Commit | Line | Data |
---|---|---|
a0d0e21e LW |
1 | =head1 NAME |
2 | ||
3 | perlre - Perl regular expressions | |
4 | ||
5 | =head1 DESCRIPTION | |
6 | ||
cb1a09d0 | 7 | This page describes the syntax of regular expressions in Perl. For a |
5f05dabc | 8 | description of how to I<use> regular expressions in matching |
75e14d17 | 9 | operations, plus various examples of the same, see discussion |
1e66bd83 | 10 | of C<m//>, C<s///>, C<qr//> and C<??> in L<perlop/"Regexp Quote-Like Operators">. |
cb1a09d0 | 11 | |
68dc0745 | 12 | The matching operations can have various modifiers. The modifiers |
5a964f20 | 13 | that relate to the interpretation of the regular expression inside |
1e66bd83 PP |
14 | are listed below. For the modifiers that alter the way a regular expression |
15 | is used by Perl, see L<perlop/"Regexp Quote-Like Operators"> and | |
16 | L<perlop/"Gory details of parsing quoted constructs">. | |
a0d0e21e | 17 | |
55497cff | 18 | =over 4 |
19 | ||
20 | =item i | |
21 | ||
22 | Do case-insensitive pattern matching. | |
23 | ||
a034a98d DD |
24 | If C<use locale> is in effect, the case map is taken from the current |
25 | locale. See L<perllocale>. | |
26 | ||
54310121 | 27 | =item m |
55497cff | 28 | |
29 | Treat string as multiple lines. That is, change "^" and "$" from matching | |
5f05dabc | 30 | at only the very start or end of the string to the start or end of any |
55497cff | 31 | line anywhere within the string, |
32 | ||
54310121 | 33 | =item s |
55497cff | 34 | |
35 | Treat string as single line. That is, change "." to match any character | |
36 | whatsoever, even a newline, which it normally would not match. | |
37 | ||
5a964f20 TC |
38 | The C</s> and C</m> modifiers both override the C<$*> setting. That is, no matter |
39 | what C<$*> contains, C</s> without C</m> will force "^" to match only at the | |
7b8d334a GS |
40 | beginning of the string and "$" to match only at the end (or just before a |
41 | newline at the end) of the string. Together, as /ms, they let the "." match | |
42 | any character whatsoever, while yet allowing "^" and "$" to match, | |
43 | respectively, just after and just before newlines within the string. | |
44 | ||
54310121 | 45 | =item x |
55497cff | 46 | |
47 | Extend your pattern's legibility by permitting whitespace and comments. | |
48 | ||
49 | =back | |
a0d0e21e LW |
50 | |
51 | These are usually written as "the C</x> modifier", even though the delimiter | |
52 | in question might not actually be a slash. In fact, any of these | |
53 | modifiers may also be embedded within the regular expression itself using | |
54 | the new C<(?...)> construct. See below. | |
55 | ||
4633a7c4 | 56 | The C</x> modifier itself needs a little more explanation. It tells |
55497cff | 57 | the regular expression parser to ignore whitespace that is neither |
58 | backslashed nor within a character class. You can use this to break up | |
4633a7c4 | 59 | your regular expression into (slightly) more readable parts. The C<#> |
54310121 | 60 | character is also treated as a metacharacter introducing a comment, |
55497cff | 61 | just as in ordinary Perl code. This also means that if you want real |
5a964f20 TC |
62 | whitespace or C<#> characters in the pattern (outside of a character |
63 | class, where they are unaffected by C</x>), that you'll either have to | |
55497cff | 64 | escape them or encode them using octal or hex escapes. Taken together, |
65 | these features go a long way towards making Perl's regular expressions | |
0c815be9 HS |
66 | more readable. Note that you have to be careful not to include the |
67 | pattern delimiter in the comment--perl has no way of knowing you did | |
5a964f20 | 68 | not intend to close the pattern early. See the C-comment deletion code |
0c815be9 | 69 | in L<perlop>. |
a0d0e21e LW |
70 | |
71 | =head2 Regular Expressions | |
72 | ||
73 | The patterns used in pattern matching are regular expressions such as | |
5a964f20 | 74 | those supplied in the Version 8 regex routines. (In fact, the |
a0d0e21e LW |
75 | routines are derived (distantly) from Henry Spencer's freely |
76 | redistributable reimplementation of the V8 routines.) | |
77 | See L<Version 8 Regular Expressions> for details. | |
78 | ||
79 | In particular the following metacharacters have their standard I<egrep>-ish | |
80 | meanings: | |
81 | ||
54310121 | 82 | \ Quote the next metacharacter |
a0d0e21e LW |
83 | ^ Match the beginning of the line |
84 | . Match any character (except newline) | |
c07a80fd | 85 | $ Match the end of the line (or before newline at the end) |
a0d0e21e LW |
86 | | Alternation |
87 | () Grouping | |
88 | [] Character class | |
89 | ||
5f05dabc | 90 | By default, the "^" character is guaranteed to match at only the |
91 | beginning of the string, the "$" character at only the end (or before the | |
a0d0e21e LW |
92 | newline at the end) and Perl does certain optimizations with the |
93 | assumption that the string contains only one line. Embedded newlines | |
94 | will not be matched by "^" or "$". You may, however, wish to treat a | |
4a6725af | 95 | string as a multi-line buffer, such that the "^" will match after any |
a0d0e21e LW |
96 | newline within the string, and "$" will match before any newline. At the |
97 | cost of a little more overhead, you can do this by using the /m modifier | |
98 | on the pattern match operator. (Older programs did this by setting C<$*>, | |
5f05dabc | 99 | but this practice is now deprecated.) |
a0d0e21e | 100 | |
4a6725af | 101 | To facilitate multi-line substitutions, the "." character never matches a |
55497cff | 102 | newline unless you use the C</s> modifier, which in effect tells Perl to pretend |
a0d0e21e LW |
103 | the string is a single line--even if it isn't. The C</s> modifier also |
104 | overrides the setting of C<$*>, in case you have some (badly behaved) older | |
105 | code that sets it in another module. | |
106 | ||
107 | The following standard quantifiers are recognized: | |
108 | ||
109 | * Match 0 or more times | |
110 | + Match 1 or more times | |
111 | ? Match 1 or 0 times | |
112 | {n} Match exactly n times | |
113 | {n,} Match at least n times | |
114 | {n,m} Match at least n but not more than m times | |
115 | ||
116 | (If a curly bracket occurs in any other context, it is treated | |
117 | as a regular character.) The "*" modifier is equivalent to C<{0,}>, the "+" | |
25f94b33 | 118 | modifier to C<{1,}>, and the "?" modifier to C<{0,1}>. n and m are limited |
c07a80fd | 119 | to integral values less than 65536. |
a0d0e21e | 120 | |
54310121 | 121 | By default, a quantified subpattern is "greedy", that is, it will match as |
122 | many times as possible (given a particular starting location) while still | |
123 | allowing the rest of the pattern to match. If you want it to match the | |
124 | minimum number of times possible, follow the quantifier with a "?". Note | |
125 | that the meanings don't change, just the "greediness": | |
a0d0e21e LW |
126 | |
127 | *? Match 0 or more times | |
128 | +? Match 1 or more times | |
129 | ?? Match 0 or 1 time | |
130 | {n}? Match exactly n times | |
131 | {n,}? Match at least n times | |
132 | {n,m}? Match at least n but not more than m times | |
133 | ||
5f05dabc | 134 | Because patterns are processed as double quoted strings, the following |
a0d0e21e LW |
135 | also work: |
136 | ||
0f36ee90 | 137 | \t tab (HT, TAB) |
138 | \n newline (LF, NL) | |
139 | \r return (CR) | |
140 | \f form feed (FF) | |
141 | \a alarm (bell) (BEL) | |
142 | \e escape (think troff) (ESC) | |
cb1a09d0 AD |
143 | \033 octal char (think of a PDP-11) |
144 | \x1B hex char | |
a0d0e21e | 145 | \c[ control char |
cb1a09d0 AD |
146 | \l lowercase next char (think vi) |
147 | \u uppercase next char (think vi) | |
148 | \L lowercase till \E (think vi) | |
149 | \U uppercase till \E (think vi) | |
150 | \E end case modification (think vi) | |
5a964f20 | 151 | \Q quote (disable) pattern metacharacters till \E |
a0d0e21e | 152 | |
a034a98d | 153 | If C<use locale> is in effect, the case map used by C<\l>, C<\L>, C<\u> |
7b8d334a | 154 | and C<\U> is taken from the current locale. See L<perllocale>. |
a034a98d | 155 | |
1d2dff63 GS |
156 | You cannot include a literal C<$> or C<@> within a C<\Q> sequence. |
157 | An unescaped C<$> or C<@> interpolates the corresponding variable, | |
158 | while escaping will cause the literal string C<\$> to be matched. | |
159 | You'll need to write something like C<m/\Quser\E\@\Qhost/>. | |
160 | ||
a0d0e21e LW |
161 | In addition, Perl defines the following: |
162 | ||
163 | \w Match a "word" character (alphanumeric plus "_") | |
164 | \W Match a non-word character | |
165 | \s Match a whitespace character | |
166 | \S Match a non-whitespace character | |
167 | \d Match a digit character | |
168 | \D Match a non-digit character | |
169 | ||
5a964f20 | 170 | A C<\w> matches a single alphanumeric character, not a whole |
a034a98d DD |
171 | word. To match a word you'd need to say C<\w+>. If C<use locale> is in |
172 | effect, the list of alphabetic characters generated by C<\w> is taken | |
173 | from the current locale. See L<perllocale>. You may use C<\w>, C<\W>, | |
174 | C<\s>, C<\S>, C<\d>, and C<\D> within character classes (though not as | |
175 | either end of a range). | |
a0d0e21e LW |
176 | |
177 | Perl defines the following zero-width assertions: | |
178 | ||
179 | \b Match a word boundary | |
180 | \B Match a non-(word boundary) | |
b85d18e9 IZ |
181 | \A Match only at beginning of string |
182 | \Z Match only at end of string, or before newline at the end | |
183 | \z Match only at end of string | |
a99df21c | 184 | \G Match only where previous m//g left off (works only with /g) |
a0d0e21e LW |
185 | |
186 | A word boundary (C<\b>) is defined as a spot between two characters that | |
68dc0745 | 187 | has a C<\w> on one side of it and a C<\W> on the other side of it (in |
a0d0e21e LW |
188 | either order), counting the imaginary characters off the beginning and |
189 | end of the string as matching a C<\W>. (Within character classes C<\b> | |
190 | represents backspace rather than a word boundary.) The C<\A> and C<\Z> are | |
5a964f20 | 191 | just like "^" and "$", except that they won't match multiple times when the |
a0d0e21e | 192 | C</m> modifier is used, while "^" and "$" will match at every internal line |
c07a80fd | 193 | boundary. To match the actual end of the string, not ignoring newline, |
b85d18e9 | 194 | you can use C<\z>. The C<\G> assertion can be used to chain global |
a99df21c | 195 | matches (using C<m//g>), as described in |
e7ea3e70 | 196 | L<perlop/"Regexp Quote-Like Operators">. |
a99df21c | 197 | |
e7ea3e70 | 198 | It is also useful when writing C<lex>-like scanners, when you have several |
5a964f20 | 199 | patterns that you want to match against consequent substrings of your |
e7ea3e70 | 200 | string, see the previous reference. |
44a8e56a | 201 | The actual location where C<\G> will match can also be influenced |
202 | by using C<pos()> as an lvalue. See L<perlfunc/pos>. | |
a0d0e21e | 203 | |
0f36ee90 | 204 | When the bracketing construct C<( ... )> is used, \E<lt>digitE<gt> matches the |
cb1a09d0 | 205 | digit'th substring. Outside of the pattern, always use "$" instead of "\" |
0f36ee90 | 206 | in front of the digit. (While the \E<lt>digitE<gt> notation can on rare occasion work |
cb1a09d0 | 207 | outside the current pattern, this should not be relied upon. See the |
0f36ee90 | 208 | WARNING below.) The scope of $E<lt>digitE<gt> (and C<$`>, C<$&>, and C<$'>) |
cb1a09d0 AD |
209 | extends to the end of the enclosing BLOCK or eval string, or to the next |
210 | successful pattern match, whichever comes first. If you want to use | |
5f05dabc | 211 | parentheses to delimit a subpattern (e.g., a set of alternatives) without |
84dc3c4d | 212 | saving it as a subpattern, follow the ( with a ?:. |
cb1a09d0 AD |
213 | |
214 | You may have as many parentheses as you wish. If you have more | |
a0d0e21e LW |
215 | than 9 substrings, the variables $10, $11, ... refer to the |
216 | corresponding substring. Within the pattern, \10, \11, etc. refer back | |
5f05dabc | 217 | to substrings if there have been at least that many left parentheses before |
c07a80fd | 218 | the backreference. Otherwise (for backward compatibility) \10 is the |
a0d0e21e LW |
219 | same as \010, a backspace, and \11 the same as \011, a tab. And so |
220 | on. (\1 through \9 are always backreferences.) | |
221 | ||
222 | C<$+> returns whatever the last bracket match matched. C<$&> returns the | |
0f36ee90 | 223 | entire matched string. (C<$0> used to return the same thing, but not any |
a0d0e21e LW |
224 | more.) C<$`> returns everything before the matched string. C<$'> returns |
225 | everything after the matched string. Examples: | |
226 | ||
227 | s/^([^ ]*) *([^ ]*)/$2 $1/; # swap first two words | |
228 | ||
229 | if (/Time: (..):(..):(..)/) { | |
230 | $hours = $1; | |
231 | $minutes = $2; | |
232 | $seconds = $3; | |
233 | } | |
234 | ||
68dc0745 | 235 | Once perl sees that you need one of C<$&>, C<$`> or C<$'> anywhere in |
236 | the program, it has to provide them on each and every pattern match. | |
237 | This can slow your program down. The same mechanism that handles | |
238 | these provides for the use of $1, $2, etc., so you pay the same price | |
5a964f20 TC |
239 | for each pattern that contains capturing parentheses. But if you never |
240 | use $&, etc., in your script, then patterns I<without> capturing | |
68dc0745 | 241 | parentheses won't be penalized. So avoid $&, $', and $` if you can, |
242 | but if you can't (and some algorithms really appreciate them), once | |
243 | you've used them once, use them at will, because you've already paid | |
5a964f20 | 244 | the price. As of 5.005, $& is not so costly as the other two. |
68dc0745 | 245 | |
5a964f20 | 246 | Backslashed metacharacters in Perl are |
201ecf35 AL |
247 | alphanumeric, such as C<\b>, C<\w>, C<\n>. Unlike some other regular |
248 | expression languages, there are no backslashed symbols that aren't | |
249 | alphanumeric. So anything that looks like \\, \(, \), \E<lt>, \E<gt>, | |
250 | \{, or \} is always interpreted as a literal character, not a | |
251 | metacharacter. This was once used in a common idiom to disable or | |
252 | quote the special meanings of regular expression metacharacters in a | |
5a964f20 | 253 | string that you want to use for a pattern. Simply quote all |
a0d0e21e LW |
254 | non-alphanumeric characters: |
255 | ||
256 | $pattern =~ s/(\W)/\\$1/g; | |
257 | ||
201ecf35 | 258 | Now it is much more common to see either the quotemeta() function or |
7b8d334a | 259 | the C<\Q> escape sequence used to disable all metacharacters' special |
201ecf35 | 260 | meanings like this: |
a0d0e21e LW |
261 | |
262 | /$unquoted\Q$quoted\E$unquoted/ | |
263 | ||
5f05dabc | 264 | Perl defines a consistent extension syntax for regular expressions. |
265 | The syntax is a pair of parentheses with a question mark as the first | |
266 | thing within the parentheses (this was a syntax error in older | |
267 | versions of Perl). The character after the question mark gives the | |
268 | function of the extension. Several extensions are already supported: | |
a0d0e21e LW |
269 | |
270 | =over 10 | |
271 | ||
cc6b7395 | 272 | =item C<(?#text)> |
a0d0e21e | 273 | |
cb1a09d0 | 274 | A comment. The text is ignored. If the C</x> switch is used to enable |
259138e3 GS |
275 | whitespace formatting, a simple C<#> will suffice. Note that perl closes |
276 | the comment as soon as it sees a C<)>, so there is no way to put a literal | |
277 | C<)> in the comment. | |
a0d0e21e | 278 | |
5a964f20 | 279 | =item C<(?:pattern)> |
a0d0e21e | 280 | |
ca9dfc88 IZ |
281 | =item C<(?imsx-imsx:pattern)> |
282 | ||
5a964f20 TC |
283 | This is for clustering, not capturing; it groups subexpressions like |
284 | "()", but doesn't make backreferences as "()" does. So | |
a0d0e21e | 285 | |
5a964f20 | 286 | @fields = split(/\b(?:a|b|c)\b/) |
a0d0e21e LW |
287 | |
288 | is like | |
289 | ||
5a964f20 | 290 | @fields = split(/\b(a|b|c)\b/) |
a0d0e21e LW |
291 | |
292 | but doesn't spit out extra fields. | |
293 | ||
ca9dfc88 IZ |
294 | The letters between C<?> and C<:> act as flags modifiers, see |
295 | L<C<(?imsx-imsx)>>. In particular, | |
296 | ||
297 | /(?s-i:more.*than).*million/i | |
298 | ||
299 | is equivalent to more verbose | |
300 | ||
301 | /(?:(?s-i)more.*than).*million/i | |
302 | ||
5a964f20 | 303 | =item C<(?=pattern)> |
a0d0e21e LW |
304 | |
305 | A zero-width positive lookahead assertion. For example, C</\w+(?=\t)/> | |
306 | matches a word followed by a tab, without including the tab in C<$&>. | |
307 | ||
5a964f20 | 308 | =item C<(?!pattern)> |
a0d0e21e LW |
309 | |
310 | A zero-width negative lookahead assertion. For example C</foo(?!bar)/> | |
311 | matches any occurrence of "foo" that isn't followed by "bar". Note | |
312 | however that lookahead and lookbehind are NOT the same thing. You cannot | |
7b8d334a GS |
313 | use this for lookbehind. |
314 | ||
5a964f20 | 315 | If you are looking for a "bar" that isn't preceded by a "foo", C</(?!foo)bar/> |
7b8d334a GS |
316 | will not do what you want. That's because the C<(?!foo)> is just saying that |
317 | the next thing cannot be "foo"--and it's not, it's a "bar", so "foobar" will | |
318 | match. You would have to do something like C</(?!foo)...bar/> for that. We | |
319 | say "like" because there's the case of your "bar" not having three characters | |
320 | before it. You could cover that this way: C</(?:(?!foo)...|^.{0,2})bar/>. | |
321 | Sometimes it's still easier just to say: | |
a0d0e21e | 322 | |
a3cb178b | 323 | if (/bar/ && $` !~ /foo$/) |
a0d0e21e | 324 | |
c277df42 IZ |
325 | For lookbehind see below. |
326 | ||
5a964f20 | 327 | =item C<(?E<lt>=pattern)> |
c277df42 | 328 | |
5a964f20 | 329 | A zero-width positive lookbehind assertion. For example, C</(?E<lt>=\t)\w+/> |
c277df42 IZ |
330 | matches a word following a tab, without including the tab in C<$&>. |
331 | Works only for fixed-width lookbehind. | |
332 | ||
5a964f20 | 333 | =item C<(?<!pattern)> |
c277df42 IZ |
334 | |
335 | A zero-width negative lookbehind assertion. For example C</(?<!bar)foo/> | |
336 | matches any occurrence of "foo" that isn't following "bar". | |
337 | Works only for fixed-width lookbehind. | |
338 | ||
cc6b7395 | 339 | =item C<(?{ code })> |
c277df42 IZ |
340 | |
341 | Experimental "evaluate any Perl code" zero-width assertion. Always | |
cc6b7395 IZ |
342 | succeeds. C<code> is not interpolated. Currently the rules to |
343 | determine where the C<code> ends are somewhat convoluted. | |
c277df42 | 344 | |
e4d48cc9 GS |
345 | Owing to the risks to security, this is only available when the |
346 | C<use re 'eval'> pragma is used, and then only for patterns that don't | |
347 | have any variables that must be interpolated at run time. | |
348 | ||
b9ac3b5b GS |
349 | The C<code> is properly scoped in the following sense: if the assertion |
350 | is backtracked (compare L<"Backtracking">), all the changes introduced after | |
351 | C<local>isation are undone, so | |
352 | ||
353 | $_ = 'a' x 8; | |
354 | m< | |
355 | (?{ $cnt = 0 }) # Initialize $cnt. | |
356 | ( | |
357 | a | |
358 | (?{ | |
359 | local $cnt = $cnt + 1; # Update $cnt, backtracking-safe. | |
360 | }) | |
361 | )* | |
362 | aaaa | |
363 | (?{ $res = $cnt }) # On success copy to non-localized | |
364 | # location. | |
365 | >x; | |
366 | ||
367 | will set C<$res = 4>. Note that after the match $cnt returns to the globally | |
368 | introduced value 0, since the scopes which restrict C<local> statements | |
369 | are unwound. | |
370 | ||
371 | This assertion may be used as L<C<(?(condition)yes-pattern|no-pattern)>> | |
372 | switch. If I<not> used in this way, the result of evaluation of C<code> | |
373 | is put into variable $^R. This happens immediately, so $^R can be used from | |
374 | other C<(?{ code })> assertions inside the same regular expression. | |
375 | ||
376 | The above assignment to $^R is properly localized, thus the old value of $^R | |
377 | is restored if the assertion is backtracked (compare L<"Backtracking">). | |
378 | ||
5a964f20 TC |
379 | =item C<(?E<gt>pattern)> |
380 | ||
381 | An "independent" subexpression. Matches the substring that a | |
382 | I<standalone> C<pattern> would match if anchored at the given position, | |
c277df42 IZ |
383 | B<and only this substring>. |
384 | ||
385 | Say, C<^(?E<gt>a*)ab> will never match, since C<(?E<gt>a*)> (anchored | |
5a964f20 | 386 | at the beginning of string, as above) will match I<all> characters |
c277df42 IZ |
387 | C<a> at the beginning of string, leaving no C<a> for C<ab> to match. |
388 | In contrast, C<a*ab> will match the same as C<a+b>, since the match of | |
389 | the subgroup C<a*> is influenced by the following group C<ab> (see | |
390 | L<"Backtracking">). In particular, C<a*> inside C<a*ab> will match | |
aca73f04 | 391 | fewer characters than a standalone C<a*>, since this makes the tail match. |
c277df42 | 392 | |
5a964f20 | 393 | An effect similar to C<(?E<gt>pattern)> may be achieved by |
c277df42 | 394 | |
5a964f20 | 395 | (?=(pattern))\1 |
c277df42 IZ |
396 | |
397 | since the lookahead is in I<"logical"> context, thus matches the same | |
398 | substring as a standalone C<a+>. The following C<\1> eats the matched | |
399 | string, thus making a zero-length assertion into an analogue of | |
5a964f20 TC |
400 | C<(?>...)>. (The difference between these two constructs is that the |
401 | second one uses a catching group, thus shifting ordinals of | |
c277df42 IZ |
402 | backreferences in the rest of a regular expression.) |
403 | ||
5a964f20 TC |
404 | This construct is useful for optimizations of "eternal" |
405 | matches, because it will not backtrack (see L<"Backtracking">). | |
c277df42 | 406 | |
5a964f20 | 407 | m{ \( ( |
c277df42 IZ |
408 | [^()]+ |
409 | | | |
410 | \( [^()]* \) | |
411 | )+ | |
5a964f20 TC |
412 | \) |
413 | }x | |
414 | ||
415 | That will efficiently match a nonempty group with matching | |
416 | two-or-less-level-deep parentheses. However, if there is no such group, | |
417 | it will take virtually forever on a long string. That's because there are | |
418 | so many different ways to split a long string into several substrings. | |
419 | This is essentially what C<(.+)+> is doing, and this is a subpattern | |
420 | of the above pattern. Consider that C<((()aaaaaaaaaaaaaaaaaa> on the | |
421 | pattern above detects no-match in several seconds, but that each extra | |
422 | letter doubles this time. This exponential performance will make it | |
423 | appear that your program has hung. | |
424 | ||
425 | However, a tiny modification of this pattern | |
426 | ||
427 | m{ \( ( | |
c277df42 IZ |
428 | (?> [^()]+ ) |
429 | | | |
430 | \( [^()]* \) | |
431 | )+ | |
5a964f20 TC |
432 | \) |
433 | }x | |
c277df42 | 434 | |
5a964f20 TC |
435 | which uses C<(?E<gt>...)> matches exactly when the one above does (verifying |
436 | this yourself would be a productive exercise), but finishes in a fourth | |
437 | the time when used on a similar string with 1000000 C<a>s. Be aware, | |
438 | however, that this pattern currently triggers a warning message under | |
439 | B<-w> saying it C<"matches the null string many times">): | |
c277df42 | 440 | |
5a964f20 | 441 | On simple groups, such as the pattern C<(?> [^()]+ )>, a comparable |
c277df42 IZ |
442 | effect may be achieved by negative lookahead, as in C<[^()]+ (?! [^()] )>. |
443 | This was only 4 times slower on a string with 1000000 C<a>s. | |
444 | ||
5a964f20 | 445 | =item C<(?(condition)yes-pattern|no-pattern)> |
c277df42 | 446 | |
5a964f20 | 447 | =item C<(?(condition)yes-pattern)> |
c277df42 IZ |
448 | |
449 | Conditional expression. C<(condition)> should be either an integer in | |
450 | parentheses (which is valid if the corresponding pair of parentheses | |
451 | matched), or lookahead/lookbehind/evaluate zero-width assertion. | |
452 | ||
453 | Say, | |
454 | ||
5a964f20 | 455 | m{ ( \( )? |
c277df42 | 456 | [^()]+ |
5a964f20 TC |
457 | (?(1) \) ) |
458 | }x | |
c277df42 IZ |
459 | |
460 | matches a chunk of non-parentheses, possibly included in parentheses | |
461 | themselves. | |
a0d0e21e | 462 | |
ca9dfc88 | 463 | =item C<(?imsx-imsx)> |
a0d0e21e LW |
464 | |
465 | One or more embedded pattern-match modifiers. This is particularly | |
466 | useful for patterns that are specified in a table somewhere, some of | |
467 | which want to be case sensitive, and some of which don't. The case | |
5f05dabc | 468 | insensitive ones need to include merely C<(?i)> at the front of the |
a0d0e21e LW |
469 | pattern. For example: |
470 | ||
471 | $pattern = "foobar"; | |
5a964f20 | 472 | if ( /$pattern/i ) { } |
a0d0e21e LW |
473 | |
474 | # more flexible: | |
475 | ||
476 | $pattern = "(?i)foobar"; | |
5a964f20 | 477 | if ( /$pattern/ ) { } |
a0d0e21e | 478 | |
ca9dfc88 IZ |
479 | Letters after C<-> switch modifiers off. |
480 | ||
5a964f20 | 481 | These modifiers are localized inside an enclosing group (if any). Say, |
c277df42 IZ |
482 | |
483 | ( (?i) blah ) \s+ \1 | |
484 | ||
485 | (assuming C<x> modifier, and no C<i> modifier outside of this group) | |
486 | will match a repeated (I<including the case>!) word C<blah> in any | |
487 | case. | |
488 | ||
a0d0e21e LW |
489 | =back |
490 | ||
5a964f20 TC |
491 | A question mark was chosen for this and for the new minimal-matching |
492 | construct because 1) question mark is pretty rare in older regular | |
493 | expressions, and 2) whenever you see one, you should stop and "question" | |
494 | exactly what is going on. That's psychology... | |
a0d0e21e | 495 | |
c07a80fd | 496 | =head2 Backtracking |
497 | ||
c277df42 | 498 | A fundamental feature of regular expression matching involves the |
5a964f20 | 499 | notion called I<backtracking>, which is currently used (when needed) |
c277df42 IZ |
500 | by all regular expression quantifiers, namely C<*>, C<*?>, C<+>, |
501 | C<+?>, C<{n,m}>, and C<{n,m}?>. | |
c07a80fd | 502 | |
503 | For a regular expression to match, the I<entire> regular expression must | |
504 | match, not just part of it. So if the beginning of a pattern containing a | |
505 | quantifier succeeds in a way that causes later parts in the pattern to | |
506 | fail, the matching engine backs up and recalculates the beginning | |
507 | part--that's why it's called backtracking. | |
508 | ||
509 | Here is an example of backtracking: Let's say you want to find the | |
510 | word following "foo" in the string "Food is on the foo table.": | |
511 | ||
512 | $_ = "Food is on the foo table."; | |
513 | if ( /\b(foo)\s+(\w+)/i ) { | |
514 | print "$2 follows $1.\n"; | |
515 | } | |
516 | ||
517 | When the match runs, the first part of the regular expression (C<\b(foo)>) | |
518 | finds a possible match right at the beginning of the string, and loads up | |
519 | $1 with "Foo". However, as soon as the matching engine sees that there's | |
520 | no whitespace following the "Foo" that it had saved in $1, it realizes its | |
68dc0745 | 521 | mistake and starts over again one character after where it had the |
c07a80fd | 522 | tentative match. This time it goes all the way until the next occurrence |
523 | of "foo". The complete regular expression matches this time, and you get | |
524 | the expected output of "table follows foo." | |
525 | ||
526 | Sometimes minimal matching can help a lot. Imagine you'd like to match | |
527 | everything between "foo" and "bar". Initially, you write something | |
528 | like this: | |
529 | ||
530 | $_ = "The food is under the bar in the barn."; | |
531 | if ( /foo(.*)bar/ ) { | |
532 | print "got <$1>\n"; | |
533 | } | |
534 | ||
535 | Which perhaps unexpectedly yields: | |
536 | ||
537 | got <d is under the bar in the > | |
538 | ||
539 | That's because C<.*> was greedy, so you get everything between the | |
540 | I<first> "foo" and the I<last> "bar". In this case, it's more effective | |
541 | to use minimal matching to make sure you get the text between a "foo" | |
542 | and the first "bar" thereafter. | |
543 | ||
544 | if ( /foo(.*?)bar/ ) { print "got <$1>\n" } | |
545 | got <d is under the > | |
546 | ||
547 | Here's another example: let's say you'd like to match a number at the end | |
548 | of a string, and you also want to keep the preceding part the match. | |
549 | So you write this: | |
550 | ||
551 | $_ = "I have 2 numbers: 53147"; | |
552 | if ( /(.*)(\d*)/ ) { # Wrong! | |
553 | print "Beginning is <$1>, number is <$2>.\n"; | |
554 | } | |
555 | ||
556 | That won't work at all, because C<.*> was greedy and gobbled up the | |
557 | whole string. As C<\d*> can match on an empty string the complete | |
558 | regular expression matched successfully. | |
559 | ||
8e1088bc | 560 | Beginning is <I have 2 numbers: 53147>, number is <>. |
c07a80fd | 561 | |
562 | Here are some variants, most of which don't work: | |
563 | ||
564 | $_ = "I have 2 numbers: 53147"; | |
565 | @pats = qw{ | |
566 | (.*)(\d*) | |
567 | (.*)(\d+) | |
568 | (.*?)(\d*) | |
569 | (.*?)(\d+) | |
570 | (.*)(\d+)$ | |
571 | (.*?)(\d+)$ | |
572 | (.*)\b(\d+)$ | |
573 | (.*\D)(\d+)$ | |
574 | }; | |
575 | ||
576 | for $pat (@pats) { | |
577 | printf "%-12s ", $pat; | |
578 | if ( /$pat/ ) { | |
579 | print "<$1> <$2>\n"; | |
580 | } else { | |
581 | print "FAIL\n"; | |
582 | } | |
583 | } | |
584 | ||
585 | That will print out: | |
586 | ||
587 | (.*)(\d*) <I have 2 numbers: 53147> <> | |
588 | (.*)(\d+) <I have 2 numbers: 5314> <7> | |
589 | (.*?)(\d*) <> <> | |
590 | (.*?)(\d+) <I have > <2> | |
591 | (.*)(\d+)$ <I have 2 numbers: 5314> <7> | |
592 | (.*?)(\d+)$ <I have 2 numbers: > <53147> | |
593 | (.*)\b(\d+)$ <I have 2 numbers: > <53147> | |
594 | (.*\D)(\d+)$ <I have 2 numbers: > <53147> | |
595 | ||
596 | As you see, this can be a bit tricky. It's important to realize that a | |
597 | regular expression is merely a set of assertions that gives a definition | |
598 | of success. There may be 0, 1, or several different ways that the | |
599 | definition might succeed against a particular string. And if there are | |
5a964f20 TC |
600 | multiple ways it might succeed, you need to understand backtracking to |
601 | know which variety of success you will achieve. | |
c07a80fd | 602 | |
603 | When using lookahead assertions and negations, this can all get even | |
54310121 | 604 | tricker. Imagine you'd like to find a sequence of non-digits not |
c07a80fd | 605 | followed by "123". You might try to write that as |
606 | ||
607 | $_ = "ABC123"; | |
608 | if ( /^\D*(?!123)/ ) { # Wrong! | |
609 | print "Yup, no 123 in $_\n"; | |
610 | } | |
611 | ||
612 | But that isn't going to match; at least, not the way you're hoping. It | |
613 | claims that there is no 123 in the string. Here's a clearer picture of | |
614 | why it that pattern matches, contrary to popular expectations: | |
615 | ||
616 | $x = 'ABC123' ; | |
617 | $y = 'ABC445' ; | |
618 | ||
619 | print "1: got $1\n" if $x =~ /^(ABC)(?!123)/ ; | |
620 | print "2: got $1\n" if $y =~ /^(ABC)(?!123)/ ; | |
621 | ||
622 | print "3: got $1\n" if $x =~ /^(\D*)(?!123)/ ; | |
623 | print "4: got $1\n" if $y =~ /^(\D*)(?!123)/ ; | |
624 | ||
625 | This prints | |
626 | ||
627 | 2: got ABC | |
628 | 3: got AB | |
629 | 4: got ABC | |
630 | ||
5f05dabc | 631 | You might have expected test 3 to fail because it seems to a more |
c07a80fd | 632 | general purpose version of test 1. The important difference between |
633 | them is that test 3 contains a quantifier (C<\D*>) and so can use | |
634 | backtracking, whereas test 1 will not. What's happening is | |
635 | that you've asked "Is it true that at the start of $x, following 0 or more | |
5f05dabc | 636 | non-digits, you have something that's not 123?" If the pattern matcher had |
c07a80fd | 637 | let C<\D*> expand to "ABC", this would have caused the whole pattern to |
54310121 | 638 | fail. |
c07a80fd | 639 | The search engine will initially match C<\D*> with "ABC". Then it will |
5a964f20 | 640 | try to match C<(?!123> with "123", which of course fails. But because |
c07a80fd | 641 | a quantifier (C<\D*>) has been used in the regular expression, the |
642 | search engine can backtrack and retry the match differently | |
54310121 | 643 | in the hope of matching the complete regular expression. |
c07a80fd | 644 | |
5a964f20 TC |
645 | The pattern really, I<really> wants to succeed, so it uses the |
646 | standard pattern back-off-and-retry and lets C<\D*> expand to just "AB" this | |
c07a80fd | 647 | time. Now there's indeed something following "AB" that is not |
648 | "123". It's in fact "C123", which suffices. | |
649 | ||
650 | We can deal with this by using both an assertion and a negation. We'll | |
651 | say that the first part in $1 must be followed by a digit, and in fact, it | |
652 | must also be followed by something that's not "123". Remember that the | |
653 | lookaheads are zero-width expressions--they only look, but don't consume | |
654 | any of the string in their match. So rewriting this way produces what | |
655 | you'd expect; that is, case 5 will fail, but case 6 succeeds: | |
656 | ||
657 | print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/ ; | |
658 | print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/ ; | |
659 | ||
660 | 6: got ABC | |
661 | ||
5a964f20 | 662 | In other words, the two zero-width assertions next to each other work as though |
c07a80fd | 663 | they're ANDed together, just as you'd use any builtin assertions: C</^$/> |
664 | matches only if you're at the beginning of the line AND the end of the | |
665 | line simultaneously. The deeper underlying truth is that juxtaposition in | |
666 | regular expressions always means AND, except when you write an explicit OR | |
667 | using the vertical bar. C</ab/> means match "a" AND (then) match "b", | |
668 | although the attempted matches are made at different positions because "a" | |
669 | is not a zero-width assertion, but a one-width assertion. | |
670 | ||
671 | One warning: particularly complicated regular expressions can take | |
672 | exponential time to solve due to the immense number of possible ways they | |
673 | can use backtracking to try match. For example this will take a very long | |
674 | time to run | |
675 | ||
676 | /((a{0,5}){0,5}){0,5}/ | |
677 | ||
678 | And if you used C<*>'s instead of limiting it to 0 through 5 matches, then | |
679 | it would take literally forever--or until you ran out of stack space. | |
680 | ||
c277df42 | 681 | A powerful tool for optimizing such beasts is "independent" groups, |
5a964f20 | 682 | which do not backtrace (see L<C<(?E<gt>pattern)>>). Note also that |
c277df42 IZ |
683 | zero-length lookahead/lookbehind assertions will not backtrace to make |
684 | the tail match, since they are in "logical" context: only the fact | |
685 | whether they match or not is considered relevant. For an example | |
686 | where side-effects of a lookahead I<might> have influenced the | |
5a964f20 | 687 | following match, see L<C<(?E<gt>pattern)>>. |
c277df42 | 688 | |
a0d0e21e LW |
689 | =head2 Version 8 Regular Expressions |
690 | ||
5a964f20 | 691 | In case you're not familiar with the "regular" Version 8 regex |
a0d0e21e LW |
692 | routines, here are the pattern-matching rules not described above. |
693 | ||
54310121 | 694 | Any single character matches itself, unless it is a I<metacharacter> |
a0d0e21e | 695 | with a special meaning described here or above. You can cause |
5a964f20 | 696 | characters that normally function as metacharacters to be interpreted |
5f05dabc | 697 | literally by prefixing them with a "\" (e.g., "\." matches a ".", not any |
a0d0e21e LW |
698 | character; "\\" matches a "\"). A series of characters matches that |
699 | series of characters in the target string, so the pattern C<blurfl> | |
700 | would match "blurfl" in the target string. | |
701 | ||
702 | You can specify a character class, by enclosing a list of characters | |
5a964f20 | 703 | in C<[]>, which will match any one character from the list. If the |
a0d0e21e LW |
704 | first character after the "[" is "^", the class matches any character not |
705 | in the list. Within a list, the "-" character is used to specify a | |
5a964f20 | 706 | range, so that C<a-z> represents all characters between "a" and "z", |
84850974 DD |
707 | inclusive. If you want "-" itself to be a member of a class, put it |
708 | at the start or end of the list, or escape it with a backslash. (The | |
709 | following all specify the same class of three characters: C<[-az]>, | |
710 | C<[az-]>, and C<[a\-z]>. All are different from C<[a-z]>, which | |
711 | specifies a class containing twenty-six characters.) | |
a0d0e21e | 712 | |
54310121 | 713 | Characters may be specified using a metacharacter syntax much like that |
a0d0e21e LW |
714 | used in C: "\n" matches a newline, "\t" a tab, "\r" a carriage return, |
715 | "\f" a form feed, etc. More generally, \I<nnn>, where I<nnn> is a string | |
716 | of octal digits, matches the character whose ASCII value is I<nnn>. | |
0f36ee90 | 717 | Similarly, \xI<nn>, where I<nn> are hexadecimal digits, matches the |
a0d0e21e | 718 | character whose ASCII value is I<nn>. The expression \cI<x> matches the |
54310121 | 719 | ASCII character control-I<x>. Finally, the "." metacharacter matches any |
a0d0e21e LW |
720 | character except "\n" (unless you use C</s>). |
721 | ||
722 | You can specify a series of alternatives for a pattern using "|" to | |
723 | separate them, so that C<fee|fie|foe> will match any of "fee", "fie", | |
5a964f20 | 724 | or "foe" in the target string (as would C<f(e|i|o)e>). The |
a0d0e21e LW |
725 | first alternative includes everything from the last pattern delimiter |
726 | ("(", "[", or the beginning of the pattern) up to the first "|", and | |
727 | the last alternative contains everything from the last "|" to the next | |
728 | pattern delimiter. For this reason, it's common practice to include | |
729 | alternatives in parentheses, to minimize confusion about where they | |
a3cb178b GS |
730 | start and end. |
731 | ||
5a964f20 | 732 | Alternatives are tried from left to right, so the first |
a3cb178b GS |
733 | alternative found for which the entire expression matches, is the one that |
734 | is chosen. This means that alternatives are not necessarily greedy. For | |
735 | example: when mathing C<foo|foot> against "barefoot", only the "foo" | |
736 | part will match, as that is the first alternative tried, and it successfully | |
737 | matches the target string. (This might not seem important, but it is | |
738 | important when you are capturing matched text using parentheses.) | |
739 | ||
5a964f20 | 740 | Also remember that "|" is interpreted as a literal within square brackets, |
a3cb178b | 741 | so if you write C<[fee|fie|foe]> you're really only matching C<[feio|]>. |
a0d0e21e | 742 | |
54310121 | 743 | Within a pattern, you may designate subpatterns for later reference by |
a0d0e21e | 744 | enclosing them in parentheses, and you may refer back to the I<n>th |
54310121 | 745 | subpattern later in the pattern using the metacharacter \I<n>. |
746 | Subpatterns are numbered based on the left to right order of their | |
5a964f20 | 747 | opening parenthesis. A backreference matches whatever |
54310121 | 748 | actually matched the subpattern in the string being examined, not the |
749 | rules for that subpattern. Therefore, C<(0|0x)\d*\s\1\d*> will | |
5a964f20 | 750 | match "0x1234 0x4321", but not "0x1234 01234", because subpattern 1 |
748a9306 | 751 | actually matched "0x", even though the rule C<0|0x> could |
a0d0e21e | 752 | potentially match the leading 0 in the second number. |
cb1a09d0 AD |
753 | |
754 | =head2 WARNING on \1 vs $1 | |
755 | ||
5a964f20 | 756 | Some people get too used to writing things like: |
cb1a09d0 AD |
757 | |
758 | $pattern =~ s/(\W)/\\\1/g; | |
759 | ||
760 | This is grandfathered for the RHS of a substitute to avoid shocking the | |
761 | B<sed> addicts, but it's a dirty habit to get into. That's because in | |
5f05dabc | 762 | PerlThink, the righthand side of a C<s///> is a double-quoted string. C<\1> in |
cb1a09d0 AD |
763 | the usual double-quoted string means a control-A. The customary Unix |
764 | meaning of C<\1> is kludged in for C<s///>. However, if you get into the habit | |
765 | of doing that, you get yourself into trouble if you then add an C</e> | |
766 | modifier. | |
767 | ||
5a964f20 | 768 | s/(\d+)/ \1 + 1 /eg; # causes warning under -w |
cb1a09d0 AD |
769 | |
770 | Or if you try to do | |
771 | ||
772 | s/(\d+)/\1000/; | |
773 | ||
774 | You can't disambiguate that by saying C<\{1}000>, whereas you can fix it with | |
775 | C<${1}000>. Basically, the operation of interpolation should not be confused | |
776 | with the operation of matching a backreference. Certainly they mean two | |
777 | different things on the I<left> side of the C<s///>. | |
9fa51da4 | 778 | |
c84d73f1 IZ |
779 | =head2 Repeated patterns matching zero-length substring |
780 | ||
781 | WARNING: Difficult material (and prose) ahead. This section needs a rewrite. | |
782 | ||
783 | Regular expressions provide a terse and powerful programming language. As | |
784 | with most other power tools, power comes together with the ability | |
785 | to wreak havoc. | |
786 | ||
787 | A common abuse of this power stems from the ability to make infinite | |
788 | loops using regular expressions, with something as innocous as: | |
789 | ||
790 | 'foo' =~ m{ ( o? )* }x; | |
791 | ||
792 | The C<o?> can match at the beginning of C<'foo'>, and since the position | |
793 | in the string is not moved by the match, C<o?> would match again and again | |
794 | due to the C<*> modifier. Another common way to create a similar cycle | |
795 | is with the looping modifier C<//g>: | |
796 | ||
797 | @matches = ( 'foo' =~ m{ o? }xg ); | |
798 | ||
799 | or | |
800 | ||
801 | print "match: <$&>\n" while 'foo' =~ m{ o? }xg; | |
802 | ||
803 | or the loop implied by split(). | |
804 | ||
805 | However, long experience has shown that many programming tasks may | |
806 | be significantly simplified by using repeated subexpressions which | |
807 | may match zero-length substrings, with a simple example being: | |
808 | ||
809 | @chars = split //, $string; # // is not magic in split | |
810 | ($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// / | |
811 | ||
812 | Thus Perl allows the C</()/> construct, which I<forcefully breaks | |
813 | the infinite loop>. The rules for this are different for lower-level | |
814 | loops given by the greedy modifiers C<*+{}>, and for higher-level | |
815 | ones like the C</g> modifier or split() operator. | |
816 | ||
817 | The lower-level loops are I<interrupted> when it is detected that a | |
818 | repeated expression did match a zero-length substring, thus | |
819 | ||
820 | m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH )* }x; | |
821 | ||
822 | is made equivalent to | |
823 | ||
824 | m{ (?: NON_ZERO_LENGTH )* | |
825 | | | |
826 | (?: ZERO_LENGTH )? | |
827 | }x; | |
828 | ||
829 | The higher level-loops preserve an additional state between iterations: | |
830 | whether the last match was zero-length. To break the loop, the following | |
831 | match after a zero-length match is prohibited to have a length of zero. | |
832 | This prohibition interacts with backtracking (see L<"Backtracking">), | |
833 | and so the I<second best> match is chosen if the I<best> match is of | |
834 | zero length. | |
835 | ||
836 | Say, | |
837 | ||
838 | $_ = 'bar'; | |
839 | s/\w??/<$&>/g; | |
840 | ||
841 | results in C<"<><b><><a><><r><>">. At each position of the string the best | |
842 | match given by non-greedy C<??> is the zero-length match, and the I<second | |
843 | best> match is what is matched by C<\w>. Thus zero-length matches | |
844 | alternate with one-character-long matches. | |
845 | ||
846 | Similarly, for repeated C<m/()/g> the second-best match is the match at the | |
847 | position one notch further in the string. | |
848 | ||
849 | The additional state of being I<matched with zero-length> is associated to | |
850 | the matched string, and is reset by each assignment to pos(). | |
851 | ||
852 | =head2 Creating custom RE engines | |
853 | ||
854 | Overloaded constants (see L<overload>) provide a simple way to extend | |
855 | the functionality of the RE engine. | |
856 | ||
857 | Suppose that we want to enable a new RE escape-sequence C<\Y|> which | |
858 | matches at boundary between white-space characters and non-whitespace | |
859 | characters. Note that C<(?=\S)(?<!\S)|(?!\S)(?<=\S)> matches exactly | |
860 | at these positions, so we want to have each C<\Y|> in the place of the | |
861 | more complicated version. We can create a module C<customre> to do | |
862 | this: | |
863 | ||
864 | package customre; | |
865 | use overload; | |
866 | ||
867 | sub import { | |
868 | shift; | |
869 | die "No argument to customre::import allowed" if @_; | |
870 | overload::constant 'qr' => \&convert; | |
871 | } | |
872 | ||
873 | sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"} | |
874 | ||
875 | my %rules = ( '\\' => '\\', | |
876 | 'Y|' => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/ ); | |
877 | sub convert { | |
878 | my $re = shift; | |
879 | $re =~ s{ | |
880 | \\ ( \\ | Y . ) | |
881 | } | |
882 | { $rules{$1} or invalid($re,$1) }sgex; | |
883 | return $re; | |
884 | } | |
885 | ||
886 | Now C<use customre> enables the new escape in constant regular | |
887 | expressions, i.e., those without any runtime variable interpolations. | |
888 | As documented in L<overload>, this conversion will work only over | |
889 | literal parts of regular expressions. For C<\Y|$re\Y|> the variable | |
890 | part of this regular expression needs to be converted explicitly | |
891 | (but only if the special meaning of C<\Y|> should be enabled inside $re): | |
892 | ||
893 | use customre; | |
894 | $re = <>; | |
895 | chomp $re; | |
896 | $re = customre::convert $re; | |
897 | /\Y|$re\Y|/; | |
898 | ||
9fa51da4 CS |
899 | =head2 SEE ALSO |
900 | ||
9b599b2a GS |
901 | L<perlop/"Regexp Quote-Like Operators">. |
902 | ||
1e66bd83 PP |
903 | L<perlop/"Gory details of parsing quoted constructs">. |
904 | ||
9b599b2a GS |
905 | L<perlfunc/pos>. |
906 | ||
907 | L<perllocale>. | |
908 | ||
5a964f20 | 909 | I<Mastering Regular Expressions> (see L<perlbook>) by Jeffrey Friedl. |