Commit | Line | Data |
---|---|---|
4b88f280 | 1 | #line 2 "op.c" |
a0d0e21e | 2 | /* op.c |
79072805 | 3 | * |
1129b882 NC |
4 | * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
5 | * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others | |
79072805 LW |
6 | * |
7 | * You may distribute under the terms of either the GNU General Public | |
8 | * License or the Artistic License, as specified in the README file. | |
9 | * | |
a0d0e21e LW |
10 | */ |
11 | ||
12 | /* | |
4ac71550 TC |
13 | * 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was |
14 | * our Mr. Bilbo's first cousin on the mother's side (her mother being the | |
15 | * youngest of the Old Took's daughters); and Mr. Drogo was his second | |
16 | * cousin. So Mr. Frodo is his first *and* second cousin, once removed | |
17 | * either way, as the saying is, if you follow me.' --the Gaffer | |
18 | * | |
19 | * [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"] | |
79072805 LW |
20 | */ |
21 | ||
166f8a29 DM |
22 | /* This file contains the functions that create, manipulate and optimize |
23 | * the OP structures that hold a compiled perl program. | |
24 | * | |
9b7bf845 DM |
25 | * Note that during the build of miniperl, a temporary copy of this file |
26 | * is made, called opmini.c. | |
27 | * | |
28 | * A Perl program is compiled into a tree of OP nodes. Each op contains: | |
29 | * * structural OP pointers to its children and siblings (op_sibling, | |
30 | * op_first etc) that define the tree structure; | |
31 | * * execution order OP pointers (op_next, plus sometimes op_other, | |
32 | * op_lastop etc) that define the execution sequence plus variants; | |
33 | * * a pointer to the C "pp" function that would execute the op; | |
34 | * * any data specific to that op. | |
35 | * For example, an OP_CONST op points to the pp_const() function and to an | |
36 | * SV containing the constant value. When pp_const() is executed, its job | |
37 | * is to push that SV onto the stack. | |
166f8a29 DM |
38 | * |
39 | * OPs are mainly created by the newFOO() functions, which are mainly | |
40 | * called from the parser (in perly.y) as the code is parsed. For example | |
41 | * the Perl code $a + $b * $c would cause the equivalent of the following | |
42 | * to be called (oversimplifying a bit): | |
43 | * | |
44 | * newBINOP(OP_ADD, flags, | |
45 | * newSVREF($a), | |
46 | * newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c)) | |
47 | * ) | |
48 | * | |
9b7bf845 DM |
49 | * As the parser reduces low-level rules, it creates little op subtrees; |
50 | * as higher-level rules are resolved, these subtrees get joined together | |
51 | * as branches on a bigger subtree, until eventually a top-level rule like | |
52 | * a subroutine definition is reduced, at which point there is one large | |
53 | * parse tree left. | |
54 | * | |
55 | * The execution order pointers (op_next) are generated as the subtrees | |
56 | * are joined together. Consider this sub-expression: A*B + C/D: at the | |
57 | * point when it's just been parsed, the op tree looks like: | |
58 | * | |
59 | * [+] | |
60 | * | | |
61 | * [*]------[/] | |
62 | * | | | |
63 | * A---B C---D | |
64 | * | |
65 | * with the intended execution order being: | |
66 | * | |
67 | * [PREV] => A => B => [*] => C => D => [/] => [+] => [NEXT] | |
68 | * | |
69 | * At this point all the nodes' op_next pointers will have been set, | |
70 | * except that: | |
71 | * * we don't know what the [NEXT] node will be yet; | |
72 | * * we don't know what the [PREV] node will be yet, but when it gets | |
73 | * created and needs its op_next set, it needs to be set to point to | |
74 | * A, which is non-obvious. | |
75 | * To handle both those cases, we temporarily set the top node's | |
76 | * op_next to point to the first node to be executed in this subtree (A in | |
77 | * this case). This means that initially a subtree's op_next chain, | |
78 | * starting from the top node, will visit each node in execution sequence | |
79 | * then point back at the top node. | |
80 | * When we embed this subtree in a larger tree, its top op_next is used | |
81 | * to get the start node, then is set to point to its new neighbour. | |
82 | * For example the two separate [*],A,B and [/],C,D subtrees would | |
83 | * initially have had: | |
84 | * [*] => A; A => B; B => [*] | |
85 | * and | |
86 | * [/] => C; C => D; D => [/] | |
87 | * When these two subtrees were joined together to make the [+] subtree, | |
88 | * [+]'s op_next was set to [*]'s op_next, i.e. A; then [*]'s op_next was | |
89 | * set to point to [/]'s op_next, i.e. C. | |
90 | * | |
91 | * This op_next linking is done by the LINKLIST() macro and its underlying | |
92 | * op_linklist() function. Given a top-level op, if its op_next is | |
93 | * non-null, it's already been linked, so leave it. Otherwise link it with | |
94 | * its children as described above, possibly recursively if any of the | |
95 | * children have a null op_next. | |
96 | * | |
97 | * In summary: given a subtree, its top-level node's op_next will either | |
98 | * be: | |
99 | * NULL: the subtree hasn't been LINKLIST()ed yet; | |
100 | * fake: points to the start op for this subtree; | |
101 | * real: once the subtree has been embedded into a larger tree | |
166f8a29 | 102 | */ |
ccfc67b7 | 103 | |
61b743bb | 104 | /* |
9b7bf845 DM |
105 | |
106 | Here's an older description from Larry. | |
107 | ||
61b743bb DM |
108 | Perl's compiler is essentially a 3-pass compiler with interleaved phases: |
109 | ||
110 | A bottom-up pass | |
111 | A top-down pass | |
112 | An execution-order pass | |
113 | ||
114 | The bottom-up pass is represented by all the "newOP" routines and | |
115 | the ck_ routines. The bottom-upness is actually driven by yacc. | |
116 | So at the point that a ck_ routine fires, we have no idea what the | |
117 | context is, either upward in the syntax tree, or either forward or | |
118 | backward in the execution order. (The bottom-up parser builds that | |
119 | part of the execution order it knows about, but if you follow the "next" | |
120 | links around, you'll find it's actually a closed loop through the | |
ef9da979 | 121 | top level node.) |
61b743bb DM |
122 | |
123 | Whenever the bottom-up parser gets to a node that supplies context to | |
124 | its components, it invokes that portion of the top-down pass that applies | |
125 | to that part of the subtree (and marks the top node as processed, so | |
126 | if a node further up supplies context, it doesn't have to take the | |
127 | plunge again). As a particular subcase of this, as the new node is | |
128 | built, it takes all the closed execution loops of its subcomponents | |
129 | and links them into a new closed loop for the higher level node. But | |
130 | it's still not the real execution order. | |
131 | ||
132 | The actual execution order is not known till we get a grammar reduction | |
133 | to a top-level unit like a subroutine or file that will be called by | |
134 | "name" rather than via a "next" pointer. At that point, we can call | |
135 | into peep() to do that code's portion of the 3rd pass. It has to be | |
136 | recursive, but it's recursive on basic blocks, not on tree nodes. | |
137 | */ | |
138 | ||
06e0342d | 139 | /* To implement user lexical pragmas, there needs to be a way at run time to |
b3ca2e83 NC |
140 | get the compile time state of %^H for that block. Storing %^H in every |
141 | block (or even COP) would be very expensive, so a different approach is | |
142 | taken. The (running) state of %^H is serialised into a tree of HE-like | |
143 | structs. Stores into %^H are chained onto the current leaf as a struct | |
144 | refcounted_he * with the key and the value. Deletes from %^H are saved | |
145 | with a value of PL_sv_placeholder. The state of %^H at any point can be | |
146 | turned back into a regular HV by walking back up the tree from that point's | |
06e0342d | 147 | leaf, ignoring any key you've already seen (placeholder or not), storing |
b3ca2e83 NC |
148 | the rest into the HV structure, then removing the placeholders. Hence |
149 | memory is only used to store the %^H deltas from the enclosing COP, rather | |
150 | than the entire %^H on each COP. | |
151 | ||
152 | To cause actions on %^H to write out the serialisation records, it has | |
153 | magic type 'H'. This magic (itself) does nothing, but its presence causes | |
154 | the values to gain magic type 'h', which has entries for set and clear. | |
c28fe1ec | 155 | C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store |
34795b44 | 156 | record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS> |
c28fe1ec NC |
157 | saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that |
158 | it will be correctly restored when any inner compiling scope is exited. | |
b3ca2e83 NC |
159 | */ |
160 | ||
79072805 | 161 | #include "EXTERN.h" |
864dbfa3 | 162 | #define PERL_IN_OP_C |
79072805 | 163 | #include "perl.h" |
77ca0c92 | 164 | #include "keywords.h" |
2846acbf | 165 | #include "feature.h" |
74529a43 | 166 | #include "regcomp.h" |
79072805 | 167 | |
16c91539 | 168 | #define CALL_PEEP(o) PL_peepp(aTHX_ o) |
1a0a2ba9 | 169 | #define CALL_RPEEP(o) PL_rpeepp(aTHX_ o) |
16c91539 | 170 | #define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o) |
a2efc822 | 171 | |
5068f264 | 172 | static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar"; |
637494ac | 173 | |
72621f84 DM |
174 | /* remove any leading "empty" ops from the op_next chain whose first |
175 | * node's address is stored in op_p. Store the updated address of the | |
176 | * first node in op_p. | |
177 | */ | |
178 | ||
179 | STATIC void | |
dc3bf405 | 180 | S_prune_chain_head(OP** op_p) |
72621f84 DM |
181 | { |
182 | while (*op_p | |
183 | && ( (*op_p)->op_type == OP_NULL | |
184 | || (*op_p)->op_type == OP_SCOPE | |
185 | || (*op_p)->op_type == OP_SCALAR | |
186 | || (*op_p)->op_type == OP_LINESEQ) | |
187 | ) | |
188 | *op_p = (*op_p)->op_next; | |
189 | } | |
190 | ||
191 | ||
8be227ab FC |
192 | /* See the explanatory comments above struct opslab in op.h. */ |
193 | ||
7aef8e5b | 194 | #ifdef PERL_DEBUG_READONLY_OPS |
3107b51f FC |
195 | # define PERL_SLAB_SIZE 128 |
196 | # define PERL_MAX_SLAB_SIZE 4096 | |
197 | # include <sys/mman.h> | |
7aef8e5b | 198 | #endif |
3107b51f | 199 | |
7aef8e5b | 200 | #ifndef PERL_SLAB_SIZE |
8be227ab | 201 | # define PERL_SLAB_SIZE 64 |
7aef8e5b FC |
202 | #endif |
203 | #ifndef PERL_MAX_SLAB_SIZE | |
e6cee8c0 | 204 | # define PERL_MAX_SLAB_SIZE 2048 |
7aef8e5b | 205 | #endif |
8be227ab FC |
206 | |
207 | /* rounds up to nearest pointer */ | |
7aef8e5b FC |
208 | #define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *)) |
209 | #define DIFF(o,p) ((size_t)((I32 **)(p) - (I32**)(o))) | |
8be227ab | 210 | |
17b8f3a1 DM |
211 | /* requires double parens and aTHX_ */ |
212 | #define DEBUG_S_warn(args) \ | |
213 | DEBUG_S( \ | |
214 | PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \ | |
215 | ) | |
216 | ||
217 | ||
218 | /* malloc a new op slab (suitable for attaching to PL_compcv). | |
219 | * sz is in units of pointers */ | |
49c01b24 | 220 | |
8be227ab | 221 | static OPSLAB * |
17b8f3a1 | 222 | S_new_slab(pTHX_ OPSLAB *head, size_t sz) |
8be227ab | 223 | { |
17b8f3a1 DM |
224 | OPSLAB *slab; |
225 | ||
226 | /* opslot_offset is only U16 */ | |
227 | assert(sz < U16_MAX); | |
228 | ||
7aef8e5b | 229 | #ifdef PERL_DEBUG_READONLY_OPS |
17b8f3a1 | 230 | slab = (OPSLAB *) mmap(0, sz * sizeof(I32 *), |
3107b51f FC |
231 | PROT_READ|PROT_WRITE, |
232 | MAP_ANON|MAP_PRIVATE, -1, 0); | |
233 | DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n", | |
234 | (unsigned long) sz, slab)); | |
235 | if (slab == MAP_FAILED) { | |
236 | perror("mmap failed"); | |
237 | abort(); | |
238 | } | |
239 | slab->opslab_size = (U16)sz; | |
7aef8e5b | 240 | #else |
17b8f3a1 | 241 | slab = (OPSLAB *)PerlMemShared_calloc(sz, sizeof(I32 *)); |
7aef8e5b | 242 | #endif |
dc3bf405 BF |
243 | #ifndef WIN32 |
244 | /* The context is unused in non-Windows */ | |
245 | PERL_UNUSED_CONTEXT; | |
246 | #endif | |
8be227ab | 247 | slab->opslab_first = (OPSLOT *)((I32 **)slab + sz - 1); |
17b8f3a1 DM |
248 | slab->opslab_head = head ? head : slab; |
249 | DEBUG_S_warn((aTHX_ "allocated new op slab %p, head slab %p", | |
250 | (void*)slab, (void*)(slab->opslab_head))); | |
8be227ab FC |
251 | return slab; |
252 | } | |
253 | ||
e7372881 | 254 | |
49c01b24 DM |
255 | /* Returns a sz-sized block of memory (suitable for holding an op) from |
256 | * a free slot in the chain of op slabs attached to PL_compcv. | |
257 | * Allocates a new slab if necessary. | |
258 | * if PL_compcv isn't compiling, malloc() instead. | |
259 | */ | |
260 | ||
8be227ab FC |
261 | void * |
262 | Perl_Slab_Alloc(pTHX_ size_t sz) | |
263 | { | |
bffbea38 | 264 | OPSLAB *head_slab; /* first slab in the chain */ |
8be227ab FC |
265 | OPSLAB *slab2; |
266 | OPSLOT *slot; | |
267 | OP *o; | |
5cb52f30 | 268 | size_t opsz, space; |
8be227ab | 269 | |
2073970f NC |
270 | /* We only allocate ops from the slab during subroutine compilation. |
271 | We find the slab via PL_compcv, hence that must be non-NULL. It could | |
272 | also be pointing to a subroutine which is now fully set up (CvROOT() | |
273 | pointing to the top of the optree for that sub), or a subroutine | |
274 | which isn't using the slab allocator. If our sanity checks aren't met, | |
275 | don't use a slab, but allocate the OP directly from the heap. */ | |
8be227ab FC |
276 | if (!PL_compcv || CvROOT(PL_compcv) |
277 | || (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv))) | |
29e61fd9 DM |
278 | { |
279 | o = (OP*)PerlMemShared_calloc(1, sz); | |
280 | goto gotit; | |
281 | } | |
8be227ab | 282 | |
2073970f NC |
283 | /* While the subroutine is under construction, the slabs are accessed via |
284 | CvSTART(), to avoid needing to expand PVCV by one pointer for something | |
285 | unneeded at runtime. Once a subroutine is constructed, the slabs are | |
286 | accessed via CvROOT(). So if CvSTART() is NULL, no slab has been | |
287 | allocated yet. See the commit message for 8be227ab5eaa23f2 for more | |
288 | details. */ | |
289 | if (!CvSTART(PL_compcv)) { | |
8be227ab | 290 | CvSTART(PL_compcv) = |
17b8f3a1 | 291 | (OP *)(head_slab = S_new_slab(aTHX_ NULL, PERL_SLAB_SIZE)); |
8be227ab | 292 | CvSLABBED_on(PL_compcv); |
bffbea38 | 293 | head_slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */ |
8be227ab | 294 | } |
bffbea38 | 295 | else ++(head_slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt; |
8be227ab | 296 | |
5cb52f30 FC |
297 | opsz = SIZE_TO_PSIZE(sz); |
298 | sz = opsz + OPSLOT_HEADER_P; | |
8be227ab | 299 | |
2073970f NC |
300 | /* The slabs maintain a free list of OPs. In particular, constant folding |
301 | will free up OPs, so it makes sense to re-use them where possible. A | |
302 | freed up slot is used in preference to a new allocation. */ | |
bffbea38 DM |
303 | if (head_slab->opslab_freed) { |
304 | OP **too = &head_slab->opslab_freed; | |
8be227ab | 305 | o = *too; |
bffbea38 DM |
306 | DEBUG_S_warn((aTHX_ "found free op at %p, head slab %p", (void*)o, |
307 | (void*)head_slab)); | |
8be227ab | 308 | while (o && DIFF(OpSLOT(o), OpSLOT(o)->opslot_next) < sz) { |
e7372881 | 309 | DEBUG_S_warn((aTHX_ "Alas! too small")); |
8be227ab | 310 | o = *(too = &o->op_next); |
eb212a1c | 311 | if (o) { DEBUG_S_warn((aTHX_ "found another free op at %p", (void*)o)); } |
8be227ab FC |
312 | } |
313 | if (o) { | |
314 | *too = o->op_next; | |
5cb52f30 | 315 | Zero(o, opsz, I32 *); |
8be227ab | 316 | o->op_slabbed = 1; |
29e61fd9 | 317 | goto gotit; |
8be227ab FC |
318 | } |
319 | } | |
320 | ||
7aef8e5b | 321 | #define INIT_OPSLOT \ |
17b8f3a1 | 322 | slot->opslot_offset = DIFF(slab2, slot) ; \ |
8be227ab FC |
323 | slot->opslot_next = slab2->opslab_first; \ |
324 | slab2->opslab_first = slot; \ | |
325 | o = &slot->opslot_op; \ | |
326 | o->op_slabbed = 1 | |
327 | ||
328 | /* The partially-filled slab is next in the chain. */ | |
bffbea38 | 329 | slab2 = head_slab->opslab_next ? head_slab->opslab_next : head_slab; |
8be227ab FC |
330 | if ((space = DIFF(&slab2->opslab_slots, slab2->opslab_first)) < sz) { |
331 | /* Remaining space is too small. */ | |
332 | ||
8be227ab FC |
333 | /* If we can fit a BASEOP, add it to the free chain, so as not |
334 | to waste it. */ | |
335 | if (space >= SIZE_TO_PSIZE(sizeof(OP)) + OPSLOT_HEADER_P) { | |
336 | slot = &slab2->opslab_slots; | |
337 | INIT_OPSLOT; | |
338 | o->op_type = OP_FREED; | |
bffbea38 DM |
339 | o->op_next = head_slab->opslab_freed; |
340 | head_slab->opslab_freed = o; | |
8be227ab FC |
341 | } |
342 | ||
343 | /* Create a new slab. Make this one twice as big. */ | |
344 | slot = slab2->opslab_first; | |
345 | while (slot->opslot_next) slot = slot->opslot_next; | |
17b8f3a1 | 346 | slab2 = S_new_slab(aTHX_ head_slab, |
af7751f6 | 347 | (DIFF(slab2, slot)+1)*2 > PERL_MAX_SLAB_SIZE |
e6cee8c0 | 348 | ? PERL_MAX_SLAB_SIZE |
af7751f6 | 349 | : (DIFF(slab2, slot)+1)*2); |
bffbea38 DM |
350 | slab2->opslab_next = head_slab->opslab_next; |
351 | head_slab->opslab_next = slab2; | |
8be227ab FC |
352 | } |
353 | assert(DIFF(&slab2->opslab_slots, slab2->opslab_first) >= sz); | |
354 | ||
355 | /* Create a new op slot */ | |
356 | slot = (OPSLOT *)((I32 **)slab2->opslab_first - sz); | |
357 | assert(slot >= &slab2->opslab_slots); | |
51c777ca FC |
358 | if (DIFF(&slab2->opslab_slots, slot) |
359 | < SIZE_TO_PSIZE(sizeof(OP)) + OPSLOT_HEADER_P) | |
360 | slot = &slab2->opslab_slots; | |
8be227ab | 361 | INIT_OPSLOT; |
17b8f3a1 DM |
362 | DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p, head slab %p", |
363 | (void*)o, (void*)slab2, (void*)head_slab)); | |
29e61fd9 DM |
364 | |
365 | gotit: | |
87b5a8b9 DM |
366 | /* moresib == 0, op_sibling == 0 implies a solitary unattached op */ |
367 | assert(!o->op_moresib); | |
86cd3a13 | 368 | assert(!o->op_sibparent); |
29e61fd9 | 369 | |
8be227ab FC |
370 | return (void *)o; |
371 | } | |
372 | ||
7aef8e5b | 373 | #undef INIT_OPSLOT |
8be227ab | 374 | |
7aef8e5b | 375 | #ifdef PERL_DEBUG_READONLY_OPS |
3107b51f FC |
376 | void |
377 | Perl_Slab_to_ro(pTHX_ OPSLAB *slab) | |
378 | { | |
379 | PERL_ARGS_ASSERT_SLAB_TO_RO; | |
380 | ||
381 | if (slab->opslab_readonly) return; | |
382 | slab->opslab_readonly = 1; | |
383 | for (; slab; slab = slab->opslab_next) { | |
384 | /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n", | |
385 | (unsigned long) slab->opslab_size, slab));*/ | |
386 | if (mprotect(slab, slab->opslab_size * sizeof(I32 *), PROT_READ)) | |
387 | Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", slab, | |
388 | (unsigned long)slab->opslab_size, errno); | |
389 | } | |
390 | } | |
391 | ||
7bbbc3c0 NC |
392 | void |
393 | Perl_Slab_to_rw(pTHX_ OPSLAB *const slab) | |
3107b51f | 394 | { |
3107b51f FC |
395 | OPSLAB *slab2; |
396 | ||
397 | PERL_ARGS_ASSERT_SLAB_TO_RW; | |
398 | ||
3107b51f FC |
399 | if (!slab->opslab_readonly) return; |
400 | slab2 = slab; | |
401 | for (; slab2; slab2 = slab2->opslab_next) { | |
402 | /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n", | |
403 | (unsigned long) size, slab2));*/ | |
404 | if (mprotect((void *)slab2, slab2->opslab_size * sizeof(I32 *), | |
405 | PROT_READ|PROT_WRITE)) { | |
406 | Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", slab, | |
407 | (unsigned long)slab2->opslab_size, errno); | |
408 | } | |
409 | } | |
410 | slab->opslab_readonly = 0; | |
411 | } | |
412 | ||
413 | #else | |
9e4d7a13 | 414 | # define Slab_to_rw(op) NOOP |
3107b51f FC |
415 | #endif |
416 | ||
8be227ab FC |
417 | /* This cannot possibly be right, but it was copied from the old slab |
418 | allocator, to which it was originally added, without explanation, in | |
419 | commit 083fcd5. */ | |
7aef8e5b | 420 | #ifdef NETWARE |
8be227ab | 421 | # define PerlMemShared PerlMem |
7aef8e5b | 422 | #endif |
8be227ab | 423 | |
c5cd8dab DM |
424 | /* make freed ops die if they're inadvertently executed */ |
425 | #ifdef DEBUGGING | |
426 | static OP * | |
427 | S_pp_freed(pTHX) | |
428 | { | |
429 | DIE(aTHX_ "panic: freed op 0x%p called\n", PL_op); | |
430 | } | |
431 | #endif | |
432 | ||
49c01b24 DM |
433 | |
434 | /* Return the block of memory used by an op to the free list of | |
435 | * the OP slab associated with that op. | |
436 | */ | |
437 | ||
8be227ab FC |
438 | void |
439 | Perl_Slab_Free(pTHX_ void *op) | |
440 | { | |
441 | OP * const o = (OP *)op; | |
442 | OPSLAB *slab; | |
443 | ||
444 | PERL_ARGS_ASSERT_SLAB_FREE; | |
445 | ||
c5cd8dab DM |
446 | #ifdef DEBUGGING |
447 | o->op_ppaddr = S_pp_freed; | |
448 | #endif | |
449 | ||
8be227ab | 450 | if (!o->op_slabbed) { |
90840c5d RU |
451 | if (!o->op_static) |
452 | PerlMemShared_free(op); | |
8be227ab FC |
453 | return; |
454 | } | |
455 | ||
456 | slab = OpSLAB(o); | |
457 | /* If this op is already freed, our refcount will get screwy. */ | |
458 | assert(o->op_type != OP_FREED); | |
459 | o->op_type = OP_FREED; | |
460 | o->op_next = slab->opslab_freed; | |
461 | slab->opslab_freed = o; | |
17b8f3a1 | 462 | DEBUG_S_warn((aTHX_ "free op at %p, recorded in head slab %p", (void*)o, (void*)slab)); |
8be227ab FC |
463 | OpslabREFCNT_dec_padok(slab); |
464 | } | |
465 | ||
466 | void | |
467 | Perl_opslab_free_nopad(pTHX_ OPSLAB *slab) | |
468 | { | |
8be227ab FC |
469 | const bool havepad = !!PL_comppad; |
470 | PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD; | |
471 | if (havepad) { | |
472 | ENTER; | |
473 | PAD_SAVE_SETNULLPAD(); | |
474 | } | |
475 | opslab_free(slab); | |
476 | if (havepad) LEAVE; | |
477 | } | |
478 | ||
49c01b24 DM |
479 | /* Free a chain of OP slabs. Should only be called after all ops contained |
480 | * in it have been freed. At this point, its reference count should be 1, | |
481 | * because OpslabREFCNT_dec() skips doing rc-- when it detects that rc == 1, | |
482 | * and just directly calls opslab_free(). | |
483 | * (Note that the reference count which PL_compcv held on the slab should | |
484 | * have been removed once compilation of the sub was complete). | |
485 | * | |
486 | * | |
487 | */ | |
488 | ||
8be227ab FC |
489 | void |
490 | Perl_opslab_free(pTHX_ OPSLAB *slab) | |
491 | { | |
492 | OPSLAB *slab2; | |
493 | PERL_ARGS_ASSERT_OPSLAB_FREE; | |
81611534 | 494 | PERL_UNUSED_CONTEXT; |
eb212a1c | 495 | DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab)); |
8be227ab | 496 | assert(slab->opslab_refcnt == 1); |
3dc78631 | 497 | do { |
8be227ab | 498 | slab2 = slab->opslab_next; |
7aef8e5b | 499 | #ifdef DEBUGGING |
8be227ab | 500 | slab->opslab_refcnt = ~(size_t)0; |
7aef8e5b FC |
501 | #endif |
502 | #ifdef PERL_DEBUG_READONLY_OPS | |
3107b51f | 503 | DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n", |
eb212a1c | 504 | (void*)slab)); |
3107b51f FC |
505 | if (munmap(slab, slab->opslab_size * sizeof(I32 *))) { |
506 | perror("munmap failed"); | |
507 | abort(); | |
508 | } | |
7aef8e5b | 509 | #else |
8be227ab | 510 | PerlMemShared_free(slab); |
7aef8e5b | 511 | #endif |
3dc78631 DM |
512 | slab = slab2; |
513 | } while (slab); | |
8be227ab FC |
514 | } |
515 | ||
49c01b24 DM |
516 | /* like opslab_free(), but first calls op_free() on any ops in the slab |
517 | * not marked as OP_FREED | |
518 | */ | |
519 | ||
8be227ab FC |
520 | void |
521 | Perl_opslab_force_free(pTHX_ OPSLAB *slab) | |
522 | { | |
523 | OPSLAB *slab2; | |
7aef8e5b | 524 | #ifdef DEBUGGING |
8be227ab | 525 | size_t savestack_count = 0; |
7aef8e5b | 526 | #endif |
8be227ab FC |
527 | PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE; |
528 | slab2 = slab; | |
529 | do { | |
19742f39 | 530 | OPSLOT *slot; |
8be227ab FC |
531 | for (slot = slab2->opslab_first; |
532 | slot->opslot_next; | |
533 | slot = slot->opslot_next) { | |
534 | if (slot->opslot_op.op_type != OP_FREED | |
535 | && !(slot->opslot_op.op_savefree | |
7aef8e5b | 536 | #ifdef DEBUGGING |
8be227ab | 537 | && ++savestack_count |
7aef8e5b | 538 | #endif |
8be227ab FC |
539 | ) |
540 | ) { | |
541 | assert(slot->opslot_op.op_slabbed); | |
8be227ab | 542 | op_free(&slot->opslot_op); |
3bf28c7e | 543 | if (slab->opslab_refcnt == 1) goto free; |
8be227ab FC |
544 | } |
545 | } | |
546 | } while ((slab2 = slab2->opslab_next)); | |
547 | /* > 1 because the CV still holds a reference count. */ | |
548 | if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */ | |
7aef8e5b | 549 | #ifdef DEBUGGING |
8be227ab | 550 | assert(savestack_count == slab->opslab_refcnt-1); |
7aef8e5b | 551 | #endif |
ee5ee853 FC |
552 | /* Remove the CV’s reference count. */ |
553 | slab->opslab_refcnt--; | |
8be227ab FC |
554 | return; |
555 | } | |
556 | free: | |
557 | opslab_free(slab); | |
558 | } | |
559 | ||
3107b51f FC |
560 | #ifdef PERL_DEBUG_READONLY_OPS |
561 | OP * | |
562 | Perl_op_refcnt_inc(pTHX_ OP *o) | |
563 | { | |
564 | if(o) { | |
372eab01 NC |
565 | OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL; |
566 | if (slab && slab->opslab_readonly) { | |
83519873 | 567 | Slab_to_rw(slab); |
372eab01 NC |
568 | ++o->op_targ; |
569 | Slab_to_ro(slab); | |
570 | } else { | |
571 | ++o->op_targ; | |
572 | } | |
3107b51f FC |
573 | } |
574 | return o; | |
575 | ||
576 | } | |
577 | ||
578 | PADOFFSET | |
579 | Perl_op_refcnt_dec(pTHX_ OP *o) | |
580 | { | |
372eab01 NC |
581 | PADOFFSET result; |
582 | OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL; | |
583 | ||
3107b51f | 584 | PERL_ARGS_ASSERT_OP_REFCNT_DEC; |
372eab01 NC |
585 | |
586 | if (slab && slab->opslab_readonly) { | |
83519873 | 587 | Slab_to_rw(slab); |
372eab01 NC |
588 | result = --o->op_targ; |
589 | Slab_to_ro(slab); | |
590 | } else { | |
591 | result = --o->op_targ; | |
592 | } | |
593 | return result; | |
3107b51f FC |
594 | } |
595 | #endif | |
e50aee73 | 596 | /* |
ce6f1cbc | 597 | * In the following definition, the ", (OP*)0" is just to make the compiler |
a5f75d66 | 598 | * think the expression is of the right type: croak actually does a Siglongjmp. |
e50aee73 | 599 | */ |
11343788 | 600 | #define CHECKOP(type,o) \ |
ce6f1cbc | 601 | ((PL_op_mask && PL_op_mask[type]) \ |
5dc0d613 | 602 | ? ( op_free((OP*)o), \ |
cb77fdf0 | 603 | Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \ |
ce6f1cbc | 604 | (OP*)0 ) \ |
16c91539 | 605 | : PL_check[type](aTHX_ (OP*)o)) |
e50aee73 | 606 | |
e6438c1a | 607 | #define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2) |
c53d7c7d | 608 | |
b9a07097 | 609 | #define OpTYPE_set(o,type) \ |
cba5a3b0 DG |
610 | STMT_START { \ |
611 | o->op_type = (OPCODE)type; \ | |
612 | o->op_ppaddr = PL_ppaddr[type]; \ | |
613 | } STMT_END | |
614 | ||
76e3520e | 615 | STATIC OP * |
cea2e8a9 | 616 | S_no_fh_allowed(pTHX_ OP *o) |
79072805 | 617 | { |
7918f24d NC |
618 | PERL_ARGS_ASSERT_NO_FH_ALLOWED; |
619 | ||
cea2e8a9 | 620 | yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function", |
53e06cf0 | 621 | OP_DESC(o))); |
11343788 | 622 | return o; |
79072805 LW |
623 | } |
624 | ||
76e3520e | 625 | STATIC OP * |
ce16c625 BF |
626 | S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags) |
627 | { | |
628 | PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV; | |
629 | yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags); | |
630 | return o; | |
631 | } | |
632 | ||
633 | STATIC OP * | |
634 | S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags) | |
635 | { | |
636 | PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV; | |
7918f24d | 637 | |
ce16c625 | 638 | yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags); |
11343788 | 639 | return o; |
79072805 LW |
640 | } |
641 | ||
76e3520e | 642 | STATIC void |
ed9feedd | 643 | S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid) |
8990e307 | 644 | { |
ce16c625 BF |
645 | PERL_ARGS_ASSERT_BAD_TYPE_PV; |
646 | ||
647 | yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)", | |
ed9feedd | 648 | (int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0); |
ce16c625 | 649 | } |
7918f24d | 650 | |
ed9feedd DD |
651 | /* remove flags var, its unused in all callers, move to to right end since gv |
652 | and kid are always the same */ | |
ce16c625 | 653 | STATIC void |
ed9feedd | 654 | S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t) |
ce16c625 | 655 | { |
ecf05a58 | 656 | SV * const namesv = cv_name((CV *)gv, NULL, 0); |
7b3b0904 | 657 | PERL_ARGS_ASSERT_BAD_TYPE_GV; |
ce16c625 | 658 | |
147e3846 | 659 | yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %" SVf " must be %s (not %s)", |
ed9feedd | 660 | (int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv)); |
8990e307 LW |
661 | } |
662 | ||
7a52d87a | 663 | STATIC void |
eb796c7f | 664 | S_no_bareword_allowed(pTHX_ OP *o) |
7a52d87a | 665 | { |
7918f24d NC |
666 | PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED; |
667 | ||
5a844595 | 668 | qerror(Perl_mess(aTHX_ |
147e3846 | 669 | "Bareword \"%" SVf "\" not allowed while \"strict subs\" in use", |
be2597df | 670 | SVfARG(cSVOPo_sv))); |
eb796c7f | 671 | o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */ |
7a52d87a GS |
672 | } |
673 | ||
79072805 LW |
674 | /* "register" allocation */ |
675 | ||
676 | PADOFFSET | |
d6447115 | 677 | Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags) |
93a17b20 | 678 | { |
a0d0e21e | 679 | PADOFFSET off; |
12bd6ede | 680 | const bool is_our = (PL_parser->in_my == KEY_our); |
a0d0e21e | 681 | |
7918f24d NC |
682 | PERL_ARGS_ASSERT_ALLOCMY; |
683 | ||
48d0d1be | 684 | if (flags & ~SVf_UTF8) |
d6447115 NC |
685 | Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf, |
686 | (UV)flags); | |
687 | ||
59f00321 | 688 | /* complain about "my $<special_var>" etc etc */ |
7a207065 KW |
689 | if ( len |
690 | && !( is_our | |
691 | || isALPHA(name[1]) | |
692 | || ( (flags & SVf_UTF8) | |
693 | && isIDFIRST_utf8_safe((U8 *)name+1, name + len)) | |
694 | || (name[1] == '_' && len > 2))) | |
834a4ddd | 695 | { |
b14845b4 | 696 | if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1])) |
f6a1dc93 | 697 | && isASCII(name[1]) |
b14845b4 | 698 | && (!isPRINT(name[1]) || strchr("\t\n\r\f", name[1]))) { |
8d9d0498 | 699 | /* diag_listed_as: Can't use global %s in "%s" */ |
d6447115 NC |
700 | yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in \"%s\"", |
701 | name[0], toCTRL(name[1]), (int)(len - 2), name + 2, | |
aab6a793 | 702 | PL_parser->in_my == KEY_state ? "state" : "my")); |
d1544d85 | 703 | } else { |
ce16c625 BF |
704 | yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in \"%s\"", (int) len, name, |
705 | PL_parser->in_my == KEY_state ? "state" : "my"), flags & SVf_UTF8); | |
46fc3d4c | 706 | } |
a0d0e21e | 707 | } |
748a9306 | 708 | |
dd2155a4 | 709 | /* allocate a spare slot and store the name in that slot */ |
93a17b20 | 710 | |
cc76b5cc | 711 | off = pad_add_name_pvn(name, len, |
48d0d1be | 712 | (is_our ? padadd_OUR : |
2502ffdf | 713 | PL_parser->in_my == KEY_state ? padadd_STATE : 0), |
12bd6ede | 714 | PL_parser->in_my_stash, |
3edf23ff | 715 | (is_our |
133706a6 | 716 | /* $_ is always in main::, even with our */ |
ef00320b FC |
717 | ? (PL_curstash && !memEQs(name,len,"$_") |
718 | ? PL_curstash | |
719 | : PL_defstash) | |
5c284bb0 | 720 | : NULL |
cca43f78 | 721 | ) |
dd2155a4 | 722 | ); |
a74073ad DM |
723 | /* anon sub prototypes contains state vars should always be cloned, |
724 | * otherwise the state var would be shared between anon subs */ | |
725 | ||
726 | if (PL_parser->in_my == KEY_state && CvANON(PL_compcv)) | |
727 | CvCLONE_on(PL_compcv); | |
728 | ||
dd2155a4 | 729 | return off; |
79072805 LW |
730 | } |
731 | ||
c0b8aebd | 732 | /* |
dcccc8ff KW |
733 | =head1 Optree Manipulation Functions |
734 | ||
c0b8aebd FC |
735 | =for apidoc alloccopstash |
736 | ||
737 | Available only under threaded builds, this function allocates an entry in | |
738 | C<PL_stashpad> for the stash passed to it. | |
739 | ||
740 | =cut | |
741 | */ | |
742 | ||
d4d03940 FC |
743 | #ifdef USE_ITHREADS |
744 | PADOFFSET | |
1dc74fdb | 745 | Perl_alloccopstash(pTHX_ HV *hv) |
d4d03940 FC |
746 | { |
747 | PADOFFSET off = 0, o = 1; | |
748 | bool found_slot = FALSE; | |
749 | ||
1dc74fdb FC |
750 | PERL_ARGS_ASSERT_ALLOCCOPSTASH; |
751 | ||
752 | if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix; | |
d4d03940 | 753 | |
1dc74fdb FC |
754 | for (; o < PL_stashpadmax; ++o) { |
755 | if (PL_stashpad[o] == hv) return PL_stashpadix = o; | |
756 | if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV) | |
d4d03940 FC |
757 | found_slot = TRUE, off = o; |
758 | } | |
759 | if (!found_slot) { | |
1dc74fdb FC |
760 | Renew(PL_stashpad, PL_stashpadmax + 10, HV *); |
761 | Zero(PL_stashpad + PL_stashpadmax, 10, HV *); | |
762 | off = PL_stashpadmax; | |
763 | PL_stashpadmax += 10; | |
d4d03940 FC |
764 | } |
765 | ||
1dc74fdb | 766 | PL_stashpad[PL_stashpadix = off] = hv; |
d4d03940 FC |
767 | return off; |
768 | } | |
769 | #endif | |
770 | ||
d2c837a0 DM |
771 | /* free the body of an op without examining its contents. |
772 | * Always use this rather than FreeOp directly */ | |
773 | ||
4136a0f7 | 774 | static void |
d2c837a0 DM |
775 | S_op_destroy(pTHX_ OP *o) |
776 | { | |
d2c837a0 DM |
777 | FreeOp(o); |
778 | } | |
779 | ||
79072805 LW |
780 | /* Destructor */ |
781 | ||
6e53b6ca | 782 | /* |
44170c9a | 783 | =for apidoc op_free |
6e53b6ca | 784 | |
73cdf3a8 DM |
785 | Free an op and its children. Only use this when an op is no longer linked |
786 | to from any optree. | |
6e53b6ca DD |
787 | |
788 | =cut | |
789 | */ | |
790 | ||
79072805 | 791 | void |
864dbfa3 | 792 | Perl_op_free(pTHX_ OP *o) |
79072805 | 793 | { |
27da23d5 | 794 | dVAR; |
acb36ea4 | 795 | OPCODE type; |
73cdf3a8 DM |
796 | OP *top_op = o; |
797 | OP *next_op = o; | |
798 | bool went_up = FALSE; /* whether we reached the current node by | |
799 | following the parent pointer from a child, and | |
800 | so have already seen this node */ | |
801 | ||
802 | if (!o || o->op_type == OP_FREED) | |
803 | return; | |
804 | ||
805 | if (o->op_private & OPpREFCOUNTED) { | |
806 | /* if base of tree is refcounted, just decrement */ | |
807 | switch (o->op_type) { | |
808 | case OP_LEAVESUB: | |
809 | case OP_LEAVESUBLV: | |
810 | case OP_LEAVEEVAL: | |
811 | case OP_LEAVE: | |
812 | case OP_SCOPE: | |
813 | case OP_LEAVEWRITE: | |
814 | { | |
815 | PADOFFSET refcnt; | |
816 | OP_REFCNT_LOCK; | |
817 | refcnt = OpREFCNT_dec(o); | |
818 | OP_REFCNT_UNLOCK; | |
819 | if (refcnt) { | |
820 | /* Need to find and remove any pattern match ops from | |
821 | * the list we maintain for reset(). */ | |
822 | find_and_forget_pmops(o); | |
823 | return; | |
824 | } | |
825 | } | |
826 | break; | |
827 | default: | |
828 | break; | |
829 | } | |
830 | } | |
79072805 | 831 | |
73cdf3a8 DM |
832 | while (next_op) { |
833 | o = next_op; | |
834 | ||
835 | /* free child ops before ourself, (then free ourself "on the | |
836 | * way back up") */ | |
837 | ||
838 | if (!went_up && o->op_flags & OPf_KIDS) { | |
839 | next_op = cUNOPo->op_first; | |
840 | continue; | |
841 | } | |
842 | ||
843 | /* find the next node to visit, *then* free the current node | |
844 | * (can't rely on o->op_* fields being valid after o has been | |
845 | * freed) */ | |
846 | ||
847 | /* The next node to visit will be either the sibling, or the | |
848 | * parent if no siblings left, or NULL if we've worked our way | |
849 | * back up to the top node in the tree */ | |
850 | next_op = (o == top_op) ? NULL : o->op_sibparent; | |
851 | went_up = cBOOL(!OpHAS_SIBLING(o)); /* parents are already visited */ | |
852 | ||
853 | /* Now process the current node */ | |
79072805 | 854 | |
0997db6f TC |
855 | /* Though ops may be freed twice, freeing the op after its slab is a |
856 | big no-no. */ | |
73cdf3a8 | 857 | assert(!o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0); |
0997db6f TC |
858 | /* During the forced freeing of ops after compilation failure, kidops |
859 | may be freed before their parents. */ | |
860 | if (!o || o->op_type == OP_FREED) | |
861 | continue; | |
d0c8136d | 862 | |
0997db6f | 863 | type = o->op_type; |
d0c8136d | 864 | |
0997db6f | 865 | /* an op should only ever acquire op_private flags that we know about. |
09681a13 DM |
866 | * If this fails, you may need to fix something in regen/op_private. |
867 | * Don't bother testing if: | |
868 | * * the op_ppaddr doesn't match the op; someone may have | |
869 | * overridden the op and be doing strange things with it; | |
870 | * * we've errored, as op flags are often left in an | |
871 | * inconsistent state then. Note that an error when | |
872 | * compiling the main program leaves PL_parser NULL, so | |
ad53d4d4 | 873 | * we can't spot faults in the main code, only |
09681a13 DM |
874 | * evaled/required code */ |
875 | #ifdef DEBUGGING | |
73cdf3a8 | 876 | if ( o->op_ppaddr == PL_ppaddr[type] |
09681a13 DM |
877 | && PL_parser |
878 | && !PL_parser->error_count) | |
879 | { | |
0997db6f TC |
880 | assert(!(o->op_private & ~PL_op_private_valid[type])); |
881 | } | |
09681a13 | 882 | #endif |
7934575e | 883 | |
f37b8c3f | 884 | |
0997db6f TC |
885 | /* Call the op_free hook if it has been set. Do it now so that it's called |
886 | * at the right time for refcounted ops, but still before all of the kids | |
887 | * are freed. */ | |
888 | CALL_OPFREEHOOK(o); | |
889 | ||
0997db6f TC |
890 | if (type == OP_NULL) |
891 | type = (OPCODE)o->op_targ; | |
acb36ea4 | 892 | |
0997db6f TC |
893 | if (o->op_slabbed) |
894 | Slab_to_rw(OpSLAB(o)); | |
fc97af9c | 895 | |
0997db6f TC |
896 | /* COP* is not cleared by op_clear() so that we may track line |
897 | * numbers etc even after null() */ | |
898 | if (type == OP_NEXTSTATE || type == OP_DBSTATE) { | |
899 | cop_free((COP*)o); | |
900 | } | |
acb36ea4 | 901 | |
0997db6f TC |
902 | op_clear(o); |
903 | FreeOp(o); | |
0997db6f TC |
904 | if (PL_op == o) |
905 | PL_op = NULL; | |
73cdf3a8 | 906 | } |
acb36ea4 | 907 | } |
79072805 | 908 | |
73cdf3a8 | 909 | |
ab576797 DM |
910 | /* S_op_clear_gv(): free a GV attached to an OP */ |
911 | ||
f9db5646 | 912 | STATIC |
ab576797 DM |
913 | #ifdef USE_ITHREADS |
914 | void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp) | |
915 | #else | |
916 | void S_op_clear_gv(pTHX_ OP *o, SV**svp) | |
917 | #endif | |
918 | { | |
919 | ||
fedf30e1 DM |
920 | GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV |
921 | || o->op_type == OP_MULTIDEREF) | |
ab576797 DM |
922 | #ifdef USE_ITHREADS |
923 | && PL_curpad | |
924 | ? ((GV*)PAD_SVl(*ixp)) : NULL; | |
925 | #else | |
926 | ? (GV*)(*svp) : NULL; | |
927 | #endif | |
928 | /* It's possible during global destruction that the GV is freed | |
929 | before the optree. Whilst the SvREFCNT_inc is happy to bump from | |
930 | 0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0 | |
931 | will trigger an assertion failure, because the entry to sv_clear | |
932 | checks that the scalar is not already freed. A check of for | |
933 | !SvIS_FREED(gv) turns out to be invalid, because during global | |
934 | destruction the reference count can be forced down to zero | |
935 | (with SVf_BREAK set). In which case raising to 1 and then | |
936 | dropping to 0 triggers cleanup before it should happen. I | |
937 | *think* that this might actually be a general, systematic, | |
938 | weakness of the whole idea of SVf_BREAK, in that code *is* | |
939 | allowed to raise and lower references during global destruction, | |
940 | so any *valid* code that happens to do this during global | |
941 | destruction might well trigger premature cleanup. */ | |
942 | bool still_valid = gv && SvREFCNT(gv); | |
943 | ||
944 | if (still_valid) | |
945 | SvREFCNT_inc_simple_void(gv); | |
946 | #ifdef USE_ITHREADS | |
947 | if (*ixp > 0) { | |
948 | pad_swipe(*ixp, TRUE); | |
949 | *ixp = 0; | |
950 | } | |
951 | #else | |
952 | SvREFCNT_dec(*svp); | |
953 | *svp = NULL; | |
954 | #endif | |
955 | if (still_valid) { | |
956 | int try_downgrade = SvREFCNT(gv) == 2; | |
957 | SvREFCNT_dec_NN(gv); | |
958 | if (try_downgrade) | |
959 | gv_try_downgrade(gv); | |
960 | } | |
961 | } | |
962 | ||
963 | ||
93c66552 DM |
964 | void |
965 | Perl_op_clear(pTHX_ OP *o) | |
acb36ea4 | 966 | { |
13137afc | 967 | |
27da23d5 | 968 | dVAR; |
7918f24d NC |
969 | |
970 | PERL_ARGS_ASSERT_OP_CLEAR; | |
971 | ||
11343788 | 972 | switch (o->op_type) { |
acb36ea4 | 973 | case OP_NULL: /* Was holding old type, if any. */ |
c67159e1 | 974 | /* FALLTHROUGH */ |
4d193d44 | 975 | case OP_ENTERTRY: |
acb36ea4 | 976 | case OP_ENTEREVAL: /* Was holding hints. */ |
4fa06845 | 977 | case OP_ARGDEFELEM: /* Was holding signature index. */ |
acb36ea4 | 978 | o->op_targ = 0; |
a0d0e21e | 979 | break; |
a6006777 | 980 | default: |
1d31efef | 981 | if (!(o->op_flags & OPf_REF) || !OP_IS_STAT(o->op_type)) |
a6006777 | 982 | break; |
924ba076 | 983 | /* FALLTHROUGH */ |
463ee0b2 | 984 | case OP_GVSV: |
79072805 | 985 | case OP_GV: |
a6006777 | 986 | case OP_AELEMFAST: |
f7461760 | 987 | #ifdef USE_ITHREADS |
ab576797 | 988 | S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix)); |
350de78d | 989 | #else |
ab576797 | 990 | S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv)); |
350de78d | 991 | #endif |
79072805 | 992 | break; |
810bd8b7 | 993 | case OP_METHOD_REDIR: |
994 | case OP_METHOD_REDIR_SUPER: | |
995 | #ifdef USE_ITHREADS | |
996 | if (cMETHOPx(o)->op_rclass_targ) { | |
997 | pad_swipe(cMETHOPx(o)->op_rclass_targ, 1); | |
998 | cMETHOPx(o)->op_rclass_targ = 0; | |
999 | } | |
1000 | #else | |
1001 | SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv); | |
1002 | cMETHOPx(o)->op_rclass_sv = NULL; | |
1003 | #endif | |
2165bd23 | 1004 | /* FALLTHROUGH */ |
a1ae71d2 | 1005 | case OP_METHOD_NAMED: |
7d6c333c | 1006 | case OP_METHOD_SUPER: |
b46e009d | 1007 | SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv); |
1008 | cMETHOPx(o)->op_u.op_meth_sv = NULL; | |
1009 | #ifdef USE_ITHREADS | |
1010 | if (o->op_targ) { | |
1011 | pad_swipe(o->op_targ, 1); | |
1012 | o->op_targ = 0; | |
1013 | } | |
1014 | #endif | |
1015 | break; | |
79072805 | 1016 | case OP_CONST: |
996c9baa | 1017 | case OP_HINTSEVAL: |
11343788 | 1018 | SvREFCNT_dec(cSVOPo->op_sv); |
a0714e2c | 1019 | cSVOPo->op_sv = NULL; |
3b1c21fa AB |
1020 | #ifdef USE_ITHREADS |
1021 | /** Bug #15654 | |
1022 | Even if op_clear does a pad_free for the target of the op, | |
6a077020 | 1023 | pad_free doesn't actually remove the sv that exists in the pad; |
3b1c21fa AB |
1024 | instead it lives on. This results in that it could be reused as |
1025 | a target later on when the pad was reallocated. | |
1026 | **/ | |
1027 | if(o->op_targ) { | |
1028 | pad_swipe(o->op_targ,1); | |
1029 | o->op_targ = 0; | |
1030 | } | |
1031 | #endif | |
79072805 | 1032 | break; |
c9df4fda | 1033 | case OP_DUMP: |
748a9306 LW |
1034 | case OP_GOTO: |
1035 | case OP_NEXT: | |
1036 | case OP_LAST: | |
1037 | case OP_REDO: | |
11343788 | 1038 | if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS)) |
748a9306 | 1039 | break; |
924ba076 | 1040 | /* FALLTHROUGH */ |
a0d0e21e | 1041 | case OP_TRANS: |
bb16bae8 | 1042 | case OP_TRANSR: |
abd07ec0 DM |
1043 | if ( (o->op_type == OP_TRANS || o->op_type == OP_TRANSR) |
1044 | && (o->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF))) | |
1045 | { | |
043e41b8 DM |
1046 | #ifdef USE_ITHREADS |
1047 | if (cPADOPo->op_padix > 0) { | |
1048 | pad_swipe(cPADOPo->op_padix, TRUE); | |
1049 | cPADOPo->op_padix = 0; | |
1050 | } | |
1051 | #else | |
a0ed51b3 | 1052 | SvREFCNT_dec(cSVOPo->op_sv); |
a0714e2c | 1053 | cSVOPo->op_sv = NULL; |
043e41b8 | 1054 | #endif |
acb36ea4 GS |
1055 | } |
1056 | else { | |
ea71c68d | 1057 | PerlMemShared_free(cPVOPo->op_pv); |
bd61b366 | 1058 | cPVOPo->op_pv = NULL; |
acb36ea4 | 1059 | } |
a0d0e21e LW |
1060 | break; |
1061 | case OP_SUBST: | |
20e98b0f | 1062 | op_free(cPMOPo->op_pmreplrootu.op_pmreplroot); |
971a9dd3 | 1063 | goto clear_pmop; |
5012eebe DM |
1064 | |
1065 | case OP_SPLIT: | |
692044df DM |
1066 | if ( (o->op_private & OPpSPLIT_ASSIGN) /* @array = split */ |
1067 | && !(o->op_flags & OPf_STACKED)) /* @{expr} = split */ | |
5012eebe DM |
1068 | { |
1069 | if (o->op_private & OPpSPLIT_LEX) | |
1070 | pad_free(cPMOPo->op_pmreplrootu.op_pmtargetoff); | |
1071 | else | |
971a9dd3 | 1072 | #ifdef USE_ITHREADS |
5012eebe | 1073 | pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE); |
971a9dd3 | 1074 | #else |
5012eebe | 1075 | SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv)); |
971a9dd3 | 1076 | #endif |
5012eebe | 1077 | } |
924ba076 | 1078 | /* FALLTHROUGH */ |
a0d0e21e | 1079 | case OP_MATCH: |
8782bef2 | 1080 | case OP_QR: |
7b52d656 | 1081 | clear_pmop: |
867940b8 DM |
1082 | if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE)) |
1083 | op_free(cPMOPo->op_code_list); | |
68e2671b | 1084 | cPMOPo->op_code_list = NULL; |
23083432 | 1085 | forget_pmop(cPMOPo); |
20e98b0f | 1086 | cPMOPo->op_pmreplrootu.op_pmreplroot = NULL; |
9cddf794 NC |
1087 | /* we use the same protection as the "SAFE" version of the PM_ macros |
1088 | * here since sv_clean_all might release some PMOPs | |
5f8cb046 DM |
1089 | * after PL_regex_padav has been cleared |
1090 | * and the clearing of PL_regex_padav needs to | |
1091 | * happen before sv_clean_all | |
1092 | */ | |
13137afc AB |
1093 | #ifdef USE_ITHREADS |
1094 | if(PL_regex_pad) { /* We could be in destruction */ | |
402d2eb1 | 1095 | const IV offset = (cPMOPo)->op_pmoffset; |
9cddf794 | 1096 | ReREFCNT_dec(PM_GETRE(cPMOPo)); |
402d2eb1 NC |
1097 | PL_regex_pad[offset] = &PL_sv_undef; |
1098 | sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset, | |
1099 | sizeof(offset)); | |
13137afc | 1100 | } |
9cddf794 NC |
1101 | #else |
1102 | ReREFCNT_dec(PM_GETRE(cPMOPo)); | |
1103 | PM_SETRE(cPMOPo, NULL); | |
1eb1540c | 1104 | #endif |
13137afc | 1105 | |
a0d0e21e | 1106 | break; |
fedf30e1 | 1107 | |
4fa06845 DM |
1108 | case OP_ARGCHECK: |
1109 | PerlMemShared_free(cUNOP_AUXo->op_aux); | |
1110 | break; | |
1111 | ||
e839e6ed DM |
1112 | case OP_MULTICONCAT: |
1113 | { | |
1114 | UNOP_AUX_item *aux = cUNOP_AUXo->op_aux; | |
1115 | /* aux[PERL_MULTICONCAT_IX_PLAIN_PV] and/or | |
1116 | * aux[PERL_MULTICONCAT_IX_UTF8_PV] point to plain and/or | |
1117 | * utf8 shared strings */ | |
1118 | char *p1 = aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv; | |
1119 | char *p2 = aux[PERL_MULTICONCAT_IX_UTF8_PV].pv; | |
1120 | if (p1) | |
1121 | PerlMemShared_free(p1); | |
1122 | if (p2 && p1 != p2) | |
1123 | PerlMemShared_free(p2); | |
1124 | PerlMemShared_free(aux); | |
1125 | } | |
1126 | break; | |
1127 | ||
fedf30e1 DM |
1128 | case OP_MULTIDEREF: |
1129 | { | |
1130 | UNOP_AUX_item *items = cUNOP_AUXo->op_aux; | |
1131 | UV actions = items->uv; | |
1132 | bool last = 0; | |
1133 | bool is_hash = FALSE; | |
1134 | ||
1135 | while (!last) { | |
1136 | switch (actions & MDEREF_ACTION_MASK) { | |
1137 | ||
1138 | case MDEREF_reload: | |
1139 | actions = (++items)->uv; | |
1140 | continue; | |
1141 | ||
1142 | case MDEREF_HV_padhv_helem: | |
1143 | is_hash = TRUE; | |
2165bd23 | 1144 | /* FALLTHROUGH */ |
fedf30e1 DM |
1145 | case MDEREF_AV_padav_aelem: |
1146 | pad_free((++items)->pad_offset); | |
1147 | goto do_elem; | |
1148 | ||
1149 | case MDEREF_HV_gvhv_helem: | |
1150 | is_hash = TRUE; | |
2165bd23 | 1151 | /* FALLTHROUGH */ |
fedf30e1 DM |
1152 | case MDEREF_AV_gvav_aelem: |
1153 | #ifdef USE_ITHREADS | |
1154 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1155 | #else | |
1156 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1157 | #endif | |
1158 | goto do_elem; | |
1159 | ||
1160 | case MDEREF_HV_gvsv_vivify_rv2hv_helem: | |
1161 | is_hash = TRUE; | |
2165bd23 | 1162 | /* FALLTHROUGH */ |
fedf30e1 DM |
1163 | case MDEREF_AV_gvsv_vivify_rv2av_aelem: |
1164 | #ifdef USE_ITHREADS | |
1165 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1166 | #else | |
1167 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1168 | #endif | |
1169 | goto do_vivify_rv2xv_elem; | |
1170 | ||
1171 | case MDEREF_HV_padsv_vivify_rv2hv_helem: | |
1172 | is_hash = TRUE; | |
2165bd23 | 1173 | /* FALLTHROUGH */ |
fedf30e1 DM |
1174 | case MDEREF_AV_padsv_vivify_rv2av_aelem: |
1175 | pad_free((++items)->pad_offset); | |
1176 | goto do_vivify_rv2xv_elem; | |
1177 | ||
1178 | case MDEREF_HV_pop_rv2hv_helem: | |
1179 | case MDEREF_HV_vivify_rv2hv_helem: | |
1180 | is_hash = TRUE; | |
2165bd23 | 1181 | /* FALLTHROUGH */ |
fedf30e1 DM |
1182 | do_vivify_rv2xv_elem: |
1183 | case MDEREF_AV_pop_rv2av_aelem: | |
1184 | case MDEREF_AV_vivify_rv2av_aelem: | |
1185 | do_elem: | |
1186 | switch (actions & MDEREF_INDEX_MASK) { | |
1187 | case MDEREF_INDEX_none: | |
1188 | last = 1; | |
1189 | break; | |
1190 | case MDEREF_INDEX_const: | |
1191 | if (is_hash) { | |
1192 | #ifdef USE_ITHREADS | |
1193 | /* see RT #15654 */ | |
1194 | pad_swipe((++items)->pad_offset, 1); | |
1195 | #else | |
1196 | SvREFCNT_dec((++items)->sv); | |
1197 | #endif | |
1198 | } | |
1199 | else | |
1200 | items++; | |
1201 | break; | |
1202 | case MDEREF_INDEX_padsv: | |
1203 | pad_free((++items)->pad_offset); | |
1204 | break; | |
1205 | case MDEREF_INDEX_gvsv: | |
1206 | #ifdef USE_ITHREADS | |
1207 | S_op_clear_gv(aTHX_ o, &((++items)->pad_offset)); | |
1208 | #else | |
1209 | S_op_clear_gv(aTHX_ o, &((++items)->sv)); | |
1210 | #endif | |
1211 | break; | |
1212 | } | |
1213 | ||
1214 | if (actions & MDEREF_FLAG_last) | |
1215 | last = 1; | |
1216 | is_hash = FALSE; | |
1217 | ||
1218 | break; | |
1219 | ||
1220 | default: | |
1221 | assert(0); | |
1222 | last = 1; | |
1223 | break; | |
1224 | ||
1225 | } /* switch */ | |
1226 | ||
1227 | actions >>= MDEREF_SHIFT; | |
1228 | } /* while */ | |
1229 | ||
1230 | /* start of malloc is at op_aux[-1], where the length is | |
1231 | * stored */ | |
1232 | PerlMemShared_free(cUNOP_AUXo->op_aux - 1); | |
1233 | } | |
1234 | break; | |
79072805 LW |
1235 | } |
1236 | ||
743e66e6 | 1237 | if (o->op_targ > 0) { |
11343788 | 1238 | pad_free(o->op_targ); |
743e66e6 GS |
1239 | o->op_targ = 0; |
1240 | } | |
79072805 LW |
1241 | } |
1242 | ||
76e3520e | 1243 | STATIC void |
3eb57f73 HS |
1244 | S_cop_free(pTHX_ COP* cop) |
1245 | { | |
7918f24d NC |
1246 | PERL_ARGS_ASSERT_COP_FREE; |
1247 | ||
05ec9bb3 | 1248 | CopFILE_free(cop); |
0453d815 | 1249 | if (! specialWARN(cop->cop_warnings)) |
72dc9ed5 | 1250 | PerlMemShared_free(cop->cop_warnings); |
20439bc7 | 1251 | cophh_free(CopHINTHASH_get(cop)); |
515abc43 FC |
1252 | if (PL_curcop == cop) |
1253 | PL_curcop = NULL; | |
3eb57f73 HS |
1254 | } |
1255 | ||
c2b1997a | 1256 | STATIC void |
ddda3df5 | 1257 | S_forget_pmop(pTHX_ PMOP *const o) |
c2b1997a NC |
1258 | { |
1259 | HV * const pmstash = PmopSTASH(o); | |
7918f24d NC |
1260 | |
1261 | PERL_ARGS_ASSERT_FORGET_PMOP; | |
1262 | ||
e39a6381 | 1263 | if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) { |
ad64d0ec | 1264 | MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab); |
c2b1997a NC |
1265 | if (mg) { |
1266 | PMOP **const array = (PMOP**) mg->mg_ptr; | |
1267 | U32 count = mg->mg_len / sizeof(PMOP**); | |
1268 | U32 i = count; | |
1269 | ||
1270 | while (i--) { | |
1271 | if (array[i] == o) { | |
1272 | /* Found it. Move the entry at the end to overwrite it. */ | |
1273 | array[i] = array[--count]; | |
1274 | mg->mg_len = count * sizeof(PMOP**); | |
1275 | /* Could realloc smaller at this point always, but probably | |
1276 | not worth it. Probably worth free()ing if we're the | |
1277 | last. */ | |
1278 | if(!count) { | |
1279 | Safefree(mg->mg_ptr); | |
1280 | mg->mg_ptr = NULL; | |
1281 | } | |
1282 | break; | |
1283 | } | |
1284 | } | |
1285 | } | |
1286 | } | |
1cdf7faf NC |
1287 | if (PL_curpm == o) |
1288 | PL_curpm = NULL; | |
c2b1997a NC |
1289 | } |
1290 | ||
f0d08550 | 1291 | |
bfd0ff22 NC |
1292 | STATIC void |
1293 | S_find_and_forget_pmops(pTHX_ OP *o) | |
1294 | { | |
f0d08550 DM |
1295 | OP* top_op = o; |
1296 | ||
7918f24d NC |
1297 | PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS; |
1298 | ||
f0d08550 DM |
1299 | while (1) { |
1300 | switch (o->op_type) { | |
1301 | case OP_SUBST: | |
1302 | case OP_SPLIT: | |
1303 | case OP_MATCH: | |
1304 | case OP_QR: | |
1305 | forget_pmop((PMOP*)o); | |
1306 | } | |
1307 | ||
1308 | if (o->op_flags & OPf_KIDS) { | |
1309 | o = cUNOPo->op_first; | |
1310 | continue; | |
1311 | } | |
1312 | ||
1313 | while (1) { | |
1314 | if (o == top_op) | |
1315 | return; /* at top; no parents/siblings to try */ | |
1316 | if (OpHAS_SIBLING(o)) { | |
1317 | o = o->op_sibparent; /* process next sibling */ | |
1318 | break; | |
1319 | } | |
1320 | o = o->op_sibparent; /*try parent's next sibling */ | |
1321 | } | |
bfd0ff22 NC |
1322 | } |
1323 | } | |
1324 | ||
f0d08550 | 1325 | |
6e53b6ca | 1326 | /* |
44170c9a | 1327 | =for apidoc op_null |
6e53b6ca DD |
1328 | |
1329 | Neutralizes an op when it is no longer needed, but is still linked to from | |
1330 | other ops. | |
1331 | ||
1332 | =cut | |
1333 | */ | |
1334 | ||
93c66552 DM |
1335 | void |
1336 | Perl_op_null(pTHX_ OP *o) | |
8990e307 | 1337 | { |
27da23d5 | 1338 | dVAR; |
7918f24d NC |
1339 | |
1340 | PERL_ARGS_ASSERT_OP_NULL; | |
1341 | ||
acb36ea4 GS |
1342 | if (o->op_type == OP_NULL) |
1343 | return; | |
b5bbe64a | 1344 | op_clear(o); |
11343788 | 1345 | o->op_targ = o->op_type; |
b9a07097 | 1346 | OpTYPE_set(o, OP_NULL); |
8990e307 LW |
1347 | } |
1348 | ||
4026c95a SH |
1349 | void |
1350 | Perl_op_refcnt_lock(pTHX) | |
e1fc825d | 1351 | PERL_TSA_ACQUIRE(PL_op_mutex) |
4026c95a | 1352 | { |
20b7effb | 1353 | #ifdef USE_ITHREADS |
27da23d5 | 1354 | dVAR; |
20b7effb | 1355 | #endif |
96a5add6 | 1356 | PERL_UNUSED_CONTEXT; |
4026c95a SH |
1357 | OP_REFCNT_LOCK; |
1358 | } | |
1359 | ||
1360 | void | |
1361 | Perl_op_refcnt_unlock(pTHX) | |
e1fc825d | 1362 | PERL_TSA_RELEASE(PL_op_mutex) |
4026c95a | 1363 | { |
20b7effb | 1364 | #ifdef USE_ITHREADS |
27da23d5 | 1365 | dVAR; |
20b7effb | 1366 | #endif |
96a5add6 | 1367 | PERL_UNUSED_CONTEXT; |
4026c95a SH |
1368 | OP_REFCNT_UNLOCK; |
1369 | } | |
1370 | ||
3253bf85 DM |
1371 | |
1372 | /* | |
1373 | =for apidoc op_sibling_splice | |
1374 | ||
1375 | A general function for editing the structure of an existing chain of | |
796b6530 | 1376 | op_sibling nodes. By analogy with the perl-level C<splice()> function, allows |
3253bf85 DM |
1377 | you to delete zero or more sequential nodes, replacing them with zero or |
1378 | more different nodes. Performs the necessary op_first/op_last | |
29e61fd9 | 1379 | housekeeping on the parent node and op_sibling manipulation on the |
7e234f81 | 1380 | children. The last deleted node will be marked as as the last node by |
87b5a8b9 | 1381 | updating the op_sibling/op_sibparent or op_moresib field as appropriate. |
3253bf85 DM |
1382 | |
1383 | Note that op_next is not manipulated, and nodes are not freed; that is the | |
7e234f81 | 1384 | responsibility of the caller. It also won't create a new list op for an |
8ae26bff | 1385 | empty list etc; use higher-level functions like op_append_elem() for that. |
3253bf85 | 1386 | |
796b6530 | 1387 | C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if |
3269ea41 | 1388 | the splicing doesn't affect the first or last op in the chain. |
3253bf85 | 1389 | |
796b6530 | 1390 | C<start> is the node preceding the first node to be spliced. Node(s) |
7e234f81 | 1391 | following it will be deleted, and ops will be inserted after it. If it is |
796b6530 | 1392 | C<NULL>, the first node onwards is deleted, and nodes are inserted at the |
3253bf85 DM |
1393 | beginning. |
1394 | ||
796b6530 | 1395 | C<del_count> is the number of nodes to delete. If zero, no nodes are deleted. |
3253bf85 DM |
1396 | If -1 or greater than or equal to the number of remaining kids, all |
1397 | remaining kids are deleted. | |
1398 | ||
796b6530 KW |
1399 | C<insert> is the first of a chain of nodes to be inserted in place of the nodes. |
1400 | If C<NULL>, no nodes are inserted. | |
3253bf85 | 1401 | |
796b6530 | 1402 | The head of the chain of deleted ops is returned, or C<NULL> if no ops were |
3253bf85 DM |
1403 | deleted. |
1404 | ||
1405 | For example: | |
1406 | ||
1407 | action before after returns | |
1408 | ------ ----- ----- ------- | |
1409 | ||
1410 | P P | |
8ae26bff DM |
1411 | splice(P, A, 2, X-Y-Z) | | B-C |
1412 | A-B-C-D A-X-Y-Z-D | |
3253bf85 DM |
1413 | |
1414 | P P | |
1415 | splice(P, NULL, 1, X-Y) | | A | |
1416 | A-B-C-D X-Y-B-C-D | |
1417 | ||
1418 | P P | |
8ae26bff DM |
1419 | splice(P, NULL, 3, NULL) | | A-B-C |
1420 | A-B-C-D D | |
3253bf85 DM |
1421 | |
1422 | P P | |
1423 | splice(P, B, 0, X-Y) | | NULL | |
1424 | A-B-C-D A-B-X-Y-C-D | |
1425 | ||
5e24af7d DM |
1426 | |
1427 | For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>, | |
fbe13c60 | 1428 | see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>. |
5e24af7d | 1429 | |
3253bf85 DM |
1430 | =cut |
1431 | */ | |
1432 | ||
1433 | OP * | |
8ae26bff | 1434 | Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert) |
3253bf85 | 1435 | { |
3269ea41 | 1436 | OP *first; |
3253bf85 DM |
1437 | OP *rest; |
1438 | OP *last_del = NULL; | |
1439 | OP *last_ins = NULL; | |
1440 | ||
3269ea41 DM |
1441 | if (start) |
1442 | first = OpSIBLING(start); | |
1443 | else if (!parent) | |
1444 | goto no_parent; | |
1445 | else | |
1446 | first = cLISTOPx(parent)->op_first; | |
3253bf85 DM |
1447 | |
1448 | assert(del_count >= -1); | |
1449 | ||
1450 | if (del_count && first) { | |
1451 | last_del = first; | |
e6dae479 FC |
1452 | while (--del_count && OpHAS_SIBLING(last_del)) |
1453 | last_del = OpSIBLING(last_del); | |
1454 | rest = OpSIBLING(last_del); | |
5e24af7d | 1455 | OpLASTSIB_set(last_del, NULL); |
3253bf85 DM |
1456 | } |
1457 | else | |
1458 | rest = first; | |
1459 | ||
1460 | if (insert) { | |
1461 | last_ins = insert; | |
e6dae479 FC |
1462 | while (OpHAS_SIBLING(last_ins)) |
1463 | last_ins = OpSIBLING(last_ins); | |
5e24af7d | 1464 | OpMAYBESIB_set(last_ins, rest, NULL); |
3253bf85 DM |
1465 | } |
1466 | else | |
1467 | insert = rest; | |
1468 | ||
29e61fd9 | 1469 | if (start) { |
5e24af7d | 1470 | OpMAYBESIB_set(start, insert, NULL); |
29e61fd9 | 1471 | } |
b3e29a8d | 1472 | else { |
678ae292 | 1473 | assert(parent); |
3253bf85 | 1474 | cLISTOPx(parent)->op_first = insert; |
b3e29a8d DM |
1475 | if (insert) |
1476 | parent->op_flags |= OPf_KIDS; | |
1477 | else | |
1478 | parent->op_flags &= ~OPf_KIDS; | |
1479 | } | |
3253bf85 DM |
1480 | |
1481 | if (!rest) { | |
29e61fd9 | 1482 | /* update op_last etc */ |
3269ea41 | 1483 | U32 type; |
29e61fd9 | 1484 | OP *lastop; |
3253bf85 | 1485 | |
3269ea41 DM |
1486 | if (!parent) |
1487 | goto no_parent; | |
1488 | ||
05039abd DM |
1489 | /* ought to use OP_CLASS(parent) here, but that can't handle |
1490 | * ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't | |
1491 | * either */ | |
3269ea41 | 1492 | type = parent->op_type; |
05039abd DM |
1493 | if (type == OP_CUSTOM) { |
1494 | dTHX; | |
1495 | type = XopENTRYCUSTOM(parent, xop_class); | |
1496 | } | |
1497 | else { | |
1498 | if (type == OP_NULL) | |
1499 | type = parent->op_targ; | |
1500 | type = PL_opargs[type] & OA_CLASS_MASK; | |
1501 | } | |
3253bf85 | 1502 | |
29e61fd9 | 1503 | lastop = last_ins ? last_ins : start ? start : NULL; |
3253bf85 DM |
1504 | if ( type == OA_BINOP |
1505 | || type == OA_LISTOP | |
1506 | || type == OA_PMOP | |
1507 | || type == OA_LOOP | |
1508 | ) | |
29e61fd9 DM |
1509 | cLISTOPx(parent)->op_last = lastop; |
1510 | ||
5e24af7d DM |
1511 | if (lastop) |
1512 | OpLASTSIB_set(lastop, parent); | |
3253bf85 DM |
1513 | } |
1514 | return last_del ? first : NULL; | |
3269ea41 DM |
1515 | |
1516 | no_parent: | |
1517 | Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent"); | |
3253bf85 DM |
1518 | } |
1519 | ||
29e61fd9 DM |
1520 | /* |
1521 | =for apidoc op_parent | |
1522 | ||
796b6530 | 1523 | Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise. |
29e61fd9 DM |
1524 | |
1525 | =cut | |
1526 | */ | |
1527 | ||
1528 | OP * | |
8ae26bff | 1529 | Perl_op_parent(OP *o) |
29e61fd9 DM |
1530 | { |
1531 | PERL_ARGS_ASSERT_OP_PARENT; | |
e6dae479 FC |
1532 | while (OpHAS_SIBLING(o)) |
1533 | o = OpSIBLING(o); | |
86cd3a13 | 1534 | return o->op_sibparent; |
29e61fd9 DM |
1535 | } |
1536 | ||
3253bf85 DM |
1537 | /* replace the sibling following start with a new UNOP, which becomes |
1538 | * the parent of the original sibling; e.g. | |
1539 | * | |
1540 | * op_sibling_newUNOP(P, A, unop-args...) | |
1541 | * | |
1542 | * P P | |
1543 | * | becomes | | |
1544 | * A-B-C A-U-C | |
1545 | * | | |
1546 | * B | |
1547 | * | |
1548 | * where U is the new UNOP. | |
1549 | * | |
1550 | * parent and start args are the same as for op_sibling_splice(); | |
1551 | * type and flags args are as newUNOP(). | |
1552 | * | |
1553 | * Returns the new UNOP. | |
1554 | */ | |
1555 | ||
f9db5646 | 1556 | STATIC OP * |
3253bf85 DM |
1557 | S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags) |
1558 | { | |
1559 | OP *kid, *newop; | |
1560 | ||
1561 | kid = op_sibling_splice(parent, start, 1, NULL); | |
1562 | newop = newUNOP(type, flags, kid); | |
1563 | op_sibling_splice(parent, start, 0, newop); | |
1564 | return newop; | |
1565 | } | |
1566 | ||
1567 | ||
1568 | /* lowest-level newLOGOP-style function - just allocates and populates | |
1569 | * the struct. Higher-level stuff should be done by S_new_logop() / | |
1570 | * newLOGOP(). This function exists mainly to avoid op_first assignment | |
1571 | * being spread throughout this file. | |
1572 | */ | |
1573 | ||
6cb4123e DM |
1574 | LOGOP * |
1575 | Perl_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other) | |
3253bf85 | 1576 | { |
1e8db68a | 1577 | dVAR; |
3253bf85 | 1578 | LOGOP *logop; |
29e61fd9 | 1579 | OP *kid = first; |
3253bf85 | 1580 | NewOp(1101, logop, 1, LOGOP); |
b9a07097 | 1581 | OpTYPE_set(logop, type); |
3253bf85 DM |
1582 | logop->op_first = first; |
1583 | logop->op_other = other; | |
d2d35729 FC |
1584 | if (first) |
1585 | logop->op_flags = OPf_KIDS; | |
e6dae479 FC |
1586 | while (kid && OpHAS_SIBLING(kid)) |
1587 | kid = OpSIBLING(kid); | |
5e24af7d DM |
1588 | if (kid) |
1589 | OpLASTSIB_set(kid, (OP*)logop); | |
3253bf85 DM |
1590 | return logop; |
1591 | } | |
1592 | ||
1593 | ||
79072805 LW |
1594 | /* Contextualizers */ |
1595 | ||
d9088386 | 1596 | /* |
44170c9a | 1597 | =for apidoc op_contextualize |
d9088386 Z |
1598 | |
1599 | Applies a syntactic context to an op tree representing an expression. | |
2d7f6611 | 1600 | C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_ARRAY>, |
d9088386 Z |
1601 | or C<G_VOID> to specify the context to apply. The modified op tree |
1602 | is returned. | |
1603 | ||
1604 | =cut | |
1605 | */ | |
1606 | ||
1607 | OP * | |
1608 | Perl_op_contextualize(pTHX_ OP *o, I32 context) | |
1609 | { | |
1610 | PERL_ARGS_ASSERT_OP_CONTEXTUALIZE; | |
1611 | switch (context) { | |
1612 | case G_SCALAR: return scalar(o); | |
1613 | case G_ARRAY: return list(o); | |
1614 | case G_VOID: return scalarvoid(o); | |
1615 | default: | |
5637ef5b NC |
1616 | Perl_croak(aTHX_ "panic: op_contextualize bad context %ld", |
1617 | (long) context); | |
d9088386 Z |
1618 | } |
1619 | } | |
1620 | ||
5983a79d | 1621 | /* |
79072805 | 1622 | |
44170c9a | 1623 | =for apidoc op_linklist |
72d33970 | 1624 | This function is the implementation of the L</LINKLIST> macro. It should |
5983a79d BM |
1625 | not be called directly. |
1626 | ||
1627 | =cut | |
1628 | */ | |
1629 | ||
7d3bb7a6 | 1630 | |
5983a79d BM |
1631 | OP * |
1632 | Perl_op_linklist(pTHX_ OP *o) | |
79072805 | 1633 | { |
7d3bb7a6 DM |
1634 | |
1635 | OP **prevp; | |
1636 | OP *kid; | |
1637 | OP * top_op = o; | |
1638 | ||
5983a79d | 1639 | PERL_ARGS_ASSERT_OP_LINKLIST; |
7918f24d | 1640 | |
7d3bb7a6 DM |
1641 | while (1) { |
1642 | /* Descend down the tree looking for any unprocessed subtrees to | |
1643 | * do first */ | |
1644 | if (!o->op_next) { | |
1645 | if (o->op_flags & OPf_KIDS) { | |
1646 | o = cUNOPo->op_first; | |
1647 | continue; | |
1648 | } | |
1649 | o->op_next = o; /* leaf node; link to self initially */ | |
1650 | } | |
79072805 | 1651 | |
7d3bb7a6 DM |
1652 | /* if we're at the top level, there either weren't any children |
1653 | * to process, or we've worked our way back to the top. */ | |
1654 | if (o == top_op) | |
1655 | return o->op_next; | |
79072805 | 1656 | |
7d3bb7a6 DM |
1657 | /* o is now processed. Next, process any sibling subtrees */ |
1658 | ||
1659 | if (OpHAS_SIBLING(o)) { | |
1660 | o = OpSIBLING(o); | |
1661 | continue; | |
1662 | } | |
1663 | ||
1664 | /* Done all the subtrees at this level. Go back up a level and | |
1665 | * link the parent in with all its (processed) children. | |
1666 | */ | |
1667 | ||
1668 | o = o->op_sibparent; | |
1669 | assert(!o->op_next); | |
1670 | prevp = &(o->op_next); | |
1671 | kid = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL; | |
1672 | while (kid) { | |
1673 | *prevp = kid->op_next; | |
1674 | prevp = &(kid->op_next); | |
1675 | kid = OpSIBLING(kid); | |
1676 | } | |
1677 | *prevp = o; | |
1678 | } | |
79072805 LW |
1679 | } |
1680 | ||
7d3bb7a6 | 1681 | |
1f676739 | 1682 | static OP * |
2dd5337b | 1683 | S_scalarkids(pTHX_ OP *o) |
79072805 | 1684 | { |
11343788 | 1685 | if (o && o->op_flags & OPf_KIDS) { |
bfed75c6 | 1686 | OP *kid; |
e6dae479 | 1687 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
79072805 LW |
1688 | scalar(kid); |
1689 | } | |
11343788 | 1690 | return o; |
79072805 LW |
1691 | } |
1692 | ||
76e3520e | 1693 | STATIC OP * |
cea2e8a9 | 1694 | S_scalarboolean(pTHX_ OP *o) |
8990e307 | 1695 | { |
7918f24d NC |
1696 | PERL_ARGS_ASSERT_SCALARBOOLEAN; |
1697 | ||
0a44e30b DC |
1698 | if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST && |
1699 | !(cBINOPo->op_first->op_flags & OPf_SPECIAL)) || | |
1700 | (o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN && | |
1701 | cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST && | |
1702 | !(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) { | |
d008e5eb | 1703 | if (ckWARN(WARN_SYNTAX)) { |
6867be6d | 1704 | const line_t oldline = CopLINE(PL_curcop); |
a0d0e21e | 1705 | |
2b7cddde NC |
1706 | if (PL_parser && PL_parser->copline != NOLINE) { |
1707 | /* This ensures that warnings are reported at the first line | |
1708 | of the conditional, not the last. */ | |
53a7735b | 1709 | CopLINE_set(PL_curcop, PL_parser->copline); |
2b7cddde | 1710 | } |
9014280d | 1711 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be =="); |
57843af0 | 1712 | CopLINE_set(PL_curcop, oldline); |
d008e5eb | 1713 | } |
a0d0e21e | 1714 | } |
11343788 | 1715 | return scalar(o); |
8990e307 LW |
1716 | } |
1717 | ||
0920b7fa | 1718 | static SV * |
637494ac | 1719 | S_op_varname_subscript(pTHX_ const OP *o, int subscript_type) |
0920b7fa FC |
1720 | { |
1721 | assert(o); | |
1722 | assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV || | |
1723 | o->op_type == OP_PADHV || o->op_type == OP_RV2HV); | |
1724 | { | |
1725 | const char funny = o->op_type == OP_PADAV | |
1726 | || o->op_type == OP_RV2AV ? '@' : '%'; | |
1727 | if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) { | |
1728 | GV *gv; | |
1729 | if (cUNOPo->op_first->op_type != OP_GV | |
1730 | || !(gv = cGVOPx_gv(cUNOPo->op_first))) | |
1731 | return NULL; | |
637494ac | 1732 | return varname(gv, funny, 0, NULL, 0, subscript_type); |
0920b7fa FC |
1733 | } |
1734 | return | |
637494ac | 1735 | varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type); |
0920b7fa FC |
1736 | } |
1737 | } | |
1738 | ||
637494ac TC |
1739 | static SV * |
1740 | S_op_varname(pTHX_ const OP *o) | |
1741 | { | |
1742 | return S_op_varname_subscript(aTHX_ o, 1); | |
1743 | } | |
1744 | ||
429a2555 | 1745 | static void |
2186f873 FC |
1746 | S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv) |
1747 | { /* or not so pretty :-) */ | |
2186f873 FC |
1748 | if (o->op_type == OP_CONST) { |
1749 | *retsv = cSVOPo_sv; | |
1750 | if (SvPOK(*retsv)) { | |
1751 | SV *sv = *retsv; | |
1752 | *retsv = sv_newmortal(); | |
1753 | pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL, | |
1754 | PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT); | |
1755 | } | |
1756 | else if (!SvOK(*retsv)) | |
1757 | *retpv = "undef"; | |
1758 | } | |
1759 | else *retpv = "..."; | |
1760 | } | |
1761 | ||
1762 | static void | |
429a2555 FC |
1763 | S_scalar_slice_warning(pTHX_ const OP *o) |
1764 | { | |
1765 | OP *kid; | |
fe7df09e FC |
1766 | const bool h = o->op_type == OP_HSLICE |
1767 | || (o->op_type == OP_NULL && o->op_targ == OP_HSLICE); | |
429a2555 | 1768 | const char lbrack = |
fe7df09e | 1769 | h ? '{' : '['; |
429a2555 | 1770 | const char rbrack = |
fe7df09e | 1771 | h ? '}' : ']'; |
429a2555 | 1772 | SV *name; |
32e9ec8f | 1773 | SV *keysv = NULL; /* just to silence compiler warnings */ |
429a2555 FC |
1774 | const char *key = NULL; |
1775 | ||
1776 | if (!(o->op_private & OPpSLICEWARNING)) | |
1777 | return; | |
1778 | if (PL_parser && PL_parser->error_count) | |
1779 | /* This warning can be nonsensical when there is a syntax error. */ | |
1780 | return; | |
1781 | ||
1782 | kid = cLISTOPo->op_first; | |
e6dae479 | 1783 | kid = OpSIBLING(kid); /* get past pushmark */ |
429a2555 FC |
1784 | /* weed out false positives: any ops that can return lists */ |
1785 | switch (kid->op_type) { | |
1786 | case OP_BACKTICK: | |
1787 | case OP_GLOB: | |
1788 | case OP_READLINE: | |
1789 | case OP_MATCH: | |
1790 | case OP_RV2AV: | |
1791 | case OP_EACH: | |
1792 | case OP_VALUES: | |
1793 | case OP_KEYS: | |
1794 | case OP_SPLIT: | |
1795 | case OP_LIST: | |
1796 | case OP_SORT: | |
1797 | case OP_REVERSE: | |
1798 | case OP_ENTERSUB: | |
1799 | case OP_CALLER: | |
1800 | case OP_LSTAT: | |
1801 | case OP_STAT: | |
1802 | case OP_READDIR: | |
1803 | case OP_SYSTEM: | |
1804 | case OP_TMS: | |
1805 | case OP_LOCALTIME: | |
1806 | case OP_GMTIME: | |
1807 | case OP_ENTEREVAL: | |
429a2555 FC |
1808 | return; |
1809 | } | |
7d3c8a68 SM |
1810 | |
1811 | /* Don't warn if we have a nulled list either. */ | |
1812 | if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST) | |
1813 | return; | |
1814 | ||
e6dae479 FC |
1815 | assert(OpSIBLING(kid)); |
1816 | name = S_op_varname(aTHX_ OpSIBLING(kid)); | |
429a2555 FC |
1817 | if (!name) /* XS module fiddling with the op tree */ |
1818 | return; | |
2186f873 | 1819 | S_op_pretty(aTHX_ kid, &keysv, &key); |
429a2555 FC |
1820 | assert(SvPOK(name)); |
1821 | sv_chop(name,SvPVX(name)+1); | |
1822 | if (key) | |
2186f873 | 1823 | /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */ |
429a2555 | 1824 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), |
147e3846 | 1825 | "Scalar value @%" SVf "%c%s%c better written as $%" SVf |
429a2555 | 1826 | "%c%s%c", |
2186f873 | 1827 | SVfARG(name), lbrack, key, rbrack, SVfARG(name), |
429a2555 FC |
1828 | lbrack, key, rbrack); |
1829 | else | |
2186f873 | 1830 | /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */ |
429a2555 | 1831 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), |
147e3846 KW |
1832 | "Scalar value @%" SVf "%c%" SVf "%c better written as $%" |
1833 | SVf "%c%" SVf "%c", | |
c1f6cd39 BF |
1834 | SVfARG(name), lbrack, SVfARG(keysv), rbrack, |
1835 | SVfARG(name), lbrack, SVfARG(keysv), rbrack); | |
429a2555 FC |
1836 | } |
1837 | ||
8623f87f DM |
1838 | |
1839 | ||
1840 | /* apply scalar context to the o subtree */ | |
1841 | ||
8990e307 | 1842 | OP * |
864dbfa3 | 1843 | Perl_scalar(pTHX_ OP *o) |
79072805 | 1844 | { |
86e988be DM |
1845 | OP * top_op = o; |
1846 | ||
1847 | while (1) { | |
78ae974a DM |
1848 | OP *next_kid = NULL; /* what op (if any) to process next */ |
1849 | OP *kid; | |
8623f87f | 1850 | |
78ae974a DM |
1851 | /* assumes no premature commitment */ |
1852 | if (!o || (PL_parser && PL_parser->error_count) | |
1853 | || (o->op_flags & OPf_WANT) | |
1854 | || o->op_type == OP_RETURN) | |
1855 | { | |
1856 | goto do_next; | |
1857 | } | |
8623f87f | 1858 | |
78ae974a | 1859 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR; |
8623f87f | 1860 | |
78ae974a DM |
1861 | switch (o->op_type) { |
1862 | case OP_REPEAT: | |
1863 | scalar(cBINOPo->op_first); | |
1864 | /* convert what initially looked like a list repeat into a | |
1865 | * scalar repeat, e.g. $s = (1) x $n | |
1866 | */ | |
1867 | if (o->op_private & OPpREPEAT_DOLIST) { | |
1868 | kid = cLISTOPx(cUNOPo->op_first)->op_first; | |
1869 | assert(kid->op_type == OP_PUSHMARK); | |
1870 | if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) { | |
1871 | op_null(cLISTOPx(cUNOPo->op_first)->op_first); | |
1872 | o->op_private &=~ OPpREPEAT_DOLIST; | |
1873 | } | |
1874 | } | |
1875 | break; | |
8623f87f | 1876 | |
78ae974a DM |
1877 | case OP_OR: |
1878 | case OP_AND: | |
1879 | case OP_COND_EXPR: | |
1880 | /* impose scalar context on everything except the condition */ | |
1881 | next_kid = OpSIBLING(cUNOPo->op_first); | |
1882 | break; | |
8623f87f | 1883 | |
78ae974a DM |
1884 | default: |
1885 | if (o->op_flags & OPf_KIDS) | |
1886 | next_kid = cUNOPo->op_first; /* do all kids */ | |
1887 | break; | |
2186f873 | 1888 | |
78ae974a DM |
1889 | /* the children of these ops are usually a list of statements, |
1890 | * except the leaves, whose first child is a corresponding enter | |
1891 | */ | |
1892 | case OP_SCOPE: | |
1893 | case OP_LINESEQ: | |
1894 | case OP_LIST: | |
1895 | kid = cLISTOPo->op_first; | |
1896 | goto do_kids; | |
1897 | case OP_LEAVE: | |
1898 | case OP_LEAVETRY: | |
1899 | kid = cLISTOPo->op_first; | |
1900 | scalar(kid); | |
1901 | kid = OpSIBLING(kid); | |
1902 | do_kids: | |
1903 | while (kid) { | |
1904 | OP *sib = OpSIBLING(kid); | |
adb47cec DM |
1905 | /* Apply void context to all kids except the last, which |
1906 | * is scalar (ignoring a trailing ex-nextstate in determining | |
1907 | * if it's the last kid). E.g. | |
1908 | * $scalar = do { void; void; scalar } | |
1909 | * Except that 'when's are always scalar, e.g. | |
1910 | * $scalar = do { given(..) { | |
1911 | * when (..) { scalar } | |
1912 | * when (..) { scalar } | |
1913 | * ... | |
1914 | * }} | |
1915 | */ | |
1916 | if (!sib | |
1917 | || ( !OpHAS_SIBLING(sib) | |
1918 | && sib->op_type == OP_NULL | |
1919 | && ( sib->op_targ == OP_NEXTSTATE | |
1920 | || sib->op_targ == OP_DBSTATE ) | |
1921 | ) | |
1922 | ) | |
db18005b DM |
1923 | { |
1924 | /* tail call optimise calling scalar() on the last kid */ | |
1925 | next_kid = kid; | |
1926 | goto do_next; | |
1927 | } | |
adb47cec | 1928 | else if (kid->op_type == OP_LEAVEWHEN) |
78ae974a | 1929 | scalar(kid); |
adb47cec DM |
1930 | else |
1931 | scalarvoid(kid); | |
78ae974a DM |
1932 | kid = sib; |
1933 | } | |
db18005b | 1934 | NOT_REACHED; /* NOTREACHED */ |
78ae974a | 1935 | break; |
2186f873 | 1936 | |
78ae974a DM |
1937 | case OP_SORT: |
1938 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context"); | |
1939 | break; | |
2186f873 | 1940 | |
78ae974a DM |
1941 | case OP_KVHSLICE: |
1942 | case OP_KVASLICE: | |
1943 | { | |
1944 | /* Warn about scalar context */ | |
1945 | const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '['; | |
1946 | const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']'; | |
1947 | SV *name; | |
1948 | SV *keysv; | |
1949 | const char *key = NULL; | |
1950 | ||
1951 | /* This warning can be nonsensical when there is a syntax error. */ | |
1952 | if (PL_parser && PL_parser->error_count) | |
1953 | break; | |
1954 | ||
1955 | if (!ckWARN(WARN_SYNTAX)) break; | |
1956 | ||
1957 | kid = cLISTOPo->op_first; | |
1958 | kid = OpSIBLING(kid); /* get past pushmark */ | |
1959 | assert(OpSIBLING(kid)); | |
1960 | name = S_op_varname(aTHX_ OpSIBLING(kid)); | |
1961 | if (!name) /* XS module fiddling with the op tree */ | |
1962 | break; | |
1963 | S_op_pretty(aTHX_ kid, &keysv, &key); | |
1964 | assert(SvPOK(name)); | |
1965 | sv_chop(name,SvPVX(name)+1); | |
1966 | if (key) | |
1967 | /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */ | |
1968 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), | |
1969 | "%%%" SVf "%c%s%c in scalar context better written " | |
1970 | "as $%" SVf "%c%s%c", | |
1971 | SVfARG(name), lbrack, key, rbrack, SVfARG(name), | |
1972 | lbrack, key, rbrack); | |
1973 | else | |
1974 | /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */ | |
1975 | Perl_warner(aTHX_ packWARN(WARN_SYNTAX), | |
1976 | "%%%" SVf "%c%" SVf "%c in scalar context better " | |
1977 | "written as $%" SVf "%c%" SVf "%c", | |
1978 | SVfARG(name), lbrack, SVfARG(keysv), rbrack, | |
1979 | SVfARG(name), lbrack, SVfARG(keysv), rbrack); | |
1980 | } | |
1981 | } /* switch */ | |
1982 | ||
1983 | /* If next_kid is set, someone in the code above wanted us to process | |
1984 | * that kid and all its remaining siblings. Otherwise, work our way | |
1985 | * back up the tree */ | |
1986 | do_next: | |
1987 | while (!next_kid) { | |
1988 | if (o == top_op) | |
1989 | return top_op; /* at top; no parents/siblings to try */ | |
1990 | if (OpHAS_SIBLING(o)) | |
1991 | next_kid = o->op_sibparent; | |
db18005b | 1992 | else { |
78ae974a | 1993 | o = o->op_sibparent; /*try parent's next sibling */ |
db18005b DM |
1994 | switch (o->op_type) { |
1995 | case OP_SCOPE: | |
1996 | case OP_LINESEQ: | |
1997 | case OP_LIST: | |
1998 | case OP_LEAVE: | |
1999 | case OP_LEAVETRY: | |
2000 | /* should really restore PL_curcop to its old value, but | |
2001 | * setting it to PL_compiling is better than do nothing */ | |
2002 | PL_curcop = &PL_compiling; | |
2003 | } | |
2004 | } | |
78ae974a DM |
2005 | } |
2006 | o = next_kid; | |
86e988be | 2007 | } /* while */ |
79072805 LW |
2008 | } |
2009 | ||
8623f87f | 2010 | |
67ba1548 DM |
2011 | /* apply void context to the optree arg */ |
2012 | ||
79072805 | 2013 | OP * |
aa9d1253 | 2014 | Perl_scalarvoid(pTHX_ OP *arg) |
79072805 | 2015 | { |
27da23d5 | 2016 | dVAR; |
79072805 | 2017 | OP *kid; |
8990e307 | 2018 | SV* sv; |
aa9d1253 | 2019 | OP *o = arg; |
2ebea0a1 | 2020 | |
7918f24d NC |
2021 | PERL_ARGS_ASSERT_SCALARVOID; |
2022 | ||
2a56a87f | 2023 | while (1) { |
19742f39 | 2024 | U8 want; |
aa9d1253 TC |
2025 | SV *useless_sv = NULL; |
2026 | const char* useless = NULL; | |
2a56a87f | 2027 | OP * next_kid = NULL; |
aa9d1253 | 2028 | |
26f0e7d5 TC |
2029 | if (o->op_type == OP_NEXTSTATE |
2030 | || o->op_type == OP_DBSTATE | |
2031 | || (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE | |
2032 | || o->op_targ == OP_DBSTATE))) | |
2033 | PL_curcop = (COP*)o; /* for warning below */ | |
2034 | ||
2035 | /* assumes no premature commitment */ | |
2036 | want = o->op_flags & OPf_WANT; | |
2037 | if ((want && want != OPf_WANT_SCALAR) | |
2038 | || (PL_parser && PL_parser->error_count) | |
7896dde7 | 2039 | || o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN) |
26f0e7d5 | 2040 | { |
2a56a87f | 2041 | goto get_next_op; |
26f0e7d5 | 2042 | } |
1c846c1f | 2043 | |
26f0e7d5 TC |
2044 | if ((o->op_private & OPpTARGET_MY) |
2045 | && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */ | |
2046 | { | |
0d18dd72 FC |
2047 | /* newASSIGNOP has already applied scalar context, which we |
2048 | leave, as if this op is inside SASSIGN. */ | |
2a56a87f | 2049 | goto get_next_op; |
26f0e7d5 | 2050 | } |
79072805 | 2051 | |
26f0e7d5 | 2052 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID; |
75068674 | 2053 | |
26f0e7d5 TC |
2054 | switch (o->op_type) { |
2055 | default: | |
2056 | if (!(PL_opargs[o->op_type] & OA_FOLDCONST)) | |
2057 | break; | |
2058 | /* FALLTHROUGH */ | |
2059 | case OP_REPEAT: | |
2060 | if (o->op_flags & OPf_STACKED) | |
2061 | break; | |
1e2dd519 FC |
2062 | if (o->op_type == OP_REPEAT) |
2063 | scalar(cBINOPo->op_first); | |
26f0e7d5 | 2064 | goto func_ops; |
3d033384 Z |
2065 | case OP_CONCAT: |
2066 | if ((o->op_flags & OPf_STACKED) && | |
2067 | !(o->op_private & OPpCONCAT_NESTED)) | |
2068 | break; | |
2069 | goto func_ops; | |
26f0e7d5 TC |
2070 | case OP_SUBSTR: |
2071 | if (o->op_private == 4) | |
2072 | break; | |
2073 | /* FALLTHROUGH */ | |
26f0e7d5 TC |
2074 | case OP_WANTARRAY: |
2075 | case OP_GV: | |
2076 | case OP_SMARTMATCH: | |
26f0e7d5 TC |
2077 | case OP_AV2ARYLEN: |
2078 | case OP_REF: | |
2079 | case OP_REFGEN: | |
2080 | case OP_SREFGEN: | |
2081 | case OP_DEFINED: | |
2082 | case OP_HEX: | |
2083 | case OP_OCT: | |
2084 | case OP_LENGTH: | |
2085 | case OP_VEC: | |
2086 | case OP_INDEX: | |
2087 | case OP_RINDEX: | |
2088 | case OP_SPRINTF: | |
26f0e7d5 | 2089 | case OP_KVASLICE: |
26f0e7d5 TC |
2090 | case OP_KVHSLICE: |
2091 | case OP_UNPACK: | |
2092 | case OP_PACK: | |
2093 | case OP_JOIN: | |
2094 | case OP_LSLICE: | |
2095 | case OP_ANONLIST: | |
2096 | case OP_ANONHASH: | |
2097 | case OP_SORT: | |
2098 | case OP_REVERSE: | |
2099 | case OP_RANGE: | |
2100 | case OP_FLIP: | |
2101 | case OP_FLOP: | |
2102 | case OP_CALLER: | |
2103 | case OP_FILENO: | |
2104 | case OP_EOF: | |
2105 | case OP_TELL: | |
2106 | case OP_GETSOCKNAME: | |
2107 | case OP_GETPEERNAME: | |
2108 | case OP_READLINK: | |
2109 | case OP_TELLDIR: | |
2110 | case OP_GETPPID: | |
2111 | case OP_GETPGRP: | |
2112 | case OP_GETPRIORITY: | |
2113 | case OP_TIME: | |
2114 | case OP_TMS: | |
2115 | case OP_LOCALTIME: | |
2116 | case OP_GMTIME: | |
2117 | case OP_GHBYNAME: | |
2118 | case OP_GHBYADDR: | |
2119 | case OP_GHOSTENT: | |
2120 | case OP_GNBYNAME: | |
2121 | case OP_GNBYADDR: | |
2122 | case OP_GNETENT: | |
2123 | case OP_GPBYNAME: | |
2124 | case OP_GPBYNUMBER: | |
2125 | case OP_GPROTOENT: | |
2126 | case OP_GSBYNAME: | |
2127 | case OP_GSBYPORT: | |
2128 | case OP_GSERVENT: | |
2129 | case OP_GPWNAM: | |
2130 | case OP_GPWUID: | |
2131 | case OP_GGRNAM: | |
2132 | case OP_GGRGID: | |
2133 | case OP_GETLOGIN: | |
2134 | case OP_PROTOTYPE: | |
2135 | case OP_RUNCV: | |
2136 | func_ops: | |
9e209402 FC |
2137 | useless = OP_DESC(o); |
2138 | break; | |
2139 | ||
2140 | case OP_GVSV: | |
2141 | case OP_PADSV: | |
2142 | case OP_PADAV: | |
2143 | case OP_PADHV: | |
2144 | case OP_PADANY: | |
2145 | case OP_AELEM: | |
2146 | case OP_AELEMFAST: | |
2147 | case OP_AELEMFAST_LEX: | |
2148 | case OP_ASLICE: | |
2149 | case OP_HELEM: | |
2150 | case OP_HSLICE: | |
26f0e7d5 | 2151 | if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO))) |
ea5519d6 | 2152 | /* Otherwise it's "Useless use of grep iterator" */ |
3c3f8cd6 | 2153 | useless = OP_DESC(o); |
ea5519d6 | 2154 | break; |
26f0e7d5 TC |
2155 | |
2156 | case OP_SPLIT: | |
5012eebe | 2157 | if (!(o->op_private & OPpSPLIT_ASSIGN)) |
26f0e7d5 TC |
2158 | useless = OP_DESC(o); |
2159 | break; | |
2160 | ||
2161 | case OP_NOT: | |
2162 | kid = cUNOPo->op_first; | |
2163 | if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST && | |
2164 | kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) { | |
2165 | goto func_ops; | |
2166 | } | |
2167 | useless = "negative pattern binding (!~)"; | |
2168 | break; | |
2169 | ||
2170 | case OP_SUBST: | |
2171 | if (cPMOPo->op_pmflags & PMf_NONDESTRUCT) | |
2172 | useless = "non-destructive substitution (s///r)"; | |
2173 | break; | |
2174 | ||
2175 | case OP_TRANSR: | |
2176 | useless = "non-destructive transliteration (tr///r)"; | |
2177 | break; | |
2178 | ||
2179 | case OP_RV2GV: | |
2180 | case OP_RV2SV: | |
2181 | case OP_RV2AV: | |
2182 | case OP_RV2HV: | |
2183 | if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) && | |
e6dae479 | 2184 | (!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE)) |
26f0e7d5 TC |
2185 | useless = "a variable"; |
2186 | break; | |
2187 | ||
2188 | case OP_CONST: | |
2189 | sv = cSVOPo_sv; | |
2190 | if (cSVOPo->op_private & OPpCONST_STRICT) | |
2191 | no_bareword_allowed(o); | |
2192 | else { | |
2193 | if (ckWARN(WARN_VOID)) { | |
2194 | NV nv; | |
2195 | /* don't warn on optimised away booleans, eg | |
2196 | * use constant Foo, 5; Foo || print; */ | |
2197 | if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT) | |
2198 | useless = NULL; | |
2199 | /* the constants 0 and 1 are permitted as they are | |
2200 | conventionally used as dummies in constructs like | |
2201 | 1 while some_condition_with_side_effects; */ | |
2202 | else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0)) | |
2203 | useless = NULL; | |
2204 | else if (SvPOK(sv)) { | |
2205 | SV * const dsv = newSVpvs(""); | |
2206 | useless_sv | |
2207 | = Perl_newSVpvf(aTHX_ | |
2208 | "a constant (%s)", | |
2209 | pv_pretty(dsv, SvPVX_const(sv), | |
2210 | SvCUR(sv), 32, NULL, NULL, | |
2211 | PERL_PV_PRETTY_DUMP | |
2212 | | PERL_PV_ESCAPE_NOCLEAR | |
2213 | | PERL_PV_ESCAPE_UNI_DETECT)); | |
2214 | SvREFCNT_dec_NN(dsv); | |
2215 | } | |
2216 | else if (SvOK(sv)) { | |
147e3846 | 2217 | useless_sv = Perl_newSVpvf(aTHX_ "a constant (%" SVf ")", SVfARG(sv)); |
26f0e7d5 TC |
2218 | } |
2219 | else | |
2220 | useless = "a constant (undef)"; | |
2221 | } | |
2222 | } | |
2223 | op_null(o); /* don't execute or even remember it */ | |
2224 | break; | |
79072805 | 2225 | |
26f0e7d5 | 2226 | case OP_POSTINC: |
b9a07097 | 2227 | OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */ |
26f0e7d5 | 2228 | break; |
79072805 | 2229 | |
26f0e7d5 | 2230 | case OP_POSTDEC: |
b9a07097 | 2231 | OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */ |
26f0e7d5 | 2232 | break; |
79072805 | 2233 | |
26f0e7d5 | 2234 | case OP_I_POSTINC: |
b9a07097 | 2235 | OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */ |
26f0e7d5 | 2236 | break; |
79072805 | 2237 | |
26f0e7d5 | 2238 | case OP_I_POSTDEC: |
b9a07097 | 2239 | OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */ |
26f0e7d5 | 2240 | break; |
679d6c4e | 2241 | |
26f0e7d5 TC |
2242 | case OP_SASSIGN: { |
2243 | OP *rv2gv; | |
2244 | UNOP *refgen, *rv2cv; | |
2245 | LISTOP *exlist; | |
679d6c4e | 2246 | |
26f0e7d5 TC |
2247 | if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2) |
2248 | break; | |
f2f8fd84 | 2249 | |
26f0e7d5 TC |
2250 | rv2gv = ((BINOP *)o)->op_last; |
2251 | if (!rv2gv || rv2gv->op_type != OP_RV2GV) | |
2252 | break; | |
f2f8fd84 | 2253 | |
26f0e7d5 | 2254 | refgen = (UNOP *)((BINOP *)o)->op_first; |
f2f8fd84 | 2255 | |
26f0e7d5 TC |
2256 | if (!refgen || (refgen->op_type != OP_REFGEN |
2257 | && refgen->op_type != OP_SREFGEN)) | |
2258 | break; | |
f2f8fd84 | 2259 | |
26f0e7d5 TC |
2260 | exlist = (LISTOP *)refgen->op_first; |
2261 | if (!exlist || exlist->op_type != OP_NULL | |
2262 | || exlist->op_targ != OP_LIST) | |
2263 | break; | |
f2f8fd84 | 2264 | |
26f0e7d5 TC |
2265 | if (exlist->op_first->op_type != OP_PUSHMARK |
2266 | && exlist->op_first != exlist->op_last) | |
2267 | break; | |
f2f8fd84 | 2268 | |
26f0e7d5 | 2269 | rv2cv = (UNOP*)exlist->op_last; |
f2f8fd84 | 2270 | |
26f0e7d5 TC |
2271 | if (rv2cv->op_type != OP_RV2CV) |
2272 | break; | |
f2f8fd84 | 2273 | |
26f0e7d5 TC |
2274 | assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0); |
2275 | assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0); | |
2276 | assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0); | |
f2f8fd84 | 2277 | |
26f0e7d5 TC |
2278 | o->op_private |= OPpASSIGN_CV_TO_GV; |
2279 | rv2gv->op_private |= OPpDONT_INIT_GV; | |
2280 | rv2cv->op_private |= OPpMAY_RETURN_CONSTANT; | |
f2f8fd84 | 2281 | |
26f0e7d5 TC |
2282 | break; |
2283 | } | |
540dd770 | 2284 | |
26f0e7d5 TC |
2285 | case OP_AASSIGN: { |
2286 | inplace_aassign(o); | |
2287 | break; | |
2288 | } | |
edbe35ea | 2289 | |
26f0e7d5 TC |
2290 | case OP_OR: |
2291 | case OP_AND: | |
2292 | kid = cLOGOPo->op_first; | |
2293 | if (kid->op_type == OP_NOT | |
2294 | && (kid->op_flags & OPf_KIDS)) { | |
2295 | if (o->op_type == OP_AND) { | |
b9a07097 | 2296 | OpTYPE_set(o, OP_OR); |
26f0e7d5 | 2297 | } else { |
b9a07097 | 2298 | OpTYPE_set(o, OP_AND); |
26f0e7d5 TC |
2299 | } |
2300 | op_null(kid); | |
2301 | } | |
2302 | /* FALLTHROUGH */ | |
5aabfad6 | 2303 | |
26f0e7d5 TC |
2304 | case OP_DOR: |
2305 | case OP_COND_EXPR: | |
2306 | case OP_ENTERGIVEN: | |
7896dde7 | 2307 | case OP_ENTERWHEN: |
2a56a87f | 2308 | next_kid = OpSIBLING(cUNOPo->op_first); |
aa9d1253 | 2309 | break; |
095b19d1 | 2310 | |
26f0e7d5 TC |
2311 | case OP_NULL: |
2312 | if (o->op_flags & OPf_STACKED) | |
2313 | break; | |
2314 | /* FALLTHROUGH */ | |
2315 | case OP_NEXTSTATE: | |
2316 | case OP_DBSTATE: | |
2317 | case OP_ENTERTRY: | |
2318 | case OP_ENTER: | |
2319 | if (!(o->op_flags & OPf_KIDS)) | |
2320 | break; | |
2321 | /* FALLTHROUGH */ | |
2322 | case OP_SCOPE: | |
2323 | case OP_LEAVE: | |
2324 | case OP_LEAVETRY: | |
2325 | case OP_LEAVELOOP: | |
2326 | case OP_LINESEQ: | |
7896dde7 Z |
2327 | case OP_LEAVEGIVEN: |
2328 | case OP_LEAVEWHEN: | |
26f0e7d5 | 2329 | kids: |
2a56a87f | 2330 | next_kid = cLISTOPo->op_first; |
26f0e7d5 TC |
2331 | break; |
2332 | case OP_LIST: | |
2333 | /* If the first kid after pushmark is something that the padrange | |
2334 | optimisation would reject, then null the list and the pushmark. | |
2335 | */ | |
2336 | if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK | |
e6dae479 | 2337 | && ( !(kid = OpSIBLING(kid)) |
26f0e7d5 TC |
2338 | || ( kid->op_type != OP_PADSV |
2339 | && kid->op_type != OP_PADAV | |
2340 | && kid->op_type != OP_PADHV) | |
2341 | || kid->op_private & ~OPpLVAL_INTRO | |
e6dae479 | 2342 | || !(kid = OpSIBLING(kid)) |
26f0e7d5 TC |
2343 | || ( kid->op_type != OP_PADSV |
2344 | && kid->op_type != OP_PADAV | |
2345 | && kid->op_type != OP_PADHV) | |
2346 | || kid->op_private & ~OPpLVAL_INTRO) | |
2347 | ) { | |
2348 | op_null(cUNOPo->op_first); /* NULL the pushmark */ | |
2349 | op_null(o); /* NULL the list */ | |
2350 | } | |
2351 | goto kids; | |
2352 | case OP_ENTEREVAL: | |
2353 | scalarkids(o); | |
2354 | break; | |
2355 | case OP_SCALAR: | |
2356 | scalar(o); | |
2357 | break; | |
2358 | } | |
2359 | ||
2360 | if (useless_sv) { | |
2361 | /* mortalise it, in case warnings are fatal. */ | |
2362 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), | |
147e3846 | 2363 | "Useless use of %" SVf " in void context", |
26f0e7d5 TC |
2364 | SVfARG(sv_2mortal(useless_sv))); |
2365 | } | |
2366 | else if (useless) { | |
3c3f8cd6 AB |
2367 | Perl_ck_warner(aTHX_ packWARN(WARN_VOID), |
2368 | "Useless use of %s in void context", | |
2369 | useless); | |
26f0e7d5 | 2370 | } |
aa9d1253 | 2371 | |
2a56a87f DM |
2372 | get_next_op: |
2373 | /* if a kid hasn't been nominated to process, continue with the | |
2374 | * next sibling, or if no siblings left, go back to the parent's | |
2375 | * siblings and so on | |
2376 | */ | |
2377 | while (!next_kid) { | |
2378 | if (o == arg) | |
2379 | return arg; /* at top; no parents/siblings to try */ | |
2380 | if (OpHAS_SIBLING(o)) | |
2381 | next_kid = o->op_sibparent; | |
2382 | else | |
2383 | o = o->op_sibparent; /*try parent's next sibling */ | |
2384 | } | |
2385 | o = next_kid; | |
2386 | } | |
aa9d1253 TC |
2387 | |
2388 | return arg; | |
79072805 LW |
2389 | } |
2390 | ||
2a56a87f | 2391 | |
1f676739 | 2392 | static OP * |
412da003 | 2393 | S_listkids(pTHX_ OP *o) |
79072805 | 2394 | { |
11343788 | 2395 | if (o && o->op_flags & OPf_KIDS) { |
6867be6d | 2396 | OP *kid; |
e6dae479 | 2397 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
79072805 LW |
2398 | list(kid); |
2399 | } | |
11343788 | 2400 | return o; |
79072805 LW |
2401 | } |
2402 | ||
7cd35865 DM |
2403 | |
2404 | /* apply list context to the o subtree */ | |
2405 | ||
79072805 | 2406 | OP * |
864dbfa3 | 2407 | Perl_list(pTHX_ OP *o) |
79072805 | 2408 | { |
8ef9070b DM |
2409 | OP * top_op = o; |
2410 | ||
2411 | while (1) { | |
a58b51cf | 2412 | OP *next_kid = NULL; /* what op (if any) to process next */ |
8ef9070b | 2413 | |
a58b51cf | 2414 | OP *kid; |
79072805 | 2415 | |
a58b51cf DM |
2416 | /* assumes no premature commitment */ |
2417 | if (!o || (o->op_flags & OPf_WANT) | |
2418 | || (PL_parser && PL_parser->error_count) | |
2419 | || o->op_type == OP_RETURN) | |
2420 | { | |
2421 | goto do_next; | |
2422 | } | |
1c846c1f | 2423 | |
a58b51cf DM |
2424 | if ((o->op_private & OPpTARGET_MY) |
2425 | && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */ | |
2426 | { | |
2427 | goto do_next; /* As if inside SASSIGN */ | |
2428 | } | |
79072805 | 2429 | |
a58b51cf | 2430 | o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST; |
054d8a90 | 2431 | |
a58b51cf DM |
2432 | switch (o->op_type) { |
2433 | case OP_REPEAT: | |
2434 | if (o->op_private & OPpREPEAT_DOLIST | |
2435 | && !(o->op_flags & OPf_STACKED)) | |
2436 | { | |
2437 | list(cBINOPo->op_first); | |
2438 | kid = cBINOPo->op_last; | |
2439 | /* optimise away (.....) x 1 */ | |
2440 | if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv) | |
2441 | && SvIVX(kSVOP_sv) == 1) | |
2442 | { | |
2443 | op_null(o); /* repeat */ | |
2444 | op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */ | |
2445 | /* const (rhs): */ | |
2446 | op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL)); | |
2447 | } | |
2448 | } | |
2449 | break; | |
2a45276d | 2450 | |
a58b51cf DM |
2451 | case OP_OR: |
2452 | case OP_AND: | |
2453 | case OP_COND_EXPR: | |
2454 | /* impose list context on everything except the condition */ | |
2455 | next_kid = OpSIBLING(cUNOPo->op_first); | |
2456 | break; | |
054d8a90 | 2457 | |
a58b51cf DM |
2458 | default: |
2459 | if (!(o->op_flags & OPf_KIDS)) | |
2460 | break; | |
2461 | /* possibly flatten 1..10 into a constant array */ | |
2462 | if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) { | |
2463 | list(cBINOPo->op_first); | |
2464 | gen_constant_list(o); | |
2465 | goto do_next; | |
2466 | } | |
8ef9070b | 2467 | next_kid = cUNOPo->op_first; /* do all kids */ |
a58b51cf | 2468 | break; |
054d8a90 | 2469 | |
a58b51cf DM |
2470 | case OP_LIST: |
2471 | if (cLISTOPo->op_first->op_type == OP_PUSHMARK) { | |
2472 | op_null(cUNOPo->op_first); /* NULL the pushmark */ | |
2473 | op_null(o); /* NULL the list */ | |
2474 | } | |
2475 | if (o->op_flags & OPf_KIDS) | |
2476 | next_kid = cUNOPo->op_first; /* do all kids */ | |
2477 | break; | |
054d8a90 | 2478 | |
a58b51cf | 2479 | /* the children of these ops are usually a list of statements, |
06c2b1fc | 2480 | * except the leaves, whose first child is a corresponding enter |
a58b51cf DM |
2481 | */ |
2482 | case OP_SCOPE: | |
2483 | case OP_LINESEQ: | |
2484 | kid = cLISTOPo->op_first; | |
2485 | goto do_kids; | |
2486 | case OP_LEAVE: | |
2487 | case OP_LEAVETRY: | |
2488 | kid = cLISTOPo->op_first; | |
2489 | list(kid); | |
2490 | kid = OpSIBLING(kid); | |
2491 | do_kids: | |
2492 | while (kid) { | |
2493 | OP *sib = OpSIBLING(kid); | |
9d15d64e DM |
2494 | /* Apply void context to all kids except the last, which |
2495 | * is list. E.g. | |
2496 | * @a = do { void; void; list } | |
2497 | * Except that 'when's are always list context, e.g. | |
2498 | * @a = do { given(..) { | |
2499 | * when (..) { list } | |
2500 | * when (..) { list } | |
2501 | * ... | |
2502 | * }} | |
2503 | */ | |
f23e1643 DM |
2504 | if (!sib) { |
2505 | /* tail call optimise calling list() on the last kid */ | |
2506 | next_kid = kid; | |
2507 | goto do_next; | |
2508 | } | |
9d15d64e | 2509 | else if (kid->op_type == OP_LEAVEWHEN) |
a58b51cf | 2510 | list(kid); |
9d15d64e DM |
2511 | else |
2512 | scalarvoid(kid); | |
a58b51cf DM |
2513 | kid = sib; |
2514 | } | |
f23e1643 | 2515 | NOT_REACHED; /* NOTREACHED */ |
a58b51cf | 2516 | break; |
054d8a90 | 2517 | |
a58b51cf | 2518 | } |
8ef9070b | 2519 | |
a58b51cf DM |
2520 | /* If next_kid is set, someone in the code above wanted us to process |
2521 | * that kid and all its remaining siblings. Otherwise, work our way | |
2522 | * back up the tree */ | |
2523 | do_next: | |
2524 | while (!next_kid) { | |
2525 | if (o == top_op) | |
2526 | return top_op; /* at top; no parents/siblings to try */ | |
2527 | if (OpHAS_SIBLING(o)) | |
2528 | next_kid = o->op_sibparent; | |
f23e1643 | 2529 | else { |
a58b51cf | 2530 | o = o->op_sibparent; /*try parent's next sibling */ |
f23e1643 DM |
2531 | switch (o->op_type) { |
2532 | case OP_SCOPE: | |
2533 | case OP_LINESEQ: | |
2534 | case OP_LIST: | |
2535 | case OP_LEAVE: | |
2536 | case OP_LEAVETRY: | |
2537 | /* should really restore PL_curcop to its old value, but | |
2538 | * setting it to PL_compiling is better than do nothing */ | |
2539 | PL_curcop = &PL_compiling; | |
2540 | } | |
2541 | } | |
2542 | ||
a58b51cf DM |
2543 | |
2544 | } | |
2545 | o = next_kid; | |
8ef9070b | 2546 | } /* while */ |
79072805 LW |
2547 | } |
2548 | ||
7cd35865 | 2549 | |
1f676739 | 2550 | static OP * |
2dd5337b | 2551 | S_scalarseq(pTHX_ OP *o) |
79072805 | 2552 | { |
11343788 | 2553 | if (o) { |
1496a290 AL |
2554 | const OPCODE type = o->op_type; |
2555 | ||
2556 | if (type == OP_LINESEQ || type == OP_SCOPE || | |
2557 | type == OP_LEAVE || type == OP_LEAVETRY) | |
463ee0b2 | 2558 | { |
b7bea5da FC |
2559 | OP *kid, *sib; |
2560 | for (kid = cLISTOPo->op_first; kid; kid = sib) { | |
e6dae479 FC |
2561 | if ((sib = OpSIBLING(kid)) |
2562 | && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL | |
b7bea5da FC |
2563 | || ( sib->op_targ != OP_NEXTSTATE |
2564 | && sib->op_targ != OP_DBSTATE ))) | |
2565 | { | |
463ee0b2 | 2566 | scalarvoid(kid); |
ed6116ce | 2567 | } |
463ee0b2 | 2568 | } |
3280af22 | 2569 | PL_curcop = &PL_compiling; |
79072805 | 2570 | } |
11343788 | 2571 | o->op_flags &= ~OPf_PARENS; |
3280af22 | 2572 | if (PL_hints & HINT_BLOCK_SCOPE) |
11343788 | 2573 | o->op_flags |= OPf_PARENS; |
79072805 | 2574 | } |
8990e307 | 2575 | else |
11343788 MB |
2576 | o = newOP(OP_STUB, 0); |
2577 | return o; | |
79072805 LW |
2578 | } |
2579 | ||
76e3520e | 2580 | STATIC OP * |
cea2e8a9 | 2581 | S_modkids(pTHX_ OP *o, I32 type) |
79072805 | 2582 | { |
11343788 | 2583 | if (o && o->op_flags & OPf_KIDS) { |
6867be6d | 2584 | OP *kid; |
e6dae479 | 2585 | for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) |
3ad73efd | 2586 | op_lvalue(kid, type); |
79072805 | 2587 | } |
11343788 | 2588 | return o; |
79072805 LW |
2589 | } |
2590 | ||
12ee5d32 DM |
2591 | |
2592 | /* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid | |
2593 | * const fields. Also, convert CONST keys to HEK-in-SVs. | |
02a9632a | 2594 | * rop is the op that retrieves the hash; |
12ee5d32 | 2595 | * key_op is the first key |
02a9632a | 2596 | * real if false, only check (and possibly croak); don't update op |
12ee5d32 DM |
2597 | */ |
2598 | ||
f9db5646 | 2599 | STATIC void |
02a9632a | 2600 | S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op, int real) |
12ee5d32 DM |
2601 | { |
2602 | PADNAME *lexname; | |
2603 | GV **fields; | |
2604 | bool check_fields; | |
2605 | ||
2606 | /* find the padsv corresponding to $lex->{} or @{$lex}{} */ | |
2607 | if (rop) { | |
2608 | if (rop->op_first->op_type == OP_PADSV) | |
2609 | /* @$hash{qw(keys here)} */ | |
2610 | rop = (UNOP*)rop->op_first; | |
2611 | else { | |
2612 | /* @{$hash}{qw(keys here)} */ | |
2613 | if (rop->op_first->op_type == OP_SCOPE | |
2614 | && cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV) | |
2615 | { | |
2616 | rop = (UNOP*)cLISTOPx(rop->op_first)->op_last; | |
2617 | } | |
2618 | else | |
2619 | rop = NULL; | |
2620 | } | |
2621 | } | |
2622 | ||
2623 | lexname = NULL; /* just to silence compiler warnings */ | |
2624 | fields = NULL; /* just to silence compiler warnings */ | |
2625 | ||
2626 | check_fields = | |
2627 | rop | |
2628 | && (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ), | |
2629 | SvPAD_TYPED(lexname)) | |
2630 | && (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE)) | |
2631 | && isGV(*fields) && GvHV(*fields); | |
2632 | ||
e6dae479 | 2633 | for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) { |
12ee5d32 DM |
2634 | SV **svp, *sv; |
2635 | if (key_op->op_type != OP_CONST) | |
2636 | continue; | |
2637 | svp = cSVOPx_svp(key_op); | |
2638 | ||
e1ccd220 DIM |
2639 | /* make sure it's not a bareword under strict subs */ |
2640 | if (key_op->op_private & OPpCONST_BARE && | |
2641 | key_op->op_private & OPpCONST_STRICT) | |
2642 | { | |
2643 | no_bareword_allowed((OP*)key_op); | |
2644 | } | |
2645 | ||
12ee5d32 DM |
2646 | /* Make the CONST have a shared SV */ |
2647 | if ( !SvIsCOW_shared_hash(sv = *svp) | |
2648 | && SvTYPE(sv) < SVt_PVMG | |
2649 | && SvOK(sv) | |
02a9632a DM |
2650 | && !SvROK(sv) |
2651 | && real) | |
12ee5d32 DM |
2652 | { |
2653 | SSize_t keylen; | |
2654 | const char * const key = SvPV_const(sv, *(STRLEN*)&keylen); | |
2655 | SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0); | |
2656 | SvREFCNT_dec_NN(sv); | |
2657 | *svp = nsv; | |
2658 | } | |
2659 | ||
2660 | if ( check_fields | |
2661 | && !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0)) | |
2662 | { | |
147e3846 KW |
2663 | Perl_croak(aTHX_ "No such class field \"%" SVf "\" " |
2664 | "in variable %" PNf " of type %" HEKf, | |
12ee5d32 DM |
2665 | SVfARG(*svp), PNfARG(lexname), |
2666 | HEKfARG(HvNAME_HEK(PadnameTYPE(lexname)))); | |
2667 | } | |
2668 | } | |
2669 | } | |
2670 | ||
e839e6ed DM |
2671 | /* info returned by S_sprintf_is_multiconcatable() */ |
2672 | ||
2673 | struct sprintf_ismc_info { | |
ca84e88e | 2674 | SSize_t nargs; /* num of args to sprintf (not including the format) */ |
e839e6ed DM |
2675 | char *start; /* start of raw format string */ |
2676 | char *end; /* bytes after end of raw format string */ | |
2677 | STRLEN total_len; /* total length (in bytes) of format string, not | |
2678 | including '%s' and half of '%%' */ | |
2679 | STRLEN variant; /* number of bytes by which total_len_p would grow | |
2680 | if upgraded to utf8 */ | |
2681 | bool utf8; /* whether the format is utf8 */ | |
2682 | }; | |
2683 | ||
2684 | ||
2685 | /* is the OP_SPRINTF o suitable for converting into a multiconcat op? | |
2686 | * i.e. its format argument is a const string with only '%s' and '%%' | |
2687 | * formats, and the number of args is known, e.g. | |
2688 | * sprintf "a=%s f=%s", $a[0], scalar(f()); | |
2689 | * but not | |
2690 | * sprintf "i=%d a=%s f=%s", $i, @a, f(); | |
2691 | * | |
2692 | * If successful, the sprintf_ismc_info struct pointed to by info will be | |
2693 | * populated. | |
2694 | */ | |
2695 | ||
2696 | STATIC bool | |
2697 | S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info) | |
2698 | { | |
2699 | OP *pm, *constop, *kid; | |
2700 | SV *sv; | |
2701 | char *s, *e, *p; | |
ca84e88e | 2702 | SSize_t nargs, nformats; |
e839e6ed DM |
2703 | STRLEN cur, total_len, variant; |
2704 | bool utf8; | |
2705 | ||
2706 | /* if sprintf's behaviour changes, die here so that someone | |
2707 | * can decide whether to enhance this function or skip optimising | |
2708 | * under those new circumstances */ | |
2709 | assert(!(o->op_flags & OPf_STACKED)); | |
2710 | assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX)); | |
2711 | assert(!(o->op_private & ~OPpARG4_MASK)); | |
2712 | ||
2713 | pm = cUNOPo->op_first; | |
2714 | if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */ | |
2715 | return FALSE; | |
2716 | constop = OpSIBLING(pm); | |
2717 | if (!constop || constop->op_type != OP_CONST) | |
2718 | return FALSE; | |
2719 | sv = cSVOPx_sv(constop); | |
2720 | if (SvMAGICAL(sv) || !SvPOK(sv)) | |
2721 | return FALSE; | |
2722 | ||
2723 | s = SvPV(sv, cur); | |
2724 | e = s + cur; | |
2725 | ||
2726 | /* Scan format for %% and %s and work out how many %s there are. | |
2727 | * Abandon if other format types are found. | |
2728 | */ | |
2729 | ||
2730 | nformats = 0; | |
2731 | total_len = 0; | |
2732 | variant = 0; | |
2733 | ||
2734 | for (p = s; p < e; p++) { | |
2735 | if (*p != '%') { | |
2736 | total_len++; | |
b3baa1fe | 2737 | if (!UTF8_IS_INVARIANT(*p)) |
e839e6ed DM |
2738 | variant++; |
2739 | continue; | |
2740 | } | |
2741 | p++; | |
2742 | if (p >= e) | |
2743 | return FALSE; /* lone % at end gives "Invalid conversion" */ | |
2744 | if (*p == '%') | |
2745 | total_len++; | |
2746 | else if (*p == 's') | |
2747 | nformats++; | |
2748 | else | |
2749 | return FALSE; | |
2750 | } | |
2751 | ||
2752 | if (!nformats || nformats > PERL_MULTICONCAT_MAXARG) | |
2753 | return FALSE; | |
2754 | ||
2755 | utf8 = cBOOL(SvUTF8(sv)); | |
2756 | if (utf8) | |
2757 | variant = 0; | |
2758 | ||
2759 | /* scan args; they must all be in scalar cxt */ | |
2760 | ||
2761 | nargs = 0; | |
2762 | kid = OpSIBLING(constop); | |
2763 | ||
2764 | while (kid) { | |
2765 | if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR) | |
2766 | return FALSE; | |
2767 | nargs++; | |
2768 | kid = OpSIBLING(kid); | |
2769 | } | |
2770 | ||
2771 | if (nargs != nformats) | |
2772 | return FALSE; /* e.g. sprintf("%s%s", $a); */ | |
2773 | ||
2774 | ||
2775 | info->nargs = nargs; | |
2776 | info->start = s; | |
2777 | info->end = e; | |
2778 | info->total_len = total_len; | |
2779 | info->variant = variant; | |
2780 | info->utf8 = utf8; | |
2781 | ||
2782 | return TRUE; | |
2783 | } | |
2784 | ||
2785 | ||
2786 | ||
2787 | /* S_maybe_multiconcat(): | |
2788 | * | |
2789 | * given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly | |
2790 | * convert it (and its children) into an OP_MULTICONCAT. See the code | |
2791 | * comments just before pp_multiconcat() for the full details of what | |
2792 | * OP_MULTICONCAT supports. | |
2793 | * | |
2794 | * Basically we're looking for an optree with a chain of OP_CONCATS down | |
2795 | * the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or | |
2796 | * OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g. | |
2797 | * | |
2798 | * $x = "$a$b-$c" | |
2799 | * | |
2800 | * looks like | |
2801 | * | |
2802 | * SASSIGN | |
2803 | * | | |
2804 | * STRINGIFY -- PADSV[$x] | |
2805 | * | | |
2806 | * | | |
2807 | * ex-PUSHMARK -- CONCAT/S | |
2808 | * | | |
2809 | * CONCAT/S -- PADSV[$d] | |
2810 | * | | |
2811 | * CONCAT -- CONST["-"] | |
2812 | * | | |
2813 | * PADSV[$a] -- PADSV[$b] | |
2814 | * | |
2815 | * Note that at this stage the OP_SASSIGN may have already been optimised | |
2816 | * away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT. | |
2817 | */ | |
2818 | ||
2819 | STATIC void | |
2820 | S_maybe_multiconcat(pTHX_ OP *o) | |
2821 | { | |
1565c085 | 2822 | dVAR; |
e839e6ed DM |
2823 | OP *lastkidop; /* the right-most of any kids unshifted onto o */ |
2824 | OP *topop; /* the top-most op in the concat tree (often equals o, | |
2825 | unless there are assign/stringify ops above it */ | |
2826 | OP *parentop; /* the parent op of topop (or itself if no parent) */ | |
2827 | OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */ | |
2828 | OP *targetop; /* the op corresponding to target=... or target.=... */ | |
2829 | OP *stringop; /* the OP_STRINGIFY op, if any */ | |
2830 | OP *nextop; /* used for recreating the op_next chain without consts */ | |
2831 | OP *kid; /* general-purpose op pointer */ | |
2832 | UNOP_AUX_item *aux; | |
2833 | UNOP_AUX_item *lenp; | |
2834 | char *const_str, *p; | |
2835 | struct sprintf_ismc_info sprintf_info; | |
2836 | ||
2837 | /* store info about each arg in args[]; | |
2838 | * toparg is the highest used slot; argp is a general | |
2839 | * pointer to args[] slots */ | |
2840 | struct { | |
2841 | void *p; /* initially points to const sv (or null for op); | |
2842 | later, set to SvPV(constsv), with ... */ | |
2843 | STRLEN len; /* ... len set to SvPV(..., len) */ | |
2844 | } *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1]; | |
2845 | ||
ca84e88e DM |
2846 | SSize_t nargs = 0; |
2847 | SSize_t nconst = 0; | |
f08f2d03 | 2848 | SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */ |
e839e6ed DM |
2849 | STRLEN variant; |
2850 | bool utf8 = FALSE; | |
2851 | bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op; | |
2852 | the last-processed arg will the LHS of one, | |
2853 | as args are processed in reverse order */ | |
2854 | U8 stacked_last = 0; /* whether the last seen concat op was STACKED */ | |
2855 | STRLEN total_len = 0; /* sum of the lengths of the const segments */ | |
2856 | U8 flags = 0; /* what will become the op_flags and ... */ | |
2857 | U8 private_flags = 0; /* ... op_private of the multiconcat op */ | |
2858 | bool is_sprintf = FALSE; /* we're optimising an sprintf */ | |
2859 | bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */ | |
f08f2d03 | 2860 | bool prev_was_const = FALSE; /* previous arg was a const */ |
e839e6ed DM |
2861 | |
2862 | /* ----------------------------------------------------------------- | |
2863 | * Phase 1: | |
2864 | * | |
2865 | * Examine the optree non-destructively to determine whether it's | |
2866 | * suitable to be converted into an OP_MULTICONCAT. Accumulate | |
2867 | * information about the optree in args[]. | |
2868 | */ | |
2869 | ||
2870 | argp = args; | |
2871 | targmyop = NULL; | |
2872 | targetop = NULL; | |
2873 | stringop = NULL; | |
2874 | topop = o; | |
2875 | parentop = o; | |
2876 | ||
2877 | assert( o->op_type == OP_SASSIGN | |
2878 | || o->op_type == OP_CONCAT | |
2879 | || o->op_type == OP_SPRINTF | |
2880 | || o->op_type == OP_STRINGIFY); | |
2881 | ||
da431b10 JH |
2882 | Zero(&sprintf_info, 1, struct sprintf_ismc_info); |
2883 | ||
e839e6ed DM |
2884 | /* first see if, at the top of the tree, there is an assign, |
2885 | * append and/or stringify */ | |
2886 | ||
2887 | if (topop->op_type == OP_SASSIGN) { | |
2888 | /* expr = ..... */ | |
2889 | if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN]) | |
2890 | return; | |
2891 | if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV)) | |
2892 | return; | |
2893 | assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */ | |
2894 | ||
2895 | parentop = topop; | |
2896 | topop = cBINOPo->op_first; | |
2897 | targetop = OpSIBLING(topop); | |
2898 | if (!targetop) /* probably some sort of syntax error */ | |
2899 | return; | |
2900 | } | |
2901 | else if ( topop->op_type == OP_CONCAT | |
2902 | && (topop->op_flags & OPf_STACKED) | |
62c1220c DM |
2903 | && (!(topop->op_private & OPpCONCAT_NESTED)) |
2904 | ) | |
e839e6ed DM |
2905 | { |
2906 | /* expr .= ..... */ | |
2907 | ||
2908 | /* OPpTARGET_MY shouldn't be able to be set here. If it is, | |
2909 | * decide what to do about it */ | |
2910 | assert(!(o->op_private & OPpTARGET_MY)); | |
2911 | ||
2912 | /* barf on unknown flags */ | |
2913 | assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY))); | |
2914 | private_flags |= OPpMULTICONCAT_APPEND; | |
2915 | targetop = cBINOPo->op_first; | |
2916 | parentop = topop; | |
2917 | topop = OpSIBLING(targetop); | |
2918 | ||
2919 | /* $x .= <FOO> gets optimised to rcatline instead */ | |
2920 | if (topop->op_type == OP_READLINE) | |
2921 | return; | |
2922 | } | |
2923 | ||
2924 | if (targetop) { | |
2925 | /* Can targetop (the LHS) if it's a padsv, be be optimised | |
2926 | * away and use OPpTARGET_MY instead? | |
2927 | */ | |
2928 | if ( (targetop->op_type == OP_PADSV) | |
2929 | && !(targetop->op_private & OPpDEREF) | |
2930 | && !(targetop->op_private & OPpPAD_STATE) | |
2931 | /* we don't support 'my $x .= ...' */ | |
2932 | && ( o->op_type == OP_SASSIGN | |
2933 | || !(targetop->op_private & OPpLVAL_INTRO)) | |
2934 | ) | |
2935 | is_targable = TRUE; | |
2936 | } | |
2937 | ||
2938 | if (topop->op_type == OP_STRINGIFY) { | |
2939 | if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY]) | |
2940 | return; | |
2941 | stringop = topop; | |
2942 | ||
2943 | /* barf on unknown flags */ | |
2944 | assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY))); | |
2945 | ||
2946 | if ((topop->op_private & OPpTARGET_MY)) { | |
2947 | if (o->op_type == OP_SASSIGN) | |
2948 | return; /* can't have two assigns */ | |
2949 | targmyop = topop; | |
2950 | } | |
2951 | ||
2952 | private_flags |= OPpMULTICONCAT_STRINGIFY; | |
2953 | parentop = topop; | |
2954 | topop = cBINOPx(topop)->op_first; | |
2955 | assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK)); | |
2956 | topop = OpSIBLING(topop); | |
2957 | } | |
2958 | ||
2959 | if (topop->op_type == OP_SPRINTF) { | |
2960 | if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF]) | |
2961 | return; | |
2962 | if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) { | |
2963 | nargs = sprintf_info.nargs; | |
2964 | total_len = sprintf_info.total_len; | |
2965 | variant = sprintf_info.variant; | |
2966 | utf8 = sprintf_info.utf8; | |
2967 | is_sprintf = TRUE; | |
2968 | private_flags |= OPpMULTICONCAT_FAKE; | |
2969 | toparg = argp; | |
2970 | /* we have an sprintf op rather than a concat optree. | |
2971 | * Skip most of the code below which is associated with | |
2972 | * processing that optree. We also skip phase 2, determining | |
2973 | * whether its cost effective to optimise, since for sprintf, | |
2974 | * multiconcat is *always* faster */ | |
2975 | goto create_aux; | |
2976 | } | |
2977 | /* note that even if the sprintf itself isn't multiconcatable, | |
2978 | * the expression as a whole may be, e.g. in | |
2979 | * $x .= sprintf("%d",...) | |
2980 | * the sprintf op will be left as-is, but the concat/S op may | |
2981 | * be upgraded to multiconcat | |
2982 | */ | |
2983 | } | |
2984 | else if (topop->op_type == OP_CONCAT) { | |
2985 | if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT]) | |
2986 | return; | |
2987 | ||
2988 | if ((topop->op_private & OPpTARGET_MY)) { | |
2989 | if (o->op_type == OP_SASSIGN || targmyop) | |
2990 | return; /* can't have two assigns */ | |
2991 | targmyop = topop; | |
2992 | } | |
2993 | } | |
2994 | ||
2995 | /* Is it safe to convert a sassign/stringify/concat op into | |
2996 | * a multiconcat? */ | |
2997 | assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP); | |
2998 | assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP); | |
2999 | assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP); | |
3000 | assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP); | |
3001 | STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last) | |
3002 | == STRUCT_OFFSET(UNOP_AUX, op_aux)); | |
3003 | STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last) | |
3004 | == STRUCT_OFFSET(UNOP_AUX, op_aux)); | |
3005 | ||
3006 | /* Now scan the down the tree looking for a series of | |
3007 | * CONCAT/OPf_STACKED ops on the LHS (with the last one not | |
3008 | * stacked). For example this tree: | |
3009 | * | |
3010 | * | | |
3011 | * CONCAT/STACKED | |
3012 | * | | |
3013 | * CONCAT/STACKED -- EXPR5 | |
3014 | * | | |
3015 | * CONCAT/STACKED -- EXPR4 | |
3016 | * | | |
3017 | * CONCAT -- EXPR3 | |
3018 | * | | |
3019 | * EXPR1 -- EXPR2 | |
3020 | * | |
3021 | * corresponds to an expression like | |
3022 | * | |
3023 | * (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5) | |
3024 | * | |
3025 | * Record info about each EXPR in args[]: in particular, whether it is | |
3026 | * a stringifiable OP_CONST and if so what the const sv is. | |
3027 | * | |
3028 | * The reason why the last concat can't be STACKED is the difference | |
3029 | * between | |
3030 | * | |
3031 | * ((($a .= $a) .= $a) .= $a) .= $a | |
3032 | * | |
3033 | * and | |
3034 | * $a . $a . $a . $a . $a | |
3035 | * | |
3036 | * The main difference between the optrees for those two constructs | |
3037 | * is the presence of the last STACKED. As well as modifying $a, | |
3038 | * the former sees the changed $a between each concat, so if $s is | |
3039 | * initially 'a', the first returns 'a' x 16, while the latter returns | |
3040 | * 'a' x 5. And pp_multiconcat can't handle that kind of thing. | |
3041 | */ | |
3042 | ||
3043 | kid = topop; | |
3044 | ||
3045 | for (;;) { | |
3046 | OP *argop; | |
3047 | SV *sv; | |
3048 | bool last = FALSE; | |
3049 | ||
3050 | if ( kid->op_type == OP_CONCAT | |
3051 | && !kid_is_last | |
3052 | ) { | |
3053 | OP *k1, *k2; | |
3054 | k1 = cUNOPx(kid)->op_first; | |
3055 | k2 = OpSIBLING(k1); | |
3056 | /* shouldn't happen except maybe after compile err? */ | |
3057 | if (!k2) | |
3058 | return; | |
3059 | ||
3060 | /* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */ | |
3061 | if (kid->op_private & OPpTARGET_MY) | |
3062 | kid_is_last = TRUE; | |
3063 | ||
3064 | stacked_last = (kid->op_flags & OPf_STACKED); | |
3065 | if (!stacked_last) | |
3066 | kid_is_last = TRUE; | |
3067 | ||
3068 | kid = k1; | |
3069 | argop = k2; | |
3070 | } | |
3071 | else { | |
3072 | argop = kid; | |
3073 | last = TRUE; | |
3074 | } | |
3075 | ||
f08f2d03 | 3076 | if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2 |
e839e6ed DM |
3077 | || (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2) |
3078 | { | |
3079 | /* At least two spare slots are needed to decompose both | |
3080 | * concat args. If there are no slots left, continue to | |
3081 | * examine the rest of the optree, but don't push new values | |
3082 | * on args[]. If the optree as a whole is legal for conversion | |
3083 | * (in particular that the last concat isn't STACKED), then | |
3084 | * the first PERL_MULTICONCAT_MAXARG elements of the optree | |
3085 | * can be converted into an OP_MULTICONCAT now, with the first | |
3086 | * child of that op being the remainder of the optree - | |
3087 | * which may itself later be converted to a multiconcat op | |
3088 | * too. | |
3089 | */ | |
3090 | if (last) { | |
3091 | /* the last arg is the rest of the optree */ | |
3092 | argp++->p = NULL; | |
3093 | nargs++; | |
3094 | } | |
3095 | } | |
3096 | else if ( argop->op_type == OP_CONST | |
3097 | && ((sv = cSVOPx_sv(argop))) | |
3098 | /* defer stringification until runtime of 'constant' | |
3099 | * things that might stringify variantly, e.g. the radix | |
3100 | * point of NVs, or overloaded RVs */ | |
3101 | && (SvPOK(sv) || SvIOK(sv)) | |
3102 | && (!SvGMAGICAL(sv)) | |
3103 | ) { | |
3104 | argp++->p = sv; | |
3105 | utf8 |= cBOOL(SvUTF8(sv)); | |
3106 | nconst++; | |
f08f2d03 DM |
3107 | if (prev_was_const) |
3108 | /* this const may be demoted back to a plain arg later; | |
3109 | * make sure we have enough arg slots left */ | |
3110 | nadjconst++; | |
3111 | prev_was_const = !prev_was_const; | |
e839e6ed DM |
3112 | } |
3113 | else { | |
3114 | argp++->p = NULL; | |
3115 | nargs++; | |
f08f2d03 | 3116 | prev_was_const = FALSE; |
e839e6ed DM |
3117 | } |
3118 | ||
3119 | if (last) | |
3120 | break; | |
3121 | } | |
3122 | ||
3123 | toparg = argp - 1; | |
3124 | ||
3125 | if (stacked_last) | |
3126 | return; /* we don't support ((A.=B).=C)...) */ | |
3127 | ||
bcc30fd0 DM |
3128 | /* look for two adjacent consts and don't fold them together: |
3129 | * $o . "a" . "b" | |
3130 | * should do | |
3131 | * $o->concat("a")->concat("b") | |
3132 | * rather than | |
3133 | * $o->concat("ab") | |
3134 | * (but $o .= "a" . "b" should still fold) | |
3135 | */ | |
3136 | { | |
3137 | bool seen_nonconst = FALSE; | |
3138 | for (argp = toparg; argp >= args; argp--) { | |
3139 | if (argp->p == NULL) { | |
3140 | seen_nonconst = TRUE; | |
3141 | continue; | |
3142 | } | |
3143 | if (!seen_nonconst) | |
3144 | continue; | |
3145 | if (argp[1].p) { | |
3146 | /* both previous and current arg were constants; | |
3147 | * leave the current OP_CONST as-is */ | |
3148 | argp->p = NULL; | |
3149 | nconst--; | |
3150 | nargs++; | |
3151 | } | |
3152 | } | |
3153 | } | |
3154 | ||
e839e6ed DM |
3155 | /* ----------------------------------------------------------------- |
3156 | * Phase 2: | |
3157 | * | |
3158 | * At this point we have determined that the optree *can* be converted | |
3159 | * into a multiconcat. Having gathered all the evidence, we now decide | |
3160 | * whether it *should*. | |
3161 | */ | |
3162 | ||
3163 | ||
3164 | /* we need at least one concat action, e.g.: | |
3165 | * | |
3166 | * Y . Z | |
3167 | * X = Y . Z | |
3168 | * X .= Y | |
3169 | * | |
3170 | * otherwise we could be doing something like $x = "foo", which | |
3171 | * if treated as as a concat, would fail to COW. | |
3172 | */ | |
3173 | if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2) | |
3174 | return; | |
3175 | ||
3176 | /* Benchmarking seems to indicate that we gain if: | |
3177 | * * we optimise at least two actions into a single multiconcat | |
3178 | * (e.g concat+concat, sassign+concat); | |
3179 | * * or if we can eliminate at least 1 OP_CONST; | |
3180 | * * or if we can eliminate a padsv via OPpTARGET_MY | |
3181 | */ | |
3182 | ||
3183 | if ( | |
3184 | /* eliminated at least one OP_CONST */ | |
3185 | nconst >= 1 | |
3186 | /* eliminated an OP_SASSIGN */ | |
3187 | || o->op_type == OP_SASSIGN | |
3188 | /* eliminated an OP_PADSV */ | |
3189 | || (!targmyop && is_targable) | |
3190 | ) | |
3191 | /* definitely a net gain to optimise */ | |
3192 | goto optimise; | |
3193 | ||
3194 | /* ... if not, what else? */ | |
3195 | ||
3196 | /* special-case '$lex1 = expr . $lex1' (where expr isn't lex1): | |
3197 | * multiconcat is faster (due to not creating a temporary copy of | |
3198 | * $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is | |
3199 | * faster. | |
3200 | */ | |
3201 | if ( nconst == 0 | |
3202 | && nargs == 2 | |
3203 | && targmyop | |
3204 | && topop->op_type == OP_CONCAT | |
3205 | ) { | |
3206 | PADOFFSET t = targmyop->op_targ; | |
3207 | OP *k1 = cBINOPx(topop)->op_first; | |
3208 | OP *k2 = cBINOPx(topop)->op_last; | |
3209 | if ( k2->op_type == OP_PADSV | |
3210 | && k2->op_targ == t | |
3211 | && ( k1->op_type != OP_PADSV | |
3212 | || k1->op_targ != t) | |
3213 | ) | |
3214 | goto optimise; | |
3215 | } | |
3216 | ||
3217 | /* need at least two concats */ | |
3218 | if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3) | |
3219 | return; | |
3220 | ||
3221 | ||
3222 | ||
3223 | /* ----------------------------------------------------------------- | |
3224 | * Phase 3: | |
3225 | * | |
3226 | * At this point the optree has been verified as ok to be optimised | |
3227 | * into an OP_MULTICONCAT. Now start changing things. | |
3228 | */ | |
3229 | ||
3230 | optimise: | |
3231 | ||
3232 | /* stringify all const args and determine utf8ness */ | |
3233 | ||
3234 | variant = 0; | |
3235 | for (argp = args; argp <= toparg; argp++) { | |
3236 | SV *sv = (SV*)argp->p; | |
3237 | if (!sv) | |
3238 | continue; /* not a const op */ | |
3239 | if (utf8 && !SvUTF8(sv)) | |
3240 | sv_utf8_upgrade_nomg(sv); | |
3241 | argp->p = SvPV_nomg(sv, argp->len); | |
3242 | total_len += argp->len; | |
3243 | ||
3244 | /* see if any strings would grow if converted to utf8 */ | |
3245 | if (!utf8) { | |
c1a88fe2 KW |
3246 | variant += variant_under_utf8_count((U8 *) argp->p, |
3247 | (U8 *) argp->p + argp->len); | |
e839e6ed DM |
3248 | } |
3249 | } | |
3250 | ||
3251 | /* create and populate aux struct */ | |
3252 | ||
3253 | create_aux: | |
3254 | ||
3255 | aux = (UNOP_AUX_item*)PerlMemShared_malloc( | |
3256 | sizeof(UNOP_AUX_item) | |
3257 | * ( | |
3258 | PERL_MULTICONCAT_HEADER_SIZE | |
3259 | + ((nargs + 1) * (variant ? 2 : 1)) | |
3260 | ) | |
3261 | ); | |
6623aa6a | 3262 | const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1); |
e839e6ed DM |
3263 | |
3264 | /* Extract all the non-const expressions from the concat tree then | |
3265 | * dispose of the old tree, e.g. convert the tree from this: | |
3266 | * | |
3267 | * o => SASSIGN | |
3268 | * | | |
3269 | * STRINGIFY -- TARGET | |
3270 | * | | |
3271 | * ex-PUSHMARK -- CONCAT | |
3272 | * | | |
3273 | * CONCAT -- EXPR5 | |
3274 | * | | |
3275 | * CONCAT -- EXPR4 | |
3276 | * | | |
3277 | * CONCAT -- EXPR3 | |
3278 | * | | |
3279 | * EXPR1 -- EXPR2 | |
3280 | * | |
3281 | * | |
3282 | * to: | |
3283 | * | |
3284 | * o => MULTICONCAT | |
3285 | * | | |
3286 | * ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET | |
3287 | * | |
3288 | * except that if EXPRi is an OP_CONST, it's discarded. | |
3289 | * | |
3290 | * During the conversion process, EXPR ops are stripped from the tree | |
3291 | * and unshifted onto o. Finally, any of o's remaining original | |
3292 | * childen are discarded and o is converted into an OP_MULTICONCAT. | |
3293 | * | |
3294 | * In this middle of this, o may contain both: unshifted args on the | |
3295 | * left, and some remaining original args on the right. lastkidop | |
3296 | * is set to point to the right-most unshifted arg to delineate | |
3297 | * between the two sets. | |
3298 | */ | |
3299 | ||
3300 | ||
3301 | if (is_sprintf) { | |
3302 | /* create a copy of the format with the %'s removed, and record | |
3303 | * the sizes of the const string segments in the aux struct */ | |
3304 | char *q, *oldq; | |
3305 | lenp = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3306 | ||
3307 | p = sprintf_info.start; | |
3308 | q = const_str; | |
3309 | oldq = q; | |
3310 | for (; p < sprintf_info.end; p++) { | |
3311 | if (*p == '%') { | |
3312 | p++; | |
3313 | if (*p != '%') { | |
b5bf9f73 | 3314 | (lenp++)->ssize = q - oldq; |
e839e6ed DM |
3315 | oldq = q; |
3316 | continue; | |
3317 | } | |
3318 | } | |
3319 | *q++ = *p; | |
3320 | } | |
b5bf9f73 | 3321 | lenp->ssize = q - oldq; |
e839e6ed DM |
3322 | assert((STRLEN)(q - const_str) == total_len); |
3323 | ||
3324 | /* Attach all the args (i.e. the kids of the sprintf) to o (which | |
3325 | * may or may not be topop) The pushmark and const ops need to be | |
3326 | * kept in case they're an op_next entry point. | |
3327 | */ | |
3328 | lastkidop = cLISTOPx(topop)->op_last; | |
3329 | kid = cUNOPx(topop)->op_first; /* pushmark */ | |
3330 | op_null(kid); | |
3331 | op_null(OpSIBLING(kid)); /* const */ | |
3332 | if (o != topop) { | |
3333 | kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */ | |
3334 | op_sibling_splice(o, NULL, 0, kid); /* and attach to o */ | |
3335 | lastkidop->op_next = o; | |
3336 | } | |
3337 | } | |
3338 | else { | |
3339 | p = const_str; | |
3340 | lenp = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3341 | ||
b5bf9f73 | 3342 | lenp->ssize = -1; |
e839e6ed DM |
3343 | |
3344 | /* Concatenate all const strings into const_str. | |
3345 | * Note that args[] contains the RHS args in reverse order, so | |
3346 | * we scan args[] from top to bottom to get constant strings | |
3347 | * in L-R order | |
3348 | */ | |
3349 | for (argp = toparg; argp >= args; argp--) { | |
3350 | if (!argp->p) | |
3351 | /* not a const op */ | |
b5bf9f73 | 3352 | (++lenp)->ssize = -1; |
e839e6ed DM |
3353 | else { |
3354 | STRLEN l = argp->len; | |
3355 | Copy(argp->p, p, l, char); | |
3356 | p += l; | |
b5bf9f73 DM |
3357 | if (lenp->ssize == -1) |
3358 | lenp->ssize = l; | |
e839e6ed | 3359 | else |
b5bf9f73 | 3360 | lenp->ssize += l; |
e839e6ed DM |
3361 | } |
3362 | } | |
3363 | ||
3364 | kid = topop; | |
3365 | nextop = o; | |
3366 | lastkidop = NULL; | |
3367 | ||
3368 | for (argp = args; argp <= toparg; argp++) { | |
3369 | /* only keep non-const args, except keep the first-in-next-chain | |
3370 | * arg no matter what it is (but nulled if OP_CONST), because it | |
3371 | * may be the entry point to this subtree from the previous | |
3372 | * op_next. | |
3373 | */ | |
3374 | bool last = (argp == toparg); | |
3375 | OP *prev; | |
3376 | ||
3377 | /* set prev to the sibling *before* the arg to be cut out, | |
789a38b6 | 3378 | * e.g. when cutting EXPR: |
e839e6ed DM |
3379 | * |
3380 | * | | |
789a38b6 | 3381 | * kid= CONCAT |
e839e6ed | 3382 | * | |
789a38b6 | 3383 | * prev= CONCAT -- EXPR |
e839e6ed DM |
3384 | * | |
3385 | */ | |
3386 | if (argp == args && kid->op_type != OP_CONCAT) { | |
789a38b6 | 3387 | /* in e.g. '$x .= f(1)' there's no RHS concat tree |
e839e6ed DM |
3388 | * so the expression to be cut isn't kid->op_last but |
3389 | * kid itself */ | |
3390 | OP *o1, *o2; | |
3391 | /* find the op before kid */ | |
3392 | o1 = NULL; | |
3393 | o2 = cUNOPx(parentop)->op_first; | |
3394 | while (o2 && o2 != kid) { | |
3395 | o1 = o2; | |
3396 | o2 = OpSIBLING(o2); | |
3397 | } | |
3398 | assert(o2 == kid); | |
3399 | prev = o1; | |
3400 | kid = parentop; | |
3401 | } | |
3402 | else if (kid == o && lastkidop) | |
3403 | prev = last ? lastkidop : OpSIBLING(lastkidop); | |
3404 | else | |
3405 | prev = last ? NULL : cUNOPx(kid)->op_first; | |
3406 | ||
3407 | if (!argp->p || last) { | |
3408 | /* cut RH op */ | |
3409 | OP *aop = op_sibling_splice(kid, prev, 1, NULL); | |
3410 | /* and unshift to front of o */ | |
3411 | op_sibling_splice(o, NULL, 0, aop); | |
3412 | /* record the right-most op added to o: later we will | |
3413 | * free anything to the right of it */ | |
3414 | if (!lastkidop) | |
3415 | lastkidop = aop; | |
3416 | aop->op_next = nextop; | |
3417 | if (last) { | |
3418 | if (argp->p) | |
3419 | /* null the const at start of op_next chain */ | |
3420 | op_null(aop); | |
3421 | } | |
3422 | else if (prev) | |
3423 | nextop = prev->op_next; | |
3424 | } | |
3425 | ||
3426 | /* the last two arguments are both attached to the same concat op */ | |
3427 | if (argp < toparg - 1) | |
3428 | kid = prev; | |
3429 | } | |
3430 | } | |
3431 | ||
3432 | /* Populate the aux struct */ | |
3433 | ||
ca84e88e | 3434 | aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs; |
e839e6ed | 3435 | aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str; |
b5bf9f73 | 3436 | aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len; |
e839e6ed | 3437 | aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str; |
b5bf9f73 | 3438 | aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len; |
e839e6ed DM |
3439 | |
3440 | /* if variant > 0, calculate a variant const string and lengths where | |
3441 | * the utf8 version of the string will take 'variant' more bytes than | |
3442 | * the plain one. */ | |
3443 | ||
3444 | if (variant) { | |
3445 | char *p = const_str; | |
3446 | STRLEN ulen = total_len + variant; | |
3447 | UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS; | |
3448 | UNOP_AUX_item *ulens = lens + (nargs + 1); | |
3449 | char *up = (char*)PerlMemShared_malloc(ulen); | |
ca84e88e | 3450 | SSize_t n; |
e839e6ed DM |
3451 | |
3452 | aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up; | |
b5bf9f73 | 3453 | aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen; |
e839e6ed DM |
3454 | |
3455 | for (n = 0; n < (nargs + 1); n++) { | |
576915da DM |
3456 | SSize_t i; |
3457 | char * orig_up = up; | |
b5bf9f73 | 3458 | for (i = (lens++)->ssize; i > 0; i--) { |
e839e6ed | 3459 | U8 c = *p++; |
576915da | 3460 | append_utf8_from_native_byte(c, (U8**)&up); |
e839e6ed | 3461 | } |
b5bf9f73 | 3462 | (ulens++)->ssize = (i < 0) ? i : up - orig_up; |
e839e6ed DM |
3463 | } |
3464 | } | |
3465 | ||
3466 | if (stringop) { | |
3467 | /* if there was a top(ish)-level OP_STRINGIFY, we need to keep | |
3468 | * that op's first child - an ex-PUSHMARK - because the op_next of | |
3469 | * the previous op may point to it (i.e. it's the entry point for | |
3470 | * the o optree) | |
3471 | */ | |
3472 | OP *pmop = | |
3473 | (stringop == o) | |
3474 | ? op_sibling_splice(o, lastkidop, 1, NULL) | |
3475 | : op_sibling_splice(stringop, NULL, 1, NULL); | |
3476 | assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK)); | |
3477 | op_sibling_splice(o, NULL, 0, pmop); | |
3478 | if (!lastkidop) | |
3479 | lastkidop = pmop; | |
3480 | } | |
3481 | ||
3482 | /* Optimise | |
3483 | * target = A.B.C... | |
3484 | * target .= A.B.C... | |
3485 | */ | |
3486 | ||
3487 | if (targetop) { | |
3488 | assert(!targmyop); | |
3489 | ||
3490 | if (o->op_type == OP_SASSIGN) { | |
3491 | /* Move the target subtree from being the last of o's children | |
3492 | * to being the last of o's preserved children. | |
3493 | * Note the difference between 'target = ...' and 'target .= ...': | |
3494 | * for the former, target is executed last; for the latter, | |
3495 | * first. | |
3496 | */ | |
3497 | kid = OpSIBLING(lastkidop); | |
3498 | op_sibling_splice(o, kid, 1, NULL); /* cut target op */ | |
3499 | op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */ | |
3500 | lastkidop->op_next = kid->op_next; | |
3501 | lastkidop = targetop; | |
3502 | } | |
3503 | else { | |
3504 | /* Move the target subtree from being the first of o's | |
3505 | * original children to being the first of *all* o's children. | |
3506 | */ | |
3507 | if (lastkidop) { | |
3508 | op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */ | |
3509 | op_sibling_splice(o, NULL, 0, targetop); /* and paste*/ | |
3510 | } | |
3511 | else { | |
3512 | /* if the RHS of .= doesn't contain a concat (e.g. | |
3513 | * $x .= "foo"), it gets missed by the "strip ops from the | |
3514 | * tree and add to o" loop earlier */ | |
3515 | assert(topop->op_type != OP_CONCAT); | |
3516 | if (stringop) { | |
3517 | /* in e.g. $x .= "$y", move the $y expression | |
3518 | * from being a child of OP_STRINGIFY to being the | |
3519 | * second child of the OP_CONCAT | |
3520 | */ | |
3521 | assert(cUNOPx(stringop)->op_first == topop); | |
3522 | op_sibling_splice(stringop, NULL, 1, NULL); | |
3523 | op_sibling_splice(o, cUNOPo->op_first, 0, topop); | |
3524 | } | |
3525 | assert(topop == OpSIBLING(cBINOPo->op_first)); | |
3526 | if (toparg->p) | |
3527 | op_null(topop); | |
3528 | lastkidop = topop; | |
3529 | } | |
3530 | } | |
3531 | ||
3532 | if (is_targable) { | |
3533 | /* optimise | |
3534 | * my $lex = A.B.C... | |
3535 | * $lex = A.B.C... | |
3536 | * $lex .= A.B.C... | |
3537 | * The original padsv op is kept but nulled in case it's the | |
3538 | * entry point for the optree (which it will be for | |
3539 | * '$lex .= ... ' | |
3540 | */ | |
3541 | private_flags |= OPpTARGET_MY; | |
3542 | private_flags |= (targetop->op_private & OPpLVAL_INTRO); | |
3543 | o->op_targ = targetop->op_targ; | |
3544 | targetop->op_targ = 0; | |
3545 | op_null(targetop); | |
3546 | } | |
3547 | else | |
3548 | flags |= OPf_STACKED; | |
3549 | } | |
3550 | else if (targmyop) { | |
3551 | private_flags |= OPpTARGET_MY; | |
3552 | if (o != targmyop) { | |
3553 | o->op_targ = targmyop->op_targ; | |
3554 | targmyop->op_targ = 0; | |
3555 | } | |
3556 | } | |
3557 | ||
3558 | /* detach the emaciated husk of the sprintf/concat optree and free it */ | |
3559 | for (;;) { | |
3560 | kid = op_sibling_splice(o, lastkidop, 1, NULL); | |
3561 | if (!kid) | |
3562 | break; | |
3563 | op_free(kid); | |
3564 | } | |
3565 | ||
3566 | /* and convert o into a multiconcat */ | |
3567 | ||
3568 | o->op_flags = (flags|OPf_KIDS|stacked_last | |
3569 | |(o->op_flags & (OPf_WANT|OPf_PARENS))); | |
3570 | o->op_private = private_flags; | |
3571 | o->op_type = OP_MULTICONCAT; | |
3572 | o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT]; | |
3573 | cUNOP_AUXo->op_aux = aux; | |
3574 | } | |
3575 | ||
12ee5d32 | 3576 | |
01f9673f DM |
3577 | /* do all the final processing on an optree (e.g. running the peephole |
3578 | * optimiser on it), then attach it to cv (if cv is non-null) | |
3579 | */ | |
3580 | ||
3581 | static void | |
3582 | S_process_optree(pTHX_ CV *cv, OP *optree, OP* start) | |
3583 | { | |
3584 | OP **startp; | |
3585 | ||
3586 | /* XXX for some reason, evals, require and main optrees are | |
3587 | * never attached to their CV; instead they just hang off | |
3588 | * PL_main_root + PL_main_start or PL_eval_root + PL_eval_start | |
3589 | * and get manually freed when appropriate */ | |
3590 | if (cv) | |
3591 | startp = &CvSTART(cv); | |
3592 | else | |
3593 | startp = PL_in_eval? &PL_eval_start : &PL_main_start; | |
3594 | ||
3595 | *startp = start; | |
3596 | optree->op_private |= OPpREFCOUNTED; | |
3597 | OpREFCNT_set(optree, 1); | |
d2905138 | 3598 | optimize_optree(optree); |
01f9673f DM |
3599 | CALL_PEEP(*startp); |
3600 | finalize_optree(optree); | |
3601 | S_prune_chain_head(startp); | |
3602 | ||
3603 | if (cv) { | |
3604 | /* now that optimizer has done its work, adjust pad values */ | |
3605 | pad_tidy(optree->op_type == OP_LEAVEWRITE ? padtidy_FORMAT | |
3606 | : CvCLONE(cv) ? padtidy_SUBCLONE : padtidy_SUB); | |
3607 | } | |
3608 | } | |
3609 | ||
3610 | ||
3ad73efd | 3611 | /* |
d2905138 DM |
3612 | =for apidoc optimize_optree |
3613 | ||
3614 | This function applies some optimisations to the optree in top-down order. | |
3615 | It is called before the peephole optimizer, which processes ops in | |
3616 | execution order. Note that finalize_optree() also does a top-down scan, | |
3617 | but is called *after* the peephole optimizer. | |
3618 | ||
3619 | =cut | |
3620 | */ | |
3621 | ||
3622 | void | |
3623 | Perl_optimize_optree(pTHX_ OP* o) | |
3624 | { | |
3625 | PERL_ARGS_ASSERT_OPTIMIZE_OPTREE; | |
3626 | ||
3627 | ENTER; | |
3628 | SAVEVPTR(PL_curcop); | |
3629 | ||
3630 | optimize_op(o); | |
3631 | ||
3632 | LEAVE; | |
3633 | } | |
3634 | ||
3635 | ||
6eebe43d | 3636 | /* helper for optimize_optree() which optimises one op then recurses |
d2905138 DM |
3637 | * to optimise any children. |
3638 | */ | |
3639 | ||
3640 | STATIC void | |
3641 | S_optimize_op(pTHX_ OP* o) | |
3642 | { | |
6eebe43d | 3643 | OP *top_op = o; |
d2905138 DM |
3644 | |
3645 | PERL_ARGS_ASSERT_OPTIMIZE_OP; | |
6eebe43d DM |
3646 | |
3647 | while (1) { | |
3648 | OP * next_kid = NULL; | |
3649 | ||
f2861c9b | 3650 | assert(o->op_type != OP_FREED); |
d2905138 | 3651 | |
f2861c9b TC |
3652 | switch (o->op_type) { |
3653 | case OP_NEXTSTATE: | |
3654 | case OP_DBSTATE: | |
3655 | PL_curcop = ((COP*)o); /* for warnings */ | |
3656 | break; | |
d2905138 DM |
3657 | |
3658 | ||
f2861c9b TC |
3659 | case OP_CONCAT: |
3660 | case OP_SASSIGN: | |
3661 | case OP_STRINGIFY: | |
3662 | case OP_SPRINTF: | |
3663 | S_maybe_multiconcat(aTHX_ o); | |
3664 | break; | |
e839e6ed | 3665 | |
f2861c9b | 3666 | case OP_SUBST: |
6eebe43d DM |
3667 | if (cPMOPo->op_pmreplrootu.op_pmreplroot) { |
3668 | /* we can't assume that op_pmreplroot->op_sibparent == o | |
3669 | * and that it is thus possible to walk back up the tree | |
3670 | * past op_pmreplroot. So, although we try to avoid | |
3671 | * recursing through op trees, do it here. After all, | |
3672 | * there are unlikely to be many nested s///e's within | |
3673 | * the replacement part of a s///e. | |
3674 | */ | |
3675 | optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot); | |
3676 | } | |
f2861c9b | 3677 | break; |
d2905138 | 3678 | |
f2861c9b TC |
3679 | default: |
3680 | break; | |
3681 | } | |
d2905138 | 3682 | |
6eebe43d DM |
3683 | if (o->op_flags & OPf_KIDS) |
3684 | next_kid = cUNOPo->op_first; | |
3685 | ||
3686 | /* if a kid hasn't been nominated to process, continue with the | |
3687 | * next sibling, or if no siblings left, go back to the parent's | |
3688 | * siblings and so on | |
3689 | */ | |
3690 | while (!next_kid) { | |
3691 | if (o == top_op) | |
3692 | return; /* at top; no parents/siblings to try */ | |
3693 | if (OpHAS_SIBLING(o)) | |
3694 | next_kid = o->op_sibparent; | |
3695 | else | |
3696 | o = o->op_sibparent; /*try parent's next sibling */ | |
f2861c9b | 3697 | } |
d2905138 | 3698 | |
6eebe43d DM |
3699 | /* this label not yet used. Goto here if any code above sets |
3700 | * next-kid | |
3701 | get_next_op: | |
3702 | */ | |
3703 | o = next_kid; | |
3704 | } | |
d2905138 DM |
3705 | } |
3706 | ||
3707 | ||
3708 | /* | |
d164302a GG |
3709 | =for apidoc finalize_optree |
3710 | ||
72d33970 FC |
3711 | This function finalizes the optree. Should be called directly after |
3712 | the complete optree is built. It does some additional | |
796b6530 | 3713 | checking which can't be done in the normal C<ck_>xxx functions and makes |
d164302a GG |
3714 | the tree thread-safe. |
3715 | ||
3716 | =cut | |
3717 | */ | |
3718 | void | |
3719 | Perl_finalize_optree(pTHX_ OP* o) | |
3720 | { | |
3721 | PERL_ARGS_ASSERT_FINALIZE_OPTREE; | |
3722 | ||
3723 | ENTER; | |
3724 | SAVEVPTR(PL_curcop); | |
3725 | ||
3726 | finalize_op(o); | |
3727 | ||
3728 | LEAVE; | |
3729 | } | |
3730 | ||
b46e009d | 3731 | #ifdef USE_ITHREADS |
3732 | /* Relocate sv to the pad for thread safety. | |
3733 | * Despite being a "constant", the SV is written to, | |
3734 | * for reference counts, sv_upgrade() etc. */ | |
3735 | PERL_STATIC_INLINE void | |
3736 | S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp) | |
3737 | { | |
3738 | PADOFFSET ix; | |
3739 | PERL_ARGS_ASSERT_OP_RELOCATE_SV; | |
3740 | if (!*svp) return; | |
3741 | ix = pad_alloc(OP_CONST, SVf_READONLY); | |
3742 | SvREFCNT_dec(PAD_SVl(ix)); | |
3743 | PAD_SETSV(ix, *svp); | |
3744 | /* XXX I don't know how this isn't readonly already. */ | |
3745 | if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix)); | |
3746 | *svp = NULL; | |
3747 | *targp = ix; | |
3748 | } | |
3749 | #endif | |
3750 | ||
7f8280cf | 3751 | /* |
44170c9a | 3752 | =for apidoc traverse_op_tree |
7f8280cf TC |
3753 | |
3754 | Return the next op in a depth-first traversal of the op tree, | |
3755 | returning NULL when the traversal is complete. | |
3756 | ||
3757 | The initial call must supply the root of the tree as both top and o. | |
3758 | ||
3759 | For now it's static, but it may be exposed to the API in the future. | |
3760 | ||
3761 | =cut | |
3762 | */ | |
3763 | ||
3764 | STATIC OP* | |
35c1827f | 3765 | S_traverse_op_tree(pTHX_ OP *top, OP *o) { |
7f8280cf TC |
3766 | OP *sib; |
3767 | ||
3768 | PERL_ARGS_ASSERT_TRAVERSE_OP_TREE; | |
3769 | ||
3770 | if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) { | |
3771 | return cUNOPo->op_first; | |
3772 | } | |
3773 | else if ((sib = OpSIBLING(o))) { | |
3774 | return sib; | |
3775 | } | |
3776 | else { | |
3777 | OP *parent = o->op_sibparent; | |
3778 | assert(!(o->op_moresib)); | |
3779 | while (parent && parent != top) { | |
3780 | OP *sib = OpSIBLING(parent); | |
3781 | if (sib) | |
3782 | return sib; | |
3783 | parent = parent->op_sibparent; | |
3784 | } | |
3785 | ||
3786 | return NULL; | |
3787 | } | |
3788 | } | |
b46e009d | 3789 | |
60dde6b2 | 3790 | STATIC void |
d164302a GG |
3791 | S_finalize_op(pTHX_ OP* o) |
3792 | { | |
7f8280cf | 3793 | OP * const top = o; |
d164302a GG |
3794 | PERL_ARGS_ASSERT_FINALIZE_OP; |
3795 | ||
7f8280cf | 3796 | do { |
64242fed | 3797 | assert(o->op_type != OP_FREED); |
d164302a | 3798 | |
64242fed TC |
3799 | switch (o->op_type) { |
3800 | case OP_NEXTSTATE: | |
3801 | case OP_DBSTATE: | |
3802 | PL_curcop = ((COP*)o); /* for warnings */ | |
3803 | break; | |
3804 | case OP_EXEC: | |
3805 | if (OpHAS_SIBLING(o)) { | |
3806 | OP *sib = OpSIBLING(o); | |
3807 | if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE) | |
3808 | && ckWARN(WARN_EXEC) | |
3809 | && OpHAS_SIBLING(sib)) | |
3810 | { | |
e6dae479 | 3811 | const OPCODE type = OpSIBLING(sib)->op_type; |
d164302a GG |
3812 | if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) { |
3813 | const line_t oldline = CopLINE(PL_curcop); | |
1ed44841 | 3814 | CopLINE_set(PL_curcop, CopLINE((COP*)sib)); |
d164302a GG |
3815 | Perl_warner(aTHX_ packWARN(WARN_EXEC), |
3816 | "Statement unlikely to be reached"); | |
3817 | Perl_warner(aTHX_ packWARN(WARN_EXEC), | |
3818 | "\t(Maybe you meant system() when you said exec()?)\n"); | |
3819 | CopLINE_set(PL_curcop, oldline); | |
3820 | } | |
64242fed TC |
3821 | } |
3822 | } | |
3823 | break; | |
d164302a | 3824 | |
64242fed TC |
3825 | case OP_GV: |
3826 | if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) { | |
3827 | GV * const gv = cGVOPo_gv; | |
3828 | if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) { | |
3829 | /* XXX could check prototype here instead of just carping */ | |
3830 | SV * const sv = sv_newmortal(); | |
3831 | gv_efullname3(sv, gv, NULL); | |
3832 | Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE), | |
3833 | "%" SVf "() called too early to check prototype", | |
3834 | SVfARG(sv)); | |
3835 | } | |
3836 | } | |
3837 | break; | |
d164302a | 3838 | |
64242fed TC |
3839 | case OP_CONST: |
3840 | if (cSVOPo->op_private & OPpCONST_STRICT) | |
3841 | no_bareword_allowed(o); | |
d164302a | 3842 | #ifdef USE_ITHREADS |
64242fed TC |
3843 | /* FALLTHROUGH */ |
3844 | case OP_HINTSEVAL: | |
3845 | op_relocate_sv(&cSVOPo->op_sv, &o->op_targ); | |
b46e009d | 3846 | #endif |
64242fed | 3847 | break; |
b46e009d | 3848 | |
3849 | #ifdef USE_ITHREADS | |
64242fed TC |
3850 | /* Relocate all the METHOP's SVs to the pad for thread safety. */ |
3851 | case OP_METHOD_NAMED: | |
3852 | case OP_METHOD_SUPER: | |
3853 | case OP_METHOD_REDIR: | |
3854 | case OP_METHOD_REDIR_SUPER: | |
3855 | op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ); | |
3856 | break; | |
d164302a | 3857 | #endif |
d164302a | 3858 | |
64242fed TC |
3859 | case OP_HELEM: { |
3860 | UNOP *rop; | |
3861 | SVOP *key_op; | |
3862 | OP *kid; | |
d164302a | 3863 | |
64242fed TC |
3864 | if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST) |
3865 | break; | |
d164302a | 3866 | |
64242fed | 3867 | rop = (UNOP*)((BINOP*)o)->op_first; |
e6307ed0 | 3868 | |
64242fed | 3869 | goto check_keys; |
d164302a | 3870 | |
64242fed TC |
3871 | case OP_HSLICE: |
3872 | S_scalar_slice_warning(aTHX_ o); | |
3873 | /* FALLTHROUGH */ | |
429a2555 | 3874 | |
64242fed TC |
3875 | case OP_KVHSLICE: |
3876 | kid = OpSIBLING(cLISTOPo->op_first); | |
3877 | if (/* I bet there's always a pushmark... */ | |
3878 | OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST) | |
3879 | && OP_TYPE_ISNT_NN(kid, OP_CONST)) | |
3880 | { | |
3881 | break; | |
3882 | } | |
565e6f7e | 3883 | |
64242fed TC |
3884 | key_op = (SVOP*)(kid->op_type == OP_CONST |
3885 | ? kid | |
3886 | : OpSIBLING(kLISTOP->op_first)); | |
565e6f7e | 3887 | |
64242fed | 3888 | rop = (UNOP*)((LISTOP*)o)->op_last; |
565e6f7e | 3889 | |
64242fed TC |
3890 | check_keys: |
3891 | if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV) | |
3892 | rop = NULL; | |
02a9632a | 3893 | S_check_hash_fields_and_hekify(aTHX_ rop, key_op, 1); |
64242fed TC |
3894 | break; |
3895 | } | |
3896 | case OP_NULL: | |
3897 | if (o->op_targ != OP_HSLICE && o->op_targ != OP_ASLICE) | |
3898 | break; | |
3899 | /* FALLTHROUGH */ | |
3900 | case OP_ASLICE: | |
3901 | S_scalar_slice_warning(aTHX_ o); | |
3902 | break; | |
a7fd8ef6 | 3903 | |
64242fed TC |
3904 | case OP_SUBST: { |
3905 | if (cPMOPo->op_pmreplrootu.op_pmreplroot) | |
3906 | finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot); | |
3907 | break; | |
3908 | } | |
3909 | default: | |
3910 | break; | |
3911 | } | |
d164302a | 3912 | |
7f8280cf | 3913 | #ifdef DEBUGGING |
64242fed TC |
3914 | if (o->op_flags & OPf_KIDS) { |
3915 | OP *kid; | |
3916 | ||
3917 | /* check that op_last points to the last sibling, and that | |
3918 | * the last op_sibling/op_sibparent field points back to the | |
3919 | * parent, and that the only ops with KIDS are those which are | |
3920 | * entitled to them */ | |
3921 | U32 type = o->op_type; | |
3922 | U32 family; | |
3923 | bool has_last; | |
3924 | ||
3925 | if (type == OP_NULL) { | |
3926 | type = o->op_targ; | |
3927 | /* ck_glob creates a null UNOP with ex-type GLOB | |
3928 | * (which is a list op. So pretend it wasn't a listop */ | |
3929 | if (type == OP_GLOB) | |
3930 | type = OP_NULL; | |
3931 | } | |
3932 | family = PL_opargs[type] & OA_CLASS_MASK; | |
3933 | ||
3934 | has_last = ( family == OA_BINOP | |
3935 | || family == OA_LISTOP | |
3936 | || family == OA_PMOP | |
3937 | || family == OA_LOOP | |
3938 | ); | |
3939 | assert( has_last /* has op_first and op_last, or ... | |
3940 | ... has (or may have) op_first: */ | |
3941 | || family == OA_UNOP | |
3942 | || family == OA_UNOP_AUX | |
3943 | || family == OA_LOGOP | |
3944 | || family == OA_BASEOP_OR_UNOP | |
3945 | || family == OA_FILESTATOP | |
3946 | || family == OA_LOOPEXOP | |
3947 | || family == OA_METHOP | |
3948 | || type == OP_CUSTOM | |
3949 | || type == OP_NULL /* new_logop does this */ | |
3950 | ); | |
3951 | ||
3952 | for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) { | |
3953 | if (!OpHAS_SIBLING(kid)) { | |
3954 | if (has_last) | |
3955 | assert(kid == cLISTOPo->op_last); | |
3956 | assert(kid->op_sibparent == o); | |
3957 | } | |
20220689 | 3958 | } |
c4b20975 | 3959 | } |
7f8280cf TC |
3960 | #endif |
3961 | } while (( o = traverse_op_tree(top, o)) != NULL); | |
d164302a GG |
3962 | } |
3963 | ||
03414f05 FC |
3964 | static void |
3965 | S_mark_padname_lvalue(pTHX_ PADNAME *pn) | |
3966 | { | |
3967 | CV *cv = PL_compcv; | |
3968 | PadnameLVALUE_on(pn); | |
3969 | while (PadnameOUTER(pn) && PARENT_PAD_INDEX(pn)) { | |
3970 | cv = CvOUTSIDE(cv); | |
aea0412a DM |
3971 | /* RT #127786: cv can be NULL due to an eval within the DB package |
3972 | * called from an anon sub - anon subs don't have CvOUTSIDE() set | |
3973 | * unless they contain an eval, but calling eval within DB | |
3974 | * pretends the eval was done in the caller's scope. | |
3975 | */ | |
3976 | if (!cv) | |
3977 | break; | |
03414f05 FC |