Commit | Line | Data |
---|---|---|
66730be0 RM |
1 | # |
2 | # Complex numbers and associated mathematical functions | |
b42d0ec9 JH |
3 | # -- Raphael Manfredi Since Sep 1996 |
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |
5 | # -- Daniel S. Lewart Since Sep 1997 | |
fb73857a | 6 | # |
a0d0e21e | 7 | |
5aabfad6 | 8 | package Math::Complex; |
a0d0e21e | 9 | |
9fbe1b12 JH |
10 | $VERSION = "1.30"; |
11 | ||
12 | our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS, $Inf); | |
13 | ||
14 | BEGIN { | |
806e78a9 JH |
15 | my $e = $!; |
16 | $Inf = CORE::exp(CORE::exp(30)); # We do want an arithmetic overflow. | |
17 | $! = $e; # Clear ERANGE. | |
5240e574 JH |
18 | undef $Inf unless $Inf =~ /^inf(?:inity)?$/i; # Inf INF inf Infinity |
19 | $Inf = "Inf" if !defined $Inf || !($Inf > 0); # Desperation. | |
9fbe1b12 | 20 | } |
fb73857a | 21 | |
9fbe1b12 | 22 | use strict; |
fb73857a | 23 | |
9fbe1b12 JH |
24 | my $i; |
25 | my %LOGN; | |
0c721ce2 | 26 | |
9fbe1b12 | 27 | require Exporter; |
0c721ce2 | 28 | |
5aabfad6 | 29 | @ISA = qw(Exporter); |
30 | ||
5aabfad6 | 31 | my @trig = qw( |
32 | pi | |
fb73857a | 33 | tan |
5aabfad6 | 34 | csc cosec sec cot cotan |
35 | asin acos atan | |
36 | acsc acosec asec acot acotan | |
37 | sinh cosh tanh | |
38 | csch cosech sech coth cotanh | |
39 | asinh acosh atanh | |
40 | acsch acosech asech acoth acotanh | |
41 | ); | |
42 | ||
43 | @EXPORT = (qw( | |
b42d0ec9 | 44 | i Re Im rho theta arg |
fb73857a | 45 | sqrt log ln |
5aabfad6 | 46 | log10 logn cbrt root |
47 | cplx cplxe | |
48 | ), | |
49 | @trig); | |
50 | ||
51 | %EXPORT_TAGS = ( | |
52 | 'trig' => [@trig], | |
66730be0 | 53 | ); |
a0d0e21e | 54 | |
a5f75d66 | 55 | use overload |
0c721ce2 JH |
56 | '+' => \&plus, |
57 | '-' => \&minus, | |
58 | '*' => \&multiply, | |
59 | '/' => \÷, | |
66730be0 | 60 | '**' => \&power, |
1fa12f56 | 61 | '==' => \&numeq, |
66730be0 RM |
62 | '<=>' => \&spaceship, |
63 | 'neg' => \&negate, | |
0c721ce2 | 64 | '~' => \&conjugate, |
66730be0 RM |
65 | 'abs' => \&abs, |
66 | 'sqrt' => \&sqrt, | |
67 | 'exp' => \&exp, | |
68 | 'log' => \&log, | |
69 | 'sin' => \&sin, | |
70 | 'cos' => \&cos, | |
0c721ce2 | 71 | 'tan' => \&tan, |
66730be0 RM |
72 | 'atan2' => \&atan2, |
73 | qw("" stringify); | |
74 | ||
75 | # | |
b42d0ec9 | 76 | # Package "privates" |
66730be0 RM |
77 | # |
78 | ||
16357284 JH |
79 | my %DISPLAY_FORMAT = ('style' => 'cartesian', |
80 | 'polar_pretty_print' => 1); | |
81 | my $eps = 1e-14; # Epsilon | |
66730be0 RM |
82 | |
83 | # | |
84 | # Object attributes (internal): | |
85 | # cartesian [real, imaginary] -- cartesian form | |
86 | # polar [rho, theta] -- polar form | |
87 | # c_dirty cartesian form not up-to-date | |
88 | # p_dirty polar form not up-to-date | |
89 | # display display format (package's global when not set) | |
90 | # | |
91 | ||
b42d0ec9 JH |
92 | # Die on bad *make() arguments. |
93 | ||
94 | sub _cannot_make { | |
95 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n"; | |
96 | } | |
97 | ||
66730be0 RM |
98 | # |
99 | # ->make | |
100 | # | |
101 | # Create a new complex number (cartesian form) | |
102 | # | |
103 | sub make { | |
104 | my $self = bless {}, shift; | |
105 | my ($re, $im) = @_; | |
b42d0ec9 JH |
106 | my $rre = ref $re; |
107 | if ( $rre ) { | |
108 | if ( $rre eq ref $self ) { | |
109 | $re = Re($re); | |
110 | } else { | |
111 | _cannot_make("real part", $rre); | |
112 | } | |
113 | } | |
114 | my $rim = ref $im; | |
115 | if ( $rim ) { | |
116 | if ( $rim eq ref $self ) { | |
117 | $im = Im($im); | |
118 | } else { | |
119 | _cannot_make("imaginary part", $rim); | |
120 | } | |
121 | } | |
122 | $self->{'cartesian'} = [ $re, $im ]; | |
66730be0 RM |
123 | $self->{c_dirty} = 0; |
124 | $self->{p_dirty} = 1; | |
b42d0ec9 | 125 | $self->display_format('cartesian'); |
66730be0 RM |
126 | return $self; |
127 | } | |
128 | ||
129 | # | |
130 | # ->emake | |
131 | # | |
132 | # Create a new complex number (exponential form) | |
133 | # | |
134 | sub emake { | |
135 | my $self = bless {}, shift; | |
136 | my ($rho, $theta) = @_; | |
b42d0ec9 JH |
137 | my $rrh = ref $rho; |
138 | if ( $rrh ) { | |
139 | if ( $rrh eq ref $self ) { | |
140 | $rho = rho($rho); | |
141 | } else { | |
142 | _cannot_make("rho", $rrh); | |
143 | } | |
144 | } | |
145 | my $rth = ref $theta; | |
146 | if ( $rth ) { | |
147 | if ( $rth eq ref $self ) { | |
148 | $theta = theta($theta); | |
149 | } else { | |
150 | _cannot_make("theta", $rth); | |
151 | } | |
152 | } | |
fb73857a | 153 | if ($rho < 0) { |
154 | $rho = -$rho; | |
155 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
156 | } | |
157 | $self->{'polar'} = [$rho, $theta]; | |
66730be0 RM |
158 | $self->{p_dirty} = 0; |
159 | $self->{c_dirty} = 1; | |
b42d0ec9 | 160 | $self->display_format('polar'); |
66730be0 RM |
161 | return $self; |
162 | } | |
163 | ||
164 | sub new { &make } # For backward compatibility only. | |
165 | ||
166 | # | |
167 | # cplx | |
168 | # | |
169 | # Creates a complex number from a (re, im) tuple. | |
170 | # This avoids the burden of writing Math::Complex->make(re, im). | |
171 | # | |
172 | sub cplx { | |
173 | my ($re, $im) = @_; | |
16357284 | 174 | return __PACKAGE__->make($re, defined $im ? $im : 0); |
66730be0 RM |
175 | } |
176 | ||
177 | # | |
178 | # cplxe | |
179 | # | |
180 | # Creates a complex number from a (rho, theta) tuple. | |
181 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |
182 | # | |
183 | sub cplxe { | |
184 | my ($rho, $theta) = @_; | |
16357284 | 185 | return __PACKAGE__->emake($rho, defined $theta ? $theta : 0); |
66730be0 RM |
186 | } |
187 | ||
188 | # | |
189 | # pi | |
190 | # | |
fb73857a | 191 | # The number defined as pi = 180 degrees |
66730be0 | 192 | # |
6570f784 | 193 | sub pi () { 4 * CORE::atan2(1, 1) } |
5cd24f17 | 194 | |
195 | # | |
fb73857a | 196 | # pit2 |
5cd24f17 | 197 | # |
fb73857a | 198 | # The full circle |
199 | # | |
6570f784 | 200 | sub pit2 () { 2 * pi } |
fb73857a | 201 | |
5cd24f17 | 202 | # |
fb73857a | 203 | # pip2 |
204 | # | |
205 | # The quarter circle | |
206 | # | |
6570f784 | 207 | sub pip2 () { pi / 2 } |
5cd24f17 | 208 | |
fb73857a | 209 | # |
d09ae4e6 JH |
210 | # deg1 |
211 | # | |
212 | # One degree in radians, used in stringify_polar. | |
213 | # | |
214 | ||
6570f784 | 215 | sub deg1 () { pi / 180 } |
d09ae4e6 JH |
216 | |
217 | # | |
fb73857a | 218 | # uplog10 |
219 | # | |
220 | # Used in log10(). | |
221 | # | |
6570f784 | 222 | sub uplog10 () { 1 / CORE::log(10) } |
66730be0 RM |
223 | |
224 | # | |
225 | # i | |
226 | # | |
227 | # The number defined as i*i = -1; | |
228 | # | |
229 | sub i () { | |
5cd24f17 | 230 | return $i if ($i); |
231 | $i = bless {}; | |
40da2db3 | 232 | $i->{'cartesian'} = [0, 1]; |
fb73857a | 233 | $i->{'polar'} = [1, pip2]; |
66730be0 RM |
234 | $i->{c_dirty} = 0; |
235 | $i->{p_dirty} = 0; | |
236 | return $i; | |
237 | } | |
238 | ||
239 | # | |
1fa12f56 JH |
240 | # ip2 |
241 | # | |
242 | # Half of i. | |
243 | # | |
244 | sub ip2 () { i / 2 } | |
245 | ||
246 | # | |
66730be0 RM |
247 | # Attribute access/set routines |
248 | # | |
249 | ||
0c721ce2 JH |
250 | sub cartesian {$_[0]->{c_dirty} ? |
251 | $_[0]->update_cartesian : $_[0]->{'cartesian'}} | |
252 | sub polar {$_[0]->{p_dirty} ? | |
253 | $_[0]->update_polar : $_[0]->{'polar'}} | |
66730be0 | 254 | |
40da2db3 JH |
255 | sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } |
256 | sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } | |
66730be0 RM |
257 | |
258 | # | |
259 | # ->update_cartesian | |
260 | # | |
261 | # Recompute and return the cartesian form, given accurate polar form. | |
262 | # | |
263 | sub update_cartesian { | |
264 | my $self = shift; | |
40da2db3 | 265 | my ($r, $t) = @{$self->{'polar'}}; |
66730be0 | 266 | $self->{c_dirty} = 0; |
a8693bd3 | 267 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
66730be0 RM |
268 | } |
269 | ||
270 | # | |
271 | # | |
272 | # ->update_polar | |
273 | # | |
274 | # Recompute and return the polar form, given accurate cartesian form. | |
275 | # | |
276 | sub update_polar { | |
277 | my $self = shift; | |
40da2db3 | 278 | my ($x, $y) = @{$self->{'cartesian'}}; |
66730be0 | 279 | $self->{p_dirty} = 0; |
40da2db3 | 280 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
1fa12f56 JH |
281 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), |
282 | CORE::atan2($y, $x)]; | |
66730be0 RM |
283 | } |
284 | ||
285 | # | |
286 | # (plus) | |
287 | # | |
288 | # Computes z1+z2. | |
289 | # | |
290 | sub plus { | |
291 | my ($z1, $z2, $regular) = @_; | |
292 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 | 293 | $z2 = cplx($z2) unless ref $z2; |
5cd24f17 | 294 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); |
66730be0 RM |
295 | unless (defined $regular) { |
296 | $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); | |
297 | return $z1; | |
298 | } | |
299 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
300 | } | |
301 | ||
302 | # | |
303 | # (minus) | |
304 | # | |
305 | # Computes z1-z2. | |
306 | # | |
307 | sub minus { | |
308 | my ($z1, $z2, $inverted) = @_; | |
309 | my ($re1, $im1) = @{$z1->cartesian}; | |
0e505df1 JH |
310 | $z2 = cplx($z2) unless ref $z2; |
311 | my ($re2, $im2) = @{$z2->cartesian}; | |
66730be0 RM |
312 | unless (defined $inverted) { |
313 | $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); | |
314 | return $z1; | |
315 | } | |
316 | return $inverted ? | |
317 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
318 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |
0e505df1 | 319 | |
66730be0 RM |
320 | } |
321 | ||
322 | # | |
323 | # (multiply) | |
324 | # | |
325 | # Computes z1*z2. | |
326 | # | |
327 | sub multiply { | |
fb73857a | 328 | my ($z1, $z2, $regular) = @_; |
329 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
330 | # if both polar better use polar to avoid rounding errors | |
331 | my ($r1, $t1) = @{$z1->polar}; | |
332 | my ($r2, $t2) = @{$z2->polar}; | |
333 | my $t = $t1 + $t2; | |
334 | if ($t > pi()) { $t -= pit2 } | |
335 | elsif ($t <= -pi()) { $t += pit2 } | |
336 | unless (defined $regular) { | |
337 | $z1->set_polar([$r1 * $r2, $t]); | |
66730be0 | 338 | return $z1; |
fb73857a | 339 | } |
340 | return (ref $z1)->emake($r1 * $r2, $t); | |
341 | } else { | |
342 | my ($x1, $y1) = @{$z1->cartesian}; | |
343 | if (ref $z2) { | |
344 | my ($x2, $y2) = @{$z2->cartesian}; | |
345 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
346 | } else { | |
347 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |
348 | } | |
66730be0 | 349 | } |
66730be0 RM |
350 | } |
351 | ||
352 | # | |
0e505df1 | 353 | # _divbyzero |
0c721ce2 JH |
354 | # |
355 | # Die on division by zero. | |
356 | # | |
0e505df1 | 357 | sub _divbyzero { |
5cd24f17 | 358 | my $mess = "$_[0]: Division by zero.\n"; |
359 | ||
360 | if (defined $_[1]) { | |
361 | $mess .= "(Because in the definition of $_[0], the divisor "; | |
1fa12f56 | 362 | $mess .= "$_[1] " unless ("$_[1]" eq '0'); |
5cd24f17 | 363 | $mess .= "is 0)\n"; |
364 | } | |
365 | ||
0c721ce2 | 366 | my @up = caller(1); |
fb73857a | 367 | |
5cd24f17 | 368 | $mess .= "Died at $up[1] line $up[2].\n"; |
369 | ||
370 | die $mess; | |
0c721ce2 JH |
371 | } |
372 | ||
373 | # | |
66730be0 RM |
374 | # (divide) |
375 | # | |
376 | # Computes z1/z2. | |
377 | # | |
378 | sub divide { | |
379 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 380 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
381 | # if both polar better use polar to avoid rounding errors | |
382 | my ($r1, $t1) = @{$z1->polar}; | |
383 | my ($r2, $t2) = @{$z2->polar}; | |
384 | my $t; | |
385 | if ($inverted) { | |
0e505df1 | 386 | _divbyzero "$z2/0" if ($r1 == 0); |
fb73857a | 387 | $t = $t2 - $t1; |
388 | if ($t > pi()) { $t -= pit2 } | |
389 | elsif ($t <= -pi()) { $t += pit2 } | |
390 | return (ref $z1)->emake($r2 / $r1, $t); | |
391 | } else { | |
0e505df1 | 392 | _divbyzero "$z1/0" if ($r2 == 0); |
fb73857a | 393 | $t = $t1 - $t2; |
394 | if ($t > pi()) { $t -= pit2 } | |
395 | elsif ($t <= -pi()) { $t += pit2 } | |
396 | return (ref $z1)->emake($r1 / $r2, $t); | |
397 | } | |
398 | } else { | |
399 | my ($d, $x2, $y2); | |
400 | if ($inverted) { | |
401 | ($x2, $y2) = @{$z1->cartesian}; | |
402 | $d = $x2*$x2 + $y2*$y2; | |
403 | _divbyzero "$z2/0" if $d == 0; | |
404 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
405 | } else { | |
406 | my ($x1, $y1) = @{$z1->cartesian}; | |
407 | if (ref $z2) { | |
408 | ($x2, $y2) = @{$z2->cartesian}; | |
409 | $d = $x2*$x2 + $y2*$y2; | |
410 | _divbyzero "$z1/0" if $d == 0; | |
411 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |
412 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |
413 | return (ref $z1)->make($u, $v); | |
414 | } else { | |
415 | _divbyzero "$z1/0" if $z2 == 0; | |
416 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |
417 | } | |
418 | } | |
0c721ce2 | 419 | } |
66730be0 RM |
420 | } |
421 | ||
422 | # | |
423 | # (power) | |
424 | # | |
425 | # Computes z1**z2 = exp(z2 * log z1)). | |
426 | # | |
427 | sub power { | |
428 | my ($z1, $z2, $inverted) = @_; | |
ace5de91 | 429 | if ($inverted) { |
2820d885 DL |
430 | return 1 if $z1 == 0 || $z2 == 1; |
431 | return 0 if $z2 == 0 && Re($z1) > 0; | |
ace5de91 | 432 | } else { |
2820d885 DL |
433 | return 1 if $z2 == 0 || $z1 == 1; |
434 | return 0 if $z1 == 0 && Re($z2) > 0; | |
ace5de91 | 435 | } |
1fa12f56 JH |
436 | my $w = $inverted ? &exp($z1 * &log($z2)) |
437 | : &exp($z2 * &log($z1)); | |
d09ae4e6 JH |
438 | # If both arguments cartesian, return cartesian, else polar. |
439 | return $z1->{c_dirty} == 0 && | |
440 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |
441 | cplx(@{$w->cartesian}) : $w; | |
66730be0 RM |
442 | } |
443 | ||
444 | # | |
445 | # (spaceship) | |
446 | # | |
447 | # Computes z1 <=> z2. | |
2820d885 | 448 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
66730be0 RM |
449 | # |
450 | sub spaceship { | |
451 | my ($z1, $z2, $inverted) = @_; | |
5cd24f17 | 452 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); |
453 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
66730be0 RM |
454 | my $sgn = $inverted ? -1 : 1; |
455 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
456 | return $sgn * ($im1 <=> $im2); | |
457 | } | |
458 | ||
459 | # | |
1fa12f56 JH |
460 | # (numeq) |
461 | # | |
462 | # Computes z1 == z2. | |
463 | # | |
464 | # (Required in addition to spaceship() because of NaNs.) | |
465 | sub numeq { | |
466 | my ($z1, $z2, $inverted) = @_; | |
467 | my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); | |
468 | my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
469 | return $re1 == $re2 && $im1 == $im2 ? 1 : 0; | |
470 | } | |
471 | ||
472 | # | |
66730be0 RM |
473 | # (negate) |
474 | # | |
475 | # Computes -z. | |
476 | # | |
477 | sub negate { | |
478 | my ($z) = @_; | |
479 | if ($z->{c_dirty}) { | |
480 | my ($r, $t) = @{$z->polar}; | |
fb73857a | 481 | $t = ($t <= 0) ? $t + pi : $t - pi; |
482 | return (ref $z)->emake($r, $t); | |
66730be0 RM |
483 | } |
484 | my ($re, $im) = @{$z->cartesian}; | |
485 | return (ref $z)->make(-$re, -$im); | |
486 | } | |
487 | ||
488 | # | |
489 | # (conjugate) | |
490 | # | |
491 | # Compute complex's conjugate. | |
492 | # | |
493 | sub conjugate { | |
494 | my ($z) = @_; | |
495 | if ($z->{c_dirty}) { | |
496 | my ($r, $t) = @{$z->polar}; | |
497 | return (ref $z)->emake($r, -$t); | |
498 | } | |
499 | my ($re, $im) = @{$z->cartesian}; | |
500 | return (ref $z)->make($re, -$im); | |
501 | } | |
502 | ||
503 | # | |
504 | # (abs) | |
505 | # | |
b42d0ec9 | 506 | # Compute or set complex's norm (rho). |
66730be0 RM |
507 | # |
508 | sub abs { | |
b42d0ec9 | 509 | my ($z, $rho) = @_; |
1fa12f56 JH |
510 | unless (ref $z) { |
511 | if (@_ == 2) { | |
512 | $_[0] = $_[1]; | |
513 | } else { | |
514 | return CORE::abs($z); | |
515 | } | |
516 | } | |
b42d0ec9 JH |
517 | if (defined $rho) { |
518 | $z->{'polar'} = [ $rho, ${$z->polar}[1] ]; | |
519 | $z->{p_dirty} = 0; | |
520 | $z->{c_dirty} = 1; | |
521 | return $rho; | |
522 | } else { | |
523 | return ${$z->polar}[0]; | |
524 | } | |
525 | } | |
526 | ||
527 | sub _theta { | |
528 | my $theta = $_[0]; | |
529 | ||
530 | if ($$theta > pi()) { $$theta -= pit2 } | |
531 | elsif ($$theta <= -pi()) { $$theta += pit2 } | |
66730be0 RM |
532 | } |
533 | ||
534 | # | |
535 | # arg | |
536 | # | |
b42d0ec9 | 537 | # Compute or set complex's argument (theta). |
66730be0 RM |
538 | # |
539 | sub arg { | |
b42d0ec9 JH |
540 | my ($z, $theta) = @_; |
541 | return $z unless ref $z; | |
542 | if (defined $theta) { | |
543 | _theta(\$theta); | |
544 | $z->{'polar'} = [ ${$z->polar}[0], $theta ]; | |
545 | $z->{p_dirty} = 0; | |
546 | $z->{c_dirty} = 1; | |
547 | } else { | |
548 | $theta = ${$z->polar}[1]; | |
549 | _theta(\$theta); | |
550 | } | |
551 | return $theta; | |
66730be0 RM |
552 | } |
553 | ||
554 | # | |
555 | # (sqrt) | |
556 | # | |
0c721ce2 | 557 | # Compute sqrt(z). |
66730be0 | 558 | # |
b42d0ec9 JH |
559 | # It is quite tempting to use wantarray here so that in list context |
560 | # sqrt() would return the two solutions. This, however, would | |
561 | # break things like | |
562 | # | |
563 | # print "sqrt(z) = ", sqrt($z), "\n"; | |
564 | # | |
565 | # The two values would be printed side by side without no intervening | |
566 | # whitespace, quite confusing. | |
567 | # Therefore if you want the two solutions use the root(). | |
568 | # | |
66730be0 RM |
569 | sub sqrt { |
570 | my ($z) = @_; | |
b42d0ec9 | 571 | my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0); |
1fa12f56 JH |
572 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) |
573 | if $im == 0; | |
66730be0 | 574 | my ($r, $t) = @{$z->polar}; |
a8693bd3 | 575 | return (ref $z)->emake(CORE::sqrt($r), $t/2); |
66730be0 RM |
576 | } |
577 | ||
578 | # | |
579 | # cbrt | |
580 | # | |
0c721ce2 | 581 | # Compute cbrt(z) (cubic root). |
66730be0 | 582 | # |
b42d0ec9 JH |
583 | # Why are we not returning three values? The same answer as for sqrt(). |
584 | # | |
66730be0 RM |
585 | sub cbrt { |
586 | my ($z) = @_; | |
1fa12f56 JH |
587 | return $z < 0 ? |
588 | -CORE::exp(CORE::log(-$z)/3) : | |
589 | ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) | |
fb73857a | 590 | unless ref $z; |
66730be0 | 591 | my ($r, $t) = @{$z->polar}; |
1fa12f56 | 592 | return 0 if $r == 0; |
a8693bd3 | 593 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
66730be0 RM |
594 | } |
595 | ||
596 | # | |
0e505df1 JH |
597 | # _rootbad |
598 | # | |
599 | # Die on bad root. | |
600 | # | |
601 | sub _rootbad { | |
1fa12f56 | 602 | my $mess = "Root $_[0] illegal, root rank must be positive integer.\n"; |
0e505df1 JH |
603 | |
604 | my @up = caller(1); | |
fb73857a | 605 | |
0e505df1 JH |
606 | $mess .= "Died at $up[1] line $up[2].\n"; |
607 | ||
608 | die $mess; | |
609 | } | |
610 | ||
611 | # | |
66730be0 RM |
612 | # root |
613 | # | |
614 | # Computes all nth root for z, returning an array whose size is n. | |
615 | # `n' must be a positive integer. | |
616 | # | |
617 | # The roots are given by (for k = 0..n-1): | |
618 | # | |
619 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
620 | # | |
621 | sub root { | |
622 | my ($z, $n) = @_; | |
0e505df1 | 623 | _rootbad($n) if ($n < 1 or int($n) != $n); |
1fa12f56 JH |
624 | my ($r, $t) = ref $z ? |
625 | @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); | |
66730be0 RM |
626 | my @root; |
627 | my $k; | |
fb73857a | 628 | my $theta_inc = pit2 / $n; |
66730be0 RM |
629 | my $rho = $r ** (1/$n); |
630 | my $theta; | |
d09ae4e6 | 631 | my $cartesian = ref $z && $z->{c_dirty} == 0; |
66730be0 | 632 | for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { |
d09ae4e6 JH |
633 | my $w = cplxe($rho, $theta); |
634 | # Yes, $cartesian is loop invariant. | |
635 | push @root, $cartesian ? cplx(@{$w->cartesian}) : $w; | |
a0d0e21e | 636 | } |
66730be0 | 637 | return @root; |
a0d0e21e LW |
638 | } |
639 | ||
66730be0 RM |
640 | # |
641 | # Re | |
642 | # | |
b42d0ec9 | 643 | # Return or set Re(z). |
66730be0 | 644 | # |
a0d0e21e | 645 | sub Re { |
b42d0ec9 | 646 | my ($z, $Re) = @_; |
66730be0 | 647 | return $z unless ref $z; |
b42d0ec9 JH |
648 | if (defined $Re) { |
649 | $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ]; | |
650 | $z->{c_dirty} = 0; | |
651 | $z->{p_dirty} = 1; | |
652 | } else { | |
653 | return ${$z->cartesian}[0]; | |
654 | } | |
a0d0e21e LW |
655 | } |
656 | ||
66730be0 RM |
657 | # |
658 | # Im | |
659 | # | |
b42d0ec9 | 660 | # Return or set Im(z). |
66730be0 | 661 | # |
a0d0e21e | 662 | sub Im { |
b42d0ec9 JH |
663 | my ($z, $Im) = @_; |
664 | return $z unless ref $z; | |
665 | if (defined $Im) { | |
666 | $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ]; | |
667 | $z->{c_dirty} = 0; | |
668 | $z->{p_dirty} = 1; | |
669 | } else { | |
670 | return ${$z->cartesian}[1]; | |
671 | } | |
672 | } | |
673 | ||
674 | # | |
675 | # rho | |
676 | # | |
677 | # Return or set rho(w). | |
678 | # | |
679 | sub rho { | |
680 | Math::Complex::abs(@_); | |
681 | } | |
682 | ||
683 | # | |
684 | # theta | |
685 | # | |
686 | # Return or set theta(w). | |
687 | # | |
688 | sub theta { | |
689 | Math::Complex::arg(@_); | |
a0d0e21e LW |
690 | } |
691 | ||
66730be0 RM |
692 | # |
693 | # (exp) | |
694 | # | |
695 | # Computes exp(z). | |
696 | # | |
697 | sub exp { | |
698 | my ($z) = @_; | |
699 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 700 | return (ref $z)->emake(CORE::exp($x), $y); |
66730be0 RM |
701 | } |
702 | ||
703 | # | |
8c03c583 JH |
704 | # _logofzero |
705 | # | |
fb73857a | 706 | # Die on logarithm of zero. |
8c03c583 JH |
707 | # |
708 | sub _logofzero { | |
709 | my $mess = "$_[0]: Logarithm of zero.\n"; | |
710 | ||
711 | if (defined $_[1]) { | |
712 | $mess .= "(Because in the definition of $_[0], the argument "; | |
713 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |
714 | $mess .= "is 0)\n"; | |
715 | } | |
716 | ||
717 | my @up = caller(1); | |
fb73857a | 718 | |
8c03c583 JH |
719 | $mess .= "Died at $up[1] line $up[2].\n"; |
720 | ||
721 | die $mess; | |
722 | } | |
723 | ||
724 | # | |
66730be0 RM |
725 | # (log) |
726 | # | |
727 | # Compute log(z). | |
728 | # | |
729 | sub log { | |
730 | my ($z) = @_; | |
fb73857a | 731 | unless (ref $z) { |
732 | _logofzero("log") if $z == 0; | |
a8693bd3 | 733 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
fb73857a | 734 | } |
5cd24f17 | 735 | my ($r, $t) = @{$z->polar}; |
fb73857a | 736 | _logofzero("log") if $r == 0; |
737 | if ($t > pi()) { $t -= pit2 } | |
738 | elsif ($t <= -pi()) { $t += pit2 } | |
a8693bd3 | 739 | return (ref $z)->make(CORE::log($r), $t); |
66730be0 RM |
740 | } |
741 | ||
742 | # | |
0c721ce2 JH |
743 | # ln |
744 | # | |
745 | # Alias for log(). | |
746 | # | |
747 | sub ln { Math::Complex::log(@_) } | |
748 | ||
749 | # | |
66730be0 RM |
750 | # log10 |
751 | # | |
752 | # Compute log10(z). | |
753 | # | |
5cd24f17 | 754 | |
66730be0 | 755 | sub log10 { |
fb73857a | 756 | return Math::Complex::log($_[0]) * uplog10; |
66730be0 RM |
757 | } |
758 | ||
759 | # | |
760 | # logn | |
761 | # | |
762 | # Compute logn(z,n) = log(z) / log(n) | |
763 | # | |
764 | sub logn { | |
765 | my ($z, $n) = @_; | |
0c721ce2 | 766 | $z = cplx($z, 0) unless ref $z; |
9fbe1b12 JH |
767 | my $logn = $LOGN{$n}; |
768 | $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) | |
1fa12f56 | 769 | return &log($z) / $logn; |
66730be0 RM |
770 | } |
771 | ||
772 | # | |
773 | # (cos) | |
774 | # | |
775 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
776 | # | |
777 | sub cos { | |
778 | my ($z) = @_; | |
1fa12f56 | 779 | return CORE::cos($z) unless ref $z; |
66730be0 | 780 | my ($x, $y) = @{$z->cartesian}; |
a8693bd3 | 781 | my $ey = CORE::exp($y); |
1fa12f56 JH |
782 | my $sx = CORE::sin($x); |
783 | my $cx = CORE::cos($x); | |
784 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |
785 | return (ref $z)->make($cx * ($ey + $ey_1)/2, | |
786 | $sx * ($ey_1 - $ey)/2); | |
66730be0 RM |
787 | } |
788 | ||
789 | # | |
790 | # (sin) | |
791 | # | |
792 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
793 | # | |
794 | sub sin { | |
795 | my ($z) = @_; | |
1fa12f56 | 796 | return CORE::sin($z) unless ref $z; |
66730be0 | 797 | my ($x, $y) = @{$z->cartesian}; |
a8693bd3 | 798 | my $ey = CORE::exp($y); |
1fa12f56 JH |
799 | my $sx = CORE::sin($x); |
800 | my $cx = CORE::cos($x); | |
801 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |
802 | return (ref $z)->make($sx * ($ey + $ey_1)/2, | |
803 | $cx * ($ey - $ey_1)/2); | |
66730be0 RM |
804 | } |
805 | ||
806 | # | |
807 | # tan | |
808 | # | |
809 | # Compute tan(z) = sin(z) / cos(z). | |
810 | # | |
811 | sub tan { | |
812 | my ($z) = @_; | |
1fa12f56 JH |
813 | my $cz = &cos($z); |
814 | _divbyzero "tan($z)", "cos($z)" if $cz == 0; | |
815 | return &sin($z) / $cz; | |
66730be0 RM |
816 | } |
817 | ||
818 | # | |
0c721ce2 JH |
819 | # sec |
820 | # | |
821 | # Computes the secant sec(z) = 1 / cos(z). | |
822 | # | |
823 | sub sec { | |
824 | my ($z) = @_; | |
1fa12f56 | 825 | my $cz = &cos($z); |
0e505df1 | 826 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
0c721ce2 JH |
827 | return 1 / $cz; |
828 | } | |
829 | ||
830 | # | |
831 | # csc | |
832 | # | |
833 | # Computes the cosecant csc(z) = 1 / sin(z). | |
834 | # | |
835 | sub csc { | |
836 | my ($z) = @_; | |
1fa12f56 | 837 | my $sz = &sin($z); |
0e505df1 | 838 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
0c721ce2 JH |
839 | return 1 / $sz; |
840 | } | |
841 | ||
66730be0 | 842 | # |
0c721ce2 | 843 | # cosec |
66730be0 | 844 | # |
0c721ce2 JH |
845 | # Alias for csc(). |
846 | # | |
847 | sub cosec { Math::Complex::csc(@_) } | |
848 | ||
849 | # | |
850 | # cot | |
851 | # | |
fb73857a | 852 | # Computes cot(z) = cos(z) / sin(z). |
0c721ce2 JH |
853 | # |
854 | sub cot { | |
66730be0 | 855 | my ($z) = @_; |
1fa12f56 | 856 | my $sz = &sin($z); |
0e505df1 | 857 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
1fa12f56 | 858 | return &cos($z) / $sz; |
66730be0 RM |
859 | } |
860 | ||
861 | # | |
0c721ce2 JH |
862 | # cotan |
863 | # | |
864 | # Alias for cot(). | |
865 | # | |
866 | sub cotan { Math::Complex::cot(@_) } | |
867 | ||
868 | # | |
66730be0 RM |
869 | # acos |
870 | # | |
871 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
872 | # | |
873 | sub acos { | |
fb73857a | 874 | my $z = $_[0]; |
1fa12f56 JH |
875 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) |
876 | if (! ref $z) && CORE::abs($z) <= 1; | |
fb73857a | 877 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
1fa12f56 | 878 | return 0 if $x == 1 && $y == 0; |
a8693bd3 NIS |
879 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
880 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 881 | my $alpha = ($t1 + $t2)/2; |
882 | my $beta = ($t1 - $t2)/2; | |
883 | $alpha = 1 if $alpha < 1; | |
884 | if ($beta > 1) { $beta = 1 } | |
885 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
886 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
887 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 888 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
16357284 | 889 | return __PACKAGE__->make($u, $v); |
66730be0 RM |
890 | } |
891 | ||
892 | # | |
893 | # asin | |
894 | # | |
895 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
896 | # | |
897 | sub asin { | |
fb73857a | 898 | my $z = $_[0]; |
1fa12f56 JH |
899 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) |
900 | if (! ref $z) && CORE::abs($z) <= 1; | |
fb73857a | 901 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
1fa12f56 | 902 | return 0 if $x == 0 && $y == 0; |
a8693bd3 NIS |
903 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
904 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
fb73857a | 905 | my $alpha = ($t1 + $t2)/2; |
906 | my $beta = ($t1 - $t2)/2; | |
907 | $alpha = 1 if $alpha < 1; | |
908 | if ($beta > 1) { $beta = 1 } | |
909 | elsif ($beta < -1) { $beta = -1 } | |
a8693bd3 NIS |
910 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
911 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
fb73857a | 912 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); |
16357284 | 913 | return __PACKAGE__->make($u, $v); |
66730be0 RM |
914 | } |
915 | ||
916 | # | |
917 | # atan | |
918 | # | |
0c721ce2 | 919 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
66730be0 RM |
920 | # |
921 | sub atan { | |
922 | my ($z) = @_; | |
a8693bd3 | 923 | return CORE::atan2($z, 1) unless ref $z; |
1fa12f56 JH |
924 | my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); |
925 | return 0 if $x == 0 && $y == 0; | |
8c03c583 | 926 | _divbyzero "atan(i)" if ( $z == i); |
1fa12f56 JH |
927 | _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... |
928 | my $log = &log((i + $z) / (i - $z)); | |
929 | return ip2 * $log; | |
a0d0e21e LW |
930 | } |
931 | ||
66730be0 | 932 | # |
0c721ce2 JH |
933 | # asec |
934 | # | |
935 | # Computes the arc secant asec(z) = acos(1 / z). | |
936 | # | |
937 | sub asec { | |
938 | my ($z) = @_; | |
0e505df1 | 939 | _divbyzero "asec($z)", $z if ($z == 0); |
fb73857a | 940 | return acos(1 / $z); |
0c721ce2 JH |
941 | } |
942 | ||
943 | # | |
5cd24f17 | 944 | # acsc |
0c721ce2 | 945 | # |
8c03c583 | 946 | # Computes the arc cosecant acsc(z) = asin(1 / z). |
0c721ce2 | 947 | # |
5cd24f17 | 948 | sub acsc { |
0c721ce2 | 949 | my ($z) = @_; |
0e505df1 | 950 | _divbyzero "acsc($z)", $z if ($z == 0); |
fb73857a | 951 | return asin(1 / $z); |
0c721ce2 JH |
952 | } |
953 | ||
954 | # | |
5cd24f17 | 955 | # acosec |
66730be0 | 956 | # |
5cd24f17 | 957 | # Alias for acsc(). |
0c721ce2 | 958 | # |
5cd24f17 | 959 | sub acosec { Math::Complex::acsc(@_) } |
0c721ce2 | 960 | |
66730be0 | 961 | # |
0c721ce2 JH |
962 | # acot |
963 | # | |
8c03c583 | 964 | # Computes the arc cotangent acot(z) = atan(1 / z) |
0c721ce2 JH |
965 | # |
966 | sub acot { | |
66730be0 | 967 | my ($z) = @_; |
1fa12f56 JH |
968 | _divbyzero "acot(0)" if $z == 0; |
969 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) | |
970 | unless ref $z; | |
971 | _divbyzero "acot(i)" if ($z - i == 0); | |
972 | _logofzero "acot(-i)" if ($z + i == 0); | |
8c03c583 | 973 | return atan(1 / $z); |
66730be0 RM |
974 | } |
975 | ||
976 | # | |
0c721ce2 JH |
977 | # acotan |
978 | # | |
979 | # Alias for acot(). | |
980 | # | |
981 | sub acotan { Math::Complex::acot(@_) } | |
982 | ||
983 | # | |
66730be0 RM |
984 | # cosh |
985 | # | |
986 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
987 | # | |
988 | sub cosh { | |
989 | my ($z) = @_; | |
fb73857a | 990 | my $ex; |
0e505df1 | 991 | unless (ref $z) { |
a8693bd3 | 992 | $ex = CORE::exp($z); |
1fa12f56 | 993 | return $ex ? ($ex + 1/$ex)/2 : $Inf; |
0e505df1 JH |
994 | } |
995 | my ($x, $y) = @{$z->cartesian}; | |
a8693bd3 | 996 | $ex = CORE::exp($x); |
1fa12f56 | 997 | my $ex_1 = $ex ? 1 / $ex : $Inf; |
a8693bd3 NIS |
998 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
999 | CORE::sin($y) * ($ex - $ex_1)/2); | |
66730be0 RM |
1000 | } |
1001 | ||
1002 | # | |
1003 | # sinh | |
1004 | # | |
1005 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
1006 | # | |
1007 | sub sinh { | |
1008 | my ($z) = @_; | |
fb73857a | 1009 | my $ex; |
0e505df1 | 1010 | unless (ref $z) { |
1fa12f56 | 1011 | return 0 if $z == 0; |
a8693bd3 | 1012 | $ex = CORE::exp($z); |
1fa12f56 | 1013 | return $ex ? ($ex - 1/$ex)/2 : "-$Inf"; |
0e505df1 JH |
1014 | } |
1015 | my ($x, $y) = @{$z->cartesian}; | |
1fa12f56 JH |
1016 | my $cy = CORE::cos($y); |
1017 | my $sy = CORE::sin($y); | |
a8693bd3 | 1018 | $ex = CORE::exp($x); |
1fa12f56 | 1019 | my $ex_1 = $ex ? 1 / $ex : $Inf; |
5240e574 JH |
1020 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
1021 | CORE::sin($y) * ($ex + $ex_1)/2); | |
66730be0 RM |
1022 | } |
1023 | ||
1024 | # | |
1025 | # tanh | |
1026 | # | |
1027 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
1028 | # | |
1029 | sub tanh { | |
1030 | my ($z) = @_; | |
0c721ce2 | 1031 | my $cz = cosh($z); |
0e505df1 | 1032 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 | 1033 | return sinh($z) / $cz; |
66730be0 RM |
1034 | } |
1035 | ||
1036 | # | |
0c721ce2 JH |
1037 | # sech |
1038 | # | |
1039 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
1040 | # | |
1041 | sub sech { | |
1042 | my ($z) = @_; | |
1043 | my $cz = cosh($z); | |
0e505df1 | 1044 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
0c721ce2 JH |
1045 | return 1 / $cz; |
1046 | } | |
1047 | ||
1048 | # | |
1049 | # csch | |
1050 | # | |
1051 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
66730be0 | 1052 | # |
0c721ce2 JH |
1053 | sub csch { |
1054 | my ($z) = @_; | |
1055 | my $sz = sinh($z); | |
0e505df1 | 1056 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
0c721ce2 JH |
1057 | return 1 / $sz; |
1058 | } | |
1059 | ||
1060 | # | |
1061 | # cosech | |
1062 | # | |
1063 | # Alias for csch(). | |
1064 | # | |
1065 | sub cosech { Math::Complex::csch(@_) } | |
1066 | ||
66730be0 | 1067 | # |
0c721ce2 JH |
1068 | # coth |
1069 | # | |
1070 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
1071 | # | |
1072 | sub coth { | |
66730be0 | 1073 | my ($z) = @_; |
0c721ce2 | 1074 | my $sz = sinh($z); |
1fa12f56 | 1075 | _divbyzero "coth($z)", "sinh($z)" if $sz == 0; |
0c721ce2 | 1076 | return cosh($z) / $sz; |
66730be0 RM |
1077 | } |
1078 | ||
1079 | # | |
0c721ce2 JH |
1080 | # cotanh |
1081 | # | |
1082 | # Alias for coth(). | |
1083 | # | |
1084 | sub cotanh { Math::Complex::coth(@_) } | |
1085 | ||
1086 | # | |
66730be0 RM |
1087 | # acosh |
1088 | # | |
fb73857a | 1089 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
66730be0 RM |
1090 | # |
1091 | sub acosh { | |
1092 | my ($z) = @_; | |
fb73857a | 1093 | unless (ref $z) { |
fb73857a | 1094 | $z = cplx($z, 0); |
1095 | } | |
8c03c583 | 1096 | my ($re, $im) = @{$z->cartesian}; |
fb73857a | 1097 | if ($im == 0) { |
1fa12f56 JH |
1098 | return CORE::log($re + CORE::sqrt($re*$re - 1)) |
1099 | if $re >= 1; | |
1100 | return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) | |
1101 | if CORE::abs($re) < 1; | |
fb73857a | 1102 | } |
9bc5fa8d JH |
1103 | my $t = &sqrt($z * $z - 1) + $z; |
1104 | # Try MacLaurin if looking bad. | |
1105 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |
1106 | if $t == 0; | |
1107 | my $u = &log($t); | |
1108 | $u->Im(-$u->Im) if $im == 0; | |
1109 | return $re < 0 ? -$u : $u; | |
66730be0 RM |
1110 | } |
1111 | ||
1112 | # | |
1113 | # asinh | |
1114 | # | |
1fa12f56 | 1115 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) |
66730be0 RM |
1116 | # |
1117 | sub asinh { | |
1118 | my ($z) = @_; | |
1fa12f56 JH |
1119 | unless (ref $z) { |
1120 | my $t = $z + CORE::sqrt($z*$z + 1); | |
1121 | return CORE::log($t) if $t; | |
1122 | } | |
9bc5fa8d JH |
1123 | my $t = &sqrt($z * $z + 1) + $z; |
1124 | # Try MacLaurin if looking bad. | |
1125 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |
1126 | if $t == 0; | |
1fa12f56 | 1127 | return &log($t); |
66730be0 RM |
1128 | } |
1129 | ||
1130 | # | |
1131 | # atanh | |
1132 | # | |
1133 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
1134 | # | |
1135 | sub atanh { | |
1136 | my ($z) = @_; | |
fb73857a | 1137 | unless (ref $z) { |
a8693bd3 | 1138 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
fb73857a | 1139 | $z = cplx($z, 0); |
1140 | } | |
1fa12f56 JH |
1141 | _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); |
1142 | _logofzero 'atanh(-1)' if (1 + $z == 0); | |
1143 | return 0.5 * &log((1 + $z) / (1 - $z)); | |
66730be0 RM |
1144 | } |
1145 | ||
1146 | # | |
0c721ce2 JH |
1147 | # asech |
1148 | # | |
1149 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |
1150 | # | |
1151 | sub asech { | |
1152 | my ($z) = @_; | |
1fa12f56 | 1153 | _divbyzero 'asech(0)', "$z" if ($z == 0); |
0c721ce2 JH |
1154 | return acosh(1 / $z); |
1155 | } | |
1156 | ||
1157 | # | |
1158 | # acsch | |
66730be0 | 1159 | # |
0c721ce2 | 1160 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). |
66730be0 | 1161 | # |
0c721ce2 | 1162 | sub acsch { |
66730be0 | 1163 | my ($z) = @_; |
0e505df1 | 1164 | _divbyzero 'acsch(0)', $z if ($z == 0); |
0c721ce2 JH |
1165 | return asinh(1 / $z); |
1166 | } | |
1167 | ||
1168 | # | |
1169 | # acosech | |
1170 | # | |
1171 | # Alias for acosh(). | |
1172 | # | |
1173 | sub acosech { Math::Complex::acsch(@_) } | |
1174 | ||
1175 | # | |
1176 | # acoth | |
1177 | # | |
1178 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
1179 | # | |
1180 | sub acoth { | |
1181 | my ($z) = @_; | |
1fa12f56 | 1182 | _divbyzero 'acoth(0)' if ($z == 0); |
fb73857a | 1183 | unless (ref $z) { |
a8693bd3 | 1184 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
fb73857a | 1185 | $z = cplx($z, 0); |
1186 | } | |
1fa12f56 JH |
1187 | _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); |
1188 | _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); | |
1189 | return &log((1 + $z) / ($z - 1)) / 2; | |
66730be0 RM |
1190 | } |
1191 | ||
1192 | # | |
0c721ce2 JH |
1193 | # acotanh |
1194 | # | |
1195 | # Alias for acot(). | |
1196 | # | |
1197 | sub acotanh { Math::Complex::acoth(@_) } | |
1198 | ||
1199 | # | |
66730be0 RM |
1200 | # (atan2) |
1201 | # | |
1202 | # Compute atan(z1/z2). | |
1203 | # | |
1204 | sub atan2 { | |
1205 | my ($z1, $z2, $inverted) = @_; | |
fb73857a | 1206 | my ($re1, $im1, $re2, $im2); |
1207 | if ($inverted) { | |
1208 | ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1209 | ($re2, $im2) = @{$z1->cartesian}; | |
66730be0 | 1210 | } else { |
fb73857a | 1211 | ($re1, $im1) = @{$z1->cartesian}; |
1212 | ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); | |
1213 | } | |
1214 | if ($im2 == 0) { | |
1fa12f56 JH |
1215 | return CORE::atan2($re1, $re2) if $im1 == 0; |
1216 | return ($im1<=>0) * pip2 if $re2 == 0; | |
66730be0 | 1217 | } |
fb73857a | 1218 | my $w = atan($z1/$z2); |
1219 | my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); | |
1220 | $u += pi if $re2 < 0; | |
1221 | $u -= pit2 if $u > pi; | |
1222 | return cplx($u, $v); | |
66730be0 RM |
1223 | } |
1224 | ||
1225 | # | |
1226 | # display_format | |
1227 | # ->display_format | |
1228 | # | |
16357284 | 1229 | # Set (get if no argument) the display format for all complex numbers that |
fb73857a | 1230 | # don't happen to have overridden it via ->display_format |
66730be0 | 1231 | # |
16357284 | 1232 | # When called as an object method, this actually sets the display format for |
66730be0 RM |
1233 | # the current object. |
1234 | # | |
1235 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
1236 | # letter is used actually, so the type can be fully spelled out for clarity. | |
1237 | # | |
1238 | sub display_format { | |
16357284 JH |
1239 | my $self = shift; |
1240 | my %display_format = %DISPLAY_FORMAT; | |
66730be0 | 1241 | |
16357284 JH |
1242 | if (ref $self) { # Called as an object method |
1243 | if (exists $self->{display_format}) { | |
1244 | my %obj = %{$self->{display_format}}; | |
1245 | @display_format{keys %obj} = values %obj; | |
1246 | } | |
1247 | if (@_ == 1) { | |
1248 | $display_format{style} = shift; | |
1249 | } else { | |
1250 | my %new = @_; | |
1251 | @display_format{keys %new} = values %new; | |
1252 | } | |
1253 | } else { # Called as a class method | |
1254 | if (@_ = 1) { | |
1255 | $display_format{style} = $self; | |
1256 | } else { | |
1257 | my %new = @_; | |
1258 | @display_format{keys %new} = values %new; | |
1259 | } | |
1260 | undef $self; | |
66730be0 RM |
1261 | } |
1262 | ||
1263 | if (defined $self) { | |
16357284 JH |
1264 | $self->{display_format} = { %display_format }; |
1265 | return | |
1266 | wantarray ? | |
1267 | %{$self->{display_format}} : | |
1268 | $self->{display_format}->{style}; | |
66730be0 RM |
1269 | } |
1270 | ||
16357284 JH |
1271 | %DISPLAY_FORMAT = %display_format; |
1272 | return | |
1273 | wantarray ? | |
1274 | %DISPLAY_FORMAT : | |
1275 | $DISPLAY_FORMAT{style}; | |
66730be0 RM |
1276 | } |
1277 | ||
1278 | # | |
1279 | # (stringify) | |
1280 | # | |
1281 | # Show nicely formatted complex number under its cartesian or polar form, | |
1282 | # depending on the current display format: | |
1283 | # | |
1284 | # . If a specific display format has been recorded for this object, use it. | |
1285 | # . Otherwise, use the generic current default for all complex numbers, | |
1286 | # which is a package global variable. | |
1287 | # | |
a0d0e21e | 1288 | sub stringify { |
66730be0 | 1289 | my ($z) = shift; |
66730be0 | 1290 | |
16357284 JH |
1291 | my $style = $z->display_format; |
1292 | ||
1293 | $style = $DISPLAY_FORMAT{style} unless defined $style; | |
66730be0 | 1294 | |
16357284 | 1295 | return $z->stringify_polar if $style =~ /^p/i; |
66730be0 RM |
1296 | return $z->stringify_cartesian; |
1297 | } | |
1298 | ||
1299 | # | |
1300 | # ->stringify_cartesian | |
1301 | # | |
1302 | # Stringify as a cartesian representation 'a+bi'. | |
1303 | # | |
1304 | sub stringify_cartesian { | |
1305 | my $z = shift; | |
1306 | my ($x, $y) = @{$z->cartesian}; | |
1307 | my ($re, $im); | |
1308 | ||
16357284 JH |
1309 | my %format = $z->display_format; |
1310 | my $format = $format{format}; | |
1311 | ||
1fa12f56 JH |
1312 | if ($x) { |
1313 | if ($x =~ /^NaN[QS]?$/i) { | |
1314 | $re = $x; | |
1315 | } else { | |
1316 | if ($x =~ /^-?$Inf$/oi) { | |
1317 | $re = $x; | |
1318 | } else { | |
1319 | $re = defined $format ? sprintf($format, $x) : $x; | |
1320 | } | |
1321 | } | |
1322 | } else { | |
1323 | undef $re; | |
1324 | } | |
1325 | ||
1326 | if ($y) { | |
1327 | if ($y == 1) { $im = "" } | |
1328 | elsif ($y == -1) { $im = "-" } | |
1329 | elsif ($y =~ /^(NaN[QS]?)$/i) { | |
1330 | $im = $y; | |
1331 | } else { | |
1332 | if ($y =~ /^-?$Inf$/oi) { | |
1333 | $im = $y; | |
1334 | } else { | |
1335 | $im = defined $format ? sprintf($format, $y) : $y; | |
1336 | } | |
1337 | } | |
1338 | $im .= "i"; | |
1339 | } else { | |
1340 | undef $im; | |
16357284 | 1341 | } |
66730be0 | 1342 | |
1fa12f56 JH |
1343 | my $str = $re; |
1344 | ||
16357284 JH |
1345 | if (defined $im) { |
1346 | if ($y < 0) { | |
1347 | $str .= $im; | |
1fa12f56 | 1348 | } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { |
16357284 JH |
1349 | $str .= "+" if defined $re; |
1350 | $str .= $im; | |
1351 | } | |
1fa12f56 JH |
1352 | } elsif (!defined $re) { |
1353 | $str = "0"; | |
16357284 | 1354 | } |
66730be0 RM |
1355 | |
1356 | return $str; | |
1357 | } | |
1358 | ||
d09ae4e6 | 1359 | |
66730be0 RM |
1360 | # |
1361 | # ->stringify_polar | |
1362 | # | |
1363 | # Stringify as a polar representation '[r,t]'. | |
1364 | # | |
1365 | sub stringify_polar { | |
1366 | my $z = shift; | |
1367 | my ($r, $t) = @{$z->polar}; | |
1368 | my $theta; | |
1369 | ||
16357284 | 1370 | my %format = $z->display_format; |
1fa12f56 | 1371 | my $format = $format{format}; |
16357284 | 1372 | |
1fa12f56 JH |
1373 | if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) { |
1374 | $theta = $t; | |
1375 | } elsif ($t == pi) { | |
1376 | $theta = "pi"; | |
1377 | } elsif ($r == 0 || $t == 0) { | |
1378 | $theta = defined $format ? sprintf($format, $t) : $t; | |
55497cff | 1379 | } |
66730be0 | 1380 | |
1fa12f56 JH |
1381 | return "[$r,$theta]" if defined $theta; |
1382 | ||
66730be0 | 1383 | # |
1fa12f56 | 1384 | # Try to identify pi/n and friends. |
66730be0 RM |
1385 | # |
1386 | ||
1fa12f56 JH |
1387 | $t -= int(CORE::abs($t) / pit2) * pit2; |
1388 | ||
1389 | if ($format{polar_pretty_print}) { | |
1390 | my ($a, $b); | |
9bc5fa8d | 1391 | for $a (2..9) { |
1fa12f56 JH |
1392 | $b = $t * $a / pi; |
1393 | if (int($b) == $b) { | |
1394 | $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; | |
1395 | $theta = "${b}pi/$a"; | |
d09ae4e6 | 1396 | last; |
66730be0 | 1397 | } |
d09ae4e6 | 1398 | } |
66730be0 RM |
1399 | } |
1400 | ||
16357284 JH |
1401 | if (defined $format) { |
1402 | $r = sprintf($format, $r); | |
1fa12f56 JH |
1403 | $theta = sprintf($format, $theta) unless defined $theta; |
1404 | } else { | |
1405 | $theta = $t unless defined $theta; | |
16357284 JH |
1406 | } |
1407 | ||
1fa12f56 | 1408 | return "[$r,$theta]"; |
a0d0e21e | 1409 | } |
a5f75d66 AD |
1410 | |
1411 | 1; | |
1412 | __END__ | |
1413 | ||
1414 | =head1 NAME | |
1415 | ||
66730be0 | 1416 | Math::Complex - complex numbers and associated mathematical functions |
a5f75d66 AD |
1417 | |
1418 | =head1 SYNOPSIS | |
1419 | ||
66730be0 | 1420 | use Math::Complex; |
fb73857a | 1421 | |
66730be0 RM |
1422 | $z = Math::Complex->make(5, 6); |
1423 | $t = 4 - 3*i + $z; | |
1424 | $j = cplxe(1, 2*pi/3); | |
a5f75d66 AD |
1425 | |
1426 | =head1 DESCRIPTION | |
1427 | ||
66730be0 RM |
1428 | This package lets you create and manipulate complex numbers. By default, |
1429 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
1430 | full complex support, along with a full set of mathematical functions | |
1431 | typically associated with and/or extended to complex numbers. | |
1432 | ||
1433 | If you wonder what complex numbers are, they were invented to be able to solve | |
1434 | the following equation: | |
1435 | ||
1436 | x*x = -1 | |
1437 | ||
1438 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
1439 | I<i> usually denotes an intensity, but the name does not matter). The number | |
1440 | I<i> is a pure I<imaginary> number. | |
1441 | ||
1442 | The arithmetics with pure imaginary numbers works just like you would expect | |
1443 | it with real numbers... you just have to remember that | |
1444 | ||
1445 | i*i = -1 | |
1446 | ||
1447 | so you have: | |
1448 | ||
1449 | 5i + 7i = i * (5 + 7) = 12i | |
1450 | 4i - 3i = i * (4 - 3) = i | |
1451 | 4i * 2i = -8 | |
1452 | 6i / 2i = 3 | |
1453 | 1 / i = -i | |
1454 | ||
1455 | Complex numbers are numbers that have both a real part and an imaginary | |
1456 | part, and are usually noted: | |
1457 | ||
1458 | a + bi | |
1459 | ||
1460 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
1461 | arithmetic with complex numbers is straightforward. You have to | |
1462 | keep track of the real and the imaginary parts, but otherwise the | |
1463 | rules used for real numbers just apply: | |
1464 | ||
1465 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
1466 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
1467 | ||
1468 | A graphical representation of complex numbers is possible in a plane | |
1469 | (also called the I<complex plane>, but it's really a 2D plane). | |
1470 | The number | |
1471 | ||
1472 | z = a + bi | |
1473 | ||
1474 | is the point whose coordinates are (a, b). Actually, it would | |
1475 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |
1476 | of two complex numbers is a vectorial addition. | |
1477 | ||
1478 | Since there is a bijection between a point in the 2D plane and a complex | |
1479 | number (i.e. the mapping is unique and reciprocal), a complex number | |
1480 | can also be uniquely identified with polar coordinates: | |
1481 | ||
1482 | [rho, theta] | |
1483 | ||
1484 | where C<rho> is the distance to the origin, and C<theta> the angle between | |
1485 | the vector and the I<x> axis. There is a notation for this using the | |
1486 | exponential form, which is: | |
1487 | ||
1488 | rho * exp(i * theta) | |
1489 | ||
1490 | where I<i> is the famous imaginary number introduced above. Conversion | |
1491 | between this form and the cartesian form C<a + bi> is immediate: | |
1492 | ||
1493 | a = rho * cos(theta) | |
1494 | b = rho * sin(theta) | |
1495 | ||
1496 | which is also expressed by this formula: | |
1497 | ||
fb73857a | 1498 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) |
66730be0 RM |
1499 | |
1500 | In other words, it's the projection of the vector onto the I<x> and I<y> | |
1501 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
1502 | the I<argument> of the complex number. The I<norm> of C<z> will be | |
1503 | noted C<abs(z)>. | |
1504 | ||
1505 | The polar notation (also known as the trigonometric | |
1506 | representation) is much more handy for performing multiplications and | |
1507 | divisions of complex numbers, whilst the cartesian notation is better | |
fb73857a | 1508 | suited for additions and subtractions. Real numbers are on the I<x> |
1509 | axis, and therefore I<theta> is zero or I<pi>. | |
66730be0 RM |
1510 | |
1511 | All the common operations that can be performed on a real number have | |
1512 | been defined to work on complex numbers as well, and are merely | |
1513 | I<extensions> of the operations defined on real numbers. This means | |
1514 | they keep their natural meaning when there is no imaginary part, provided | |
1515 | the number is within their definition set. | |
1516 | ||
1517 | For instance, the C<sqrt> routine which computes the square root of | |
fb73857a | 1518 | its argument is only defined for non-negative real numbers and yields a |
1519 | non-negative real number (it is an application from B<R+> to B<R+>). | |
66730be0 RM |
1520 | If we allow it to return a complex number, then it can be extended to |
1521 | negative real numbers to become an application from B<R> to B<C> (the | |
1522 | set of complex numbers): | |
1523 | ||
1524 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
1525 | ||
1526 | It can also be extended to be an application from B<C> to B<C>, | |
1527 | whilst its restriction to B<R> behaves as defined above by using | |
1528 | the following definition: | |
1529 | ||
1530 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
1531 | ||
fb73857a | 1532 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus |
1533 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
1534 | number) and the above definition states that | |
66730be0 RM |
1535 | |
1536 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
1537 | ||
1538 | which is exactly what we had defined for negative real numbers above. | |
b42d0ec9 JH |
1539 | The C<sqrt> returns only one of the solutions: if you want the both, |
1540 | use the C<root> function. | |
a5f75d66 | 1541 | |
66730be0 RM |
1542 | All the common mathematical functions defined on real numbers that |
1543 | are extended to complex numbers share that same property of working | |
1544 | I<as usual> when the imaginary part is zero (otherwise, it would not | |
1545 | be called an extension, would it?). | |
a5f75d66 | 1546 | |
66730be0 RM |
1547 | A I<new> operation possible on a complex number that is |
1548 | the identity for real numbers is called the I<conjugate>, and is noted | |
1549 | with an horizontal bar above the number, or C<~z> here. | |
a5f75d66 | 1550 | |
66730be0 RM |
1551 | z = a + bi |
1552 | ~z = a - bi | |
a5f75d66 | 1553 | |
66730be0 | 1554 | Simple... Now look: |
a5f75d66 | 1555 | |
66730be0 | 1556 | z * ~z = (a + bi) * (a - bi) = a*a + b*b |
a5f75d66 | 1557 | |
66730be0 RM |
1558 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the |
1559 | distance to the origin, also known as: | |
a5f75d66 | 1560 | |
66730be0 | 1561 | rho = abs(z) = sqrt(a*a + b*b) |
a5f75d66 | 1562 | |
66730be0 RM |
1563 | so |
1564 | ||
1565 | z * ~z = abs(z) ** 2 | |
1566 | ||
1567 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
1568 | ||
1569 | a * a = abs(a) ** 2 | |
1570 | ||
1571 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |
1572 | for the absolute value). This example explains why the norm of C<z> is | |
1573 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
1574 | is the regular C<abs> we know when the complex number actually has no | |
1575 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
1576 | notation for the norm. | |
1577 | ||
1578 | =head1 OPERATIONS | |
1579 | ||
1580 | Given the following notations: | |
1581 | ||
1582 | z1 = a + bi = r1 * exp(i * t1) | |
1583 | z2 = c + di = r2 * exp(i * t2) | |
1584 | z = <any complex or real number> | |
1585 | ||
1586 | the following (overloaded) operations are supported on complex numbers: | |
1587 | ||
1588 | z1 + z2 = (a + c) + i(b + d) | |
1589 | z1 - z2 = (a - c) + i(b - d) | |
1590 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
1591 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
1592 | z1 ** z2 = exp(z2 * log z1) | |
b42d0ec9 JH |
1593 | ~z = a - bi |
1594 | abs(z) = r1 = sqrt(a*a + b*b) | |
1595 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |
1596 | exp(z) = exp(a) * exp(i * b) | |
1597 | log(z) = log(r1) + i*t | |
1598 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
1599 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
66730be0 RM |
1600 | atan2(z1, z2) = atan(z1/z2) |
1601 | ||
1602 | The following extra operations are supported on both real and complex | |
1603 | numbers: | |
1604 | ||
1605 | Re(z) = a | |
1606 | Im(z) = b | |
1607 | arg(z) = t | |
b42d0ec9 | 1608 | abs(z) = r |
66730be0 RM |
1609 | |
1610 | cbrt(z) = z ** (1/3) | |
1611 | log10(z) = log(z) / log(10) | |
1612 | logn(z, n) = log(z) / log(n) | |
1613 | ||
1614 | tan(z) = sin(z) / cos(z) | |
0c721ce2 | 1615 | |
5aabfad6 | 1616 | csc(z) = 1 / sin(z) |
1617 | sec(z) = 1 / cos(z) | |
0c721ce2 | 1618 | cot(z) = 1 / tan(z) |
66730be0 RM |
1619 | |
1620 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
fb73857a | 1621 | acos(z) = -i * log(z + i*sqrt(1-z*z)) |
66730be0 | 1622 | atan(z) = i/2 * log((i+z) / (i-z)) |
0c721ce2 | 1623 | |
5aabfad6 | 1624 | acsc(z) = asin(1 / z) |
1625 | asec(z) = acos(1 / z) | |
8c03c583 | 1626 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) |
66730be0 RM |
1627 | |
1628 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |
1629 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |
0c721ce2 JH |
1630 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) |
1631 | ||
5aabfad6 | 1632 | csch(z) = 1 / sinh(z) |
1633 | sech(z) = 1 / cosh(z) | |
0c721ce2 | 1634 | coth(z) = 1 / tanh(z) |
fb73857a | 1635 | |
66730be0 RM |
1636 | asinh(z) = log(z + sqrt(z*z+1)) |
1637 | acosh(z) = log(z + sqrt(z*z-1)) | |
1638 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |
66730be0 | 1639 | |
5aabfad6 | 1640 | acsch(z) = asinh(1 / z) |
1641 | asech(z) = acosh(1 / z) | |
0c721ce2 JH |
1642 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) |
1643 | ||
b42d0ec9 JH |
1644 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, |
1645 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
1646 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
1647 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
1648 | C<rho>, and C<theta> can be used also also mutators. The C<cbrt> | |
1649 | returns only one of the solutions: if you want all three, use the | |
1650 | C<root> function. | |
0c721ce2 JH |
1651 | |
1652 | The I<root> function is available to compute all the I<n> | |
66730be0 RM |
1653 | roots of some complex, where I<n> is a strictly positive integer. |
1654 | There are exactly I<n> such roots, returned as a list. Getting the | |
1655 | number mathematicians call C<j> such that: | |
1656 | ||
1657 | 1 + j + j*j = 0; | |
1658 | ||
1659 | is a simple matter of writing: | |
1660 | ||
1661 | $j = ((root(1, 3))[1]; | |
1662 | ||
1663 | The I<k>th root for C<z = [r,t]> is given by: | |
1664 | ||
1665 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
1666 | ||
f4837644 JH |
1667 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In |
1668 | order to ensure its restriction to real numbers is conform to what you | |
1669 | would expect, the comparison is run on the real part of the complex | |
1670 | number first, and imaginary parts are compared only when the real | |
1671 | parts match. | |
66730be0 RM |
1672 | |
1673 | =head1 CREATION | |
1674 | ||
1675 | To create a complex number, use either: | |
1676 | ||
1677 | $z = Math::Complex->make(3, 4); | |
1678 | $z = cplx(3, 4); | |
1679 | ||
1680 | if you know the cartesian form of the number, or | |
1681 | ||
1682 | $z = 3 + 4*i; | |
1683 | ||
fb73857a | 1684 | if you like. To create a number using the polar form, use either: |
66730be0 RM |
1685 | |
1686 | $z = Math::Complex->emake(5, pi/3); | |
1687 | $x = cplxe(5, pi/3); | |
1688 | ||
0c721ce2 | 1689 | instead. The first argument is the modulus, the second is the angle |
fb73857a | 1690 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a |
1691 | notation for complex numbers in the polar form). | |
66730be0 RM |
1692 | |
1693 | It is possible to write: | |
1694 | ||
1695 | $x = cplxe(-3, pi/4); | |
1696 | ||
16357284 JH |
1697 | but that will be silently converted into C<[3,-3pi/4]>, since the |
1698 | modulus must be non-negative (it represents the distance to the origin | |
1699 | in the complex plane). | |
66730be0 | 1700 | |
b42d0ec9 JH |
1701 | It is also possible to have a complex number as either argument of |
1702 | either the C<make> or C<emake>: the appropriate component of | |
1703 | the argument will be used. | |
1704 | ||
1705 | $z1 = cplx(-2, 1); | |
1706 | $z2 = cplx($z1, 4); | |
1707 | ||
66730be0 RM |
1708 | =head1 STRINGIFICATION |
1709 | ||
1710 | When printed, a complex number is usually shown under its cartesian | |
16357284 | 1711 | style I<a+bi>, but there are legitimate cases where the polar style |
66730be0 RM |
1712 | I<[r,t]> is more appropriate. |
1713 | ||
16357284 JH |
1714 | By calling the class method C<Math::Complex::display_format> and |
1715 | supplying either C<"polar"> or C<"cartesian"> as an argument, you | |
5287f86b | 1716 | override the default display style, which is C<"cartesian">. Not |
16357284 | 1717 | supplying any argument returns the current settings. |
66730be0 RM |
1718 | |
1719 | This default can be overridden on a per-number basis by calling the | |
1720 | C<display_format> method instead. As before, not supplying any argument | |
5287f86b JH |
1721 | returns the current display style for this number. Otherwise whatever you |
1722 | specify will be the new display style for I<this> particular number. | |
66730be0 RM |
1723 | |
1724 | For instance: | |
1725 | ||
1726 | use Math::Complex; | |
1727 | ||
1728 | Math::Complex::display_format('polar'); | |
16357284 JH |
1729 | $j = (root(1, 3))[1]; |
1730 | print "j = $j\n"; # Prints "j = [1,2pi/3]" | |
66730be0 RM |
1731 | $j->display_format('cartesian'); |
1732 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
1733 | ||
5287f86b | 1734 | The polar style attempts to emphasize arguments like I<k*pi/n> |
9bc5fa8d | 1735 | (where I<n> is a positive integer and I<k> an integer within [-9, +9]), |
5287f86b | 1736 | this is called I<polar pretty-printing>. |
66730be0 | 1737 | |
16357284 JH |
1738 | =head2 CHANGED IN PERL 5.6 |
1739 | ||
1740 | The C<display_format> class method and the corresponding | |
1741 | C<display_format> object method can now be called using | |
1742 | a parameter hash instead of just a one parameter. | |
1743 | ||
1744 | The old display format style, which can have values C<"cartesian"> or | |
1745 | C<"polar">, can be changed using the C<"style"> parameter. (The one | |
1746 | parameter calling convention also still works.) | |
1747 | ||
1748 | There are two new display parameters. | |
1749 | ||
1750 | The first one is C<"format">, which is a sprintf()-style format | |
1751 | string to be used for both parts of the complex number(s). The | |
1752 | default is C<undef>, which corresponds usually (this is somewhat | |
1753 | system-dependent) to C<"%.15g">. You can revert to the default by | |
1754 | setting the format string to C<undef>. | |
1755 | ||
1756 | # the $j from the above example | |
1757 | ||
1758 | $j->display_format('format' => '%.5f'); | |
1759 | print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |
1760 | $j->display_format('format' => '%.6f'); | |
1761 | print "j = $j\n"; # Prints "j = -0.5+0.86603i" | |
1762 | ||
1763 | Notice that this affects also the return values of the | |
1764 | C<display_format> methods: in list context the whole parameter hash | |
1765 | will be returned, as opposed to only the style parameter value. If | |
1766 | you want to know the whole truth for a complex number, you must call | |
1767 | both the class method and the object method: | |
1768 | ||
5287f86b JH |
1769 | The second new display parameter is C<"polar_pretty_print">, which can |
1770 | be set to true or false, the default being true. See the previous | |
1771 | section for what this means. | |
16357284 | 1772 | |
66730be0 RM |
1773 | =head1 USAGE |
1774 | ||
1775 | Thanks to overloading, the handling of arithmetics with complex numbers | |
1776 | is simple and almost transparent. | |
1777 | ||
1778 | Here are some examples: | |
1779 | ||
1780 | use Math::Complex; | |
1781 | ||
1782 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
1783 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |
1784 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
1785 | ||
1786 | $z = -16 + 0*i; # Force it to be a complex | |
1787 | print "sqrt($z) = ", sqrt($z), "\n"; | |
1788 | ||
1789 | $k = exp(i * 2*pi/3); | |
1790 | print "$j - $k = ", $j - $k, "\n"; | |
a5f75d66 | 1791 | |
b42d0ec9 JH |
1792 | $z->Re(3); # Re, Im, arg, abs, |
1793 | $j->arg(2); # (the last two aka rho, theta) | |
1794 | # can be used also as mutators. | |
1795 | ||
1796 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |
5aabfad6 | 1797 | |
1798 | The division (/) and the following functions | |
1799 | ||
b42d0ec9 | 1800 | log ln log10 logn |
2820d885 | 1801 | tan sec csc cot |
b42d0ec9 JH |
1802 | atan asec acsc acot |
1803 | tanh sech csch coth | |
1804 | atanh asech acsch acoth | |
5aabfad6 | 1805 | |
1806 | cannot be computed for all arguments because that would mean dividing | |
8c03c583 JH |
1807 | by zero or taking logarithm of zero. These situations cause fatal |
1808 | runtime errors looking like this | |
5aabfad6 | 1809 | |
1810 | cot(0): Division by zero. | |
5cd24f17 | 1811 | (Because in the definition of cot(0), the divisor sin(0) is 0) |
5aabfad6 | 1812 | Died at ... |
1813 | ||
8c03c583 JH |
1814 | or |
1815 | ||
1816 | atanh(-1): Logarithm of zero. | |
1817 | Died at... | |
1818 | ||
1819 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
b42d0ec9 JH |
1820 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the the |
1821 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot | |
1822 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
1823 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
1824 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
1825 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
1826 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
1827 | is any integer. | |
1828 | ||
1829 | Note that because we are operating on approximations of real numbers, | |
1830 | these errors can happen when merely `too close' to the singularities | |
1831 | listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of | |
1832 | division by zero. | |
1833 | ||
1834 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
1835 | ||
1836 | The C<make> and C<emake> accept both real and complex arguments. | |
1837 | When they cannot recognize the arguments they will die with error | |
1838 | messages like the following | |
1839 | ||
1840 | Math::Complex::make: Cannot take real part of ... | |
1841 | Math::Complex::make: Cannot take real part of ... | |
1842 | Math::Complex::emake: Cannot take rho of ... | |
1843 | Math::Complex::emake: Cannot take theta of ... | |
5cd24f17 | 1844 | |
a5f75d66 AD |
1845 | =head1 BUGS |
1846 | ||
5cd24f17 | 1847 | Saying C<use Math::Complex;> exports many mathematical routines in the |
fb73857a | 1848 | caller environment and even overrides some (C<sqrt>, C<log>). |
1849 | This is construed as a feature by the Authors, actually... ;-) | |
a5f75d66 | 1850 | |
66730be0 RM |
1851 | All routines expect to be given real or complex numbers. Don't attempt to |
1852 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
1853 | operation (for instance) between two overloaded entities. | |
a5f75d66 | 1854 | |
d09ae4e6 JH |
1855 | In Cray UNICOS there is some strange numerical instability that results |
1856 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
1857 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
1858 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
1859 | ||
0c721ce2 | 1860 | =head1 AUTHORS |
a5f75d66 | 1861 | |
6e238990 | 1862 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and |
ace5de91 | 1863 | Jarkko Hietaniemi <F<jhi@iki.fi>>. |
5cd24f17 | 1864 | |
fb73857a | 1865 | Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. |
1866 | ||
5cd24f17 | 1867 | =cut |
1868 | ||
b42d0ec9 JH |
1869 | 1; |
1870 | ||
5cd24f17 | 1871 | # eof |