integer speedup) | |
2028 | * will slow down integer operations (callers of SvIV) on "inaccurate" | |
2029 | values, as the change from SvIOK to SvIOKp will cause a call into | |
2030 | sv_2iv each time rather than a macro access direct to the IV slot | |
2031 | * should speed up number->string conversion on integers as IV is | |
645c22ef | 2032 | favoured when IV and NV are equally accurate |
28e5dec8 JH |
2033 | |
2034 | #################################################################### | |
645c22ef DM |
2035 | You had better be using SvIOK_notUV if you want an IV for arithmetic: |
2036 | SvIOK is true if (IV or UV), so you might be getting (IV)SvUV. | |
2037 | On the other hand, SvUOK is true iff UV. | |
28e5dec8 JH |
2038 | #################################################################### |
2039 | ||
645c22ef | 2040 | Your mileage will vary depending your CPU's relative fp to integer |
28e5dec8 JH |
2041 | performance ratio. |
2042 | */ | |
2043 | ||
2044 | #ifndef NV_PRESERVES_UV | |
645c22ef DM |
2045 | # define IS_NUMBER_UNDERFLOW_IV 1 |
2046 | # define IS_NUMBER_UNDERFLOW_UV 2 | |
2047 | # define IS_NUMBER_IV_AND_UV 2 | |
2048 | # define IS_NUMBER_OVERFLOW_IV 4 | |
2049 | # define IS_NUMBER_OVERFLOW_UV 5 | |
2050 | ||
2051 | /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */ | |
28e5dec8 JH |
2052 | |
2053 | /* For sv_2nv these three cases are "SvNOK and don't bother casting" */ | |
2054 | STATIC int | |
5aaab254 | 2055 | S_sv_2iuv_non_preserve(pTHX_ SV *const sv |
47031da6 NC |
2056 | # ifdef DEBUGGING |
2057 | , I32 numtype | |
2058 | # endif | |
2059 | ) | |
28e5dec8 | 2060 | { |
7918f24d | 2061 | PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE; |
23491f1d | 2062 | PERL_UNUSED_CONTEXT; |
7918f24d | 2063 | |
3f7c398e | 2064 | DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype)); |
28e5dec8 JH |
2065 | if (SvNVX(sv) < (NV)IV_MIN) { |
2066 | (void)SvIOKp_on(sv); | |
2067 | (void)SvNOK_on(sv); | |
45977657 | 2068 | SvIV_set(sv, IV_MIN); |
28e5dec8 JH |
2069 | return IS_NUMBER_UNDERFLOW_IV; |
2070 | } | |
2071 | if (SvNVX(sv) > (NV)UV_MAX) { | |
2072 | (void)SvIOKp_on(sv); | |
2073 | (void)SvNOK_on(sv); | |
2074 | SvIsUV_on(sv); | |
607fa7f2 | 2075 | SvUV_set(sv, UV_MAX); |
28e5dec8 JH |
2076 | return IS_NUMBER_OVERFLOW_UV; |
2077 | } | |
c2988b20 NC |
2078 | (void)SvIOKp_on(sv); |
2079 | (void)SvNOK_on(sv); | |
2080 | /* Can't use strtol etc to convert this string. (See truth table in | |
2081 | sv_2iv */ | |
2082 | if (SvNVX(sv) <= (UV)IV_MAX) { | |
45977657 | 2083 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2084 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) { |
c2988b20 NC |
2085 | SvIOK_on(sv); /* Integer is precise. NOK, IOK */ |
2086 | } else { | |
2087 | /* Integer is imprecise. NOK, IOKp */ | |
2088 | } | |
2089 | return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV; | |
2090 | } | |
2091 | SvIsUV_on(sv); | |
607fa7f2 | 2092 | SvUV_set(sv, U_V(SvNVX(sv))); |
659c4b96 | 2093 | if ((NV)(SvUVX(sv)) == SvNVX(sv)) { |
c2988b20 NC |
2094 | if (SvUVX(sv) == UV_MAX) { |
2095 | /* As we know that NVs don't preserve UVs, UV_MAX cannot | |
2096 | possibly be preserved by NV. Hence, it must be overflow. | |
2097 | NOK, IOKp */ | |
2098 | return IS_NUMBER_OVERFLOW_UV; | |
2099 | } | |
2100 | SvIOK_on(sv); /* Integer is precise. NOK, UOK */ | |
2101 | } else { | |
2102 | /* Integer is imprecise. NOK, IOKp */ | |
28e5dec8 | 2103 | } |
c2988b20 | 2104 | return IS_NUMBER_OVERFLOW_IV; |
28e5dec8 | 2105 | } |
645c22ef DM |
2106 | #endif /* !NV_PRESERVES_UV*/ |
2107 | ||
a13f4dff | 2108 | /* If numtype is infnan, set the NV of the sv accordingly. |
5564cd7f | 2109 | * If numtype is anything else, try setting the NV using Atof(PV). */ |
3c81f0b3 DD |
2110 | #ifdef USING_MSVC6 |
2111 | # pragma warning(push) | |
2112 | # pragma warning(disable:4756;disable:4056) | |
2113 | #endif | |
a13f4dff | 2114 | static void |
3823048b | 2115 | S_sv_setnv(pTHX_ SV* sv, int numtype) |
a13f4dff | 2116 | { |
07925c5e | 2117 | bool pok = cBOOL(SvPOK(sv)); |
5564cd7f | 2118 | bool nok = FALSE; |
a13f4dff JH |
2119 | if ((numtype & IS_NUMBER_INFINITY)) { |
2120 | SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF); | |
5564cd7f | 2121 | nok = TRUE; |
a13f4dff JH |
2122 | } |
2123 | else if ((numtype & IS_NUMBER_NAN)) { | |
3823048b | 2124 | SvNV_set(sv, NV_NAN); |
d48bd569 | 2125 | nok = TRUE; |
a13f4dff | 2126 | } |
d48bd569 | 2127 | else if (pok) { |
a13f4dff | 2128 | SvNV_set(sv, Atof(SvPVX_const(sv))); |
d48bd569 JH |
2129 | /* Purposefully no true nok here, since we don't want to blow |
2130 | * away the possible IOK/UV of an existing sv. */ | |
2131 | } | |
5564cd7f | 2132 | if (nok) { |
d48bd569 | 2133 | SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */ |
5564cd7f JH |
2134 | if (pok) |
2135 | SvPOK_on(sv); /* PV is okay, though. */ | |
2136 | } | |
a13f4dff | 2137 | } |
3c81f0b3 DD |
2138 | #ifdef USING_MSVC6 |
2139 | # pragma warning(pop) | |
2140 | #endif | |
a13f4dff | 2141 | |
af359546 | 2142 | STATIC bool |
7918f24d NC |
2143 | S_sv_2iuv_common(pTHX_ SV *const sv) |
2144 | { | |
7918f24d NC |
2145 | PERL_ARGS_ASSERT_SV_2IUV_COMMON; |
2146 | ||
af359546 | 2147 | if (SvNOKp(sv)) { |
28e5dec8 JH |
2148 | /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv |
2149 | * without also getting a cached IV/UV from it at the same time | |
2150 | * (ie PV->NV conversion should detect loss of accuracy and cache | |
af359546 NC |
2151 | * IV or UV at same time to avoid this. */ |
2152 | /* IV-over-UV optimisation - choose to cache IV if possible */ | |
25da4f38 IZ |
2153 | |
2154 | if (SvTYPE(sv) == SVt_NV) | |
2155 | sv_upgrade(sv, SVt_PVNV); | |
2156 | ||
28e5dec8 JH |
2157 | (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */ |
2158 | /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost | |
2159 | certainly cast into the IV range at IV_MAX, whereas the correct | |
2160 | answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary | |
2161 | cases go to UV */ | |
e91de695 JH |
2162 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) |
2163 | if (Perl_isnan(SvNVX(sv))) { | |
2164 | SvUV_set(sv, 0); | |
2165 | SvIsUV_on(sv); | |
2166 | return FALSE; | |
2167 | } | |
2168 | #endif | |
28e5dec8 | 2169 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { |
45977657 | 2170 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2171 | if (SvNVX(sv) == (NV) SvIVX(sv) |
28e5dec8 | 2172 | #ifndef NV_PRESERVES_UV |
53e2bfb7 | 2173 | && SvIVX(sv) != IV_MIN /* avoid negating IV_MIN below */ |
28e5dec8 JH |
2174 | && (((UV)1 << NV_PRESERVES_UV_BITS) > |
2175 | (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv))) | |
2176 | /* Don't flag it as "accurately an integer" if the number | |
2177 | came from a (by definition imprecise) NV operation, and | |
2178 | we're outside the range of NV integer precision */ | |
2179 | #endif | |
2180 | ) { | |
a43d94f2 NC |
2181 | if (SvNOK(sv)) |
2182 | SvIOK_on(sv); /* Can this go wrong with rounding? NWC */ | |
2183 | else { | |
2184 | /* scalar has trailing garbage, eg "42a" */ | |
2185 | } | |
28e5dec8 | 2186 | DEBUG_c(PerlIO_printf(Perl_debug_log, |
7234c960 | 2187 | "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n", |
28e5dec8 JH |
2188 | PTR2UV(sv), |
2189 | SvNVX(sv), | |
2190 | SvIVX(sv))); | |
2191 | ||
2192 | } else { | |
2193 | /* IV not precise. No need to convert from PV, as NV | |
2194 | conversion would already have cached IV if it detected | |
2195 | that PV->IV would be better than PV->NV->IV | |
2196 | flags already correct - don't set public IOK. */ | |
2197 | DEBUG_c(PerlIO_printf(Perl_debug_log, | |
7234c960 | 2198 | "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n", |
28e5dec8 JH |
2199 | PTR2UV(sv), |
2200 | SvNVX(sv), | |
2201 | SvIVX(sv))); | |
2202 | } | |
2203 | /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN, | |
2204 | but the cast (NV)IV_MIN rounds to a the value less (more | |
2205 | negative) than IV_MIN which happens to be equal to SvNVX ?? | |
2206 | Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and | |
2207 | NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and | |
2208 | (NV)UVX == NVX are both true, but the values differ. :-( | |
2209 | Hopefully for 2s complement IV_MIN is something like | |
2210 | 0x8000000000000000 which will be exact. NWC */ | |
d460ef45 | 2211 | } |
25da4f38 | 2212 | else { |
607fa7f2 | 2213 | SvUV_set(sv, U_V(SvNVX(sv))); |
28e5dec8 | 2214 | if ( |
659c4b96 | 2215 | (SvNVX(sv) == (NV) SvUVX(sv)) |
28e5dec8 JH |
2216 | #ifndef NV_PRESERVES_UV |
2217 | /* Make sure it's not 0xFFFFFFFFFFFFFFFF */ | |
2218 | /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */ | |
2219 | && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv)) | |
2220 | /* Don't flag it as "accurately an integer" if the number | |
2221 | came from a (by definition imprecise) NV operation, and | |
2222 | we're outside the range of NV integer precision */ | |
2223 | #endif | |
a43d94f2 | 2224 | && SvNOK(sv) |
28e5dec8 JH |
2225 | ) |
2226 | SvIOK_on(sv); | |
25da4f38 | 2227 | SvIsUV_on(sv); |
1c846c1f | 2228 | DEBUG_c(PerlIO_printf(Perl_debug_log, |
57def98f | 2229 | "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n", |
56431972 | 2230 | PTR2UV(sv), |
57def98f JH |
2231 | SvUVX(sv), |
2232 | SvUVX(sv))); | |
25da4f38 | 2233 | } |
748a9306 | 2234 | } |
cd84013a | 2235 | else if (SvPOKp(sv)) { |
c2988b20 | 2236 | UV value; |
3823048b | 2237 | const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value); |
af359546 | 2238 | /* We want to avoid a possible problem when we cache an IV/ a UV which |
25da4f38 | 2239 | may be later translated to an NV, and the resulting NV is not |
c2988b20 NC |
2240 | the same as the direct translation of the initial string |
2241 | (eg 123.456 can shortcut to the IV 123 with atol(), but we must | |
2242 | be careful to ensure that the value with the .456 is around if the | |
2243 | NV value is requested in the future). | |
1c846c1f | 2244 | |
af359546 | 2245 | This means that if we cache such an IV/a UV, we need to cache the |
25da4f38 | 2246 | NV as well. Moreover, we trade speed for space, and do not |
28e5dec8 | 2247 | cache the NV if we are sure it's not needed. |
25da4f38 | 2248 | */ |
16b7a9a4 | 2249 | |
c2988b20 NC |
2250 | /* SVt_PVNV is one higher than SVt_PVIV, hence this order */ |
2251 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2252 | == IS_NUMBER_IN_UV) { | |
5e045b90 | 2253 | /* It's definitely an integer, only upgrade to PVIV */ |
28e5dec8 JH |
2254 | if (SvTYPE(sv) < SVt_PVIV) |
2255 | sv_upgrade(sv, SVt_PVIV); | |
f7bbb42a | 2256 | (void)SvIOK_on(sv); |
c2988b20 NC |
2257 | } else if (SvTYPE(sv) < SVt_PVNV) |
2258 | sv_upgrade(sv, SVt_PVNV); | |
28e5dec8 | 2259 | |
a13f4dff | 2260 | if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) { |
75a57a38 | 2261 | if (ckWARN(WARN_NUMERIC) && ((numtype & IS_NUMBER_TRAILING))) |
6b322424 | 2262 | not_a_number(sv); |
3823048b | 2263 | S_sv_setnv(aTHX_ sv, numtype); |
a13f4dff JH |
2264 | return FALSE; |
2265 | } | |
2266 | ||
f2524eef | 2267 | /* If NVs preserve UVs then we only use the UV value if we know that |
c2988b20 NC |
2268 | we aren't going to call atof() below. If NVs don't preserve UVs |
2269 | then the value returned may have more precision than atof() will | |
2270 | return, even though value isn't perfectly accurate. */ | |
2271 | if ((numtype & (IS_NUMBER_IN_UV | |
2272 | #ifdef NV_PRESERVES_UV | |
2273 | | IS_NUMBER_NOT_INT | |
2274 | #endif | |
2275 | )) == IS_NUMBER_IN_UV) { | |
2276 | /* This won't turn off the public IOK flag if it was set above */ | |
2277 | (void)SvIOKp_on(sv); | |
2278 | ||
2279 | if (!(numtype & IS_NUMBER_NEG)) { | |
2280 | /* positive */; | |
2281 | if (value <= (UV)IV_MAX) { | |
45977657 | 2282 | SvIV_set(sv, (IV)value); |
c2988b20 | 2283 | } else { |
af359546 | 2284 | /* it didn't overflow, and it was positive. */ |
607fa7f2 | 2285 | SvUV_set(sv, value); |
c2988b20 NC |
2286 | SvIsUV_on(sv); |
2287 | } | |
2288 | } else { | |
2289 | /* 2s complement assumption */ | |
2290 | if (value <= (UV)IV_MIN) { | |
53e2bfb7 DM |
2291 | SvIV_set(sv, value == (UV)IV_MIN |
2292 | ? IV_MIN : -(IV)value); | |
c2988b20 NC |
2293 | } else { |
2294 | /* Too negative for an IV. This is a double upgrade, but | |
d1be9408 | 2295 | I'm assuming it will be rare. */ |
c2988b20 NC |
2296 | if (SvTYPE(sv) < SVt_PVNV) |
2297 | sv_upgrade(sv, SVt_PVNV); | |
2298 | SvNOK_on(sv); | |
2299 | SvIOK_off(sv); | |
2300 | SvIOKp_on(sv); | |
9d6ce603 | 2301 | SvNV_set(sv, -(NV)value); |
45977657 | 2302 | SvIV_set(sv, IV_MIN); |
c2988b20 NC |
2303 | } |
2304 | } | |
2305 | } | |
2306 | /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we | |
2307 | will be in the previous block to set the IV slot, and the next | |
2308 | block to set the NV slot. So no else here. */ | |
2309 | ||
2310 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2311 | != IS_NUMBER_IN_UV) { | |
2312 | /* It wasn't an (integer that doesn't overflow the UV). */ | |
3823048b | 2313 | S_sv_setnv(aTHX_ sv, numtype); |
28e5dec8 | 2314 | |
c2988b20 NC |
2315 | if (! numtype && ckWARN(WARN_NUMERIC)) |
2316 | not_a_number(sv); | |
28e5dec8 | 2317 | |
88cb8500 | 2318 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n", |
c2988b20 | 2319 | PTR2UV(sv), SvNVX(sv))); |
28e5dec8 | 2320 | |
28e5dec8 | 2321 | #ifdef NV_PRESERVES_UV |
af359546 NC |
2322 | (void)SvIOKp_on(sv); |
2323 | (void)SvNOK_on(sv); | |
e91de695 JH |
2324 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) |
2325 | if (Perl_isnan(SvNVX(sv))) { | |
2326 | SvUV_set(sv, 0); | |
2327 | SvIsUV_on(sv); | |
2328 | return FALSE; | |
2329 | } | |
2330 | #endif | |
af359546 NC |
2331 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { |
2332 | SvIV_set(sv, I_V(SvNVX(sv))); | |
2333 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) { | |
2334 | SvIOK_on(sv); | |
2335 | } else { | |
6f207bd3 | 2336 | NOOP; /* Integer is imprecise. NOK, IOKp */ |
af359546 NC |
2337 | } |
2338 | /* UV will not work better than IV */ | |
2339 | } else { | |
2340 | if (SvNVX(sv) > (NV)UV_MAX) { | |
2341 | SvIsUV_on(sv); | |
2342 | /* Integer is inaccurate. NOK, IOKp, is UV */ | |
2343 | SvUV_set(sv, UV_MAX); | |
af359546 NC |
2344 | } else { |
2345 | SvUV_set(sv, U_V(SvNVX(sv))); | |
2346 | /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs | |
2347 | NV preservse UV so can do correct comparison. */ | |
2348 | if ((NV)(SvUVX(sv)) == SvNVX(sv)) { | |
2349 | SvIOK_on(sv); | |
af359546 | 2350 | } else { |
6f207bd3 | 2351 | NOOP; /* Integer is imprecise. NOK, IOKp, is UV */ |
af359546 NC |
2352 | } |
2353 | } | |
4b0c9573 | 2354 | SvIsUV_on(sv); |
af359546 | 2355 | } |
28e5dec8 | 2356 | #else /* NV_PRESERVES_UV */ |
c2988b20 NC |
2357 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) |
2358 | == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) { | |
af359546 | 2359 | /* The IV/UV slot will have been set from value returned by |
c2988b20 NC |
2360 | grok_number above. The NV slot has just been set using |
2361 | Atof. */ | |
560b0c46 | 2362 | SvNOK_on(sv); |
c2988b20 NC |
2363 | assert (SvIOKp(sv)); |
2364 | } else { | |
2365 | if (((UV)1 << NV_PRESERVES_UV_BITS) > | |
2366 | U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) { | |
2367 | /* Small enough to preserve all bits. */ | |
2368 | (void)SvIOKp_on(sv); | |
2369 | SvNOK_on(sv); | |
45977657 | 2370 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2371 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) |
c2988b20 NC |
2372 | SvIOK_on(sv); |
2373 | /* Assumption: first non-preserved integer is < IV_MAX, | |
2374 | this NV is in the preserved range, therefore: */ | |
2375 | if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv)) | |
2376 | < (UV)IV_MAX)) { | |
32fdb065 | 2377 | Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX); |
c2988b20 NC |
2378 | } |
2379 | } else { | |
2380 | /* IN_UV NOT_INT | |
2381 | 0 0 already failed to read UV. | |
2382 | 0 1 already failed to read UV. | |
2383 | 1 0 you won't get here in this case. IV/UV | |
2384 | slot set, public IOK, Atof() unneeded. | |
2385 | 1 1 already read UV. | |
2386 | so there's no point in sv_2iuv_non_preserve() attempting | |
2387 | to use atol, strtol, strtoul etc. */ | |
47031da6 | 2388 | # ifdef DEBUGGING |
40a17c4c | 2389 | sv_2iuv_non_preserve (sv, numtype); |
47031da6 NC |
2390 | # else |
2391 | sv_2iuv_non_preserve (sv); | |
2392 | # endif | |
c2988b20 NC |
2393 | } |
2394 | } | |
28e5dec8 | 2395 | #endif /* NV_PRESERVES_UV */ |
a43d94f2 NC |
2396 | /* It might be more code efficient to go through the entire logic above |
2397 | and conditionally set with SvIOKp_on() rather than SvIOK(), but it | |
2398 | gets complex and potentially buggy, so more programmer efficient | |
2399 | to do it this way, by turning off the public flags: */ | |
2400 | if (!numtype) | |
2401 | SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK); | |
25da4f38 | 2402 | } |
af359546 NC |
2403 | } |
2404 | else { | |
675c862f | 2405 | if (isGV_with_GP(sv)) |
159b6efe | 2406 | return glob_2number(MUTABLE_GV(sv)); |
180488f8 | 2407 | |
4f62cd62 | 2408 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
af359546 | 2409 | report_uninit(sv); |
25da4f38 IZ |
2410 | if (SvTYPE(sv) < SVt_IV) |
2411 | /* Typically the caller expects that sv_any is not NULL now. */ | |
2412 | sv_upgrade(sv, SVt_IV); | |
af359546 NC |
2413 | /* Return 0 from the caller. */ |
2414 | return TRUE; | |
2415 | } | |
2416 | return FALSE; | |
2417 | } | |
2418 | ||
2419 | /* | |
2420 | =for apidoc sv_2iv_flags | |
2421 | ||
2422 | Return the integer value of an SV, doing any necessary string | |
2423 | conversion. If flags includes SV_GMAGIC, does an mg_get() first. | |
2424 | Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros. | |
2425 | ||
2426 | =cut | |
2427 | */ | |
2428 | ||
2429 | IV | |
5aaab254 | 2430 | Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags) |
af359546 | 2431 | { |
1061065f | 2432 | PERL_ARGS_ASSERT_SV_2IV_FLAGS; |
4bac9ae4 | 2433 | |
217f6fa3 FC |
2434 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV |
2435 | && SvTYPE(sv) != SVt_PVFM); | |
2436 | ||
4bac9ae4 CS |
2437 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) |
2438 | mg_get(sv); | |
2439 | ||
2440 | if (SvROK(sv)) { | |
2441 | if (SvAMAGIC(sv)) { | |
2442 | SV * tmpstr; | |
2443 | if (flags & SV_SKIP_OVERLOAD) | |
2444 | return 0; | |
2445 | tmpstr = AMG_CALLunary(sv, numer_amg); | |
2446 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2447 | return SvIV(tmpstr); | |
2448 | } | |
2449 | } | |
2450 | return PTR2IV(SvRV(sv)); | |
2451 | } | |
2452 | ||
8d919b0a | 2453 | if (SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d NC |
2454 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
2455 | the same flag bit as SVf_IVisUV, so must not let them cache IVs. | |
2456 | In practice they are extremely unlikely to actually get anywhere | |
2457 | accessible by user Perl code - the only way that I'm aware of is when | |
2458 | a constant subroutine which is used as the second argument to index. | |
cd84013a FC |
2459 | |
2460 | Regexps have no SvIVX and SvNVX fields. | |
2b2b6d6d | 2461 | */ |
8d919b0a | 2462 | assert(isREGEXP(sv) || SvPOKp(sv)); |
e20b6c3b | 2463 | { |
71c558c3 | 2464 | UV value; |
8d919b0a FC |
2465 | const char * const ptr = |
2466 | isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv); | |
e91de695 JH |
2467 | const int numtype |
2468 | = grok_number(ptr, SvCUR(sv), &value); | |
71c558c3 NC |
2469 | |
2470 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2471 | == IS_NUMBER_IN_UV) { | |
2472 | /* It's definitely an integer */ | |
2473 | if (numtype & IS_NUMBER_NEG) { | |
2474 | if (value < (UV)IV_MIN) | |
2475 | return -(IV)value; | |
2476 | } else { | |
2477 | if (value < (UV)IV_MAX) | |
2478 | return (IV)value; | |
2479 | } | |
2480 | } | |
058b8ae2 | 2481 | |
e91de695 JH |
2482 | /* Quite wrong but no good choices. */ |
2483 | if ((numtype & IS_NUMBER_INFINITY)) { | |
2484 | return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX; | |
2485 | } else if ((numtype & IS_NUMBER_NAN)) { | |
2486 | return 0; /* So wrong. */ | |
2487 | } | |
2488 | ||
71c558c3 NC |
2489 | if (!numtype) { |
2490 | if (ckWARN(WARN_NUMERIC)) | |
2491 | not_a_number(sv); | |
2492 | } | |
8d919b0a | 2493 | return I_V(Atof(ptr)); |
e20b6c3b | 2494 | } |
4bac9ae4 CS |
2495 | } |
2496 | ||
2497 | if (SvTHINKFIRST(sv)) { | |
af359546 NC |
2498 | if (SvREADONLY(sv) && !SvOK(sv)) { |
2499 | if (ckWARN(WARN_UNINITIALIZED)) | |
2500 | report_uninit(sv); | |
2501 | return 0; | |
2502 | } | |
2503 | } | |
4bac9ae4 | 2504 | |
af359546 NC |
2505 | if (!SvIOKp(sv)) { |
2506 | if (S_sv_2iuv_common(aTHX_ sv)) | |
2507 | return 0; | |
79072805 | 2508 | } |
4bac9ae4 | 2509 | |
1d7c1841 GS |
2510 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n", |
2511 | PTR2UV(sv),SvIVX(sv))); | |
25da4f38 | 2512 | return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv); |
79072805 LW |
2513 | } |
2514 | ||
645c22ef | 2515 | /* |
891f9566 | 2516 | =for apidoc sv_2uv_flags |
645c22ef DM |
2517 | |
2518 | Return the unsigned integer value of an SV, doing any necessary string | |
891f9566 YST |
2519 | conversion. If flags includes SV_GMAGIC, does an mg_get() first. |
2520 | Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros. | |
645c22ef DM |
2521 | |
2522 | =cut | |
2523 | */ | |
2524 | ||
ff68c719 | 2525 | UV |
5aaab254 | 2526 | Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags) |
ff68c719 | 2527 | { |
1061065f | 2528 | PERL_ARGS_ASSERT_SV_2UV_FLAGS; |
4bac9ae4 CS |
2529 | |
2530 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) | |
2531 | mg_get(sv); | |
2532 | ||
2533 | if (SvROK(sv)) { | |
2534 | if (SvAMAGIC(sv)) { | |
2535 | SV *tmpstr; | |
2536 | if (flags & SV_SKIP_OVERLOAD) | |
2537 | return 0; | |
2538 | tmpstr = AMG_CALLunary(sv, numer_amg); | |
2539 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2540 | return SvUV(tmpstr); | |
2541 | } | |
2542 | } | |
2543 | return PTR2UV(SvRV(sv)); | |
2544 | } | |
2545 | ||
8d919b0a | 2546 | if (SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d | 2547 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
cd84013a FC |
2548 | the same flag bit as SVf_IVisUV, so must not let them cache IVs. |
2549 | Regexps have no SvIVX and SvNVX fields. */ | |
8d919b0a | 2550 | assert(isREGEXP(sv) || SvPOKp(sv)); |
e20b6c3b | 2551 | { |
71c558c3 | 2552 | UV value; |
8d919b0a FC |
2553 | const char * const ptr = |
2554 | isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv); | |
e91de695 JH |
2555 | const int numtype |
2556 | = grok_number(ptr, SvCUR(sv), &value); | |
71c558c3 NC |
2557 | |
2558 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2559 | == IS_NUMBER_IN_UV) { | |
2560 | /* It's definitely an integer */ | |
2561 | if (!(numtype & IS_NUMBER_NEG)) | |
2562 | return value; | |
2563 | } | |
058b8ae2 | 2564 | |
e91de695 JH |
2565 | /* Quite wrong but no good choices. */ |
2566 | if ((numtype & IS_NUMBER_INFINITY)) { | |
2567 | return UV_MAX; /* So wrong. */ | |
2568 | } else if ((numtype & IS_NUMBER_NAN)) { | |
2569 | return 0; /* So wrong. */ | |
2570 | } | |
2571 | ||
71c558c3 NC |
2572 | if (!numtype) { |
2573 | if (ckWARN(WARN_NUMERIC)) | |
2574 | not_a_number(sv); | |
2575 | } | |
8d919b0a | 2576 | return U_V(Atof(ptr)); |
e20b6c3b | 2577 | } |
4bac9ae4 CS |
2578 | } |
2579 | ||
2580 | if (SvTHINKFIRST(sv)) { | |
0336b60e | 2581 | if (SvREADONLY(sv) && !SvOK(sv)) { |
0336b60e | 2582 | if (ckWARN(WARN_UNINITIALIZED)) |
29489e7c | 2583 | report_uninit(sv); |
ff68c719 PP |
2584 | return 0; |
2585 | } | |
2586 | } | |
4bac9ae4 | 2587 | |
af359546 NC |
2588 | if (!SvIOKp(sv)) { |
2589 | if (S_sv_2iuv_common(aTHX_ sv)) | |
2590 | return 0; | |
ff68c719 | 2591 | } |
25da4f38 | 2592 | |
1d7c1841 GS |
2593 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n", |
2594 | PTR2UV(sv),SvUVX(sv))); | |
25da4f38 | 2595 | return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv); |
ff68c719 PP |
2596 | } |
2597 | ||
645c22ef | 2598 | /* |
196007d1 | 2599 | =for apidoc sv_2nv_flags |
645c22ef DM |
2600 | |
2601 | Return the num value of an SV, doing any necessary string or integer | |
fde67290 | 2602 | conversion. If flags includes SV_GMAGIC, does an mg_get() first. |
39d5de13 | 2603 | Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros. |
645c22ef DM |
2604 | |
2605 | =cut | |
2606 | */ | |
2607 | ||
65202027 | 2608 | NV |
5aaab254 | 2609 | Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags) |
79072805 | 2610 | { |
1061065f DD |
2611 | PERL_ARGS_ASSERT_SV_2NV_FLAGS; |
2612 | ||
217f6fa3 FC |
2613 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV |
2614 | && SvTYPE(sv) != SVt_PVFM); | |
8d919b0a | 2615 | if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d | 2616 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
cd84013a FC |
2617 | the same flag bit as SVf_IVisUV, so must not let them cache NVs. |
2618 | Regexps have no SvIVX and SvNVX fields. */ | |
8d919b0a | 2619 | const char *ptr; |
39d5de13 DM |
2620 | if (flags & SV_GMAGIC) |
2621 | mg_get(sv); | |
463ee0b2 LW |
2622 | if (SvNOKp(sv)) |
2623 | return SvNVX(sv); | |
cd84013a | 2624 | if (SvPOKp(sv) && !SvIOKp(sv)) { |
8d919b0a FC |
2625 | ptr = SvPVX_const(sv); |
2626 | grokpv: | |
041457d9 | 2627 | if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) && |
8d919b0a | 2628 | !grok_number(ptr, SvCUR(sv), NULL)) |
a0d0e21e | 2629 | not_a_number(sv); |
8d919b0a | 2630 | return Atof(ptr); |
a0d0e21e | 2631 | } |
25da4f38 | 2632 | if (SvIOKp(sv)) { |
1c846c1f | 2633 | if (SvIsUV(sv)) |
65202027 | 2634 | return (NV)SvUVX(sv); |
25da4f38 | 2635 | else |
65202027 | 2636 | return (NV)SvIVX(sv); |
47a72cb8 NC |
2637 | } |
2638 | if (SvROK(sv)) { | |
2639 | goto return_rok; | |
2640 | } | |
8d919b0a FC |
2641 | if (isREGEXP(sv)) { |
2642 | ptr = RX_WRAPPED((REGEXP *)sv); | |
2643 | goto grokpv; | |
2644 | } | |
47a72cb8 NC |
2645 | assert(SvTYPE(sv) >= SVt_PVMG); |
2646 | /* This falls through to the report_uninit near the end of the | |
2647 | function. */ | |
2648 | } else if (SvTHINKFIRST(sv)) { | |
a0d0e21e | 2649 | if (SvROK(sv)) { |
47a72cb8 | 2650 | return_rok: |
deb46114 | 2651 | if (SvAMAGIC(sv)) { |
aee036bb DM |
2652 | SV *tmpstr; |
2653 | if (flags & SV_SKIP_OVERLOAD) | |
2654 | return 0; | |
31d632c3 | 2655 | tmpstr = AMG_CALLunary(sv, numer_amg); |
deb46114 NC |
2656 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { |
2657 | return SvNV(tmpstr); | |
2658 | } | |
2659 | } | |
2660 | return PTR2NV(SvRV(sv)); | |
a0d0e21e | 2661 | } |
0336b60e | 2662 | if (SvREADONLY(sv) && !SvOK(sv)) { |
599cee73 | 2663 | if (ckWARN(WARN_UNINITIALIZED)) |
29489e7c | 2664 | report_uninit(sv); |
ed6116ce LW |
2665 | return 0.0; |
2666 | } | |
79072805 LW |
2667 | } |
2668 | if (SvTYPE(sv) < SVt_NV) { | |
7e25a7e9 NC |
2669 | /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */ |
2670 | sv_upgrade(sv, SVt_NV); | |
097ee67d | 2671 | DEBUG_c({ |
f93f4e46 | 2672 | STORE_NUMERIC_LOCAL_SET_STANDARD(); |
1d7c1841 | 2673 | PerlIO_printf(Perl_debug_log, |
88cb8500 | 2674 | "0x%"UVxf" num(%" NVgf ")\n", |
1d7c1841 | 2675 | PTR2UV(sv), SvNVX(sv)); |
097ee67d JH |
2676 | RESTORE_NUMERIC_LOCAL(); |
2677 | }); | |
79072805 LW |
2678 | } |
2679 | else if (SvTYPE(sv) < SVt_PVNV) | |
2680 | sv_upgrade(sv, SVt_PVNV); | |
59d8ce62 NC |
2681 | if (SvNOKp(sv)) { |
2682 | return SvNVX(sv); | |
61604483 | 2683 | } |
59d8ce62 | 2684 | if (SvIOKp(sv)) { |
9d6ce603 | 2685 | SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv)); |
28e5dec8 | 2686 | #ifdef NV_PRESERVES_UV |
a43d94f2 NC |
2687 | if (SvIOK(sv)) |
2688 | SvNOK_on(sv); | |
2689 | else | |
2690 | SvNOKp_on(sv); | |
28e5dec8 JH |
2691 | #else |
2692 | /* Only set the public NV OK flag if this NV preserves the IV */ | |
2693 | /* Check it's not 0xFFFFFFFFFFFFFFFF */ | |
a43d94f2 NC |
2694 | if (SvIOK(sv) && |
2695 | SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv)))) | |
28e5dec8 JH |
2696 | : (SvIVX(sv) == I_V(SvNVX(sv)))) |
2697 | SvNOK_on(sv); | |
2698 | else | |
2699 | SvNOKp_on(sv); | |
2700 | #endif | |
93a17b20 | 2701 | } |
cd84013a | 2702 | else if (SvPOKp(sv)) { |
c2988b20 | 2703 | UV value; |
3823048b | 2704 | const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value); |
041457d9 | 2705 | if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC)) |
a0d0e21e | 2706 | not_a_number(sv); |
28e5dec8 | 2707 | #ifdef NV_PRESERVES_UV |
c2988b20 NC |
2708 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) |
2709 | == IS_NUMBER_IN_UV) { | |
5e045b90 | 2710 | /* It's definitely an integer */ |
9d6ce603 | 2711 | SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value); |
66d83377 | 2712 | } else { |
3823048b | 2713 | S_sv_setnv(aTHX_ sv, numtype); |
66d83377 | 2714 | } |
a43d94f2 NC |
2715 | if (numtype) |
2716 | SvNOK_on(sv); | |
2717 | else | |
2718 | SvNOKp_on(sv); | |
28e5dec8 | 2719 | #else |
e91de695 JH |
2720 | SvNV_set(sv, Atof(SvPVX_const(sv))); |
2721 | /* Only set the public NV OK flag if this NV preserves the value in | |
2722 | the PV at least as well as an IV/UV would. | |
2723 | Not sure how to do this 100% reliably. */ | |
2724 | /* if that shift count is out of range then Configure's test is | |
2725 | wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS == | |
2726 | UV_BITS */ | |
2727 | if (((UV)1 << NV_PRESERVES_UV_BITS) > | |
2728 | U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) { | |
2729 | SvNOK_on(sv); /* Definitely small enough to preserve all bits */ | |
2730 | } else if (!(numtype & IS_NUMBER_IN_UV)) { | |
2731 | /* Can't use strtol etc to convert this string, so don't try. | |
2732 | sv_2iv and sv_2uv will use the NV to convert, not the PV. */ | |
c2988b20 NC |
2733 | SvNOK_on(sv); |
2734 | } else { | |
e91de695 | 2735 | /* value has been set. It may not be precise. */ |
53e2bfb7 | 2736 | if ((numtype & IS_NUMBER_NEG) && (value >= (UV)IV_MIN)) { |
e91de695 JH |
2737 | /* 2s complement assumption for (UV)IV_MIN */ |
2738 | SvNOK_on(sv); /* Integer is too negative. */ | |
c2988b20 | 2739 | } else { |
e91de695 JH |
2740 | SvNOKp_on(sv); |
2741 | SvIOKp_on(sv); | |
6fa402ec | 2742 | |
e91de695 | 2743 | if (numtype & IS_NUMBER_NEG) { |
02b08bbc DM |
2744 | /* -IV_MIN is undefined, but we should never reach |
2745 | * this point with both IS_NUMBER_NEG and value == | |
2746 | * (UV)IV_MIN */ | |
2747 | assert(value != (UV)IV_MIN); | |
e91de695 JH |
2748 | SvIV_set(sv, -(IV)value); |
2749 | } else if (value <= (UV)IV_MAX) { | |
2750 | SvIV_set(sv, (IV)value); | |
2751 | } else { | |
2752 | SvUV_set(sv, value); | |
2753 | SvIsUV_on(sv); | |
2754 | } | |
c2988b20 | 2755 | |
e91de695 JH |
2756 | if (numtype & IS_NUMBER_NOT_INT) { |
2757 | /* I believe that even if the original PV had decimals, | |
2758 | they are lost beyond the limit of the FP precision. | |
2759 | However, neither is canonical, so both only get p | |
2760 | flags. NWC, 2000/11/25 */ | |
2761 | /* Both already have p flags, so do nothing */ | |
2762 | } else { | |
2763 | const NV nv = SvNVX(sv); | |
2764 | /* XXX should this spot have NAN_COMPARE_BROKEN, too? */ | |
2765 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { | |
2766 | if (SvIVX(sv) == I_V(nv)) { | |
2767 | SvNOK_on(sv); | |
2768 | } else { | |
2769 | /* It had no "." so it must be integer. */ | |
2770 | } | |
2771 | SvIOK_on(sv); | |
0f83c5a4 | 2772 | } else { |
e91de695 JH |
2773 | /* between IV_MAX and NV(UV_MAX). |
2774 | Could be slightly > UV_MAX */ | |
2775 | ||
2776 | if (numtype & IS_NUMBER_NOT_INT) { | |
2777 | /* UV and NV both imprecise. */ | |
0f83c5a4 | 2778 | } else { |
e91de695 JH |
2779 | const UV nv_as_uv = U_V(nv); |
2780 | ||
2781 | if (value == nv_as_uv && SvUVX(sv) != UV_MAX) { | |
2782 | SvNOK_on(sv); | |
c2988b20 | 2783 | } |
e91de695 | 2784 | SvIOK_on(sv); |
c2988b20 NC |
2785 | } |
2786 | } | |
2787 | } | |
2788 | } | |
0f83c5a4 | 2789 | } |
e91de695 JH |
2790 | /* It might be more code efficient to go through the entire logic above |
2791 | and conditionally set with SvNOKp_on() rather than SvNOK(), but it | |
2792 | gets complex and potentially buggy, so more programmer efficient | |
2793 | to do it this way, by turning off the public flags: */ | |
2794 | if (!numtype) | |
2795 | SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK); | |
28e5dec8 | 2796 | #endif /* NV_PRESERVES_UV */ |
93a17b20 | 2797 | } |
79072805 | 2798 | else { |
e91de695 JH |
2799 | if (isGV_with_GP(sv)) { |
2800 | glob_2number(MUTABLE_GV(sv)); | |
2801 | return 0.0; | |
2802 | } | |
180488f8 | 2803 | |
e91de695 JH |
2804 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
2805 | report_uninit(sv); | |
2806 | assert (SvTYPE(sv) >= SVt_NV); | |
2807 | /* Typically the caller expects that sv_any is not NULL now. */ | |
2808 | /* XXX Ilya implies that this is a bug in callers that assume this | |
2809 | and ideally should be fixed. */ | |
2810 | return 0.0; | |
79072805 | 2811 | } |
097ee67d | 2812 | DEBUG_c({ |
e91de695 JH |
2813 | STORE_NUMERIC_LOCAL_SET_STANDARD(); |
2814 | PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n", | |
2815 | PTR2UV(sv), SvNVX(sv)); | |
2816 | RESTORE_NUMERIC_LOCAL(); | |
2817 | }); | |
463ee0b2 | 2818 | return SvNVX(sv); |
79072805 LW |
2819 | } |
2820 | ||
800401ee JH |
2821 | /* |
2822 | =for apidoc sv_2num | |
2823 | ||
2824 | Return an SV with the numeric value of the source SV, doing any necessary | |
d024d1a7 FC |
2825 | reference or overload conversion. The caller is expected to have handled |
2826 | get-magic already. | |
800401ee JH |
2827 | |
2828 | =cut | |
2829 | */ | |
2830 | ||
2831 | SV * | |
5aaab254 | 2832 | Perl_sv_2num(pTHX_ SV *const sv) |
800401ee | 2833 | { |
7918f24d NC |
2834 | PERL_ARGS_ASSERT_SV_2NUM; |
2835 | ||
b9ee0594 RGS |
2836 | if (!SvROK(sv)) |
2837 | return sv; | |
800401ee | 2838 | if (SvAMAGIC(sv)) { |
31d632c3 | 2839 | SV * const tmpsv = AMG_CALLunary(sv, numer_amg); |
a02ec77a | 2840 | TAINT_IF(tmpsv && SvTAINTED(tmpsv)); |
800401ee JH |
2841 | if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) |
2842 | return sv_2num(tmpsv); | |
2843 | } | |
2844 | return sv_2mortal(newSVuv(PTR2UV(SvRV(sv)))); | |
2845 | } | |
2846 | ||
645c22ef DM |
2847 | /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or |
2848 | * UV as a string towards the end of buf, and return pointers to start and | |
2849 | * end of it. | |
2850 | * | |
2851 | * We assume that buf is at least TYPE_CHARS(UV) long. | |
2852 | */ | |
2853 | ||
864dbfa3 | 2854 | static char * |
5de3775c | 2855 | S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob) |
25da4f38 | 2856 | { |
25da4f38 | 2857 | char *ptr = buf + TYPE_CHARS(UV); |
823a54a3 | 2858 | char * const ebuf = ptr; |
25da4f38 | 2859 | int sign; |
25da4f38 | 2860 | |
7918f24d NC |
2861 | PERL_ARGS_ASSERT_UIV_2BUF; |
2862 | ||
25da4f38 IZ |
2863 | if (is_uv) |
2864 | sign = 0; | |
2865 | else if (iv >= 0) { | |
2866 | uv = iv; | |
2867 | sign = 0; | |
2868 | } else { | |
53e2bfb7 | 2869 | uv = (iv == IV_MIN) ? (UV)iv : (UV)(-iv); |
25da4f38 IZ |
2870 | sign = 1; |
2871 | } | |
2872 | do { | |
eb160463 | 2873 | *--ptr = '0' + (char)(uv % 10); |
25da4f38 IZ |
2874 | } while (uv /= 10); |
2875 | if (sign) | |
2876 | *--ptr = '-'; | |
2877 | *peob = ebuf; | |
2878 | return ptr; | |
2879 | } | |
2880 | ||
bfaa02d5 JH |
2881 | /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an |
2882 | * infinity or a not-a-number, writes the appropriate strings to the | |
2883 | * buffer, including a zero byte. On success returns the written length, | |
3bde2d43 JH |
2884 | * excluding the zero byte, on failure (not an infinity, not a nan) |
2885 | * returns zero, assert-fails on maxlen being too short. | |
3823048b JH |
2886 | * |
2887 | * XXX for "Inf", "-Inf", and "NaN", we could have three read-only | |
2888 | * shared string constants we point to, instead of generating a new | |
2889 | * string for each instance. */ | |
bfaa02d5 | 2890 | STATIC size_t |
3823048b | 2891 | S_infnan_2pv(NV nv, char* buffer, size_t maxlen, char plus) { |
3bde2d43 | 2892 | char* s = buffer; |
bfaa02d5 | 2893 | assert(maxlen >= 4); |
3bde2d43 JH |
2894 | if (Perl_isinf(nv)) { |
2895 | if (nv < 0) { | |
2896 | if (maxlen < 5) /* "-Inf\0" */ | |
2897 | return 0; | |
2898 | *s++ = '-'; | |
2899 | } else if (plus) { | |
2900 | *s++ = '+'; | |
6e915616 | 2901 | } |
3bde2d43 JH |
2902 | *s++ = 'I'; |
2903 | *s++ = 'n'; | |
2904 | *s++ = 'f'; | |
2905 | } | |
2906 | else if (Perl_isnan(nv)) { | |
2907 | *s++ = 'N'; | |
2908 | *s++ = 'a'; | |
2909 | *s++ = 'N'; | |
2910 | /* XXX optionally output the payload mantissa bits as | |
2911 | * "(unsigned)" (to match the nan("...") C99 function, | |
2912 | * or maybe as "(0xhhh...)" would make more sense... | |
2913 | * provide a format string so that the user can decide? | |
2914 | * NOTE: would affect the maxlen and assert() logic.*/ | |
2915 | } | |
2916 | else { | |
2917 | return 0; | |
bfaa02d5 | 2918 | } |
3bde2d43 JH |
2919 | assert((s == buffer + 3) || (s == buffer + 4)); |
2920 | *s++ = 0; | |
2921 | return s - buffer - 1; /* -1: excluding the zero byte */ | |
bfaa02d5 JH |
2922 | } |
2923 | ||
2924 | /* | |
2925 | =for apidoc sv_2pv_flags | |
2926 | ||
2927 | Returns a pointer to the string value of an SV, and sets *lp to its length. | |
2928 | If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a | |
2929 | string if necessary. Normally invoked via the C<SvPV_flags> macro. | |
2930 | C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too. | |
2931 | ||
2932 | =cut | |
2933 | */ | |
2934 | ||
2935 | char * | |
2936 | Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags) | |
2937 | { | |
2938 | char *s; | |
2939 | ||
2940 | PERL_ARGS_ASSERT_SV_2PV_FLAGS; | |
2941 | ||
2942 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV | |
2943 | && SvTYPE(sv) != SVt_PVFM); | |
2944 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) | |
2945 | mg_get(sv); | |
2946 | if (SvROK(sv)) { | |
2947 | if (SvAMAGIC(sv)) { | |
2948 | SV *tmpstr; | |
2949 | if (flags & SV_SKIP_OVERLOAD) | |
2950 | return NULL; | |
2951 | tmpstr = AMG_CALLunary(sv, string_amg); | |
2952 | TAINT_IF(tmpstr && SvTAINTED(tmpstr)); | |
2953 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2954 | /* Unwrap this: */ | |
2955 | /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr); | |
2956 | */ | |
2957 | ||
2958 | char *pv; | |
2959 | if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) { | |
2960 | if (flags & SV_CONST_RETURN) { | |
2961 | pv = (char *) SvPVX_const(tmpstr); | |
2962 | } else { | |
2963 | pv = (flags & SV_MUTABLE_RETURN) | |
2964 | ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr); | |
2965 | } | |
2966 | if (lp) | |
2967 | *lp = SvCUR(tmpstr); | |
2968 | } else { | |
2969 | pv = sv_2pv_flags(tmpstr, lp, flags); | |
2970 | } | |
2971 | if (SvUTF8(tmpstr)) | |
2972 | SvUTF8_on(sv); | |
2973 | else | |
2974 | SvUTF8_off(sv); | |
2975 | return pv; | |
2976 | } | |
2977 | } | |
2978 | { | |
2979 | STRLEN len; | |
2980 | char *retval; | |
2981 | char *buffer; | |
2982 | SV *const referent = SvRV(sv); | |
2983 | ||
2984 | if (!referent) { | |
2985 | len = 7; | |
2986 | retval = buffer = savepvn("NULLREF", len); | |
2987 | } else if (SvTYPE(referent) == SVt_REGEXP && | |
2988 | (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) || | |
2989 | amagic_is_enabled(string_amg))) { | |
2990 | REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent); | |
2991 | ||
2992 | assert(re); | |
2993 | ||
2994 | /* If the regex is UTF-8 we want the containing scalar to | |
2995 | have an UTF-8 flag too */ | |
2996 | if (RX_UTF8(re)) | |
2997 | SvUTF8_on(sv); | |
2998 | else | |
2999 | SvUTF8_off(sv); | |
3000 | ||
3001 | if (lp) | |
3002 | *lp = RX_WRAPLEN(re); | |
3003 | ||
3004 | return RX_WRAPPED(re); | |
3005 | } else { | |
3006 | const char *const typestr = sv_reftype(referent, 0); | |
3007 | const STRLEN typelen = strlen(typestr); | |
3008 | UV addr = PTR2UV(referent); | |
3009 | const char *stashname = NULL; | |
3010 | STRLEN stashnamelen = 0; /* hush, gcc */ | |
3011 | const char *buffer_end; | |
3012 | ||
3013 | if (SvOBJECT(referent)) { | |
3014 | const HEK *const name = HvNAME_HEK(SvSTASH(referent)); | |
3015 | ||
3016 | if (name) { | |
3017 | stashname = HEK_KEY(name); | |
3018 | stashnamelen = HEK_LEN(name); | |
3019 | ||
3020 | if (HEK_UTF8(name)) { | |
3021 | SvUTF8_on(sv); | |
3022 | } else { | |
3023 | SvUTF8_off(sv); | |
3024 | } | |
3025 | } else { | |
3026 | stashname = "__ANON__"; | |
3027 | stashnamelen = 8; | |
3028 | } | |
3029 | len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */ | |
3030 | + 2 * sizeof(UV) + 2 /* )\0 */; | |
3031 | } else { | |
3032 | len = typelen + 3 /* (0x */ | |
3033 | + 2 * sizeof(UV) + 2 /* )\0 */; | |
3034 | } | |
fafee734 | 3035 | |
4bac9ae4 CS |
3036 | Newx(buffer, len, char); |
3037 | buffer_end = retval = buffer + len; | |
3038 | ||
3039 | /* Working backwards */ | |
3040 | *--retval = '\0'; | |
3041 | *--retval = ')'; | |
3042 | do { | |
3043 | *--retval = PL_hexdigit[addr & 15]; | |
3044 | } while (addr >>= 4); | |
3045 | *--retval = 'x'; | |
3046 | *--retval = '0'; | |
3047 | *--retval = '('; | |
3048 | ||
3049 | retval -= typelen; | |
3050 | memcpy(retval, typestr, typelen); | |
3051 | ||
3052 | if (stashname) { | |
3053 | *--retval = '='; | |
3054 | retval -= stashnamelen; | |
3055 | memcpy(retval, stashname, stashnamelen); | |
c080367d | 3056 | } |
4bac9ae4 CS |
3057 | /* retval may not necessarily have reached the start of the |
3058 | buffer here. */ | |
3059 | assert (retval >= buffer); | |
3060 | ||
3061 | len = buffer_end - retval - 1; /* -1 for that \0 */ | |
463ee0b2 | 3062 | } |
cdb061a3 | 3063 | if (lp) |
4bac9ae4 CS |
3064 | *lp = len; |
3065 | SAVEFREEPV(buffer); | |
3066 | return retval; | |
79072805 | 3067 | } |
79072805 | 3068 | } |
4bac9ae4 CS |
3069 | |
3070 | if (SvPOKp(sv)) { | |
3071 | if (lp) | |
3072 | *lp = SvCUR(sv); | |
3073 | if (flags & SV_MUTABLE_RETURN) | |
3074 | return SvPVX_mutable(sv); | |
3075 | if (flags & SV_CONST_RETURN) | |
3076 | return (char *)SvPVX_const(sv); | |
3077 | return SvPVX(sv); | |
3078 | } | |
3079 | ||
3080 | if (SvIOK(sv)) { | |
28e5dec8 JH |
3081 | /* I'm assuming that if both IV and NV are equally valid then |
3082 | converting the IV is going to be more efficient */ | |
e1ec3a88 | 3083 | const U32 isUIOK = SvIsUV(sv); |
28e5dec8 JH |
3084 | char buf[TYPE_CHARS(UV)]; |
3085 | char *ebuf, *ptr; | |
97a130b8 | 3086 | STRLEN len; |
28e5dec8 JH |
3087 | |
3088 | if (SvTYPE(sv) < SVt_PVIV) | |
3089 | sv_upgrade(sv, SVt_PVIV); | |
4ea1d550 | 3090 | ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf); |
97a130b8 | 3091 | len = ebuf - ptr; |
5902b6a9 | 3092 | /* inlined from sv_setpvn */ |
97a130b8 NC |
3093 | s = SvGROW_mutable(sv, len + 1); |
3094 | Move(ptr, s, len, char); | |
3095 | s += len; | |
28e5dec8 | 3096 | *s = '\0'; |
b127e37e | 3097 | SvPOK_on(sv); |
28e5dec8 | 3098 | } |
4bac9ae4 | 3099 | else if (SvNOK(sv)) { |
79072805 LW |
3100 | if (SvTYPE(sv) < SVt_PVNV) |
3101 | sv_upgrade(sv, SVt_PVNV); | |
128eeacb DD |
3102 | if (SvNVX(sv) == 0.0 |
3103 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) | |
3104 | && !Perl_isnan(SvNVX(sv)) | |
3105 | #endif | |
3106 | ) { | |
29912d93 NC |
3107 | s = SvGROW_mutable(sv, 2); |
3108 | *s++ = '0'; | |
3109 | *s = '\0'; | |
3110 | } else { | |
5e85836e | 3111 | STRLEN len; |
fb8cdbc5 | 3112 | STRLEN size = 5; /* "-Inf\0" */ |
0c7e610f | 3113 | |
fb8cdbc5 | 3114 | s = SvGROW_mutable(sv, size); |
3823048b | 3115 | len = S_infnan_2pv(SvNVX(sv), s, size, 0); |
fb8cdbc5 | 3116 | if (len > 0) { |
0c7e610f | 3117 | s += len; |
fb8cdbc5 JH |
3118 | SvPOK_on(sv); |
3119 | } | |
0c7e610f | 3120 | else { |
0c7e610f | 3121 | /* some Xenix systems wipe out errno here */ |
fb8cdbc5 JH |
3122 | dSAVE_ERRNO; |
3123 | ||
3840bff0 JH |
3124 | size = |
3125 | 1 + /* sign */ | |
3126 | 1 + /* "." */ | |
3127 | NV_DIG + | |
3128 | 1 + /* "e" */ | |
3129 | 1 + /* sign */ | |
3130 | 5 + /* exponent digits */ | |
3131 | 1 + /* \0 */ | |
3132 | 2; /* paranoia */ | |
b127e37e | 3133 | |
fb8cdbc5 | 3134 | s = SvGROW_mutable(sv, size); |
b127e37e | 3135 | #ifndef USE_LOCALE_NUMERIC |
a4eca1d4 JH |
3136 | SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG); |
3137 | ||
0c7e610f JH |
3138 | SvPOK_on(sv); |
3139 | #else | |
28acfe03 | 3140 | { |
3840bff0 | 3141 | bool local_radix; |
67d796ae KW |
3142 | DECLARATION_FOR_LC_NUMERIC_MANIPULATION; |
3143 | STORE_LC_NUMERIC_SET_TO_NEEDED(); | |
3840bff0 JH |
3144 | |
3145 | local_radix = | |
3146 | PL_numeric_local && | |
3147 | PL_numeric_radix_sv && | |
3148 | SvUTF8(PL_numeric_radix_sv); | |
3149 | if (local_radix && SvLEN(PL_numeric_radix_sv) > 1) { | |
3150 | size += SvLEN(PL_numeric_radix_sv) - 1; | |
3151 | s = SvGROW_mutable(sv, size); | |
3152 | } | |
3153 | ||
a4eca1d4 | 3154 | SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG); |
0c7e610f JH |
3155 | |
3156 | /* If the radix character is UTF-8, and actually is in the | |
3157 | * output, turn on the UTF-8 flag for the scalar */ | |
3840bff0 JH |
3158 | if (local_radix && |
3159 | instr(s, SvPVX_const(PL_numeric_radix_sv))) { | |
3160 | SvUTF8_on(sv); | |
3161 | } | |
3162 | ||
0c7e610f | 3163 | RESTORE_LC_NUMERIC(); |
28acfe03 | 3164 | } |
68e8f474 | 3165 | |
0c7e610f JH |
3166 | /* We don't call SvPOK_on(), because it may come to |
3167 | * pass that the locale changes so that the | |
3168 | * stringification we just did is no longer correct. We | |
3169 | * will have to re-stringify every time it is needed */ | |
b127e37e | 3170 | #endif |
0c7e610f JH |
3171 | RESTORE_ERRNO; |
3172 | } | |
3173 | while (*s) s++; | |
bbce6d69 | 3174 | } |
79072805 | 3175 | } |
4bac9ae4 CS |
3176 | else if (isGV_with_GP(sv)) { |
3177 | GV *const gv = MUTABLE_GV(sv); | |
3178 | SV *const buffer = sv_newmortal(); | |
8d1c3e26 | 3179 | |
4bac9ae4 | 3180 | gv_efullname3(buffer, gv, "*"); |
180488f8 | 3181 | |
4bac9ae4 CS |
3182 | assert(SvPOK(buffer)); |
3183 | if (SvUTF8(buffer)) | |
3184 | SvUTF8_on(sv); | |
3185 | if (lp) | |
3186 | *lp = SvCUR(buffer); | |
3187 | return SvPVX(buffer); | |
3188 | } | |
8d919b0a FC |
3189 | else if (isREGEXP(sv)) { |
3190 | if (lp) *lp = RX_WRAPLEN((REGEXP *)sv); | |
3191 | return RX_WRAPPED((REGEXP *)sv); | |
3192 | } | |
4bac9ae4 | 3193 | else { |
cdb061a3 | 3194 | if (lp) |
00b6aa41 | 3195 | *lp = 0; |
9f621bb0 NC |
3196 | if (flags & SV_UNDEF_RETURNS_NULL) |
3197 | return NULL; | |
4f62cd62 | 3198 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
9f621bb0 | 3199 | report_uninit(sv); |
4bac9ae4 CS |
3200 | /* Typically the caller expects that sv_any is not NULL now. */ |
3201 | if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV) | |
25da4f38 | 3202 | sv_upgrade(sv, SVt_PV); |
73d840c0 | 3203 | return (char *)""; |
79072805 | 3204 | } |
4bac9ae4 | 3205 | |
cdb061a3 | 3206 | { |
823a54a3 | 3207 | const STRLEN len = s - SvPVX_const(sv); |
cdb061a3 NC |
3208 | if (lp) |
3209 | *lp = len; | |
3210 | SvCUR_set(sv, len); | |
3211 | } | |
1d7c1841 | 3212 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n", |
3f7c398e | 3213 | PTR2UV(sv),SvPVX_const(sv))); |
4d84ee25 NC |
3214 | if (flags & SV_CONST_RETURN) |
3215 | return (char *)SvPVX_const(sv); | |
10516c54 NC |
3216 | if (flags & SV_MUTABLE_RETURN) |
3217 | return SvPVX_mutable(sv); | |
463ee0b2 LW |
3218 | return SvPVX(sv); |
3219 | } | |
3220 | ||
645c22ef | 3221 | /* |
6050d10e JP |
3222 | =for apidoc sv_copypv |
3223 | ||
3224 | Copies a stringified representation of the source SV into the | |
3225 | destination SV. Automatically performs any necessary mg_get and | |
54f0641b | 3226 | coercion of numeric values into strings. Guaranteed to preserve |
2575c402 | 3227 | UTF8 flag even from overloaded objects. Similar in nature to |
54f0641b NIS |
3228 | sv_2pv[_flags] but operates directly on an SV instead of just the |
3229 | string. Mostly uses sv_2pv_flags to do its work, except when that | |
6050d10e JP |
3230 | would lose the UTF-8'ness of the PV. |
3231 | ||
4bac9ae4 CS |
3232 | =for apidoc sv_copypv_nomg |
3233 | ||
3234 | Like sv_copypv, but doesn't invoke get magic first. | |
3235 | ||
3236 | =for apidoc sv_copypv_flags | |
3237 | ||
3238 | Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags | |
3239 | include SV_GMAGIC. | |
3240 | ||
6050d10e JP |
3241 | =cut |
3242 | */ | |
3243 | ||
3244 | void | |
5aaab254 | 3245 | Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags) |
4bac9ae4 | 3246 | { |
446eaa42 | 3247 | STRLEN len; |
4bac9ae4 | 3248 | const char *s; |
7918f24d | 3249 | |
4bac9ae4 | 3250 | PERL_ARGS_ASSERT_SV_COPYPV_FLAGS; |
7918f24d | 3251 | |
c77ed9ca | 3252 | s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC)); |
cb50f42d | 3253 | sv_setpvn(dsv,s,len); |
446eaa42 | 3254 | if (SvUTF8(ssv)) |
cb50f42d | 3255 | SvUTF8_on(dsv); |
446eaa42 | 3256 | else |
cb50f42d | 3257 | SvUTF8_off(dsv); |
6050d10e JP |
3258 | } |
3259 | ||
3260 | /* | |
645c22ef DM |
3261 | =for apidoc sv_2pvbyte |
3262 | ||
3263 | Return a pointer to the byte-encoded representation of the SV, and set *lp | |
1e54db1a | 3264 | to its length. May cause the SV to be downgraded from UTF-8 as a |
645c22ef DM |
3265 | side-effect. |
3266 | ||
3267 | Usually accessed via the C<SvPVbyte> macro. | |
3268 | ||
3269 | =cut | |
3270 | */ | |
3271 | ||
7340a771 | 3272 | char * |
5aaab254 | 3273 | Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp) |
7340a771 | 3274 | { |
7918f24d NC |
3275 | PERL_ARGS_ASSERT_SV_2PVBYTE; |
3276 | ||
48120f8f | 3277 | SvGETMAGIC(sv); |
4499db73 FC |
3278 | if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv)) |
3279 | || isGV_with_GP(sv) || SvROK(sv)) { | |
a901b181 | 3280 | SV *sv2 = sv_newmortal(); |
48120f8f | 3281 | sv_copypv_nomg(sv2,sv); |
a901b181 FC |
3282 | sv = sv2; |
3283 | } | |
0875d2fe | 3284 | sv_utf8_downgrade(sv,0); |
71eb6d8c | 3285 | return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv); |
7340a771 GS |
3286 | } |
3287 | ||
645c22ef | 3288 | /* |
035cbb0e RGS |
3289 | =for apidoc sv_2pvutf8 |
3290 | ||
3291 | Return a pointer to the UTF-8-encoded representation of the SV, and set *lp | |
3292 | to its length. May cause the SV to be upgraded to UTF-8 as a side-effect. | |
3293 | ||
3294 | Usually accessed via the C<SvPVutf8> macro. | |
3295 | ||
3296 | =cut | |
3297 | */ | |
645c22ef | 3298 | |
7340a771 | 3299 | char * |
5aaab254 | 3300 | Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp) |
7340a771 | 3301 | { |
7918f24d NC |
3302 | PERL_ARGS_ASSERT_SV_2PVUTF8; |
3303 | ||
4499db73 FC |
3304 | if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv)) |
3305 | || isGV_with_GP(sv) || SvROK(sv)) | |
fe46cbda | 3306 | sv = sv_mortalcopy(sv); |
4bac9ae4 CS |
3307 | else |
3308 | SvGETMAGIC(sv); | |
3309 | sv_utf8_upgrade_nomg(sv); | |
c3ec315f | 3310 | return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv); |
7340a771 | 3311 | } |
1c846c1f | 3312 | |
7ee2227d | 3313 | |
645c22ef DM |
3314 | /* |
3315 | =for apidoc sv_2bool | |
3316 | ||
06c841cf FC |
3317 | This macro is only used by sv_true() or its macro equivalent, and only if |
3318 | the latter's argument is neither SvPOK, SvIOK nor SvNOK. | |
3319 | It calls sv_2bool_flags with the SV_GMAGIC flag. | |
3320 | ||
3321 | =for apidoc sv_2bool_flags | |
3322 | ||
3323 | This function is only used by sv_true() and friends, and only if | |
fde67290 | 3324 | the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags |
06c841cf FC |
3325 | contain SV_GMAGIC, then it does an mg_get() first. |
3326 | ||
645c22ef DM |
3327 | |
3328 | =cut | |
3329 | */ | |
3330 | ||
463ee0b2 | 3331 | bool |
9d176cd8 | 3332 | Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags) |
463ee0b2 | 3333 | { |
06c841cf | 3334 | PERL_ARGS_ASSERT_SV_2BOOL_FLAGS; |
7918f24d | 3335 | |
9d176cd8 | 3336 | restart: |
06c841cf | 3337 | if(flags & SV_GMAGIC) SvGETMAGIC(sv); |
463ee0b2 | 3338 | |
a0d0e21e LW |
3339 | if (!SvOK(sv)) |
3340 | return 0; | |
3341 | if (SvROK(sv)) { | |
fabdb6c0 | 3342 | if (SvAMAGIC(sv)) { |
31d632c3 | 3343 | SV * const tmpsv = AMG_CALLunary(sv, bool__amg); |
9d176cd8 DD |
3344 | if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) { |
3345 | bool svb; | |
3346 | sv = tmpsv; | |
3347 | if(SvGMAGICAL(sv)) { | |
3348 | flags = SV_GMAGIC; | |
3349 | goto restart; /* call sv_2bool */ | |
3350 | } | |
3351 | /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */ | |
3352 | else if(!SvOK(sv)) { | |
3353 | svb = 0; | |
3354 | } | |
3355 | else if(SvPOK(sv)) { | |
3356 | svb = SvPVXtrue(sv); | |
3357 | } | |
3358 | else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) { | |
3359 | svb = (SvIOK(sv) && SvIVX(sv) != 0) | |
659c4b96 | 3360 | || (SvNOK(sv) && SvNVX(sv) != 0.0); |
9d176cd8 DD |
3361 | } |
3362 | else { | |
3363 | flags = 0; | |
3364 | goto restart; /* call sv_2bool_nomg */ | |
3365 | } | |
3366 | return cBOOL(svb); | |
3367 | } | |
fabdb6c0 AL |
3368 | } |
3369 | return SvRV(sv) != 0; | |
a0d0e21e | 3370 | } |
85b7d9b3 FC |
3371 | if (isREGEXP(sv)) |
3372 | return | |
3373 | RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0'); | |
4bac9ae4 | 3374 | return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0); |
79072805 LW |
3375 | } |
3376 | ||
c461cf8f JH |
3377 | /* |
3378 | =for apidoc sv_utf8_upgrade | |
3379 | ||
78ea37eb | 3380 | Converts the PV of an SV to its UTF-8-encoded form. |
645c22ef | 3381 | Forces the SV to string form if it is not already. |
2bbc8d55 | 3382 | Will C<mg_get> on C<sv> if appropriate. |
4411f3b6 | 3383 | Always sets the SvUTF8 flag to avoid future validity checks even |
2bbc8d55 SP |
3384 | if the whole string is the same in UTF-8 as not. |
3385 | Returns the number of bytes in the converted string | |
c461cf8f | 3386 | |
0efd0472 | 3387 | This is not a general purpose byte encoding to Unicode interface: |
13a6c0e0 JH |
3388 | use the Encode extension for that. |
3389 | ||
fe749c9a KW |
3390 | =for apidoc sv_utf8_upgrade_nomg |
3391 | ||
fde67290 | 3392 | Like sv_utf8_upgrade, but doesn't do magic on C<sv>. |
fe749c9a | 3393 | |
8d6d96c1 HS |
3394 | =for apidoc sv_utf8_upgrade_flags |
3395 | ||
78ea37eb | 3396 | Converts the PV of an SV to its UTF-8-encoded form. |
645c22ef | 3397 | Forces the SV to string form if it is not already. |
8d6d96c1 | 3398 | Always sets the SvUTF8 flag to avoid future validity checks even |
960b0271 FC |
3399 | if all the bytes are invariant in UTF-8. |
3400 | If C<flags> has C<SV_GMAGIC> bit set, | |
2bbc8d55 | 3401 | will C<mg_get> on C<sv> if appropriate, else not. |
2a590426 KW |
3402 | |
3403 | If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV | |
3404 | will expand when converted to UTF-8, and skips the extra work of checking for | |
3405 | that. Typically this flag is used by a routine that has already parsed the | |
3406 | string and found such characters, and passes this information on so that the | |
3407 | work doesn't have to be repeated. | |
3408 | ||
3409 | Returns the number of bytes in the converted string. | |
8d6d96c1 | 3410 | |
0efd0472 | 3411 | This is not a general purpose byte encoding to Unicode interface: |
13a6c0e0 JH |
3412 | use the Encode extension for that. |
3413 | ||
2a590426 | 3414 | =for apidoc sv_utf8_upgrade_flags_grow |
b3ab6785 | 3415 | |
2a590426 KW |
3416 | Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is |
3417 | the number of unused bytes the string of 'sv' is guaranteed to have free after | |
3418 | it upon return. This allows the caller to reserve extra space that it intends | |
3419 | to fill, to avoid extra grows. | |
b3ab6785 | 3420 | |
2a590426 KW |
3421 | C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags> |
3422 | are implemented in terms of this function. | |
3423 | ||
3424 | Returns the number of bytes in the converted string (not including the spares). | |
3425 | ||
3426 | =cut | |
b3ab6785 KW |
3427 | |
3428 | (One might think that the calling routine could pass in the position of the | |
2a590426 KW |
3429 | first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't |
3430 | have to be found again. But that is not the case, because typically when the | |
3431 | caller is likely to use this flag, it won't be calling this routine unless it | |
3432 | finds something that won't fit into a byte. Otherwise it tries to not upgrade | |
3433 | and just use bytes. But some things that do fit into a byte are variants in | |
3434 | utf8, and the caller may not have been keeping track of these.) | |
b3ab6785 | 3435 | |
6602b933 KW |
3436 | If the routine itself changes the string, it adds a trailing C<NUL>. Such a |
3437 | C<NUL> isn't guaranteed due to having other routines do the work in some input | |
3438 | cases, or if the input is already flagged as being in utf8. | |
b3ab6785 KW |
3439 | |
3440 | The speed of this could perhaps be improved for many cases if someone wanted to | |
3441 | write a fast function that counts the number of variant characters in a string, | |
3442 | especially if it could return the position of the first one. | |
3443 | ||
8d6d96c1 HS |
3444 | */ |
3445 | ||
3446 | STRLEN | |
5aaab254 | 3447 | Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra) |
8d6d96c1 | 3448 | { |
b3ab6785 | 3449 | PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW; |
7918f24d | 3450 | |
808c356f RGS |
3451 | if (sv == &PL_sv_undef) |
3452 | return 0; | |
892f9127 | 3453 | if (!SvPOK_nog(sv)) { |
e0e62c2a | 3454 | STRLEN len = 0; |
d52b7888 NC |
3455 | if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) { |
3456 | (void) sv_2pv_flags(sv,&len, flags); | |
b3ab6785 KW |
3457 | if (SvUTF8(sv)) { |
3458 | if (extra) SvGROW(sv, SvCUR(sv) + extra); | |
d52b7888 | 3459 | return len; |
b3ab6785 | 3460 | } |
d52b7888 | 3461 | } else { |
33fb6f35 | 3462 | (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC); |
d52b7888 | 3463 | } |
e0e62c2a | 3464 | } |
4411f3b6 | 3465 | |
f5cee72b | 3466 | if (SvUTF8(sv)) { |
b3ab6785 | 3467 | if (extra) SvGROW(sv, SvCUR(sv) + extra); |
5fec3b1d | 3468 | return SvCUR(sv); |
f5cee72b | 3469 | } |
5fec3b1d | 3470 | |
765f542d | 3471 | if (SvIsCOW(sv)) { |
c56ed9f6 | 3472 | S_sv_uncow(aTHX_ sv, 0); |
db42d148 NIS |
3473 | } |
3474 | ||
47e13f24 | 3475 | if (IN_ENCODING && !(flags & SV_UTF8_NO_ENCODING)) { |
ad2de1b2 | 3476 | sv_recode_to_utf8(sv, _get_encoding()); |
b3ab6785 KW |
3477 | if (extra) SvGROW(sv, SvCUR(sv) + extra); |
3478 | return SvCUR(sv); | |
3479 | } | |
3480 | ||
4e93345f KW |
3481 | if (SvCUR(sv) == 0) { |
3482 | if (extra) SvGROW(sv, extra); | |
3483 | } else { /* Assume Latin-1/EBCDIC */ | |
c4e7c712 | 3484 | /* This function could be much more efficient if we |
2bbc8d55 | 3485 | * had a FLAG in SVs to signal if there are any variant |
c4e7c712 | 3486 | * chars in the PV. Given that there isn't such a flag |
b3ab6785 KW |
3487 | * make the loop as fast as possible (although there are certainly ways |
3488 | * to speed this up, eg. through vectorization) */ | |
3489 | U8 * s = (U8 *) SvPVX_const(sv); | |
3490 | U8 * e = (U8 *) SvEND(sv); | |
3491 | U8 *t = s; | |
3492 | STRLEN two_byte_count = 0; | |
c4e7c712 | 3493 | |
b3ab6785 KW |
3494 | if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8; |
3495 | ||
3496 | /* See if really will need to convert to utf8. We mustn't rely on our | |
3497 | * incoming SV being well formed and having a trailing '\0', as certain | |
3498 | * code in pp_formline can send us partially built SVs. */ | |
3499 | ||
c4e7c712 | 3500 | while (t < e) { |
53c1dcc0 | 3501 | const U8 ch = *t++; |
6f2d5cbc | 3502 | if (NATIVE_BYTE_IS_INVARIANT(ch)) continue; |
b3ab6785 KW |
3503 | |
3504 | t--; /* t already incremented; re-point to first variant */ | |
3505 | two_byte_count = 1; | |
3506 | goto must_be_utf8; | |
c4e7c712 | 3507 | } |
b3ab6785 KW |
3508 | |
3509 | /* utf8 conversion not needed because all are invariants. Mark as | |
3510 | * UTF-8 even if no variant - saves scanning loop */ | |
c4e7c712 | 3511 | SvUTF8_on(sv); |
7f0bfbea | 3512 | if (extra) SvGROW(sv, SvCUR(sv) + extra); |
b3ab6785 KW |
3513 | return SvCUR(sv); |
3514 | ||
7b52d656 | 3515 | must_be_utf8: |
b3ab6785 KW |
3516 | |
3517 | /* Here, the string should be converted to utf8, either because of an | |
3518 | * input flag (two_byte_count = 0), or because a character that | |
3519 | * requires 2 bytes was found (two_byte_count = 1). t points either to | |
3520 | * the beginning of the string (if we didn't examine anything), or to | |
3521 | * the first variant. In either case, everything from s to t - 1 will | |
3522 | * occupy only 1 byte each on output. | |
3523 | * | |
3524 | * There are two main ways to convert. One is to create a new string | |
3525 | * and go through the input starting from the beginning, appending each | |
3526 | * converted value onto the new string as we go along. It's probably | |
3527 | * best to allocate enough space in the string for the worst possible | |
3528 | * case rather than possibly running out of space and having to | |
3529 | * reallocate and then copy what we've done so far. Since everything | |
3530 | * from s to t - 1 is invariant, the destination can be initialized | |
3531 | * with these using a fast memory copy | |
3532 | * | |
3533 | * The other way is to figure out exactly how big the string should be | |
3534 | * by parsing the entire input. Then you don't have to make it big | |
3535 | * enough to handle the worst possible case, and more importantly, if | |
3536 | * the string you already have is large enough, you don't have to | |
3537 | * allocate a new string, you can copy the last character in the input | |
3538 | * string to the final position(s) that will be occupied by the | |
3539 | * converted string and go backwards, stopping at t, since everything | |
3540 | * before that is invariant. | |
3541 | * | |
3542 | * There are advantages and disadvantages to each method. | |
3543 | * | |
3544 | * In the first method, we can allocate a new string, do the memory | |
3545 | * copy from the s to t - 1, and then proceed through the rest of the | |
3546 | * string byte-by-byte. | |
3547 | * | |
3548 | * In the second method, we proceed through the rest of the input | |
3549 | * string just calculating how big the converted string will be. Then | |
3550 | * there are two cases: | |
3551 | * 1) if the string has enough extra space to handle the converted | |
3552 | * value. We go backwards through the string, converting until we | |
3553 | * get to the position we are at now, and then stop. If this | |
3554 | * position is far enough along in the string, this method is | |
3555 | * faster than the other method. If the memory copy were the same | |
3556 | * speed as the byte-by-byte loop, that position would be about | |
3557 | * half-way, as at the half-way mark, parsing to the end and back | |
3558 | * is one complete string's parse, the same amount as starting | |
3559 | * over and going all the way through. Actually, it would be | |
3560 | * somewhat less than half-way, as it's faster to just count bytes | |
3561 | * than to also copy, and we don't have the overhead of allocating | |
3562 | * a new string, changing the scalar to use it, and freeing the | |
3563 | * existing one. But if the memory copy is fast, the break-even | |
3564 | * point is somewhere after half way. The counting loop could be | |
3565 | * sped up by vectorization, etc, to move the break-even point | |
3566 | * further towards the beginning. | |
3567 | * 2) if the string doesn't have enough space to handle the converted | |
3568 | * value. A new string will have to be allocated, and one might | |
3569 | * as well, given that, start from the beginning doing the first | |
3570 | * method. We've spent extra time parsing the string and in | |
3571 | * exchange all we've gotten is that we know precisely how big to | |
3572 | * make the new one. Perl is more optimized for time than space, | |
3573 | * so this case is a loser. | |
3574 | * So what I've decided to do is not use the 2nd method unless it is | |
3575 | * guaranteed that a new string won't have to be allocated, assuming | |
3576 | * the worst case. I also decided not to put any more conditions on it | |
3577 | * than this, for now. It seems likely that, since the worst case is | |
3578 | * twice as big as the unknown portion of the string (plus 1), we won't | |
3579 | * be guaranteed enough space, causing us to go to the first method, | |
3580 | * unless the string is short, or the first variant character is near | |
3581 | * the end of it. In either of these cases, it seems best to use the | |
3582 | * 2nd method. The only circumstance I can think of where this would | |
3583 | * be really slower is if the string had once had much more data in it | |
3584 | * than it does now, but there is still a substantial amount in it */ | |
3585 | ||
3586 | { | |
3587 | STRLEN invariant_head = t - s; | |
3588 | STRLEN size = invariant_head + (e - t) * 2 + 1 + extra; | |
3589 | if (SvLEN(sv) < size) { | |
3590 | ||
3591 | /* Here, have decided to allocate a new string */ | |
3592 | ||
3593 | U8 *dst; | |
3594 | U8 *d; | |
3595 | ||
3596 | Newx(dst, size, U8); | |
3597 | ||
3598 | /* If no known invariants at the beginning of the input string, | |
3599 | * set so starts from there. Otherwise, can use memory copy to | |
3600 | * get up to where we are now, and then start from here */ | |
3601 | ||
5b26a7b3 | 3602 | if (invariant_head == 0) { |
b3ab6785 KW |
3603 | d = dst; |
3604 | } else { | |
3605 | Copy(s, dst, invariant_head, char); | |
3606 | d = dst + invariant_head; | |
3607 | } | |
3608 | ||
3609 | while (t < e) { | |
55d09dc8 KW |
3610 | append_utf8_from_native_byte(*t, &d); |
3611 | t++; | |
b3ab6785 KW |
3612 | } |
3613 | *d = '\0'; | |
3614 | SvPV_free(sv); /* No longer using pre-existing string */ | |
3615 | SvPV_set(sv, (char*)dst); | |
3616 | SvCUR_set(sv, d - dst); | |
3617 | SvLEN_set(sv, size); | |
3618 | } else { | |
3619 | ||
3620 | /* Here, have decided to get the exact size of the string. | |
3621 | * Currently this happens only when we know that there is | |
3622 | * guaranteed enough space to fit the converted string, so | |