Commit | Line | Data |
---|---|---|
5356d32e | 1 | /* sv.c |
79072805 | 2 | * |
1129b882 | 3 | * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
83706693 RGS |
4 | * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall |
5 | * and others | |
79072805 LW |
6 | * |
7 | * You may distribute under the terms of either the GNU General Public | |
8 | * License or the Artistic License, as specified in the README file. | |
9 | * | |
4ac71550 TC |
10 | */ |
11 | ||
12 | /* | |
13 | * 'I wonder what the Entish is for "yes" and "no",' he thought. | |
14 | * --Pippin | |
15 | * | |
16 | * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"] | |
17 | */ | |
18 | ||
19 | /* | |
645c22ef DM |
20 | * |
21 | * | |
5e045b90 AMS |
22 | * This file contains the code that creates, manipulates and destroys |
23 | * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the | |
24 | * structure of an SV, so their creation and destruction is handled | |
25 | * here; higher-level functions are in av.c, hv.c, and so on. Opcode | |
26 | * level functions (eg. substr, split, join) for each of the types are | |
27 | * in the pp*.c files. | |
79072805 LW |
28 | */ |
29 | ||
30 | #include "EXTERN.h" | |
864dbfa3 | 31 | #define PERL_IN_SV_C |
79072805 | 32 | #include "perl.h" |
d2f185dc | 33 | #include "regcomp.h" |
9d9a81f0 CB |
34 | #ifdef __VMS |
35 | # include <rms.h> | |
36 | #endif | |
79072805 | 37 | |
2f8ed50e OS |
38 | #ifdef __Lynx__ |
39 | /* Missing proto on LynxOS */ | |
40 | char *gconvert(double, int, int, char *); | |
41 | #endif | |
42 | ||
a4eca1d4 JH |
43 | #ifdef USE_QUADMATH |
44 | # define SNPRINTF_G(nv, buffer, size, ndig) \ | |
45 | quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv)) | |
46 | #else | |
47 | # define SNPRINTF_G(nv, buffer, size, ndig) \ | |
48 | PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer)) | |
49 | #endif | |
50 | ||
9f53080a | 51 | #ifndef SV_COW_THRESHOLD |
e8c6a474 | 52 | # define SV_COW_THRESHOLD 0 /* COW iff len > K */ |
9f53080a FC |
53 | #endif |
54 | #ifndef SV_COWBUF_THRESHOLD | |
e8c6a474 | 55 | # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */ |
9f53080a FC |
56 | #endif |
57 | #ifndef SV_COW_MAX_WASTE_THRESHOLD | |
e8c6a474 | 58 | # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */ |
9f53080a FC |
59 | #endif |
60 | #ifndef SV_COWBUF_WASTE_THRESHOLD | |
e8c6a474 | 61 | # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */ |
9f53080a FC |
62 | #endif |
63 | #ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD | |
e8c6a474 | 64 | # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */ |
9f53080a FC |
65 | #endif |
66 | #ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD | |
e8c6a474 | 67 | # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */ |
e8c6a474 YO |
68 | #endif |
69 | /* Work around compiler warnings about unsigned >= THRESHOLD when thres- | |
70 | hold is 0. */ | |
71 | #if SV_COW_THRESHOLD | |
72 | # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD) | |
73 | #else | |
74 | # define GE_COW_THRESHOLD(cur) 1 | |
75 | #endif | |
76 | #if SV_COWBUF_THRESHOLD | |
77 | # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD) | |
78 | #else | |
79 | # define GE_COWBUF_THRESHOLD(cur) 1 | |
80 | #endif | |
81 | #if SV_COW_MAX_WASTE_THRESHOLD | |
82 | # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD) | |
83 | #else | |
84 | # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1 | |
85 | #endif | |
86 | #if SV_COWBUF_WASTE_THRESHOLD | |
87 | # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD) | |
88 | #else | |
89 | # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1 | |
90 | #endif | |
91 | #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD | |
92 | # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur)) | |
93 | #else | |
94 | # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1 | |
95 | #endif | |
96 | #if SV_COWBUF_WASTE_FACTOR_THRESHOLD | |
97 | # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur)) | |
98 | #else | |
99 | # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1 | |
100 | #endif | |
101 | ||
102 | #define CHECK_COW_THRESHOLD(cur,len) (\ | |
103 | GE_COW_THRESHOLD((cur)) && \ | |
104 | GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \ | |
105 | GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \ | |
106 | ) | |
107 | #define CHECK_COWBUF_THRESHOLD(cur,len) (\ | |
108 | GE_COWBUF_THRESHOLD((cur)) && \ | |
109 | GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \ | |
110 | GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \ | |
111 | ) | |
cca0492e | 112 | |
e23c8137 | 113 | #ifdef PERL_UTF8_CACHE_ASSERT |
ab455f60 | 114 | /* if adding more checks watch out for the following tests: |
e23c8137 JH |
115 | * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t |
116 | * lib/utf8.t lib/Unicode/Collate/t/index.t | |
117 | * --jhi | |
118 | */ | |
6f207bd3 | 119 | # define ASSERT_UTF8_CACHE(cache) \ |
ab455f60 NC |
120 | STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \ |
121 | assert((cache)[2] <= (cache)[3]); \ | |
122 | assert((cache)[3] <= (cache)[1]);} \ | |
123 | } STMT_END | |
e23c8137 | 124 | #else |
6f207bd3 | 125 | # define ASSERT_UTF8_CACHE(cache) NOOP |
e23c8137 JH |
126 | #endif |
127 | ||
958cdeac TC |
128 | static const char S_destroy[] = "DESTROY"; |
129 | #define S_destroy_len (sizeof(S_destroy)-1) | |
130 | ||
645c22ef DM |
131 | /* ============================================================================ |
132 | ||
133 | =head1 Allocation and deallocation of SVs. | |
d2a0f284 JC |
134 | An SV (or AV, HV, etc.) is allocated in two parts: the head (struct |
135 | sv, av, hv...) contains type and reference count information, and for | |
136 | many types, a pointer to the body (struct xrv, xpv, xpviv...), which | |
137 | contains fields specific to each type. Some types store all they need | |
138 | in the head, so don't have a body. | |
139 | ||
486ec47a | 140 | In all but the most memory-paranoid configurations (ex: PURIFY), heads |
d2a0f284 JC |
141 | and bodies are allocated out of arenas, which by default are |
142 | approximately 4K chunks of memory parcelled up into N heads or bodies. | |
93e68bfb JC |
143 | Sv-bodies are allocated by their sv-type, guaranteeing size |
144 | consistency needed to allocate safely from arrays. | |
145 | ||
d2a0f284 JC |
146 | For SV-heads, the first slot in each arena is reserved, and holds a |
147 | link to the next arena, some flags, and a note of the number of slots. | |
148 | Snaked through each arena chain is a linked list of free items; when | |
149 | this becomes empty, an extra arena is allocated and divided up into N | |
150 | items which are threaded into the free list. | |
151 | ||
152 | SV-bodies are similar, but they use arena-sets by default, which | |
153 | separate the link and info from the arena itself, and reclaim the 1st | |
154 | slot in the arena. SV-bodies are further described later. | |
645c22ef DM |
155 | |
156 | The following global variables are associated with arenas: | |
157 | ||
7fefc6c1 KW |
158 | PL_sv_arenaroot pointer to list of SV arenas |
159 | PL_sv_root pointer to list of free SV structures | |
645c22ef | 160 | |
7fefc6c1 KW |
161 | PL_body_arenas head of linked-list of body arenas |
162 | PL_body_roots[] array of pointers to list of free bodies of svtype | |
163 | arrays are indexed by the svtype needed | |
93e68bfb | 164 | |
d2a0f284 JC |
165 | A few special SV heads are not allocated from an arena, but are |
166 | instead directly created in the interpreter structure, eg PL_sv_undef. | |
93e68bfb JC |
167 | The size of arenas can be changed from the default by setting |
168 | PERL_ARENA_SIZE appropriately at compile time. | |
645c22ef DM |
169 | |
170 | The SV arena serves the secondary purpose of allowing still-live SVs | |
171 | to be located and destroyed during final cleanup. | |
172 | ||
173 | At the lowest level, the macros new_SV() and del_SV() grab and free | |
174 | an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv() | |
175 | to return the SV to the free list with error checking.) new_SV() calls | |
176 | more_sv() / sv_add_arena() to add an extra arena if the free list is empty. | |
177 | SVs in the free list have their SvTYPE field set to all ones. | |
178 | ||
ff276b08 | 179 | At the time of very final cleanup, sv_free_arenas() is called from |
645c22ef | 180 | perl_destruct() to physically free all the arenas allocated since the |
6a93a7e5 | 181 | start of the interpreter. |
645c22ef | 182 | |
645c22ef DM |
183 | The function visit() scans the SV arenas list, and calls a specified |
184 | function for each SV it finds which is still live - ie which has an SvTYPE | |
185 | other than all 1's, and a non-zero SvREFCNT. visit() is used by the | |
186 | following functions (specified as [function that calls visit()] / [function | |
187 | called by visit() for each SV]): | |
188 | ||
189 | sv_report_used() / do_report_used() | |
f2524eef | 190 | dump all remaining SVs (debugging aid) |
645c22ef | 191 | |
e4487e9b | 192 | sv_clean_objs() / do_clean_objs(),do_clean_named_objs(), |
e76981f9 | 193 | do_clean_named_io_objs(),do_curse() |
645c22ef | 194 | Attempt to free all objects pointed to by RVs, |
e76981f9 FC |
195 | try to do the same for all objects indir- |
196 | ectly referenced by typeglobs too, and | |
197 | then do a final sweep, cursing any | |
198 | objects that remain. Called once from | |
645c22ef DM |
199 | perl_destruct(), prior to calling sv_clean_all() |
200 | below. | |
201 | ||
202 | sv_clean_all() / do_clean_all() | |
203 | SvREFCNT_dec(sv) each remaining SV, possibly | |
204 | triggering an sv_free(). It also sets the | |
205 | SVf_BREAK flag on the SV to indicate that the | |
206 | refcnt has been artificially lowered, and thus | |
207 | stopping sv_free() from giving spurious warnings | |
208 | about SVs which unexpectedly have a refcnt | |
209 | of zero. called repeatedly from perl_destruct() | |
210 | until there are no SVs left. | |
211 | ||
93e68bfb | 212 | =head2 Arena allocator API Summary |
645c22ef DM |
213 | |
214 | Private API to rest of sv.c | |
215 | ||
216 | new_SV(), del_SV(), | |
217 | ||
df0f0429 | 218 | new_XPVNV(), del_XPVGV(), |
645c22ef DM |
219 | etc |
220 | ||
221 | Public API: | |
222 | ||
8cf8f3d1 | 223 | sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas() |
645c22ef | 224 | |
645c22ef DM |
225 | =cut |
226 | ||
3e8320cc | 227 | * ========================================================================= */ |
645c22ef | 228 | |
4561caa4 CS |
229 | /* |
230 | * "A time to plant, and a time to uproot what was planted..." | |
231 | */ | |
232 | ||
d7a2c63c MHM |
233 | #ifdef PERL_MEM_LOG |
234 | # define MEM_LOG_NEW_SV(sv, file, line, func) \ | |
235 | Perl_mem_log_new_sv(sv, file, line, func) | |
236 | # define MEM_LOG_DEL_SV(sv, file, line, func) \ | |
237 | Perl_mem_log_del_sv(sv, file, line, func) | |
238 | #else | |
239 | # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP | |
240 | # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP | |
241 | #endif | |
242 | ||
fd0854ff | 243 | #ifdef DEBUG_LEAKING_SCALARS |
484e6108 FC |
244 | # define FREE_SV_DEBUG_FILE(sv) STMT_START { \ |
245 | if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \ | |
246 | } STMT_END | |
d7a2c63c MHM |
247 | # define DEBUG_SV_SERIAL(sv) \ |
248 | DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \ | |
249 | PTR2UV(sv), (long)(sv)->sv_debug_serial)) | |
fd0854ff DM |
250 | #else |
251 | # define FREE_SV_DEBUG_FILE(sv) | |
d7a2c63c | 252 | # define DEBUG_SV_SERIAL(sv) NOOP |
fd0854ff DM |
253 | #endif |
254 | ||
48614a46 NC |
255 | #ifdef PERL_POISON |
256 | # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv) | |
daba3364 | 257 | # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val)) |
48614a46 NC |
258 | /* Whilst I'd love to do this, it seems that things like to check on |
259 | unreferenced scalars | |
ce5dbf61 | 260 | # define POISON_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV) |
48614a46 | 261 | */ |
ce5dbf61 | 262 | # define POISON_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \ |
7e337ee0 | 263 | PoisonNew(&SvREFCNT(sv), 1, U32) |
48614a46 NC |
264 | #else |
265 | # define SvARENA_CHAIN(sv) SvANY(sv) | |
3eef1deb | 266 | # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val) |
ce5dbf61 | 267 | # define POISON_SV_HEAD(sv) |
48614a46 NC |
268 | #endif |
269 | ||
990198f0 DM |
270 | /* Mark an SV head as unused, and add to free list. |
271 | * | |
272 | * If SVf_BREAK is set, skip adding it to the free list, as this SV had | |
273 | * its refcount artificially decremented during global destruction, so | |
274 | * there may be dangling pointers to it. The last thing we want in that | |
275 | * case is for it to be reused. */ | |
276 | ||
053fc874 GS |
277 | #define plant_SV(p) \ |
278 | STMT_START { \ | |
990198f0 | 279 | const U32 old_flags = SvFLAGS(p); \ |
d7a2c63c MHM |
280 | MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \ |
281 | DEBUG_SV_SERIAL(p); \ | |
fd0854ff | 282 | FREE_SV_DEBUG_FILE(p); \ |
ce5dbf61 | 283 | POISON_SV_HEAD(p); \ |
053fc874 | 284 | SvFLAGS(p) = SVTYPEMASK; \ |
990198f0 | 285 | if (!(old_flags & SVf_BREAK)) { \ |
3eef1deb | 286 | SvARENA_CHAIN_SET(p, PL_sv_root); \ |
990198f0 DM |
287 | PL_sv_root = (p); \ |
288 | } \ | |
053fc874 GS |
289 | --PL_sv_count; \ |
290 | } STMT_END | |
a0d0e21e | 291 | |
053fc874 GS |
292 | #define uproot_SV(p) \ |
293 | STMT_START { \ | |
294 | (p) = PL_sv_root; \ | |
daba3364 | 295 | PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \ |
053fc874 GS |
296 | ++PL_sv_count; \ |
297 | } STMT_END | |
298 | ||
645c22ef | 299 | |
cac9b346 NC |
300 | /* make some more SVs by adding another arena */ |
301 | ||
cac9b346 NC |
302 | STATIC SV* |
303 | S_more_sv(pTHX) | |
304 | { | |
305 | SV* sv; | |
9a87bd09 NC |
306 | char *chunk; /* must use New here to match call to */ |
307 | Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */ | |
308 | sv_add_arena(chunk, PERL_ARENA_SIZE, 0); | |
cac9b346 NC |
309 | uproot_SV(sv); |
310 | return sv; | |
311 | } | |
312 | ||
645c22ef DM |
313 | /* new_SV(): return a new, empty SV head */ |
314 | ||
eba0f806 DM |
315 | #ifdef DEBUG_LEAKING_SCALARS |
316 | /* provide a real function for a debugger to play with */ | |
317 | STATIC SV* | |
d7a2c63c | 318 | S_new_SV(pTHX_ const char *file, int line, const char *func) |
eba0f806 DM |
319 | { |
320 | SV* sv; | |
321 | ||
eba0f806 DM |
322 | if (PL_sv_root) |
323 | uproot_SV(sv); | |
324 | else | |
cac9b346 | 325 | sv = S_more_sv(aTHX); |
eba0f806 DM |
326 | SvANY(sv) = 0; |
327 | SvREFCNT(sv) = 1; | |
328 | SvFLAGS(sv) = 0; | |
fd0854ff | 329 | sv->sv_debug_optype = PL_op ? PL_op->op_type : 0; |
e385c3bf DM |
330 | sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE |
331 | ? PL_parser->copline | |
332 | : PL_curcop | |
f24aceb1 DM |
333 | ? CopLINE(PL_curcop) |
334 | : 0 | |
e385c3bf | 335 | ); |
fd0854ff | 336 | sv->sv_debug_inpad = 0; |
cd676548 | 337 | sv->sv_debug_parent = NULL; |
484e6108 | 338 | sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL; |
d7a2c63c MHM |
339 | |
340 | sv->sv_debug_serial = PL_sv_serial++; | |
341 | ||
342 | MEM_LOG_NEW_SV(sv, file, line, func); | |
343 | DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n", | |
344 | PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func)); | |
345 | ||
eba0f806 DM |
346 | return sv; |
347 | } | |
d7a2c63c | 348 | # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__) |
eba0f806 DM |
349 | |
350 | #else | |
351 | # define new_SV(p) \ | |
053fc874 | 352 | STMT_START { \ |
053fc874 GS |
353 | if (PL_sv_root) \ |
354 | uproot_SV(p); \ | |
355 | else \ | |
cac9b346 | 356 | (p) = S_more_sv(aTHX); \ |
053fc874 GS |
357 | SvANY(p) = 0; \ |
358 | SvREFCNT(p) = 1; \ | |
359 | SvFLAGS(p) = 0; \ | |
d7a2c63c | 360 | MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \ |
053fc874 | 361 | } STMT_END |
eba0f806 | 362 | #endif |
463ee0b2 | 363 | |
645c22ef DM |
364 | |
365 | /* del_SV(): return an empty SV head to the free list */ | |
366 | ||
a0d0e21e | 367 | #ifdef DEBUGGING |
4561caa4 | 368 | |
053fc874 GS |
369 | #define del_SV(p) \ |
370 | STMT_START { \ | |
aea4f609 | 371 | if (DEBUG_D_TEST) \ |
053fc874 GS |
372 | del_sv(p); \ |
373 | else \ | |
374 | plant_SV(p); \ | |
053fc874 | 375 | } STMT_END |
a0d0e21e | 376 | |
76e3520e | 377 | STATIC void |
cea2e8a9 | 378 | S_del_sv(pTHX_ SV *p) |
463ee0b2 | 379 | { |
7918f24d NC |
380 | PERL_ARGS_ASSERT_DEL_SV; |
381 | ||
aea4f609 | 382 | if (DEBUG_D_TEST) { |
4633a7c4 | 383 | SV* sva; |
a3b680e6 | 384 | bool ok = 0; |
daba3364 | 385 | for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) { |
53c1dcc0 AL |
386 | const SV * const sv = sva + 1; |
387 | const SV * const svend = &sva[SvREFCNT(sva)]; | |
c0ff570e | 388 | if (p >= sv && p < svend) { |
a0d0e21e | 389 | ok = 1; |
c0ff570e NC |
390 | break; |
391 | } | |
a0d0e21e LW |
392 | } |
393 | if (!ok) { | |
9b387841 NC |
394 | Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), |
395 | "Attempt to free non-arena SV: 0x%"UVxf | |
396 | pTHX__FORMAT, PTR2UV(p) pTHX__VALUE); | |
a0d0e21e LW |
397 | return; |
398 | } | |
399 | } | |
4561caa4 | 400 | plant_SV(p); |
463ee0b2 | 401 | } |
a0d0e21e | 402 | |
4561caa4 CS |
403 | #else /* ! DEBUGGING */ |
404 | ||
405 | #define del_SV(p) plant_SV(p) | |
406 | ||
407 | #endif /* DEBUGGING */ | |
463ee0b2 | 408 | |
645c22ef DM |
409 | |
410 | /* | |
ccfc67b7 JH |
411 | =head1 SV Manipulation Functions |
412 | ||
645c22ef DM |
413 | =for apidoc sv_add_arena |
414 | ||
415 | Given a chunk of memory, link it to the head of the list of arenas, | |
416 | and split it into a list of free SVs. | |
417 | ||
418 | =cut | |
419 | */ | |
420 | ||
d2bd4e7f NC |
421 | static void |
422 | S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags) | |
463ee0b2 | 423 | { |
daba3364 | 424 | SV *const sva = MUTABLE_SV(ptr); |
eb578fdb KW |
425 | SV* sv; |
426 | SV* svend; | |
4633a7c4 | 427 | |
7918f24d NC |
428 | PERL_ARGS_ASSERT_SV_ADD_ARENA; |
429 | ||
4633a7c4 | 430 | /* The first SV in an arena isn't an SV. */ |
3280af22 | 431 | SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */ |
4633a7c4 LW |
432 | SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */ |
433 | SvFLAGS(sva) = flags; /* FAKE if not to be freed */ | |
434 | ||
3280af22 NIS |
435 | PL_sv_arenaroot = sva; |
436 | PL_sv_root = sva + 1; | |
4633a7c4 LW |
437 | |
438 | svend = &sva[SvREFCNT(sva) - 1]; | |
439 | sv = sva + 1; | |
463ee0b2 | 440 | while (sv < svend) { |
3eef1deb | 441 | SvARENA_CHAIN_SET(sv, (sv + 1)); |
03e36789 | 442 | #ifdef DEBUGGING |
978b032e | 443 | SvREFCNT(sv) = 0; |
03e36789 | 444 | #endif |
4b69cbe3 | 445 | /* Must always set typemask because it's always checked in on cleanup |
03e36789 | 446 | when the arenas are walked looking for objects. */ |
8990e307 | 447 | SvFLAGS(sv) = SVTYPEMASK; |
463ee0b2 LW |
448 | sv++; |
449 | } | |
3eef1deb | 450 | SvARENA_CHAIN_SET(sv, 0); |
03e36789 NC |
451 | #ifdef DEBUGGING |
452 | SvREFCNT(sv) = 0; | |
453 | #endif | |
4633a7c4 LW |
454 | SvFLAGS(sv) = SVTYPEMASK; |
455 | } | |
456 | ||
055972dc DM |
457 | /* visit(): call the named function for each non-free SV in the arenas |
458 | * whose flags field matches the flags/mask args. */ | |
645c22ef | 459 | |
5226ed68 | 460 | STATIC I32 |
de37a194 | 461 | S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask) |
8990e307 | 462 | { |
4633a7c4 | 463 | SV* sva; |
5226ed68 | 464 | I32 visited = 0; |
8990e307 | 465 | |
7918f24d NC |
466 | PERL_ARGS_ASSERT_VISIT; |
467 | ||
daba3364 | 468 | for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) { |
eb578fdb KW |
469 | const SV * const svend = &sva[SvREFCNT(sva)]; |
470 | SV* sv; | |
4561caa4 | 471 | for (sv = sva + 1; sv < svend; ++sv) { |
e4787c0c | 472 | if (SvTYPE(sv) != (svtype)SVTYPEMASK |
055972dc DM |
473 | && (sv->sv_flags & mask) == flags |
474 | && SvREFCNT(sv)) | |
475 | { | |
942481a7 | 476 | (*f)(aTHX_ sv); |
5226ed68 JH |
477 | ++visited; |
478 | } | |
8990e307 LW |
479 | } |
480 | } | |
5226ed68 | 481 | return visited; |
8990e307 LW |
482 | } |
483 | ||
758a08c3 JH |
484 | #ifdef DEBUGGING |
485 | ||
645c22ef DM |
486 | /* called by sv_report_used() for each live SV */ |
487 | ||
488 | static void | |
5fa45a31 | 489 | do_report_used(pTHX_ SV *const sv) |
645c22ef | 490 | { |
e4787c0c | 491 | if (SvTYPE(sv) != (svtype)SVTYPEMASK) { |
645c22ef DM |
492 | PerlIO_printf(Perl_debug_log, "****\n"); |
493 | sv_dump(sv); | |
494 | } | |
495 | } | |
758a08c3 | 496 | #endif |
645c22ef DM |
497 | |
498 | /* | |
499 | =for apidoc sv_report_used | |
500 | ||
fde67290 | 501 | Dump the contents of all SVs not yet freed (debugging aid). |
645c22ef DM |
502 | |
503 | =cut | |
504 | */ | |
505 | ||
8990e307 | 506 | void |
864dbfa3 | 507 | Perl_sv_report_used(pTHX) |
4561caa4 | 508 | { |
ff270d3a | 509 | #ifdef DEBUGGING |
055972dc | 510 | visit(do_report_used, 0, 0); |
96a5add6 AL |
511 | #else |
512 | PERL_UNUSED_CONTEXT; | |
ff270d3a | 513 | #endif |
4561caa4 CS |
514 | } |
515 | ||
645c22ef DM |
516 | /* called by sv_clean_objs() for each live SV */ |
517 | ||
518 | static void | |
de37a194 | 519 | do_clean_objs(pTHX_ SV *const ref) |
645c22ef | 520 | { |
ea724faa NC |
521 | assert (SvROK(ref)); |
522 | { | |
823a54a3 AL |
523 | SV * const target = SvRV(ref); |
524 | if (SvOBJECT(target)) { | |
525 | DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref))); | |
526 | if (SvWEAKREF(ref)) { | |
527 | sv_del_backref(target, ref); | |
528 | SvWEAKREF_off(ref); | |
529 | SvRV_set(ref, NULL); | |
530 | } else { | |
531 | SvROK_off(ref); | |
532 | SvRV_set(ref, NULL); | |
fc2b2dca | 533 | SvREFCNT_dec_NN(target); |
823a54a3 | 534 | } |
645c22ef DM |
535 | } |
536 | } | |
645c22ef DM |
537 | } |
538 | ||
645c22ef | 539 | |
e4487e9b DM |
540 | /* clear any slots in a GV which hold objects - except IO; |
541 | * called by sv_clean_objs() for each live GV */ | |
542 | ||
645c22ef | 543 | static void |
f30de749 | 544 | do_clean_named_objs(pTHX_ SV *const sv) |
645c22ef | 545 | { |
57ef47cc | 546 | SV *obj; |
ea724faa | 547 | assert(SvTYPE(sv) == SVt_PVGV); |
d011219a | 548 | assert(isGV_with_GP(sv)); |
57ef47cc DM |
549 | if (!GvGP(sv)) |
550 | return; | |
551 | ||
552 | /* freeing GP entries may indirectly free the current GV; | |
553 | * hold onto it while we mess with the GP slots */ | |
554 | SvREFCNT_inc(sv); | |
555 | ||
556 | if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) { | |
557 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
558 | "Cleaning named glob SV object:\n "), sv_dump(obj))); | |
559 | GvSV(sv) = NULL; | |
fc2b2dca | 560 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
561 | } |
562 | if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) { | |
563 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
564 | "Cleaning named glob AV object:\n "), sv_dump(obj))); | |
565 | GvAV(sv) = NULL; | |
fc2b2dca | 566 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
567 | } |
568 | if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) { | |
569 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
570 | "Cleaning named glob HV object:\n "), sv_dump(obj))); | |
571 | GvHV(sv) = NULL; | |
fc2b2dca | 572 | SvREFCNT_dec_NN(obj); |
57ef47cc DM |
573 | } |
574 | if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) { | |
575 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
576 | "Cleaning named glob CV object:\n "), sv_dump(obj))); | |
c43ae56f | 577 | GvCV_set(sv, NULL); |
fc2b2dca | 578 | SvREFCNT_dec_NN(obj); |
57ef47cc | 579 | } |
fc2b2dca | 580 | SvREFCNT_dec_NN(sv); /* undo the inc above */ |
e4487e9b DM |
581 | } |
582 | ||
68b590d9 | 583 | /* clear any IO slots in a GV which hold objects (except stderr, defout); |
e4487e9b DM |
584 | * called by sv_clean_objs() for each live GV */ |
585 | ||
586 | static void | |
587 | do_clean_named_io_objs(pTHX_ SV *const sv) | |
588 | { | |
e4487e9b DM |
589 | SV *obj; |
590 | assert(SvTYPE(sv) == SVt_PVGV); | |
591 | assert(isGV_with_GP(sv)); | |
68b590d9 | 592 | if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv) |
e4487e9b DM |
593 | return; |
594 | ||
595 | SvREFCNT_inc(sv); | |
57ef47cc DM |
596 | if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) { |
597 | DEBUG_D((PerlIO_printf(Perl_debug_log, | |
598 | "Cleaning named glob IO object:\n "), sv_dump(obj))); | |
599 | GvIOp(sv) = NULL; | |
fc2b2dca | 600 | SvREFCNT_dec_NN(obj); |
645c22ef | 601 | } |
fc2b2dca | 602 | SvREFCNT_dec_NN(sv); /* undo the inc above */ |
645c22ef | 603 | } |
645c22ef | 604 | |
4155e4fe FC |
605 | /* Void wrapper to pass to visit() */ |
606 | static void | |
607 | do_curse(pTHX_ SV * const sv) { | |
c2910e6c FC |
608 | if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv) |
609 | || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv)) | |
4155e4fe FC |
610 | return; |
611 | (void)curse(sv, 0); | |
612 | } | |
613 | ||
645c22ef DM |
614 | /* |
615 | =for apidoc sv_clean_objs | |
616 | ||
fde67290 | 617 | Attempt to destroy all objects not yet freed. |
645c22ef DM |
618 | |
619 | =cut | |
620 | */ | |
621 | ||
4561caa4 | 622 | void |
864dbfa3 | 623 | Perl_sv_clean_objs(pTHX) |
4561caa4 | 624 | { |
68b590d9 | 625 | GV *olddef, *olderr; |
3280af22 | 626 | PL_in_clean_objs = TRUE; |
055972dc | 627 | visit(do_clean_objs, SVf_ROK, SVf_ROK); |
e4487e9b DM |
628 | /* Some barnacles may yet remain, clinging to typeglobs. |
629 | * Run the non-IO destructors first: they may want to output | |
630 | * error messages, close files etc */ | |
d011219a | 631 | visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP); |
e4487e9b | 632 | visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP); |
4155e4fe FC |
633 | /* And if there are some very tenacious barnacles clinging to arrays, |
634 | closures, or what have you.... */ | |
635 | visit(do_curse, SVs_OBJECT, SVs_OBJECT); | |
68b590d9 DM |
636 | olddef = PL_defoutgv; |
637 | PL_defoutgv = NULL; /* disable skip of PL_defoutgv */ | |
638 | if (olddef && isGV_with_GP(olddef)) | |
639 | do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef)); | |
640 | olderr = PL_stderrgv; | |
641 | PL_stderrgv = NULL; /* disable skip of PL_stderrgv */ | |
642 | if (olderr && isGV_with_GP(olderr)) | |
643 | do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr)); | |
644 | SvREFCNT_dec(olddef); | |
3280af22 | 645 | PL_in_clean_objs = FALSE; |
4561caa4 CS |
646 | } |
647 | ||
645c22ef DM |
648 | /* called by sv_clean_all() for each live SV */ |
649 | ||
650 | static void | |
de37a194 | 651 | do_clean_all(pTHX_ SV *const sv) |
645c22ef | 652 | { |
daba3364 | 653 | if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) { |
cddfcddc | 654 | /* don't clean pid table and strtab */ |
d17ea597 | 655 | return; |
cddfcddc | 656 | } |
645c22ef DM |
657 | DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) )); |
658 | SvFLAGS(sv) |= SVf_BREAK; | |
fc2b2dca | 659 | SvREFCNT_dec_NN(sv); |
645c22ef DM |
660 | } |
661 | ||
662 | /* | |
663 | =for apidoc sv_clean_all | |
664 | ||
665 | Decrement the refcnt of each remaining SV, possibly triggering a | |
fde67290 | 666 | cleanup. This function may have to be called multiple times to free |
ff276b08 | 667 | SVs which are in complex self-referential hierarchies. |
645c22ef DM |
668 | |
669 | =cut | |
670 | */ | |
671 | ||
5226ed68 | 672 | I32 |
864dbfa3 | 673 | Perl_sv_clean_all(pTHX) |
8990e307 | 674 | { |
5226ed68 | 675 | I32 cleaned; |
3280af22 | 676 | PL_in_clean_all = TRUE; |
055972dc | 677 | cleaned = visit(do_clean_all, 0,0); |
5226ed68 | 678 | return cleaned; |
8990e307 | 679 | } |
463ee0b2 | 680 | |
5e258f8c JC |
681 | /* |
682 | ARENASETS: a meta-arena implementation which separates arena-info | |
683 | into struct arena_set, which contains an array of struct | |
684 | arena_descs, each holding info for a single arena. By separating | |
685 | the meta-info from the arena, we recover the 1st slot, formerly | |
686 | borrowed for list management. The arena_set is about the size of an | |
39244528 | 687 | arena, avoiding the needless malloc overhead of a naive linked-list. |
5e258f8c JC |
688 | |
689 | The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused | |
690 | memory in the last arena-set (1/2 on average). In trade, we get | |
691 | back the 1st slot in each arena (ie 1.7% of a CV-arena, less for | |
d2a0f284 | 692 | smaller types). The recovery of the wasted space allows use of |
e15dad31 JC |
693 | small arenas for large, rare body types, by changing array* fields |
694 | in body_details_by_type[] below. | |
5e258f8c | 695 | */ |
5e258f8c | 696 | struct arena_desc { |
398c677b NC |
697 | char *arena; /* the raw storage, allocated aligned */ |
698 | size_t size; /* its size ~4k typ */ | |
e5973ed5 | 699 | svtype utype; /* bodytype stored in arena */ |
5e258f8c JC |
700 | }; |
701 | ||
e6148039 NC |
702 | struct arena_set; |
703 | ||
704 | /* Get the maximum number of elements in set[] such that struct arena_set | |
e15dad31 | 705 | will fit within PERL_ARENA_SIZE, which is probably just under 4K, and |
e6148039 NC |
706 | therefore likely to be 1 aligned memory page. */ |
707 | ||
708 | #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \ | |
709 | - 2 * sizeof(int)) / sizeof (struct arena_desc)) | |
5e258f8c JC |
710 | |
711 | struct arena_set { | |
712 | struct arena_set* next; | |
0a848332 NC |
713 | unsigned int set_size; /* ie ARENAS_PER_SET */ |
714 | unsigned int curr; /* index of next available arena-desc */ | |
5e258f8c JC |
715 | struct arena_desc set[ARENAS_PER_SET]; |
716 | }; | |
717 | ||
645c22ef DM |
718 | /* |
719 | =for apidoc sv_free_arenas | |
720 | ||
fde67290 | 721 | Deallocate the memory used by all arenas. Note that all the individual SV |
645c22ef DM |
722 | heads and bodies within the arenas must already have been freed. |
723 | ||
724 | =cut | |
7fefc6c1 | 725 | |
645c22ef | 726 | */ |
4633a7c4 | 727 | void |
864dbfa3 | 728 | Perl_sv_free_arenas(pTHX) |
4633a7c4 LW |
729 | { |
730 | SV* sva; | |
731 | SV* svanext; | |
0a848332 | 732 | unsigned int i; |
4633a7c4 LW |
733 | |
734 | /* Free arenas here, but be careful about fake ones. (We assume | |
735 | contiguity of the fake ones with the corresponding real ones.) */ | |
736 | ||
3280af22 | 737 | for (sva = PL_sv_arenaroot; sva; sva = svanext) { |
daba3364 | 738 | svanext = MUTABLE_SV(SvANY(sva)); |
4633a7c4 | 739 | while (svanext && SvFAKE(svanext)) |
daba3364 | 740 | svanext = MUTABLE_SV(SvANY(svanext)); |
4633a7c4 LW |
741 | |
742 | if (!SvFAKE(sva)) | |
1df70142 | 743 | Safefree(sva); |
4633a7c4 | 744 | } |
93e68bfb | 745 | |
5e258f8c | 746 | { |
0a848332 NC |
747 | struct arena_set *aroot = (struct arena_set*) PL_body_arenas; |
748 | ||
749 | while (aroot) { | |
750 | struct arena_set *current = aroot; | |
751 | i = aroot->curr; | |
752 | while (i--) { | |
5e258f8c JC |
753 | assert(aroot->set[i].arena); |
754 | Safefree(aroot->set[i].arena); | |
755 | } | |
0a848332 NC |
756 | aroot = aroot->next; |
757 | Safefree(current); | |
5e258f8c JC |
758 | } |
759 | } | |
dc8220bf | 760 | PL_body_arenas = 0; |
fdda85ca | 761 | |
0a848332 NC |
762 | i = PERL_ARENA_ROOTS_SIZE; |
763 | while (i--) | |
93e68bfb | 764 | PL_body_roots[i] = 0; |
93e68bfb | 765 | |
3280af22 NIS |
766 | PL_sv_arenaroot = 0; |
767 | PL_sv_root = 0; | |
4633a7c4 LW |
768 | } |
769 | ||
bd81e77b NC |
770 | /* |
771 | Here are mid-level routines that manage the allocation of bodies out | |
772 | of the various arenas. There are 5 kinds of arenas: | |
29489e7c | 773 | |
bd81e77b NC |
774 | 1. SV-head arenas, which are discussed and handled above |
775 | 2. regular body arenas | |
776 | 3. arenas for reduced-size bodies | |
777 | 4. Hash-Entry arenas | |
29489e7c | 778 | |
bd81e77b NC |
779 | Arena types 2 & 3 are chained by body-type off an array of |
780 | arena-root pointers, which is indexed by svtype. Some of the | |
781 | larger/less used body types are malloced singly, since a large | |
782 | unused block of them is wasteful. Also, several svtypes dont have | |
783 | bodies; the data fits into the sv-head itself. The arena-root | |
784 | pointer thus has a few unused root-pointers (which may be hijacked | |
785 | later for arena types 4,5) | |
29489e7c | 786 | |
bd81e77b NC |
787 | 3 differs from 2 as an optimization; some body types have several |
788 | unused fields in the front of the structure (which are kept in-place | |
789 | for consistency). These bodies can be allocated in smaller chunks, | |
790 | because the leading fields arent accessed. Pointers to such bodies | |
791 | are decremented to point at the unused 'ghost' memory, knowing that | |
792 | the pointers are used with offsets to the real memory. | |
29489e7c | 793 | |
d2a0f284 JC |
794 | |
795 | =head1 SV-Body Allocation | |
796 | ||
f554dfc5 MH |
797 | =cut |
798 | ||
d2a0f284 JC |
799 | Allocation of SV-bodies is similar to SV-heads, differing as follows; |
800 | the allocation mechanism is used for many body types, so is somewhat | |
801 | more complicated, it uses arena-sets, and has no need for still-live | |
802 | SV detection. | |
803 | ||
804 | At the outermost level, (new|del)_X*V macros return bodies of the | |
805 | appropriate type. These macros call either (new|del)_body_type or | |
806 | (new|del)_body_allocated macro pairs, depending on specifics of the | |
807 | type. Most body types use the former pair, the latter pair is used to | |
808 | allocate body types with "ghost fields". | |
809 | ||
810 | "ghost fields" are fields that are unused in certain types, and | |
69ba284b | 811 | consequently don't need to actually exist. They are declared because |
d2a0f284 JC |
812 | they're part of a "base type", which allows use of functions as |
813 | methods. The simplest examples are AVs and HVs, 2 aggregate types | |
814 | which don't use the fields which support SCALAR semantics. | |
815 | ||
69ba284b | 816 | For these types, the arenas are carved up into appropriately sized |
d2a0f284 JC |
817 | chunks, we thus avoid wasted memory for those unaccessed members. |
818 | When bodies are allocated, we adjust the pointer back in memory by the | |
69ba284b | 819 | size of the part not allocated, so it's as if we allocated the full |
d2a0f284 JC |
820 | structure. (But things will all go boom if you write to the part that |
821 | is "not there", because you'll be overwriting the last members of the | |
822 | preceding structure in memory.) | |
823 | ||
69ba284b | 824 | We calculate the correction using the STRUCT_OFFSET macro on the first |
a05ea1cf | 825 | member present. If the allocated structure is smaller (no initial NV |
69ba284b NC |
826 | actually allocated) then the net effect is to subtract the size of the NV |
827 | from the pointer, to return a new pointer as if an initial NV were actually | |
a05ea1cf | 828 | allocated. (We were using structures named *_allocated for this, but |
69ba284b NC |
829 | this turned out to be a subtle bug, because a structure without an NV |
830 | could have a lower alignment constraint, but the compiler is allowed to | |
831 | optimised accesses based on the alignment constraint of the actual pointer | |
832 | to the full structure, for example, using a single 64 bit load instruction | |
833 | because it "knows" that two adjacent 32 bit members will be 8-byte aligned.) | |
d2a0f284 | 834 | |
a05ea1cf | 835 | This is the same trick as was used for NV and IV bodies. Ironically it |
d2a0f284 | 836 | doesn't need to be used for NV bodies any more, because NV is now at |
5b306eef DD |
837 | the start of the structure. IV bodies, and also in some builds NV bodies, |
838 | don't need it either, because they are no longer allocated. | |
d2a0f284 JC |
839 | |
840 | In turn, the new_body_* allocators call S_new_body(), which invokes | |
841 | new_body_inline macro, which takes a lock, and takes a body off the | |
1e30fcd5 | 842 | linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if |
d2a0f284 JC |
843 | necessary to refresh an empty list. Then the lock is released, and |
844 | the body is returned. | |
845 | ||
99816f8d | 846 | Perl_more_bodies allocates a new arena, and carves it up into an array of N |
d2a0f284 JC |
847 | bodies, which it strings into a linked list. It looks up arena-size |
848 | and body-size from the body_details table described below, thus | |
849 | supporting the multiple body-types. | |
850 | ||
851 | If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and | |
852 | the (new|del)_X*V macros are mapped directly to malloc/free. | |
853 | ||
d2a0f284 JC |
854 | For each sv-type, struct body_details bodies_by_type[] carries |
855 | parameters which control these aspects of SV handling: | |
856 | ||
857 | Arena_size determines whether arenas are used for this body type, and if | |
858 | so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to | |
859 | zero, forcing individual mallocs and frees. | |
860 | ||
861 | Body_size determines how big a body is, and therefore how many fit into | |
862 | each arena. Offset carries the body-pointer adjustment needed for | |
69ba284b | 863 | "ghost fields", and is used in *_allocated macros. |
d2a0f284 JC |
864 | |
865 | But its main purpose is to parameterize info needed in | |
866 | Perl_sv_upgrade(). The info here dramatically simplifies the function | |
69ba284b | 867 | vs the implementation in 5.8.8, making it table-driven. All fields |
d2a0f284 JC |
868 | are used for this, except for arena_size. |
869 | ||
870 | For the sv-types that have no bodies, arenas are not used, so those | |
871 | PL_body_roots[sv_type] are unused, and can be overloaded. In | |
872 | something of a special case, SVt_NULL is borrowed for HE arenas; | |
c6f8b1d0 | 873 | PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the |
d2a0f284 | 874 | bodies_by_type[SVt_NULL] slot is not used, as the table is not |
c6f8b1d0 | 875 | available in hv.c. |
d2a0f284 | 876 | |
29489e7c DM |
877 | */ |
878 | ||
bd81e77b | 879 | struct body_details { |
0fb58b32 | 880 | U8 body_size; /* Size to allocate */ |
10666ae3 | 881 | U8 copy; /* Size of structure to copy (may be shorter) */ |
5b306eef DD |
882 | U8 offset; /* Size of unalloced ghost fields to first alloced field*/ |
883 | PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */ | |
884 | PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */ | |
885 | PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */ | |
886 | PERL_BITFIELD8 arena : 1; /* Allocated from an arena */ | |
887 | U32 arena_size; /* Size of arena to allocate */ | |
bd81e77b | 888 | }; |
29489e7c | 889 | |
bd81e77b NC |
890 | #define HADNV FALSE |
891 | #define NONV TRUE | |
29489e7c | 892 | |
d2a0f284 | 893 | |
bd81e77b NC |
894 | #ifdef PURIFY |
895 | /* With -DPURFIY we allocate everything directly, and don't use arenas. | |
896 | This seems a rather elegant way to simplify some of the code below. */ | |
897 | #define HASARENA FALSE | |
898 | #else | |
899 | #define HASARENA TRUE | |
900 | #endif | |
901 | #define NOARENA FALSE | |
29489e7c | 902 | |
d2a0f284 JC |
903 | /* Size the arenas to exactly fit a given number of bodies. A count |
904 | of 0 fits the max number bodies into a PERL_ARENA_SIZE.block, | |
905 | simplifying the default. If count > 0, the arena is sized to fit | |
906 | only that many bodies, allowing arenas to be used for large, rare | |
907 | bodies (XPVFM, XPVIO) without undue waste. The arena size is | |
908 | limited by PERL_ARENA_SIZE, so we can safely oversize the | |
909 | declarations. | |
910 | */ | |
95db5f15 MB |
911 | #define FIT_ARENA0(body_size) \ |
912 | ((size_t)(PERL_ARENA_SIZE / body_size) * body_size) | |
913 | #define FIT_ARENAn(count,body_size) \ | |
914 | ( count * body_size <= PERL_ARENA_SIZE) \ | |
915 | ? count * body_size \ | |
916 | : FIT_ARENA0 (body_size) | |
917 | #define FIT_ARENA(count,body_size) \ | |
cd1dc8e2 | 918 | (U32)(count \ |
95db5f15 | 919 | ? FIT_ARENAn (count, body_size) \ |
cd1dc8e2 | 920 | : FIT_ARENA0 (body_size)) |
d2a0f284 | 921 | |
bd81e77b NC |
922 | /* Calculate the length to copy. Specifically work out the length less any |
923 | final padding the compiler needed to add. See the comment in sv_upgrade | |
924 | for why copying the padding proved to be a bug. */ | |
29489e7c | 925 | |
bd81e77b NC |
926 | #define copy_length(type, last_member) \ |
927 | STRUCT_OFFSET(type, last_member) \ | |
daba3364 | 928 | + sizeof (((type*)SvANY((const SV *)0))->last_member) |
29489e7c | 929 | |
bd81e77b | 930 | static const struct body_details bodies_by_type[] = { |
829cd18a NC |
931 | /* HEs use this offset for their arena. */ |
932 | { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 }, | |
d2a0f284 | 933 | |
db93c0c4 NC |
934 | /* IVs are in the head, so the allocation size is 0. */ |
935 | { 0, | |
d2a0f284 | 936 | sizeof(IV), /* This is used to copy out the IV body. */ |
10666ae3 | 937 | STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV, |
db93c0c4 | 938 | NOARENA /* IVS don't need an arena */, 0 |
d2a0f284 JC |
939 | }, |
940 | ||
5b306eef DD |
941 | #if NVSIZE <= IVSIZE |
942 | { 0, sizeof(NV), | |
943 | STRUCT_OFFSET(XPVNV, xnv_u), | |
944 | SVt_NV, FALSE, HADNV, NOARENA, 0 }, | |
945 | #else | |
6e128786 NC |
946 | { sizeof(NV), sizeof(NV), |
947 | STRUCT_OFFSET(XPVNV, xnv_u), | |
948 | SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) }, | |
5b306eef | 949 | #endif |
d2a0f284 | 950 | |
bc337e5c | 951 | { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
952 | copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur), |
953 | + STRUCT_OFFSET(XPV, xpv_cur), | |
69ba284b | 954 | SVt_PV, FALSE, NONV, HASARENA, |
889d28b2 | 955 | FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) }, |
d2a0f284 | 956 | |
d361b004 KW |
957 | { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur), |
958 | copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur), | |
959 | + STRUCT_OFFSET(XPV, xpv_cur), | |
960 | SVt_INVLIST, TRUE, NONV, HASARENA, | |
961 | FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
e94d9b54 | 962 | |
bc337e5c | 963 | { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
964 | copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur), |
965 | + STRUCT_OFFSET(XPV, xpv_cur), | |
966 | SVt_PVIV, FALSE, NONV, HASARENA, | |
967 | FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
d2a0f284 | 968 | |
bc337e5c | 969 | { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur), |
889d28b2 NC |
970 | copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur), |
971 | + STRUCT_OFFSET(XPV, xpv_cur), | |
972 | SVt_PVNV, FALSE, HADNV, HASARENA, | |
973 | FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) }, | |
d2a0f284 | 974 | |
6e128786 | 975 | { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV, |
d2a0f284 | 976 | HASARENA, FIT_ARENA(0, sizeof(XPVMG)) }, |
4df7f6af | 977 | |
601dfd0a NC |
978 | { sizeof(regexp), |
979 | sizeof(regexp), | |
980 | 0, | |
ecff11eb | 981 | SVt_REGEXP, TRUE, NONV, HASARENA, |
eaeb1e7f | 982 | FIT_ARENA(0, sizeof(regexp)) |
5c35adbb | 983 | }, |
4df7f6af | 984 | |
10666ae3 | 985 | { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV, |
d2a0f284 JC |
986 | HASARENA, FIT_ARENA(0, sizeof(XPVGV)) }, |
987 | ||
10666ae3 | 988 | { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV, |
d2a0f284 JC |
989 | HASARENA, FIT_ARENA(0, sizeof(XPVLV)) }, |
990 | ||
601dfd0a | 991 | { sizeof(XPVAV), |
4f7003f5 | 992 | copy_length(XPVAV, xav_alloc), |
601dfd0a | 993 | 0, |
69ba284b | 994 | SVt_PVAV, TRUE, NONV, HASARENA, |
601dfd0a | 995 | FIT_ARENA(0, sizeof(XPVAV)) }, |
d2a0f284 | 996 | |
601dfd0a | 997 | { sizeof(XPVHV), |
359164a0 | 998 | copy_length(XPVHV, xhv_max), |
601dfd0a | 999 | 0, |
69ba284b | 1000 | SVt_PVHV, TRUE, NONV, HASARENA, |
601dfd0a | 1001 | FIT_ARENA(0, sizeof(XPVHV)) }, |
d2a0f284 | 1002 | |
601dfd0a NC |
1003 | { sizeof(XPVCV), |
1004 | sizeof(XPVCV), | |
1005 | 0, | |
69ba284b | 1006 | SVt_PVCV, TRUE, NONV, HASARENA, |
601dfd0a | 1007 | FIT_ARENA(0, sizeof(XPVCV)) }, |
69ba284b | 1008 | |
601dfd0a NC |
1009 | { sizeof(XPVFM), |
1010 | sizeof(XPVFM), | |
1011 | 0, | |
69ba284b | 1012 | SVt_PVFM, TRUE, NONV, NOARENA, |
601dfd0a | 1013 | FIT_ARENA(20, sizeof(XPVFM)) }, |
d2a0f284 | 1014 | |
601dfd0a NC |
1015 | { sizeof(XPVIO), |
1016 | sizeof(XPVIO), | |
1017 | 0, | |
b6f60916 | 1018 | SVt_PVIO, TRUE, NONV, HASARENA, |
601dfd0a | 1019 | FIT_ARENA(24, sizeof(XPVIO)) }, |
bd81e77b | 1020 | }; |
29489e7c | 1021 | |
bd81e77b | 1022 | #define new_body_allocated(sv_type) \ |
d2a0f284 | 1023 | (void *)((char *)S_new_body(aTHX_ sv_type) \ |
bd81e77b | 1024 | - bodies_by_type[sv_type].offset) |
29489e7c | 1025 | |
26359cfa NC |
1026 | /* return a thing to the free list */ |
1027 | ||
1028 | #define del_body(thing, root) \ | |
1029 | STMT_START { \ | |
1030 | void ** const thing_copy = (void **)thing; \ | |
1031 | *thing_copy = *root; \ | |
1032 | *root = (void*)thing_copy; \ | |
1033 | } STMT_END | |
29489e7c | 1034 | |
bd81e77b | 1035 | #ifdef PURIFY |
5b306eef DD |
1036 | #if !(NVSIZE <= IVSIZE) |
1037 | # define new_XNV() safemalloc(sizeof(XPVNV)) | |
1038 | #endif | |
beeec492 NC |
1039 | #define new_XPVNV() safemalloc(sizeof(XPVNV)) |
1040 | #define new_XPVMG() safemalloc(sizeof(XPVMG)) | |
29489e7c | 1041 | |
beeec492 | 1042 | #define del_XPVGV(p) safefree(p) |
29489e7c | 1043 | |
bd81e77b | 1044 | #else /* !PURIFY */ |
29489e7c | 1045 | |
5b306eef DD |
1046 | #if !(NVSIZE <= IVSIZE) |
1047 | # define new_XNV() new_body_allocated(SVt_NV) | |
1048 | #endif | |
65ac1738 | 1049 | #define new_XPVNV() new_body_allocated(SVt_PVNV) |
65ac1738 | 1050 | #define new_XPVMG() new_body_allocated(SVt_PVMG) |
645c22ef | 1051 | |
26359cfa NC |
1052 | #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \ |
1053 | &PL_body_roots[SVt_PVGV]) | |
1d7c1841 | 1054 | |
bd81e77b | 1055 | #endif /* PURIFY */ |
93e68bfb | 1056 | |
bd81e77b | 1057 | /* no arena for you! */ |
93e68bfb | 1058 | |
bd81e77b | 1059 | #define new_NOARENA(details) \ |
beeec492 | 1060 | safemalloc((details)->body_size + (details)->offset) |
bd81e77b | 1061 | #define new_NOARENAZ(details) \ |
beeec492 | 1062 | safecalloc((details)->body_size + (details)->offset, 1) |
d2a0f284 | 1063 | |
1e30fcd5 NC |
1064 | void * |
1065 | Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size, | |
1066 | const size_t arena_size) | |
d2a0f284 | 1067 | { |
d2a0f284 | 1068 | void ** const root = &PL_body_roots[sv_type]; |
99816f8d NC |
1069 | struct arena_desc *adesc; |
1070 | struct arena_set *aroot = (struct arena_set *) PL_body_arenas; | |
1071 | unsigned int curr; | |
d2a0f284 JC |
1072 | char *start; |
1073 | const char *end; | |
02982131 | 1074 | const size_t good_arena_size = Perl_malloc_good_size(arena_size); |
20b7effb JH |
1075 | #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT) |
1076 | dVAR; | |
1077 | #endif | |
0b2d3faa | 1078 | #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE) |
23e9d66c NC |
1079 | static bool done_sanity_check; |
1080 | ||
0b2d3faa JH |
1081 | /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global |
1082 | * variables like done_sanity_check. */ | |
10666ae3 | 1083 | if (!done_sanity_check) { |
ea471437 | 1084 | unsigned int i = SVt_LAST; |
10666ae3 NC |
1085 | |
1086 | done_sanity_check = TRUE; | |
1087 | ||
1088 | while (i--) | |
1089 | assert (bodies_by_type[i].type == i); | |
1090 | } | |
1091 | #endif | |
1092 | ||
02982131 | 1093 | assert(arena_size); |
23e9d66c | 1094 | |
99816f8d NC |
1095 | /* may need new arena-set to hold new arena */ |
1096 | if (!aroot || aroot->curr >= aroot->set_size) { | |
1097 | struct arena_set *newroot; | |
1098 | Newxz(newroot, 1, struct arena_set); | |
1099 | newroot->set_size = ARENAS_PER_SET; | |
1100 | newroot->next = aroot; | |
1101 | aroot = newroot; | |
1102 | PL_body_arenas = (void *) newroot; | |
1103 | DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot)); | |
1104 | } | |
1105 | ||
1106 | /* ok, now have arena-set with at least 1 empty/available arena-desc */ | |
1107 | curr = aroot->curr++; | |
1108 | adesc = &(aroot->set[curr]); | |
1109 | assert(!adesc->arena); | |
1110 | ||
1111 | Newx(adesc->arena, good_arena_size, char); | |
1112 | adesc->size = good_arena_size; | |
1113 | adesc->utype = sv_type; | |
1114 | DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n", | |
1115 | curr, (void*)adesc->arena, (UV)good_arena_size)); | |
1116 | ||
1117 | start = (char *) adesc->arena; | |
d2a0f284 | 1118 | |
29657bb6 NC |
1119 | /* Get the address of the byte after the end of the last body we can fit. |
1120 | Remember, this is integer division: */ | |
02982131 | 1121 | end = start + good_arena_size / body_size * body_size; |
d2a0f284 | 1122 | |
486ec47a | 1123 | /* computed count doesn't reflect the 1st slot reservation */ |
d8fca402 NC |
1124 | #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE) |
1125 | DEBUG_m(PerlIO_printf(Perl_debug_log, | |
1126 | "arena %p end %p arena-size %d (from %d) type %d " | |
1127 | "size %d ct %d\n", | |
02982131 NC |
1128 | (void*)start, (void*)end, (int)good_arena_size, |
1129 | (int)arena_size, sv_type, (int)body_size, | |
1130 | (int)good_arena_size / (int)body_size)); | |
d8fca402 | 1131 | #else |
d2a0f284 JC |
1132 | DEBUG_m(PerlIO_printf(Perl_debug_log, |
1133 | "arena %p end %p arena-size %d type %d size %d ct %d\n", | |
6c9570dc | 1134 | (void*)start, (void*)end, |
02982131 NC |
1135 | (int)arena_size, sv_type, (int)body_size, |
1136 | (int)good_arena_size / (int)body_size)); | |
d8fca402 | 1137 | #endif |
d2a0f284 JC |
1138 | *root = (void *)start; |
1139 | ||
29657bb6 NC |
1140 | while (1) { |
1141 | /* Where the next body would start: */ | |
d2a0f284 | 1142 | char * const next = start + body_size; |
29657bb6 NC |
1143 | |
1144 | if (next >= end) { | |
1145 | /* This is the last body: */ | |
1146 | assert(next == end); | |
1147 | ||
1148 | *(void **)start = 0; | |
1149 | return *root; | |
1150 | } | |
1151 | ||
d2a0f284 JC |
1152 | *(void**) start = (void *)next; |
1153 | start = next; | |
1154 | } | |
d2a0f284 JC |
1155 | } |
1156 | ||
1157 | /* grab a new thing from the free list, allocating more if necessary. | |
1158 | The inline version is used for speed in hot routines, and the | |
1159 | function using it serves the rest (unless PURIFY). | |
1160 | */ | |
1161 | #define new_body_inline(xpv, sv_type) \ | |
1162 | STMT_START { \ | |
1163 | void ** const r3wt = &PL_body_roots[sv_type]; \ | |
11b79775 | 1164 | xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \ |
1e30fcd5 | 1165 | ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \ |
02982131 NC |
1166 | bodies_by_type[sv_type].body_size,\ |
1167 | bodies_by_type[sv_type].arena_size)); \ | |
d2a0f284 | 1168 | *(r3wt) = *(void**)(xpv); \ |
d2a0f284 JC |
1169 | } STMT_END |
1170 | ||
1171 | #ifndef PURIFY | |
1172 | ||
1173 | STATIC void * | |
de37a194 | 1174 | S_new_body(pTHX_ const svtype sv_type) |
d2a0f284 | 1175 | { |
d2a0f284 JC |
1176 | void *xpv; |
1177 | new_body_inline(xpv, sv_type); | |
1178 | return xpv; | |
1179 | } | |
1180 | ||
1181 | #endif | |
93e68bfb | 1182 | |
238b27b3 NC |
1183 | static const struct body_details fake_rv = |
1184 | { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 }; | |
1185 | ||
bd81e77b NC |
1186 | /* |
1187 | =for apidoc sv_upgrade | |
93e68bfb | 1188 | |
bd81e77b NC |
1189 | Upgrade an SV to a more complex form. Generally adds a new body type to the |
1190 | SV, then copies across as much information as possible from the old body. | |
9521ca61 FC |
1191 | It croaks if the SV is already in a more complex form than requested. You |
1192 | generally want to use the C<SvUPGRADE> macro wrapper, which checks the type | |
1193 | before calling C<sv_upgrade>, and hence does not croak. See also | |
fbe13c60 | 1194 | C<L</svtype>>. |
93e68bfb | 1195 | |
bd81e77b | 1196 | =cut |
93e68bfb | 1197 | */ |
93e68bfb | 1198 | |
bd81e77b | 1199 | void |
5aaab254 | 1200 | Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type) |
cac9b346 | 1201 | { |
bd81e77b NC |
1202 | void* old_body; |
1203 | void* new_body; | |
42d0e0b7 | 1204 | const svtype old_type = SvTYPE(sv); |
d2a0f284 | 1205 | const struct body_details *new_type_details; |
238b27b3 | 1206 | const struct body_details *old_type_details |
bd81e77b | 1207 | = bodies_by_type + old_type; |
4df7f6af | 1208 | SV *referant = NULL; |
cac9b346 | 1209 | |
7918f24d NC |
1210 | PERL_ARGS_ASSERT_SV_UPGRADE; |
1211 | ||
1776cbe8 NC |
1212 | if (old_type == new_type) |
1213 | return; | |
1214 | ||
1215 | /* This clause was purposefully added ahead of the early return above to | |
1216 | the shared string hackery for (sort {$a <=> $b} keys %hash), with the | |
1217 | inference by Nick I-S that it would fix other troublesome cases. See | |
1218 | changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent) | |
1219 | ||
1220 | Given that shared hash key scalars are no longer PVIV, but PV, there is | |
1221 | no longer need to unshare so as to free up the IVX slot for its proper | |
1222 | purpose. So it's safe to move the early return earlier. */ | |
1223 | ||
093085a8 | 1224 | if (new_type > SVt_PVMG && SvIsCOW(sv)) { |
bd81e77b NC |
1225 | sv_force_normal_flags(sv, 0); |
1226 | } | |
cac9b346 | 1227 | |
bd81e77b | 1228 | old_body = SvANY(sv); |
de042e1d | 1229 | |
bd81e77b NC |
1230 | /* Copying structures onto other structures that have been neatly zeroed |
1231 | has a subtle gotcha. Consider XPVMG | |
cac9b346 | 1232 | |
bd81e77b NC |
1233 | +------+------+------+------+------+-------+-------+ |
1234 | | NV | CUR | LEN | IV | MAGIC | STASH | | |
1235 | +------+------+------+------+------+-------+-------+ | |
1236 | 0 4 8 12 16 20 24 28 | |
645c22ef | 1237 | |
bd81e77b NC |
1238 | where NVs are aligned to 8 bytes, so that sizeof that structure is |
1239 | actually 32 bytes long, with 4 bytes of padding at the end: | |
08742458 | 1240 | |
bd81e77b NC |
1241 | +------+------+------+------+------+-------+-------+------+ |
1242 | | NV | CUR | LEN | IV | MAGIC | STASH | ??? | | |
1243 | +------+------+------+------+------+-------+-------+------+ | |
1244 | 0 4 8 12 16 20 24 28 32 | |
08742458 | 1245 | |
bd81e77b | 1246 | so what happens if you allocate memory for this structure: |
30f9da9e | 1247 | |
bd81e77b NC |
1248 | +------+------+------+------+------+-------+-------+------+------+... |
1249 | | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME | | |
1250 | +------+------+------+------+------+-------+-------+------+------+... | |
1251 | 0 4 8 12 16 20 24 28 32 36 | |
bfc44f79 | 1252 | |
bd81e77b NC |
1253 | zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you |
1254 | expect, because you copy the area marked ??? onto GP. Now, ??? may have | |
1255 | started out as zero once, but it's quite possible that it isn't. So now, | |
1256 | rather than a nicely zeroed GP, you have it pointing somewhere random. | |
1257 | Bugs ensue. | |
bfc44f79 | 1258 | |
bd81e77b NC |
1259 | (In fact, GP ends up pointing at a previous GP structure, because the |
1260 | principle cause of the padding in XPVMG getting garbage is a copy of | |
6c9e42f7 NC |
1261 | sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now |
1262 | this happens to be moot because XPVGV has been re-ordered, with GP | |
1263 | no longer after STASH) | |
30f9da9e | 1264 | |
bd81e77b NC |
1265 | So we are careful and work out the size of used parts of all the |
1266 | structures. */ | |
bfc44f79 | 1267 | |
bd81e77b NC |
1268 | switch (old_type) { |
1269 | case SVt_NULL: | |
1270 | break; | |
1271 | case SVt_IV: | |
4df7f6af NC |
1272 | if (SvROK(sv)) { |
1273 | referant = SvRV(sv); | |
238b27b3 NC |
1274 | old_type_details = &fake_rv; |
1275 | if (new_type == SVt_NV) | |
1276 | new_type = SVt_PVNV; | |
4df7f6af NC |
1277 | } else { |
1278 | if (new_type < SVt_PVIV) { | |
1279 | new_type = (new_type == SVt_NV) | |
1280 | ? SVt_PVNV : SVt_PVIV; | |
1281 | } | |
bd81e77b NC |
1282 | } |
1283 | break; | |
1284 | case SVt_NV: | |
1285 | if (new_type < SVt_PVNV) { | |
1286 | new_type = SVt_PVNV; | |
bd81e77b NC |
1287 | } |
1288 | break; | |
bd81e77b NC |
1289 | case SVt_PV: |
1290 | assert(new_type > SVt_PV); | |
6d59e610 LM |
1291 | STATIC_ASSERT_STMT(SVt_IV < SVt_PV); |
1292 | STATIC_ASSERT_STMT(SVt_NV < SVt_PV); | |
bd81e77b NC |
1293 | break; |
1294 | case SVt_PVIV: | |
1295 | break; | |
1296 | case SVt_PVNV: | |
1297 | break; | |
1298 | case SVt_PVMG: | |
1299 | /* Because the XPVMG of PL_mess_sv isn't allocated from the arena, | |
1300 | there's no way that it can be safely upgraded, because perl.c | |
1301 | expects to Safefree(SvANY(PL_mess_sv)) */ | |
1302 | assert(sv != PL_mess_sv); | |
bd81e77b NC |
1303 | break; |
1304 | default: | |
2439e033 | 1305 | if (UNLIKELY(old_type_details->cant_upgrade)) |
c81225bc NC |
1306 | Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf, |
1307 | sv_reftype(sv, 0), (UV) old_type, (UV) new_type); | |
bd81e77b | 1308 | } |
3376de98 | 1309 | |
2439e033 | 1310 | if (UNLIKELY(old_type > new_type)) |
3376de98 NC |
1311 | Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d", |
1312 | (int)old_type, (int)new_type); | |
1313 | ||
2fa1109b | 1314 | new_type_details = bodies_by_type + new_type; |
645c22ef | 1315 | |
bd81e77b NC |
1316 | SvFLAGS(sv) &= ~SVTYPEMASK; |
1317 | SvFLAGS(sv) |= new_type; | |
932e9ff9 | 1318 | |
ab4416c0 NC |
1319 | /* This can't happen, as SVt_NULL is <= all values of new_type, so one of |
1320 | the return statements above will have triggered. */ | |
1321 | assert (new_type != SVt_NULL); | |
bd81e77b | 1322 | switch (new_type) { |
bd81e77b NC |
1323 | case SVt_IV: |
1324 | assert(old_type == SVt_NULL); | |
dc6369ef | 1325 | SET_SVANY_FOR_BODYLESS_IV(sv); |
bd81e77b NC |
1326 | SvIV_set(sv, 0); |
1327 | return; | |
1328 | case SVt_NV: | |
1329 | assert(old_type == SVt_NULL); | |
5b306eef | 1330 | #if NVSIZE <= IVSIZE |
dc6369ef | 1331 | SET_SVANY_FOR_BODYLESS_NV(sv); |
5b306eef | 1332 | #else |
bd81e77b | 1333 | SvANY(sv) = new_XNV(); |
5b306eef | 1334 | #endif |
bd81e77b NC |
1335 | SvNV_set(sv, 0); |
1336 | return; | |
bd81e77b | 1337 | case SVt_PVHV: |
bd81e77b | 1338 | case SVt_PVAV: |
d2a0f284 | 1339 | assert(new_type_details->body_size); |
c1ae03ae NC |
1340 | |
1341 | #ifndef PURIFY | |
1342 | assert(new_type_details->arena); | |
d2a0f284 | 1343 | assert(new_type_details->arena_size); |
c1ae03ae | 1344 | /* This points to the start of the allocated area. */ |
d2a0f284 JC |
1345 | new_body_inline(new_body, new_type); |
1346 | Zero(new_body, new_type_details->body_size, char); | |
c1ae03ae NC |
1347 | new_body = ((char *)new_body) - new_type_details->offset; |
1348 | #else | |
1349 | /* We always allocated the full length item with PURIFY. To do this | |
1350 | we fake things so that arena is false for all 16 types.. */ | |
1351 | new_body = new_NOARENAZ(new_type_details); | |
1352 | #endif | |
1353 | SvANY(sv) = new_body; | |
1354 | if (new_type == SVt_PVAV) { | |
1355 | AvMAX(sv) = -1; | |
1356 | AvFILLp(sv) = -1; | |
1357 | AvREAL_only(sv); | |
64484faa | 1358 | if (old_type_details->body_size) { |
ac572bf4 NC |
1359 | AvALLOC(sv) = 0; |
1360 | } else { | |
1361 | /* It will have been zeroed when the new body was allocated. | |
1362 | Lets not write to it, in case it confuses a write-back | |
1363 | cache. */ | |
1364 | } | |
78ac7dd9 NC |
1365 | } else { |
1366 | assert(!SvOK(sv)); | |
1367 | SvOK_off(sv); | |
1368 | #ifndef NODEFAULT_SHAREKEYS | |
1369 | HvSHAREKEYS_on(sv); /* key-sharing on by default */ | |
1370 | #endif | |
586fc6a3 S |
1371 | /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */ |
1372 | HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX; | |
c1ae03ae | 1373 | } |
aeb18a1e | 1374 | |
bd81e77b NC |
1375 | /* SVt_NULL isn't the only thing upgraded to AV or HV. |
1376 | The target created by newSVrv also is, and it can have magic. | |
1377 | However, it never has SvPVX set. | |
1378 | */ | |
4df7f6af NC |
1379 | if (old_type == SVt_IV) { |
1380 | assert(!SvROK(sv)); | |
1381 | } else if (old_type >= SVt_PV) { | |
bd81e77b NC |
1382 | assert(SvPVX_const(sv) == 0); |
1383 | } | |
aeb18a1e | 1384 | |
bd81e77b | 1385 | if (old_type >= SVt_PVMG) { |
e736a858 | 1386 | SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic); |
bd81e77b | 1387 | SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash); |
797c7171 NC |
1388 | } else { |
1389 | sv->sv_u.svu_array = NULL; /* or svu_hash */ | |
bd81e77b NC |
1390 | } |
1391 | break; | |
93e68bfb | 1392 | |
bd81e77b NC |
1393 | case SVt_PVIV: |
1394 | /* XXX Is this still needed? Was it ever needed? Surely as there is | |
1395 | no route from NV to PVIV, NOK can never be true */ | |
1396 | assert(!SvNOKp(sv)); | |
1397 | assert(!SvNOK(sv)); | |
2b5060ae | 1398 | /* FALLTHROUGH */ |
bd81e77b NC |
1399 | case SVt_PVIO: |
1400 | case SVt_PVFM: | |
bd81e77b NC |
1401 | case SVt_PVGV: |
1402 | case SVt_PVCV: | |
1403 | case SVt_PVLV: | |
d361b004 | 1404 | case SVt_INVLIST: |
12c45b25 | 1405 | case SVt_REGEXP: |
bd81e77b NC |
1406 | case SVt_PVMG: |
1407 | case SVt_PVNV: | |
1408 | case SVt_PV: | |
93e68bfb | 1409 | |
d2a0f284 | 1410 | assert(new_type_details->body_size); |
bd81e77b NC |
1411 | /* We always allocated the full length item with PURIFY. To do this |
1412 | we fake things so that arena is false for all 16 types.. */ | |
1413 | if(new_type_details->arena) { | |
1414 | /* This points to the start of the allocated area. */ | |
d2a0f284 JC |
1415 | new_body_inline(new_body, new_type); |
1416 | Zero(new_body, new_type_details->body_size, char); | |
bd81e77b NC |
1417 | new_body = ((char *)new_body) - new_type_details->offset; |
1418 | } else { | |
1419 | new_body = new_NOARENAZ(new_type_details); | |
1420 | } | |
1421 | SvANY(sv) = new_body; | |
5e2fc214 | 1422 | |
bd81e77b | 1423 | if (old_type_details->copy) { |
f9ba3d20 NC |
1424 | /* There is now the potential for an upgrade from something without |
1425 | an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */ | |
1426 | int offset = old_type_details->offset; | |
1427 | int length = old_type_details->copy; | |
1428 | ||
1429 | if (new_type_details->offset > old_type_details->offset) { | |
d4c19fe8 | 1430 | const int difference |
f9ba3d20 NC |
1431 | = new_type_details->offset - old_type_details->offset; |
1432 | offset += difference; | |
1433 | length -= difference; | |
1434 | } | |
1435 | assert (length >= 0); | |
1436 | ||
1437 | Copy((char *)old_body + offset, (char *)new_body + offset, length, | |
1438 | char); | |
bd81e77b NC |
1439 | } |
1440 | ||
1441 | #ifndef NV_ZERO_IS_ALLBITS_ZERO | |
f2524eef | 1442 | /* If NV 0.0 is stores as all bits 0 then Zero() already creates a |
e5ce394c NC |
1443 | * correct 0.0 for us. Otherwise, if the old body didn't have an |
1444 | * NV slot, but the new one does, then we need to initialise the | |
1445 | * freshly created NV slot with whatever the correct bit pattern is | |
1446 | * for 0.0 */ | |
e22a937e NC |
1447 | if (old_type_details->zero_nv && !new_type_details->zero_nv |
1448 | && !isGV_with_GP(sv)) | |
bd81e77b | 1449 | SvNV_set(sv, 0); |
82048762 | 1450 | #endif |
5e2fc214 | 1451 | |
2439e033 | 1452 | if (UNLIKELY(new_type == SVt_PVIO)) { |
85dca89a | 1453 | IO * const io = MUTABLE_IO(sv); |
d963bf01 | 1454 | GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV); |
85dca89a NC |
1455 | |
1456 | SvOBJECT_on(io); | |
1457 | /* Clear the stashcache because a new IO could overrule a package | |
1458 | name */ | |
103f5a36 | 1459 | DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n")); |
85dca89a NC |
1460 | hv_clear(PL_stashcache); |
1461 | ||
85dca89a | 1462 | SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv)))); |
f2524eef | 1463 | IoPAGE_LEN(sv) = 60; |
85dca89a | 1464 | } |
2439e033 | 1465 | if (UNLIKELY(new_type == SVt_REGEXP)) |
8d919b0a FC |
1466 | sv->sv_u.svu_rx = (regexp *)new_body; |
1467 | else if (old_type < SVt_PV) { | |
4df7f6af NC |
1468 | /* referant will be NULL unless the old type was SVt_IV emulating |
1469 | SVt_RV */ | |
1470 | sv->sv_u.svu_rv = referant; | |
1471 | } | |
bd81e77b NC |
1472 | break; |
1473 | default: | |
afd78fd5 JH |
1474 | Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu", |
1475 | (unsigned long)new_type); | |
bd81e77b | 1476 | } |
73171d91 | 1477 | |
5b306eef DD |
1478 | /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV, |
1479 | and sometimes SVt_NV */ | |
1480 | if (old_type_details->body_size) { | |
bd81e77b | 1481 | #ifdef PURIFY |
beeec492 | 1482 | safefree(old_body); |
bd81e77b | 1483 | #else |
bc786448 GG |
1484 | /* Note that there is an assumption that all bodies of types that |
1485 | can be upgraded came from arenas. Only the more complex non- | |
1486 | upgradable types are allowed to be directly malloc()ed. */ | |
1487 | assert(old_type_details->arena); | |
bd81e77b NC |
1488 | del_body((void*)((char*)old_body + old_type_details->offset), |
1489 | &PL_body_roots[old_type]); | |
1490 | #endif | |
1491 | } | |
1492 | } | |
73171d91 | 1493 | |
bd81e77b NC |
1494 | /* |
1495 | =for apidoc sv_backoff | |
73171d91 | 1496 | |
fde67290 | 1497 | Remove any string offset. You should normally use the C<SvOOK_off> macro |
bd81e77b | 1498 | wrapper instead. |
73171d91 | 1499 | |
bd81e77b | 1500 | =cut |
73171d91 NC |
1501 | */ |
1502 | ||
fa7a1e49 DD |
1503 | /* prior to 5.000 stable, this function returned the new OOK-less SvFLAGS |
1504 | prior to 5.23.4 this function always returned 0 | |
1505 | */ | |
1506 | ||
1507 | void | |
ddeaf645 | 1508 | Perl_sv_backoff(SV *const sv) |
bd81e77b | 1509 | { |
69240efd | 1510 | STRLEN delta; |
7a4bba22 | 1511 | const char * const s = SvPVX_const(sv); |
7918f24d NC |
1512 | |
1513 | PERL_ARGS_ASSERT_SV_BACKOFF; | |
7918f24d | 1514 | |
bd81e77b NC |
1515 | assert(SvOOK(sv)); |
1516 | assert(SvTYPE(sv) != SVt_PVHV); | |
1517 | assert(SvTYPE(sv) != SVt_PVAV); | |
7a4bba22 | 1518 | |
69240efd NC |
1519 | SvOOK_offset(sv, delta); |
1520 | ||
7a4bba22 NC |
1521 | SvLEN_set(sv, SvLEN(sv) + delta); |
1522 | SvPV_set(sv, SvPVX(sv) - delta); | |
bd81e77b | 1523 | SvFLAGS(sv) &= ~SVf_OOK; |
fa7a1e49 DD |
1524 | Move(s, SvPVX(sv), SvCUR(sv)+1, char); |
1525 | return; | |
bd81e77b | 1526 | } |
73171d91 | 1527 | |
bd81e77b NC |
1528 | /* |
1529 | =for apidoc sv_grow | |
73171d91 | 1530 | |
bd81e77b NC |
1531 | Expands the character buffer in the SV. If necessary, uses C<sv_unref> and |
1532 | upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer. | |
1533 | Use the C<SvGROW> wrapper instead. | |
93e68bfb | 1534 | |
bd81e77b NC |
1535 | =cut |
1536 | */ | |
93e68bfb | 1537 | |
e0060e30 FC |
1538 | static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags); |
1539 | ||
bd81e77b | 1540 | char * |
5aaab254 | 1541 | Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen) |
bd81e77b | 1542 | { |
eb578fdb | 1543 | char *s; |
93e68bfb | 1544 | |
7918f24d NC |
1545 | PERL_ARGS_ASSERT_SV_GROW; |
1546 | ||
bd81e77b NC |
1547 | if (SvROK(sv)) |
1548 | sv_unref(sv); | |
1549 | if (SvTYPE(sv) < SVt_PV) { | |
1550 | sv_upgrade(sv, SVt_PV); | |
1551 | s = SvPVX_mutable(sv); | |
1552 | } | |
1553 | else if (SvOOK(sv)) { /* pv is offset? */ | |
1554 | sv_backoff(sv); | |
1555 | s = SvPVX_mutable(sv); | |
1556 | if (newlen > SvLEN(sv)) | |
1557 | newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */ | |
bd81e77b NC |
1558 | } |
1559 | else | |
db2c6cb3 | 1560 | { |
e0060e30 | 1561 | if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0); |
bd81e77b | 1562 | s = SvPVX_mutable(sv); |
db2c6cb3 | 1563 | } |
aeb18a1e | 1564 | |
93c10d60 | 1565 | #ifdef PERL_COPY_ON_WRITE |
cbcb2a16 | 1566 | /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare) |
3c239bea | 1567 | * to store the COW count. So in general, allocate one more byte than |
cbcb2a16 DM |
1568 | * asked for, to make it likely this byte is always spare: and thus |
1569 | * make more strings COW-able. | |
1570 | * If the new size is a big power of two, don't bother: we assume the | |
1571 | * caller wanted a nice 2^N sized block and will be annoyed at getting | |
fa8f4f85 TC |
1572 | * 2^N+1. |
1573 | * Only increment if the allocation isn't MEM_SIZE_MAX, | |
1574 | * otherwise it will wrap to 0. | |
1575 | */ | |
9a21f3ba DM |
1576 | if ( (newlen < 0x1000 || (newlen & (newlen - 1))) |
1577 | && newlen != MEM_SIZE_MAX | |
1578 | ) | |
cbcb2a16 DM |
1579 | newlen++; |
1580 | #endif | |
1581 | ||
ce861ea7 YO |
1582 | #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size) |
1583 | #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC | |
1584 | #endif | |
1585 | ||
bd81e77b | 1586 | if (newlen > SvLEN(sv)) { /* need more room? */ |
f1200559 | 1587 | STRLEN minlen = SvCUR(sv); |
3c239bea | 1588 | minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10; |
f1200559 WH |
1589 | if (newlen < minlen) |
1590 | newlen = minlen; | |
ce861ea7 | 1591 | #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC |
7c641603 KW |
1592 | |
1593 | /* Don't round up on the first allocation, as odds are pretty good that | |
1594 | * the initial request is accurate as to what is really needed */ | |
ce861ea7 | 1595 | if (SvLEN(sv)) { |
9efda33a TC |
1596 | STRLEN rounded = PERL_STRLEN_ROUNDUP(newlen); |
1597 | if (rounded > newlen) | |
1598 | newlen = rounded; | |
ce861ea7 | 1599 | } |
bd81e77b | 1600 | #endif |
98653f18 | 1601 | if (SvLEN(sv) && s) { |
10edeb5d | 1602 | s = (char*)saferealloc(s, newlen); |
bd81e77b NC |
1603 | } |
1604 | else { | |
10edeb5d | 1605 | s = (char*)safemalloc(newlen); |
bd81e77b | 1606 | if (SvPVX_const(sv) && SvCUR(sv)) { |
0a5fcc38 | 1607 | Move(SvPVX_const(sv), s, SvCUR(sv), char); |
bd81e77b NC |
1608 | } |
1609 | } | |
1610 | SvPV_set(sv, s); | |
ce861ea7 | 1611 | #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC |
98653f18 NC |
1612 | /* Do this here, do it once, do it right, and then we will never get |
1613 | called back into sv_grow() unless there really is some growing | |
1614 | needed. */ | |
ca7c1a29 | 1615 | SvLEN_set(sv, Perl_safesysmalloc_size(s)); |
98653f18 | 1616 | #else |
bd81e77b | 1617 | SvLEN_set(sv, newlen); |
98653f18 | 1618 | #endif |
bd81e77b NC |
1619 | } |
1620 | return s; | |
1621 | } | |
aeb18a1e | 1622 | |
bd81e77b NC |
1623 | /* |
1624 | =for apidoc sv_setiv | |
932e9ff9 | 1625 | |
bd81e77b | 1626 | Copies an integer into the given SV, upgrading first if necessary. |
fbe13c60 | 1627 | Does not handle 'set' magic. See also C<L</sv_setiv_mg>>. |
463ee0b2 | 1628 | |
bd81e77b NC |
1629 | =cut |
1630 | */ | |
463ee0b2 | 1631 | |
bd81e77b | 1632 | void |
5aaab254 | 1633 | Perl_sv_setiv(pTHX_ SV *const sv, const IV i) |
bd81e77b | 1634 | { |
7918f24d NC |
1635 | PERL_ARGS_ASSERT_SV_SETIV; |
1636 | ||
bd81e77b NC |
1637 | SV_CHECK_THINKFIRST_COW_DROP(sv); |
1638 | switch (SvTYPE(sv)) { | |
1639 | case SVt_NULL: | |
bd81e77b | 1640 | case SVt_NV: |
3376de98 | 1641 | sv_upgrade(sv, SVt_IV); |
bd81e77b | 1642 | break; |
bd81e77b NC |
1643 | case SVt_PV: |
1644 | sv_upgrade(sv, SVt_PVIV); | |
1645 | break; | |
463ee0b2 | 1646 | |
bd81e77b | 1647 | case SVt_PVGV: |
6e592b3a BM |
1648 | if (!isGV_with_GP(sv)) |
1649 | break; | |
bd81e77b NC |
1650 | case SVt_PVAV: |
1651 | case SVt_PVHV: | |
1652 | case SVt_PVCV: | |
1653 | case SVt_PVFM: | |
1654 | case SVt_PVIO: | |
22e74366 | 1655 | /* diag_listed_as: Can't coerce %s to %s in %s */ |
bd81e77b NC |
1656 | Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0), |
1657 | OP_DESC(PL_op)); | |
0103ca14 | 1658 | break; |
42d0e0b7 | 1659 | default: NOOP; |
bd81e77b NC |
1660 | } |
1661 | (void)SvIOK_only(sv); /* validate number */ | |
1662 | SvIV_set(sv, i); | |
1663 | SvTAINT(sv); | |
1664 | } | |
932e9ff9 | 1665 | |
bd81e77b NC |
1666 | /* |
1667 | =for apidoc sv_setiv_mg | |
d33b2eba | 1668 | |
bd81e77b | 1669 | Like C<sv_setiv>, but also handles 'set' magic. |
1c846c1f | 1670 | |
bd81e77b NC |
1671 | =cut |
1672 | */ | |
d33b2eba | 1673 | |
bd81e77b | 1674 | void |
5aaab254 | 1675 | Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i) |
bd81e77b | 1676 | { |
7918f24d NC |
1677 | PERL_ARGS_ASSERT_SV_SETIV_MG; |
1678 | ||
bd81e77b NC |
1679 | sv_setiv(sv,i); |
1680 | SvSETMAGIC(sv); | |
1681 | } | |
727879eb | 1682 | |
bd81e77b NC |
1683 | /* |
1684 | =for apidoc sv_setuv | |
d33b2eba | 1685 | |
bd81e77b | 1686 | Copies an unsigned integer into the given SV, upgrading first if necessary. |
fbe13c60 | 1687 | Does not handle 'set' magic. See also C<L</sv_setuv_mg>>. |
9b94d1dd | 1688 | |
bd81e77b NC |
1689 | =cut |
1690 | */ | |
d33b2eba | 1691 | |
bd81e77b | 1692 | void |
5aaab254 | 1693 | Perl_sv_setuv(pTHX_ SV *const sv, const UV u) |
bd81e77b | 1694 | { |
7918f24d NC |
1695 | PERL_ARGS_ASSERT_SV_SETUV; |
1696 | ||
013abb9b NC |
1697 | /* With the if statement to ensure that integers are stored as IVs whenever |
1698 | possible: | |
bd81e77b | 1699 | u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865 |
d33b2eba | 1700 | |
bd81e77b NC |
1701 | without |
1702 | u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865 | |
1c846c1f | 1703 | |
013abb9b NC |
1704 | If you wish to remove the following if statement, so that this routine |
1705 | (and its callers) always return UVs, please benchmark to see what the | |
1706 | effect is. Modern CPUs may be different. Or may not :-) | |
bd81e77b NC |
1707 | */ |
1708 | if (u <= (UV)IV_MAX) { | |
1709 | sv_setiv(sv, (IV)u); | |
1710 | return; | |
1711 | } | |
1712 | sv_setiv(sv, 0); | |
1713 | SvIsUV_on(sv); | |
1714 | SvUV_set(sv, u); | |
1715 | } | |
d33b2eba | 1716 | |
bd81e77b NC |
1717 | /* |
1718 | =for apidoc sv_setuv_mg | |
727879eb | 1719 | |
bd81e77b | 1720 | Like C<sv_setuv>, but also handles 'set' magic. |
9b94d1dd | 1721 | |
bd81e77b NC |
1722 | =cut |
1723 | */ | |
5e2fc214 | 1724 | |
bd81e77b | 1725 | void |
5aaab254 | 1726 | Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u) |
bd81e77b | 1727 | { |
7918f24d NC |
1728 | PERL_ARGS_ASSERT_SV_SETUV_MG; |
1729 | ||
bd81e77b NC |
1730 | sv_setuv(sv,u); |
1731 | SvSETMAGIC(sv); | |
1732 | } | |
5e2fc214 | 1733 | |
954c1994 | 1734 | /* |
bd81e77b | 1735 | =for apidoc sv_setnv |
954c1994 | 1736 | |
bd81e77b | 1737 | Copies a double into the given SV, upgrading first if necessary. |
fbe13c60 | 1738 | Does not handle 'set' magic. See also C<L</sv_setnv_mg>>. |
954c1994 GS |
1739 | |
1740 | =cut | |
1741 | */ | |
1742 | ||
63f97190 | 1743 | void |
5aaab254 | 1744 | Perl_sv_setnv(pTHX_ SV *const sv, const NV num) |
79072805 | 1745 | { |
7918f24d NC |
1746 | PERL_ARGS_ASSERT_SV_SETNV; |
1747 | ||
bd81e77b NC |
1748 | SV_CHECK_THINKFIRST_COW_DROP(sv); |
1749 | switch (SvTYPE(sv)) { | |
79072805 | 1750 | case SVt_NULL: |
79072805 | 1751 | case SVt_IV: |
bd81e77b | 1752 | sv_upgrade(sv, SVt_NV); |
79072805 LW |
1753 | break; |
1754 | case SVt_PV: | |
79072805 | 1755 | case SVt_PVIV: |
bd81e77b | 1756 | sv_upgrade(sv, SVt_PVNV); |
79072805 | 1757 | break; |
bd4b1eb5 | 1758 | |
bd4b1eb5 | 1759 | case SVt_PVGV: |
6e592b3a BM |
1760 | if (!isGV_with_GP(sv)) |
1761 | break; | |
bd81e77b NC |
1762 | case SVt_PVAV: |
1763 | case SVt_PVHV: | |
79072805 | 1764 | case SVt_PVCV: |
bd81e77b NC |
1765 | case SVt_PVFM: |
1766 | case SVt_PVIO: | |
22e74366 | 1767 | /* diag_listed_as: Can't coerce %s to %s in %s */ |
bd81e77b | 1768 | Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0), |
94bbb3f4 | 1769 | OP_DESC(PL_op)); |
0103ca14 | 1770 | break; |
42d0e0b7 | 1771 | default: NOOP; |
2068cd4d | 1772 | } |
bd81e77b NC |
1773 | SvNV_set(sv, num); |
1774 | (void)SvNOK_only(sv); /* validate number */ | |
1775 | SvTAINT(sv); | |
79072805 LW |
1776 | } |
1777 | ||
645c22ef | 1778 | /* |
bd81e77b | 1779 | =for apidoc sv_setnv_mg |
645c22ef | 1780 | |
bd81e77b | 1781 | Like C<sv_setnv>, but also handles 'set' magic. |
645c22ef DM |
1782 | |
1783 | =cut | |
1784 | */ | |
1785 | ||
bd81e77b | 1786 | void |
5aaab254 | 1787 | Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num) |
79072805 | 1788 | { |
7918f24d NC |
1789 | PERL_ARGS_ASSERT_SV_SETNV_MG; |
1790 | ||
bd81e77b NC |
1791 | sv_setnv(sv,num); |
1792 | SvSETMAGIC(sv); | |
79072805 LW |
1793 | } |
1794 | ||
3f7602fa TC |
1795 | /* Return a cleaned-up, printable version of sv, for non-numeric, or |
1796 | * not incrementable warning display. | |
1797 | * Originally part of S_not_a_number(). | |
1798 | * The return value may be != tmpbuf. | |
bd81e77b | 1799 | */ |
954c1994 | 1800 | |
3f7602fa TC |
1801 | STATIC const char * |
1802 | S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) { | |
1803 | const char *pv; | |
94463019 | 1804 | |
3f7602fa | 1805 | PERL_ARGS_ASSERT_SV_DISPLAY; |
7918f24d | 1806 | |
94463019 | 1807 | if (DO_UTF8(sv)) { |
3f7602fa | 1808 | SV *dsv = newSVpvs_flags("", SVs_TEMP); |
37b8cdd1 | 1809 | pv = sv_uni_display(dsv, sv, 32, UNI_DISPLAY_ISPRINT); |
94463019 JH |
1810 | } else { |
1811 | char *d = tmpbuf; | |
3f7602fa | 1812 | const char * const limit = tmpbuf + tmpbuf_size - 8; |
94463019 JH |
1813 | /* each *s can expand to 4 chars + "...\0", |
1814 | i.e. need room for 8 chars */ | |
ecdeb87c | 1815 | |
00b6aa41 AL |
1816 | const char *s = SvPVX_const(sv); |
1817 | const char * const end = s + SvCUR(sv); | |
1818 | for ( ; s < end && d < limit; s++ ) { | |
94463019 | 1819 | int ch = *s & 0xFF; |
bd27cf70 | 1820 | if (! isASCII(ch) && !isPRINT_LC(ch)) { |
94463019 JH |
1821 | *d++ = 'M'; |
1822 | *d++ = '-'; | |
bd27cf70 KW |
1823 | |
1824 | /* Map to ASCII "equivalent" of Latin1 */ | |
1825 | ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127); | |
94463019 JH |
1826 | } |
1827 | if (ch == '\n') { | |
1828 | *d++ = '\\'; | |
1829 | *d++ = 'n'; | |
1830 | } | |
1831 | else if (ch == '\r') { | |
1832 | *d++ = '\\'; | |
1833 | *d++ = 'r'; | |
1834 | } | |
1835 | else if (ch == '\f') { | |
1836 | *d++ = '\\'; | |
1837 | *d++ = 'f'; | |
1838 | } | |
1839 | else if (ch == '\\') { | |
1840 | *d++ = '\\'; | |
1841 | *d++ = '\\'; | |
1842 | } | |
1843 | else if (ch == '\0') { | |
1844 | *d++ = '\\'; | |
1845 | *d++ = '0'; | |
1846 | } | |
1847 | else if (isPRINT_LC(ch)) | |
1848 | *d++ = ch; | |
1849 | else { | |
1850 | *d++ = '^'; | |
1851 | *d++ = toCTRL(ch); | |
1852 | } | |
1853 | } | |
1854 | if (s < end) { | |
1855 | *d++ = '.'; | |
1856 | *d++ = '.'; | |
1857 | *d++ = '.'; | |
1858 | } | |
1859 | *d = '\0'; | |
1860 | pv = tmpbuf; | |
a0d0e21e | 1861 | } |
a0d0e21e | 1862 | |
3f7602fa TC |
1863 | return pv; |
1864 | } | |
1865 | ||
1866 | /* Print an "isn't numeric" warning, using a cleaned-up, | |
1867 | * printable version of the offending string | |
1868 | */ | |
1869 | ||
1870 | STATIC void | |
1871 | S_not_a_number(pTHX_ SV *const sv) | |
1872 | { | |
3f7602fa TC |
1873 | char tmpbuf[64]; |
1874 | const char *pv; | |
1875 | ||
1876 | PERL_ARGS_ASSERT_NOT_A_NUMBER; | |
1877 | ||
1878 | pv = sv_display(sv, tmpbuf, sizeof(tmpbuf)); | |
1879 | ||
533c011a | 1880 | if (PL_op) |
9014280d | 1881 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), |
734856a2 | 1882 | /* diag_listed_as: Argument "%s" isn't numeric%s */ |
94463019 JH |
1883 | "Argument \"%s\" isn't numeric in %s", pv, |
1884 | OP_DESC(PL_op)); | |
a0d0e21e | 1885 | else |
9014280d | 1886 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), |
734856a2 | 1887 | /* diag_listed_as: Argument "%s" isn't numeric%s */ |
94463019 | 1888 | "Argument \"%s\" isn't numeric", pv); |
a0d0e21e LW |
1889 | } |
1890 | ||
3f7602fa TC |
1891 | STATIC void |
1892 | S_not_incrementable(pTHX_ SV *const sv) { | |
3f7602fa TC |
1893 | char tmpbuf[64]; |
1894 | const char *pv; | |
1895 | ||
1896 | PERL_ARGS_ASSERT_NOT_INCREMENTABLE; | |
1897 | ||
1898 | pv = sv_display(sv, tmpbuf, sizeof(tmpbuf)); | |
1899 | ||
1900 | Perl_warner(aTHX_ packWARN(WARN_NUMERIC), | |
1901 | "Argument \"%s\" treated as 0 in increment (++)", pv); | |
1902 | } | |
1903 | ||
c2988b20 NC |
1904 | /* |
1905 | =for apidoc looks_like_number | |
1906 | ||
645c22ef DM |
1907 | Test if the content of an SV looks like a number (or is a number). |
1908 | C<Inf> and C<Infinity> are treated as numbers (so will not issue a | |
796b6530 | 1909 | non-numeric warning), even if your C<atof()> doesn't grok them. Get-magic is |
f52e41ad | 1910 | ignored. |
c2988b20 NC |
1911 | |
1912 | =cut | |
1913 | */ | |
1914 | ||
1915 | I32 | |
aad570aa | 1916 | Perl_looks_like_number(pTHX_ SV *const sv) |
c2988b20 | 1917 | { |
eb578fdb | 1918 | const char *sbegin; |
c2988b20 | 1919 | STRLEN len; |
ea2485eb | 1920 | int numtype; |
c2988b20 | 1921 | |
7918f24d NC |
1922 | PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER; |
1923 | ||
f52e41ad FC |
1924 | if (SvPOK(sv) || SvPOKp(sv)) { |
1925 | sbegin = SvPV_nomg_const(sv, len); | |
c2988b20 | 1926 | } |
c2988b20 | 1927 | else |
e0ab1c0e | 1928 | return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK); |
ea2485eb JH |
1929 | numtype = grok_number(sbegin, len, NULL); |
1930 | return ((numtype & IS_NUMBER_TRAILING)) ? 0 : numtype; | |
c2988b20 | 1931 | } |
25da4f38 | 1932 | |
19f6321d NC |
1933 | STATIC bool |
1934 | S_glob_2number(pTHX_ GV * const gv) | |
180488f8 | 1935 | { |
7918f24d NC |
1936 | PERL_ARGS_ASSERT_GLOB_2NUMBER; |
1937 | ||
675c862f AL |
1938 | /* We know that all GVs stringify to something that is not-a-number, |
1939 | so no need to test that. */ | |
1940 | if (ckWARN(WARN_NUMERIC)) | |
8e629ff4 FC |
1941 | { |
1942 | SV *const buffer = sv_newmortal(); | |
1943 | gv_efullname3(buffer, gv, "*"); | |
675c862f | 1944 | not_a_number(buffer); |
8e629ff4 | 1945 | } |
675c862f AL |
1946 | /* We just want something true to return, so that S_sv_2iuv_common |
1947 | can tail call us and return true. */ | |
19f6321d | 1948 | return TRUE; |
675c862f AL |
1949 | } |
1950 | ||
25da4f38 IZ |
1951 | /* Actually, ISO C leaves conversion of UV to IV undefined, but |
1952 | until proven guilty, assume that things are not that bad... */ | |
1953 | ||
645c22ef DM |
1954 | /* |
1955 | NV_PRESERVES_UV: | |
1956 | ||
1957 | As 64 bit platforms often have an NV that doesn't preserve all bits of | |
28e5dec8 JH |
1958 | an IV (an assumption perl has been based on to date) it becomes necessary |
1959 | to remove the assumption that the NV always carries enough precision to | |
1960 | recreate the IV whenever needed, and that the NV is the canonical form. | |
1961 | Instead, IV/UV and NV need to be given equal rights. So as to not lose | |
645c22ef | 1962 | precision as a side effect of conversion (which would lead to insanity |
28e5dec8 | 1963 | and the dragon(s) in t/op/numconvert.t getting very angry) the intent is |
8a4a3196 KW |
1964 | 1) to distinguish between IV/UV/NV slots that have a valid conversion cached |
1965 | where precision was lost, and IV/UV/NV slots that have a valid conversion | |
1966 | which has lost no precision | |
645c22ef | 1967 | 2) to ensure that if a numeric conversion to one form is requested that |
28e5dec8 JH |
1968 | would lose precision, the precise conversion (or differently |
1969 | imprecise conversion) is also performed and cached, to prevent | |
1970 | requests for different numeric formats on the same SV causing | |
1971 | lossy conversion chains. (lossless conversion chains are perfectly | |
1972 | acceptable (still)) | |
1973 | ||
1974 | ||
1975 | flags are used: | |
1976 | SvIOKp is true if the IV slot contains a valid value | |
1977 | SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true) | |
1978 | SvNOKp is true if the NV slot contains a valid value | |
1979 | SvNOK is true only if the NV value is accurate | |
1980 | ||
1981 | so | |
645c22ef | 1982 | while converting from PV to NV, check to see if converting that NV to an |
28e5dec8 JH |
1983 | IV(or UV) would lose accuracy over a direct conversion from PV to |
1984 | IV(or UV). If it would, cache both conversions, return NV, but mark | |
1985 | SV as IOK NOKp (ie not NOK). | |
1986 | ||
645c22ef | 1987 | While converting from PV to IV, check to see if converting that IV to an |
28e5dec8 JH |
1988 | NV would lose accuracy over a direct conversion from PV to NV. If it |
1989 | would, cache both conversions, flag similarly. | |
1990 | ||
1991 | Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite | |
1992 | correctly because if IV & NV were set NV *always* overruled. | |
645c22ef DM |
1993 | Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning |
1994 | changes - now IV and NV together means that the two are interchangeable: | |
28e5dec8 | 1995 | SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX; |
d460ef45 | 1996 | |
645c22ef DM |
1997 | The benefit of this is that operations such as pp_add know that if |
1998 | SvIOK is true for both left and right operands, then integer addition | |
1999 | can be used instead of floating point (for cases where the result won't | |
2000 | overflow). Before, floating point was always used, which could lead to | |
28e5dec8 JH |
2001 | loss of precision compared with integer addition. |
2002 | ||
2003 | * making IV and NV equal status should make maths accurate on 64 bit | |
2004 | platforms | |
2005 | * may speed up maths somewhat if pp_add and friends start to use | |
645c22ef | 2006 | integers when possible instead of fp. (Hopefully the overhead in |
28e5dec8 JH |
2007 | looking for SvIOK and checking for overflow will not outweigh the |
2008 | fp to integer speedup) | |
2009 | * will slow down integer operations (callers of SvIV) on "inaccurate" | |
2010 | values, as the change from SvIOK to SvIOKp will cause a call into | |
2011 | sv_2iv each time rather than a macro access direct to the IV slot | |
2012 | * should speed up number->string conversion on integers as IV is | |
645c22ef | 2013 | favoured when IV and NV are equally accurate |
28e5dec8 JH |
2014 | |
2015 | #################################################################### | |
645c22ef DM |
2016 | You had better be using SvIOK_notUV if you want an IV for arithmetic: |
2017 | SvIOK is true if (IV or UV), so you might be getting (IV)SvUV. | |
2018 | On the other hand, SvUOK is true iff UV. | |
28e5dec8 JH |
2019 | #################################################################### |
2020 | ||
645c22ef | 2021 | Your mileage will vary depending your CPU's relative fp to integer |
28e5dec8 JH |
2022 | performance ratio. |
2023 | */ | |
2024 | ||
2025 | #ifndef NV_PRESERVES_UV | |
645c22ef DM |
2026 | # define IS_NUMBER_UNDERFLOW_IV 1 |
2027 | # define IS_NUMBER_UNDERFLOW_UV 2 | |
2028 | # define IS_NUMBER_IV_AND_UV 2 | |
2029 | # define IS_NUMBER_OVERFLOW_IV 4 | |
2030 | # define IS_NUMBER_OVERFLOW_UV 5 | |
2031 | ||
2032 | /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */ | |
28e5dec8 JH |
2033 | |
2034 | /* For sv_2nv these three cases are "SvNOK and don't bother casting" */ | |
2035 | STATIC int | |
5aaab254 | 2036 | S_sv_2iuv_non_preserve(pTHX_ SV *const sv |
47031da6 NC |
2037 | # ifdef DEBUGGING |
2038 | , I32 numtype | |
2039 | # endif | |
2040 | ) | |
28e5dec8 | 2041 | { |
7918f24d | 2042 | PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE; |
23491f1d | 2043 | PERL_UNUSED_CONTEXT; |
7918f24d | 2044 | |
3f7c398e | 2045 | DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype)); |
28e5dec8 JH |
2046 | if (SvNVX(sv) < (NV)IV_MIN) { |
2047 | (void)SvIOKp_on(sv); | |
2048 | (void)SvNOK_on(sv); | |
45977657 | 2049 | SvIV_set(sv, IV_MIN); |
28e5dec8 JH |
2050 | return IS_NUMBER_UNDERFLOW_IV; |
2051 | } | |
2052 | if (SvNVX(sv) > (NV)UV_MAX) { | |
2053 | (void)SvIOKp_on(sv); | |
2054 | (void)SvNOK_on(sv); | |
2055 | SvIsUV_on(sv); | |
607fa7f2 | 2056 | SvUV_set(sv, UV_MAX); |
28e5dec8 JH |
2057 | return IS_NUMBER_OVERFLOW_UV; |
2058 | } | |
c2988b20 NC |
2059 | (void)SvIOKp_on(sv); |
2060 | (void)SvNOK_on(sv); | |
2061 | /* Can't use strtol etc to convert this string. (See truth table in | |
2062 | sv_2iv */ | |
2063 | if (SvNVX(sv) <= (UV)IV_MAX) { | |
45977657 | 2064 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2065 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) { |
c2988b20 NC |
2066 | SvIOK_on(sv); /* Integer is precise. NOK, IOK */ |
2067 | } else { | |
2068 | /* Integer is imprecise. NOK, IOKp */ | |
2069 | } | |
2070 | return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV; | |
2071 | } | |
2072 | SvIsUV_on(sv); | |
607fa7f2 | 2073 | SvUV_set(sv, U_V(SvNVX(sv))); |
659c4b96 | 2074 | if ((NV)(SvUVX(sv)) == SvNVX(sv)) { |
c2988b20 NC |
2075 | if (SvUVX(sv) == UV_MAX) { |
2076 | /* As we know that NVs don't preserve UVs, UV_MAX cannot | |
2077 | possibly be preserved by NV. Hence, it must be overflow. | |
2078 | NOK, IOKp */ | |
2079 | return IS_NUMBER_OVERFLOW_UV; | |
2080 | } | |
2081 | SvIOK_on(sv); /* Integer is precise. NOK, UOK */ | |
2082 | } else { | |
2083 | /* Integer is imprecise. NOK, IOKp */ | |
28e5dec8 | 2084 | } |
c2988b20 | 2085 | return IS_NUMBER_OVERFLOW_IV; |
28e5dec8 | 2086 | } |
645c22ef DM |
2087 | #endif /* !NV_PRESERVES_UV*/ |
2088 | ||
a13f4dff | 2089 | /* If numtype is infnan, set the NV of the sv accordingly. |
5564cd7f | 2090 | * If numtype is anything else, try setting the NV using Atof(PV). */ |
3c81f0b3 DD |
2091 | #ifdef USING_MSVC6 |
2092 | # pragma warning(push) | |
2093 | # pragma warning(disable:4756;disable:4056) | |
2094 | #endif | |
a13f4dff | 2095 | static void |
3823048b | 2096 | S_sv_setnv(pTHX_ SV* sv, int numtype) |
a13f4dff | 2097 | { |
07925c5e | 2098 | bool pok = cBOOL(SvPOK(sv)); |
5564cd7f | 2099 | bool nok = FALSE; |
a7157111 | 2100 | #ifdef NV_INF |
a13f4dff JH |
2101 | if ((numtype & IS_NUMBER_INFINITY)) { |
2102 | SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF); | |
5564cd7f | 2103 | nok = TRUE; |
a7157111 JH |
2104 | } else |
2105 | #endif | |
2106 | #ifdef NV_NAN | |
2107 | if ((numtype & IS_NUMBER_NAN)) { | |
3823048b | 2108 | SvNV_set(sv, NV_NAN); |
d48bd569 | 2109 | nok = TRUE; |
a7157111 JH |
2110 | } else |
2111 | #endif | |
2112 | if (pok) { | |
a13f4dff | 2113 | SvNV_set(sv, Atof(SvPVX_const(sv))); |
d48bd569 JH |
2114 | /* Purposefully no true nok here, since we don't want to blow |
2115 | * away the possible IOK/UV of an existing sv. */ | |
2116 | } | |
5564cd7f | 2117 | if (nok) { |
d48bd569 | 2118 | SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */ |
5564cd7f JH |
2119 | if (pok) |
2120 | SvPOK_on(sv); /* PV is okay, though. */ | |
2121 | } | |
a13f4dff | 2122 | } |
3c81f0b3 DD |
2123 | #ifdef USING_MSVC6 |
2124 | # pragma warning(pop) | |
2125 | #endif | |
a13f4dff | 2126 | |
af359546 | 2127 | STATIC bool |
7918f24d NC |
2128 | S_sv_2iuv_common(pTHX_ SV *const sv) |
2129 | { | |
7918f24d NC |
2130 | PERL_ARGS_ASSERT_SV_2IUV_COMMON; |
2131 | ||
af359546 | 2132 | if (SvNOKp(sv)) { |
28e5dec8 JH |
2133 | /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv |
2134 | * without also getting a cached IV/UV from it at the same time | |
2135 | * (ie PV->NV conversion should detect loss of accuracy and cache | |
af359546 NC |
2136 | * IV or UV at same time to avoid this. */ |
2137 | /* IV-over-UV optimisation - choose to cache IV if possible */ | |
25da4f38 IZ |
2138 | |
2139 | if (SvTYPE(sv) == SVt_NV) | |
2140 | sv_upgrade(sv, SVt_PVNV); | |
2141 | ||
28e5dec8 JH |
2142 | (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */ |
2143 | /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost | |
2144 | certainly cast into the IV range at IV_MAX, whereas the correct | |
2145 | answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary | |
2146 | cases go to UV */ | |
e91de695 JH |
2147 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) |
2148 | if (Perl_isnan(SvNVX(sv))) { | |
2149 | SvUV_set(sv, 0); | |
2150 | SvIsUV_on(sv); | |
2151 | return FALSE; | |
2152 | } | |
2153 | #endif | |
28e5dec8 | 2154 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { |
45977657 | 2155 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2156 | if (SvNVX(sv) == (NV) SvIVX(sv) |
28e5dec8 | 2157 | #ifndef NV_PRESERVES_UV |
53e2bfb7 | 2158 | && SvIVX(sv) != IV_MIN /* avoid negating IV_MIN below */ |
28e5dec8 JH |
2159 | && (((UV)1 << NV_PRESERVES_UV_BITS) > |
2160 | (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv))) | |
2161 | /* Don't flag it as "accurately an integer" if the number | |
2162 | came from a (by definition imprecise) NV operation, and | |
2163 | we're outside the range of NV integer precision */ | |
2164 | #endif | |
2165 | ) { | |
a43d94f2 NC |
2166 | if (SvNOK(sv)) |
2167 | SvIOK_on(sv); /* Can this go wrong with rounding? NWC */ | |
2168 | else { | |
2169 | /* scalar has trailing garbage, eg "42a" */ | |
2170 | } | |
28e5dec8 | 2171 | DEBUG_c(PerlIO_printf(Perl_debug_log, |
7234c960 | 2172 | "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n", |
28e5dec8 JH |
2173 | PTR2UV(sv), |
2174 | SvNVX(sv), | |
2175 | SvIVX(sv))); | |
2176 | ||
2177 | } else { | |
2178 | /* IV not precise. No need to convert from PV, as NV | |
2179 | conversion would already have cached IV if it detected | |
2180 | that PV->IV would be better than PV->NV->IV | |
2181 | flags already correct - don't set public IOK. */ | |
2182 | DEBUG_c(PerlIO_printf(Perl_debug_log, | |
7234c960 | 2183 | "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n", |
28e5dec8 JH |
2184 | PTR2UV(sv), |
2185 | SvNVX(sv), | |
2186 | SvIVX(sv))); | |
2187 | } | |
2188 | /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN, | |
2189 | but the cast (NV)IV_MIN rounds to a the value less (more | |
2190 | negative) than IV_MIN which happens to be equal to SvNVX ?? | |
2191 | Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and | |
2192 | NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and | |
2193 | (NV)UVX == NVX are both true, but the values differ. :-( | |
2194 | Hopefully for 2s complement IV_MIN is something like | |
2195 | 0x8000000000000000 which will be exact. NWC */ | |
d460ef45 | 2196 | } |
25da4f38 | 2197 | else { |
607fa7f2 | 2198 | SvUV_set(sv, U_V(SvNVX(sv))); |
28e5dec8 | 2199 | if ( |
659c4b96 | 2200 | (SvNVX(sv) == (NV) SvUVX(sv)) |
28e5dec8 JH |
2201 | #ifndef NV_PRESERVES_UV |
2202 | /* Make sure it's not 0xFFFFFFFFFFFFFFFF */ | |
2203 | /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */ | |
2204 | && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv)) | |
2205 | /* Don't flag it as "accurately an integer" if the number | |
2206 | came from a (by definition imprecise) NV operation, and | |
2207 | we're outside the range of NV integer precision */ | |
2208 | #endif | |
a43d94f2 | 2209 | && SvNOK(sv) |
28e5dec8 JH |
2210 | ) |
2211 | SvIOK_on(sv); | |
25da4f38 | 2212 | SvIsUV_on(sv); |
1c846c1f | 2213 | DEBUG_c(PerlIO_printf(Perl_debug_log, |
57def98f | 2214 | "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n", |
56431972 | 2215 | PTR2UV(sv), |
57def98f JH |
2216 | SvUVX(sv), |
2217 | SvUVX(sv))); | |
25da4f38 | 2218 | } |
748a9306 | 2219 | } |
cd84013a | 2220 | else if (SvPOKp(sv)) { |
c2988b20 | 2221 | UV value; |
3823048b | 2222 | const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value); |
af359546 | 2223 | /* We want to avoid a possible problem when we cache an IV/ a UV which |
25da4f38 | 2224 | may be later translated to an NV, and the resulting NV is not |
c2988b20 NC |
2225 | the same as the direct translation of the initial string |
2226 | (eg 123.456 can shortcut to the IV 123 with atol(), but we must | |
2227 | be careful to ensure that the value with the .456 is around if the | |
2228 | NV value is requested in the future). | |
1c846c1f | 2229 | |
af359546 | 2230 | This means that if we cache such an IV/a UV, we need to cache the |
25da4f38 | 2231 | NV as well. Moreover, we trade speed for space, and do not |
28e5dec8 | 2232 | cache the NV if we are sure it's not needed. |
25da4f38 | 2233 | */ |
16b7a9a4 | 2234 | |
c2988b20 NC |
2235 | /* SVt_PVNV is one higher than SVt_PVIV, hence this order */ |
2236 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2237 | == IS_NUMBER_IN_UV) { | |
5e045b90 | 2238 | /* It's definitely an integer, only upgrade to PVIV */ |
28e5dec8 JH |
2239 | if (SvTYPE(sv) < SVt_PVIV) |
2240 | sv_upgrade(sv, SVt_PVIV); | |
f7bbb42a | 2241 | (void)SvIOK_on(sv); |
c2988b20 NC |
2242 | } else if (SvTYPE(sv) < SVt_PVNV) |
2243 | sv_upgrade(sv, SVt_PVNV); | |
28e5dec8 | 2244 | |
a13f4dff | 2245 | if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) { |
75a57a38 | 2246 | if (ckWARN(WARN_NUMERIC) && ((numtype & IS_NUMBER_TRAILING))) |
6b322424 | 2247 | not_a_number(sv); |
3823048b | 2248 | S_sv_setnv(aTHX_ sv, numtype); |
a13f4dff JH |
2249 | return FALSE; |
2250 | } | |
2251 | ||
f2524eef | 2252 | /* If NVs preserve UVs then we only use the UV value if we know that |
c2988b20 NC |
2253 | we aren't going to call atof() below. If NVs don't preserve UVs |
2254 | then the value returned may have more precision than atof() will | |
2255 | return, even though value isn't perfectly accurate. */ | |
2256 | if ((numtype & (IS_NUMBER_IN_UV | |
2257 | #ifdef NV_PRESERVES_UV | |
2258 | | IS_NUMBER_NOT_INT | |
2259 | #endif | |
2260 | )) == IS_NUMBER_IN_UV) { | |
2261 | /* This won't turn off the public IOK flag if it was set above */ | |
2262 | (void)SvIOKp_on(sv); | |
2263 | ||
2264 | if (!(numtype & IS_NUMBER_NEG)) { | |
2265 | /* positive */; | |
2266 | if (value <= (UV)IV_MAX) { | |
45977657 | 2267 | SvIV_set(sv, (IV)value); |
c2988b20 | 2268 | } else { |
af359546 | 2269 | /* it didn't overflow, and it was positive. */ |
607fa7f2 | 2270 | SvUV_set(sv, value); |
c2988b20 NC |
2271 | SvIsUV_on(sv); |
2272 | } | |
2273 | } else { | |
2274 | /* 2s complement assumption */ | |
2275 | if (value <= (UV)IV_MIN) { | |
53e2bfb7 DM |
2276 | SvIV_set(sv, value == (UV)IV_MIN |
2277 | ? IV_MIN : -(IV)value); | |
c2988b20 NC |
2278 | } else { |
2279 | /* Too negative for an IV. This is a double upgrade, but | |
d1be9408 | 2280 | I'm assuming it will be rare. */ |
c2988b20 NC |
2281 | if (SvTYPE(sv) < SVt_PVNV) |
2282 | sv_upgrade(sv, SVt_PVNV); | |
2283 | SvNOK_on(sv); | |
2284 | SvIOK_off(sv); | |
2285 | SvIOKp_on(sv); | |
9d6ce603 | 2286 | SvNV_set(sv, -(NV)value); |
45977657 | 2287 | SvIV_set(sv, IV_MIN); |
c2988b20 NC |
2288 | } |
2289 | } | |
2290 | } | |
2291 | /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we | |
2292 | will be in the previous block to set the IV slot, and the next | |
2293 | block to set the NV slot. So no else here. */ | |
2294 | ||
2295 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2296 | != IS_NUMBER_IN_UV) { | |
2297 | /* It wasn't an (integer that doesn't overflow the UV). */ | |
3823048b | 2298 | S_sv_setnv(aTHX_ sv, numtype); |
28e5dec8 | 2299 | |
c2988b20 NC |
2300 | if (! numtype && ckWARN(WARN_NUMERIC)) |
2301 | not_a_number(sv); | |
28e5dec8 | 2302 | |
88cb8500 | 2303 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n", |
c2988b20 | 2304 | PTR2UV(sv), SvNVX(sv))); |
28e5dec8 | 2305 | |
28e5dec8 | 2306 | #ifdef NV_PRESERVES_UV |
af359546 NC |
2307 | (void)SvIOKp_on(sv); |
2308 | (void)SvNOK_on(sv); | |
e91de695 JH |
2309 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) |
2310 | if (Perl_isnan(SvNVX(sv))) { | |
2311 | SvUV_set(sv, 0); | |
2312 | SvIsUV_on(sv); | |
2313 | return FALSE; | |
2314 | } | |
2315 | #endif | |
af359546 NC |
2316 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { |
2317 | SvIV_set(sv, I_V(SvNVX(sv))); | |
2318 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) { | |
2319 | SvIOK_on(sv); | |
2320 | } else { | |
6f207bd3 | 2321 | NOOP; /* Integer is imprecise. NOK, IOKp */ |
af359546 NC |
2322 | } |
2323 | /* UV will not work better than IV */ | |
2324 | } else { | |
2325 | if (SvNVX(sv) > (NV)UV_MAX) { | |
2326 | SvIsUV_on(sv); | |
2327 | /* Integer is inaccurate. NOK, IOKp, is UV */ | |
2328 | SvUV_set(sv, UV_MAX); | |
af359546 NC |
2329 | } else { |
2330 | SvUV_set(sv, U_V(SvNVX(sv))); | |
2331 | /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs | |
2332 | NV preservse UV so can do correct comparison. */ | |
2333 | if ((NV)(SvUVX(sv)) == SvNVX(sv)) { | |
2334 | SvIOK_on(sv); | |
af359546 | 2335 | } else { |
6f207bd3 | 2336 | NOOP; /* Integer is imprecise. NOK, IOKp, is UV */ |
af359546 NC |
2337 | } |
2338 | } | |
4b0c9573 | 2339 | SvIsUV_on(sv); |
af359546 | 2340 | } |
28e5dec8 | 2341 | #else /* NV_PRESERVES_UV */ |
c2988b20 NC |
2342 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) |
2343 | == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) { | |
af359546 | 2344 | /* The IV/UV slot will have been set from value returned by |
c2988b20 NC |
2345 | grok_number above. The NV slot has just been set using |
2346 | Atof. */ | |
560b0c46 | 2347 | SvNOK_on(sv); |
c2988b20 NC |
2348 | assert (SvIOKp(sv)); |
2349 | } else { | |
2350 | if (((UV)1 << NV_PRESERVES_UV_BITS) > | |
2351 | U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) { | |
2352 | /* Small enough to preserve all bits. */ | |
2353 | (void)SvIOKp_on(sv); | |
2354 | SvNOK_on(sv); | |
45977657 | 2355 | SvIV_set(sv, I_V(SvNVX(sv))); |
659c4b96 | 2356 | if ((NV)(SvIVX(sv)) == SvNVX(sv)) |
c2988b20 NC |
2357 | SvIOK_on(sv); |
2358 | /* Assumption: first non-preserved integer is < IV_MAX, | |
2359 | this NV is in the preserved range, therefore: */ | |
2360 | if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv)) | |
2361 | < (UV)IV_MAX)) { | |
32fdb065 | 2362 | Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX); |
c2988b20 NC |
2363 | } |
2364 | } else { | |
2365 | /* IN_UV NOT_INT | |
2366 | 0 0 already failed to read UV. | |
2367 | 0 1 already failed to read UV. | |
2368 | 1 0 you won't get here in this case. IV/UV | |
2369 | slot set, public IOK, Atof() unneeded. | |
2370 | 1 1 already read UV. | |
2371 | so there's no point in sv_2iuv_non_preserve() attempting | |
2372 | to use atol, strtol, strtoul etc. */ | |
47031da6 | 2373 | # ifdef DEBUGGING |
40a17c4c | 2374 | sv_2iuv_non_preserve (sv, numtype); |
47031da6 NC |
2375 | # else |
2376 | sv_2iuv_non_preserve (sv); | |
2377 | # endif | |
c2988b20 NC |
2378 | } |
2379 | } | |
28e5dec8 | 2380 | #endif /* NV_PRESERVES_UV */ |
a43d94f2 NC |
2381 | /* It might be more code efficient to go through the entire logic above |
2382 | and conditionally set with SvIOKp_on() rather than SvIOK(), but it | |
2383 | gets complex and potentially buggy, so more programmer efficient | |
2384 | to do it this way, by turning off the public flags: */ | |
2385 | if (!numtype) | |
2386 | SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK); | |
25da4f38 | 2387 | } |
af359546 NC |
2388 | } |
2389 | else { | |
675c862f | 2390 | if (isGV_with_GP(sv)) |
159b6efe | 2391 | return glob_2number(MUTABLE_GV(sv)); |
180488f8 | 2392 | |
4f62cd62 | 2393 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
af359546 | 2394 | report_uninit(sv); |
25da4f38 IZ |
2395 | if (SvTYPE(sv) < SVt_IV) |
2396 | /* Typically the caller expects that sv_any is not NULL now. */ | |
2397 | sv_upgrade(sv, SVt_IV); | |
af359546 NC |
2398 | /* Return 0 from the caller. */ |
2399 | return TRUE; | |
2400 | } | |
2401 | return FALSE; | |
2402 | } | |
2403 | ||
2404 | /* | |
2405 | =for apidoc sv_2iv_flags | |
2406 | ||
2407 | Return the integer value of an SV, doing any necessary string | |
c5608a1f | 2408 | conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. |
af359546 NC |
2409 | Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros. |
2410 | ||
2411 | =cut | |
2412 | */ | |
2413 | ||
2414 | IV | |
5aaab254 | 2415 | Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags) |
af359546 | 2416 | { |
1061065f | 2417 | PERL_ARGS_ASSERT_SV_2IV_FLAGS; |
4bac9ae4 | 2418 | |
217f6fa3 FC |
2419 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV |
2420 | && SvTYPE(sv) != SVt_PVFM); | |
2421 | ||
4bac9ae4 CS |
2422 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) |
2423 | mg_get(sv); | |
2424 | ||
2425 | if (SvROK(sv)) { | |
2426 | if (SvAMAGIC(sv)) { | |
2427 | SV * tmpstr; | |
2428 | if (flags & SV_SKIP_OVERLOAD) | |
2429 | return 0; | |
2430 | tmpstr = AMG_CALLunary(sv, numer_amg); | |
2431 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2432 | return SvIV(tmpstr); | |
2433 | } | |
2434 | } | |
2435 | return PTR2IV(SvRV(sv)); | |
2436 | } | |
2437 | ||
8d919b0a | 2438 | if (SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d NC |
2439 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
2440 | the same flag bit as SVf_IVisUV, so must not let them cache IVs. | |
2441 | In practice they are extremely unlikely to actually get anywhere | |
2442 | accessible by user Perl code - the only way that I'm aware of is when | |
2443 | a constant subroutine which is used as the second argument to index. | |
cd84013a FC |
2444 | |
2445 | Regexps have no SvIVX and SvNVX fields. | |
2b2b6d6d | 2446 | */ |
8d919b0a | 2447 | assert(isREGEXP(sv) || SvPOKp(sv)); |
e20b6c3b | 2448 | { |
71c558c3 | 2449 | UV value; |
8d919b0a FC |
2450 | const char * const ptr = |
2451 | isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv); | |
e91de695 JH |
2452 | const int numtype |
2453 | = grok_number(ptr, SvCUR(sv), &value); | |
71c558c3 NC |
2454 | |
2455 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2456 | == IS_NUMBER_IN_UV) { | |
2457 | /* It's definitely an integer */ | |
2458 | if (numtype & IS_NUMBER_NEG) { | |
2459 | if (value < (UV)IV_MIN) | |
2460 | return -(IV)value; | |
2461 | } else { | |
2462 | if (value < (UV)IV_MAX) | |
2463 | return (IV)value; | |
2464 | } | |
2465 | } | |
058b8ae2 | 2466 | |
e91de695 JH |
2467 | /* Quite wrong but no good choices. */ |
2468 | if ((numtype & IS_NUMBER_INFINITY)) { | |
2469 | return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX; | |
2470 | } else if ((numtype & IS_NUMBER_NAN)) { | |
2471 | return 0; /* So wrong. */ | |
2472 | } | |
2473 | ||
71c558c3 NC |
2474 | if (!numtype) { |
2475 | if (ckWARN(WARN_NUMERIC)) | |
2476 | not_a_number(sv); | |
2477 | } | |
8d919b0a | 2478 | return I_V(Atof(ptr)); |
e20b6c3b | 2479 | } |
4bac9ae4 CS |
2480 | } |
2481 | ||
2482 | if (SvTHINKFIRST(sv)) { | |
af359546 NC |
2483 | if (SvREADONLY(sv) && !SvOK(sv)) { |
2484 | if (ckWARN(WARN_UNINITIALIZED)) | |
2485 | report_uninit(sv); | |
2486 | return 0; | |
2487 | } | |
2488 | } | |
4bac9ae4 | 2489 | |
af359546 NC |
2490 | if (!SvIOKp(sv)) { |
2491 | if (S_sv_2iuv_common(aTHX_ sv)) | |
2492 | return 0; | |
79072805 | 2493 | } |
4bac9ae4 | 2494 | |
1d7c1841 GS |
2495 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n", |
2496 | PTR2UV(sv),SvIVX(sv))); | |
25da4f38 | 2497 | return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv); |
79072805 LW |
2498 | } |
2499 | ||
645c22ef | 2500 | /* |
891f9566 | 2501 | =for apidoc sv_2uv_flags |
645c22ef DM |
2502 | |
2503 | Return the unsigned integer value of an SV, doing any necessary string | |
c5608a1f | 2504 | conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. |
891f9566 | 2505 | Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros. |
645c22ef DM |
2506 | |
2507 | =cut | |
2508 | */ | |
2509 | ||
ff68c719 | 2510 | UV |
5aaab254 | 2511 | Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags) |
ff68c719 | 2512 | { |
1061065f | 2513 | PERL_ARGS_ASSERT_SV_2UV_FLAGS; |
4bac9ae4 CS |
2514 | |
2515 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) | |
2516 | mg_get(sv); | |
2517 | ||
2518 | if (SvROK(sv)) { | |
2519 | if (SvAMAGIC(sv)) { | |
2520 | SV *tmpstr; | |
2521 | if (flags & SV_SKIP_OVERLOAD) | |
2522 | return 0; | |
2523 | tmpstr = AMG_CALLunary(sv, numer_amg); | |
2524 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2525 | return SvUV(tmpstr); | |
2526 | } | |
2527 | } | |
2528 | return PTR2UV(SvRV(sv)); | |
2529 | } | |
2530 | ||
8d919b0a | 2531 | if (SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d | 2532 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
cd84013a FC |
2533 | the same flag bit as SVf_IVisUV, so must not let them cache IVs. |
2534 | Regexps have no SvIVX and SvNVX fields. */ | |
8d919b0a | 2535 | assert(isREGEXP(sv) || SvPOKp(sv)); |
e20b6c3b | 2536 | { |
71c558c3 | 2537 | UV value; |
8d919b0a FC |
2538 | const char * const ptr = |
2539 | isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv); | |
e91de695 JH |
2540 | const int numtype |
2541 | = grok_number(ptr, SvCUR(sv), &value); | |
71c558c3 NC |
2542 | |
2543 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) | |
2544 | == IS_NUMBER_IN_UV) { | |
2545 | /* It's definitely an integer */ | |
2546 | if (!(numtype & IS_NUMBER_NEG)) | |
2547 | return value; | |
2548 | } | |
058b8ae2 | 2549 | |
e91de695 JH |
2550 | /* Quite wrong but no good choices. */ |
2551 | if ((numtype & IS_NUMBER_INFINITY)) { | |
2552 | return UV_MAX; /* So wrong. */ | |
2553 | } else if ((numtype & IS_NUMBER_NAN)) { | |
2554 | return 0; /* So wrong. */ | |
2555 | } | |
2556 | ||
71c558c3 NC |
2557 | if (!numtype) { |
2558 | if (ckWARN(WARN_NUMERIC)) | |
2559 | not_a_number(sv); | |
2560 | } | |
8d919b0a | 2561 | return U_V(Atof(ptr)); |
e20b6c3b | 2562 | } |
4bac9ae4 CS |
2563 | } |
2564 | ||
2565 | if (SvTHINKFIRST(sv)) { | |
0336b60e | 2566 | if (SvREADONLY(sv) && !SvOK(sv)) { |
0336b60e | 2567 | if (ckWARN(WARN_UNINITIALIZED)) |
29489e7c | 2568 | report_uninit(sv); |
ff68c719 | 2569 | return 0; |
2570 | } | |
2571 | } | |
4bac9ae4 | 2572 | |
af359546 NC |
2573 | if (!SvIOKp(sv)) { |
2574 | if (S_sv_2iuv_common(aTHX_ sv)) | |
2575 | return 0; | |
ff68c719 | 2576 | } |
25da4f38 | 2577 | |
1d7c1841 GS |
2578 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n", |
2579 | PTR2UV(sv),SvUVX(sv))); | |
25da4f38 | 2580 | return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv); |
ff68c719 | 2581 | } |
2582 | ||
645c22ef | 2583 | /* |
196007d1 | 2584 | =for apidoc sv_2nv_flags |
645c22ef DM |
2585 | |
2586 | Return the num value of an SV, doing any necessary string or integer | |
c5608a1f | 2587 | conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. |
39d5de13 | 2588 | Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros. |
645c22ef DM |
2589 | |
2590 | =cut | |
2591 | */ | |
2592 | ||
65202027 | 2593 | NV |
5aaab254 | 2594 | Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags) |
79072805 | 2595 | { |
1061065f DD |
2596 | PERL_ARGS_ASSERT_SV_2NV_FLAGS; |
2597 | ||
217f6fa3 FC |
2598 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV |
2599 | && SvTYPE(sv) != SVt_PVFM); | |
8d919b0a | 2600 | if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) { |
2b2b6d6d | 2601 | /* FBMs use the space for SvIVX and SvNVX for other purposes, and use |
cd84013a FC |
2602 | the same flag bit as SVf_IVisUV, so must not let them cache NVs. |
2603 | Regexps have no SvIVX and SvNVX fields. */ | |
8d919b0a | 2604 | const char *ptr; |
39d5de13 DM |
2605 | if (flags & SV_GMAGIC) |
2606 | mg_get(sv); | |
463ee0b2 LW |
2607 | if (SvNOKp(sv)) |
2608 | return SvNVX(sv); | |
cd84013a | 2609 | if (SvPOKp(sv) && !SvIOKp(sv)) { |
8d919b0a FC |
2610 | ptr = SvPVX_const(sv); |
2611 | grokpv: | |
041457d9 | 2612 | if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) && |
8d919b0a | 2613 | !grok_number(ptr, SvCUR(sv), NULL)) |
a0d0e21e | 2614 | not_a_number(sv); |
8d919b0a | 2615 | return Atof(ptr); |
a0d0e21e | 2616 | } |
25da4f38 | 2617 | if (SvIOKp(sv)) { |
1c846c1f | 2618 | if (SvIsUV(sv)) |
65202027 | 2619 | return (NV)SvUVX(sv); |
25da4f38 | 2620 | else |
65202027 | 2621 | return (NV)SvIVX(sv); |
47a72cb8 NC |
2622 | } |
2623 | if (SvROK(sv)) { | |
2624 | goto return_rok; | |
2625 | } | |
8d919b0a FC |
2626 | if (isREGEXP(sv)) { |
2627 | ptr = RX_WRAPPED((REGEXP *)sv); | |
2628 | goto grokpv; | |
2629 | } | |
47a72cb8 NC |
2630 | assert(SvTYPE(sv) >= SVt_PVMG); |
2631 | /* This falls through to the report_uninit near the end of the | |
2632 | function. */ | |
2633 | } else if (SvTHINKFIRST(sv)) { | |
a0d0e21e | 2634 | if (SvROK(sv)) { |
47a72cb8 | 2635 | return_rok: |
deb46114 | 2636 | if (SvAMAGIC(sv)) { |
aee036bb DM |
2637 | SV *tmpstr; |
2638 | if (flags & SV_SKIP_OVERLOAD) | |
2639 | return 0; | |
31d632c3 | 2640 | tmpstr = AMG_CALLunary(sv, numer_amg); |
deb46114 NC |
2641 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { |
2642 | return SvNV(tmpstr); | |
2643 | } | |
2644 | } | |
2645 | return PTR2NV(SvRV(sv)); | |
a0d0e21e | 2646 | } |
0336b60e | 2647 | if (SvREADONLY(sv) && !SvOK(sv)) { |
599cee73 | 2648 | if (ckWARN(WARN_UNINITIALIZED)) |
29489e7c | 2649 | report_uninit(sv); |
ed6116ce LW |
2650 | return 0.0; |
2651 | } | |
79072805 LW |
2652 | } |
2653 | if (SvTYPE(sv) < SVt_NV) { | |
7e25a7e9 NC |
2654 | /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */ |
2655 | sv_upgrade(sv, SVt_NV); | |
097ee67d | 2656 | DEBUG_c({ |
f93f4e46 | 2657 | STORE_NUMERIC_LOCAL_SET_STANDARD(); |
1d7c1841 | 2658 | PerlIO_printf(Perl_debug_log, |
88cb8500 | 2659 | "0x%"UVxf" num(%" NVgf ")\n", |
1d7c1841 | 2660 | PTR2UV(sv), SvNVX(sv)); |
097ee67d JH |
2661 | RESTORE_NUMERIC_LOCAL(); |
2662 | }); | |
79072805 LW |
2663 | } |
2664 | else if (SvTYPE(sv) < SVt_PVNV) | |
2665 | sv_upgrade(sv, SVt_PVNV); | |
59d8ce62 NC |
2666 | if (SvNOKp(sv)) { |
2667 | return SvNVX(sv); | |
61604483 | 2668 | } |
59d8ce62 | 2669 | if (SvIOKp(sv)) { |
9d6ce603 | 2670 | SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv)); |
28e5dec8 | 2671 | #ifdef NV_PRESERVES_UV |
a43d94f2 NC |
2672 | if (SvIOK(sv)) |
2673 | SvNOK_on(sv); | |
2674 | else | |
2675 | SvNOKp_on(sv); | |
28e5dec8 JH |
2676 | #else |
2677 | /* Only set the public NV OK flag if this NV preserves the IV */ | |
2678 | /* Check it's not 0xFFFFFFFFFFFFFFFF */ | |
a43d94f2 NC |
2679 | if (SvIOK(sv) && |
2680 | SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv)))) | |
28e5dec8 JH |
2681 | : (SvIVX(sv) == I_V(SvNVX(sv)))) |
2682 | SvNOK_on(sv); | |
2683 | else | |
2684 | SvNOKp_on(sv); | |
2685 | #endif | |
93a17b20 | 2686 | } |
cd84013a | 2687 | else if (SvPOKp(sv)) { |
c2988b20 | 2688 | UV value; |
3823048b | 2689 | const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value); |
041457d9 | 2690 | if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC)) |
a0d0e21e | 2691 | not_a_number(sv); |
28e5dec8 | 2692 | #ifdef NV_PRESERVES_UV |
c2988b20 NC |
2693 | if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) |
2694 | == IS_NUMBER_IN_UV) { | |
5e045b90 | 2695 | /* It's definitely an integer */ |
9d6ce603 | 2696 | SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value); |
66d83377 | 2697 | } else { |
3823048b | 2698 | S_sv_setnv(aTHX_ sv, numtype); |
66d83377 | 2699 | } |
a43d94f2 NC |
2700 | if (numtype) |
2701 | SvNOK_on(sv); | |
2702 | else | |
2703 | SvNOKp_on(sv); | |
28e5dec8 | 2704 | #else |
e91de695 JH |
2705 | SvNV_set(sv, Atof(SvPVX_const(sv))); |
2706 | /* Only set the public NV OK flag if this NV preserves the value in | |
2707 | the PV at least as well as an IV/UV would. | |
2708 | Not sure how to do this 100% reliably. */ | |
2709 | /* if that shift count is out of range then Configure's test is | |
2710 | wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS == | |
2711 | UV_BITS */ | |
2712 | if (((UV)1 << NV_PRESERVES_UV_BITS) > | |
2713 | U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) { | |
2714 | SvNOK_on(sv); /* Definitely small enough to preserve all bits */ | |
2715 | } else if (!(numtype & IS_NUMBER_IN_UV)) { | |
2716 | /* Can't use strtol etc to convert this string, so don't try. | |
2717 | sv_2iv and sv_2uv will use the NV to convert, not the PV. */ | |
c2988b20 NC |
2718 | SvNOK_on(sv); |
2719 | } else { | |
e91de695 | 2720 | /* value has been set. It may not be precise. */ |
53e2bfb7 | 2721 | if ((numtype & IS_NUMBER_NEG) && (value >= (UV)IV_MIN)) { |
e91de695 JH |
2722 | /* 2s complement assumption for (UV)IV_MIN */ |
2723 | SvNOK_on(sv); /* Integer is too negative. */ | |
c2988b20 | 2724 | } else { |
e91de695 JH |
2725 | SvNOKp_on(sv); |
2726 | SvIOKp_on(sv); | |
6fa402ec | 2727 | |
e91de695 | 2728 | if (numtype & IS_NUMBER_NEG) { |
02b08bbc DM |
2729 | /* -IV_MIN is undefined, but we should never reach |
2730 | * this point with both IS_NUMBER_NEG and value == | |
2731 | * (UV)IV_MIN */ | |
2732 | assert(value != (UV)IV_MIN); | |
e91de695 JH |
2733 | SvIV_set(sv, -(IV)value); |
2734 | } else if (value <= (UV)IV_MAX) { | |
2735 | SvIV_set(sv, (IV)value); | |
2736 | } else { | |
2737 | SvUV_set(sv, value); | |
2738 | SvIsUV_on(sv); | |
2739 | } | |
c2988b20 | 2740 | |
e91de695 JH |
2741 | if (numtype & IS_NUMBER_NOT_INT) { |
2742 | /* I believe that even if the original PV had decimals, | |
2743 | they are lost beyond the limit of the FP precision. | |
2744 | However, neither is canonical, so both only get p | |
2745 | flags. NWC, 2000/11/25 */ | |
2746 | /* Both already have p flags, so do nothing */ | |
2747 | } else { | |
2748 | const NV nv = SvNVX(sv); | |
2749 | /* XXX should this spot have NAN_COMPARE_BROKEN, too? */ | |
2750 | if (SvNVX(sv) < (NV)IV_MAX + 0.5) { | |
2751 | if (SvIVX(sv) == I_V(nv)) { | |
2752 | SvNOK_on(sv); | |
2753 | } else { | |
2754 | /* It had no "." so it must be integer. */ | |
2755 | } | |
2756 | SvIOK_on(sv); | |
0f83c5a4 | 2757 | } else { |
e91de695 JH |
2758 | /* between IV_MAX and NV(UV_MAX). |
2759 | Could be slightly > UV_MAX */ | |
2760 | ||
2761 | if (numtype & IS_NUMBER_NOT_INT) { | |
2762 | /* UV and NV both imprecise. */ | |
0f83c5a4 | 2763 | } else { |
e91de695 JH |
2764 | const UV nv_as_uv = U_V(nv); |
2765 | ||
2766 | if (value == nv_as_uv && SvUVX(sv) != UV_MAX) { | |
2767 | SvNOK_on(sv); | |
c2988b20 | 2768 | } |
e91de695 | 2769 | SvIOK_on(sv); |
c2988b20 NC |
2770 | } |
2771 | } | |
2772 | } | |
2773 | } | |
0f83c5a4 | 2774 | } |
e91de695 JH |
2775 | /* It might be more code efficient to go through the entire logic above |
2776 | and conditionally set with SvNOKp_on() rather than SvNOK(), but it | |
2777 | gets complex and potentially buggy, so more programmer efficient | |
2778 | to do it this way, by turning off the public flags: */ | |
2779 | if (!numtype) | |
2780 | SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK); | |
28e5dec8 | 2781 | #endif /* NV_PRESERVES_UV */ |
93a17b20 | 2782 | } |
79072805 | 2783 | else { |
e91de695 JH |
2784 | if (isGV_with_GP(sv)) { |
2785 | glob_2number(MUTABLE_GV(sv)); | |
2786 | return 0.0; | |
2787 | } | |
180488f8 | 2788 | |
e91de695 JH |
2789 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
2790 | report_uninit(sv); | |
2791 | assert (SvTYPE(sv) >= SVt_NV); | |
2792 | /* Typically the caller expects that sv_any is not NULL now. */ | |
2793 | /* XXX Ilya implies that this is a bug in callers that assume this | |
2794 | and ideally should be fixed. */ | |
2795 | return 0.0; | |
79072805 | 2796 | } |
097ee67d | 2797 | DEBUG_c({ |
e91de695 JH |
2798 | STORE_NUMERIC_LOCAL_SET_STANDARD(); |
2799 | PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n", | |
2800 | PTR2UV(sv), SvNVX(sv)); | |
2801 | RESTORE_NUMERIC_LOCAL(); | |
2802 | }); | |
463ee0b2 | 2803 | return SvNVX(sv); |
79072805 LW |
2804 | } |
2805 | ||
800401ee JH |
2806 | /* |
2807 | =for apidoc sv_2num | |
2808 | ||
2809 | Return an SV with the numeric value of the source SV, doing any necessary | |
d024d1a7 FC |
2810 | reference or overload conversion. The caller is expected to have handled |
2811 | get-magic already. | |
800401ee JH |
2812 | |
2813 | =cut | |
2814 | */ | |
2815 | ||
2816 | SV * | |
5aaab254 | 2817 | Perl_sv_2num(pTHX_ SV *const sv) |
800401ee | 2818 | { |
7918f24d NC |
2819 | PERL_ARGS_ASSERT_SV_2NUM; |
2820 | ||
b9ee0594 RGS |
2821 | if (!SvROK(sv)) |
2822 | return sv; | |
800401ee | 2823 | if (SvAMAGIC(sv)) { |
31d632c3 | 2824 | SV * const tmpsv = AMG_CALLunary(sv, numer_amg); |
a02ec77a | 2825 | TAINT_IF(tmpsv && SvTAINTED(tmpsv)); |
800401ee JH |
2826 | if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) |
2827 | return sv_2num(tmpsv); | |
2828 | } | |
2829 | return sv_2mortal(newSVuv(PTR2UV(SvRV(sv)))); | |
2830 | } | |
2831 | ||
645c22ef DM |
2832 | /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or |
2833 | * UV as a string towards the end of buf, and return pointers to start and | |
2834 | * end of it. | |
2835 | * | |
2836 | * We assume that buf is at least TYPE_CHARS(UV) long. | |
2837 | */ | |
2838 | ||
864dbfa3 | 2839 | static char * |
5de3775c | 2840 | S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob) |
25da4f38 | 2841 | { |
25da4f38 | 2842 | char *ptr = buf + TYPE_CHARS(UV); |
823a54a3 | 2843 | char * const ebuf = ptr; |
25da4f38 | 2844 | int sign; |
25da4f38 | 2845 | |
7918f24d NC |
2846 | PERL_ARGS_ASSERT_UIV_2BUF; |
2847 | ||
25da4f38 IZ |
2848 | if (is_uv) |
2849 | sign = 0; | |
2850 | else if (iv >= 0) { | |
2851 | uv = iv; | |
2852 | sign = 0; | |
2853 | } else { | |
53e2bfb7 | 2854 | uv = (iv == IV_MIN) ? (UV)iv : (UV)(-iv); |
25da4f38 IZ |
2855 | sign = 1; |
2856 | } | |
2857 | do { | |
eb160463 | 2858 | *--ptr = '0' + (char)(uv % 10); |
25da4f38 IZ |
2859 | } while (uv /= 10); |
2860 | if (sign) | |
2861 | *--ptr = '-'; | |
2862 | *peob = ebuf; | |
2863 | return ptr; | |
2864 | } | |
2865 | ||
bfaa02d5 JH |
2866 | /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an |
2867 | * infinity or a not-a-number, writes the appropriate strings to the | |
2868 | * buffer, including a zero byte. On success returns the written length, | |
3bde2d43 JH |
2869 | * excluding the zero byte, on failure (not an infinity, not a nan) |
2870 | * returns zero, assert-fails on maxlen being too short. | |
3823048b JH |
2871 | * |
2872 | * XXX for "Inf", "-Inf", and "NaN", we could have three read-only | |
2873 | * shared string constants we point to, instead of generating a new | |
2874 | * string for each instance. */ | |
bfaa02d5 | 2875 | STATIC size_t |
3823048b | 2876 | S_infnan_2pv(NV nv, char* buffer, size_t maxlen, char plus) { |
3bde2d43 | 2877 | char* s = buffer; |
bfaa02d5 | 2878 | assert(maxlen >= 4); |
3bde2d43 JH |
2879 | if (Perl_isinf(nv)) { |
2880 | if (nv < 0) { | |
2881 | if (maxlen < 5) /* "-Inf\0" */ | |
2882 | return 0; | |
2883 | *s++ = '-'; | |
2884 | } else if (plus) { | |
2885 | *s++ = '+'; | |
6e915616 | 2886 | } |
3bde2d43 JH |
2887 | *s++ = 'I'; |
2888 | *s++ = 'n'; | |
2889 | *s++ = 'f'; | |
2890 | } | |
2891 | else if (Perl_isnan(nv)) { | |
2892 | *s++ = 'N'; | |
2893 | *s++ = 'a'; | |
2894 | *s++ = 'N'; | |
2895 | /* XXX optionally output the payload mantissa bits as | |
2896 | * "(unsigned)" (to match the nan("...") C99 function, | |
2897 | * or maybe as "(0xhhh...)" would make more sense... | |
2898 | * provide a format string so that the user can decide? | |
2899 | * NOTE: would affect the maxlen and assert() logic.*/ | |
2900 | } | |
2901 | else { | |
2902 | return 0; | |
bfaa02d5 | 2903 | } |
3bde2d43 JH |
2904 | assert((s == buffer + 3) || (s == buffer + 4)); |
2905 | *s++ = 0; | |
2906 | return s - buffer - 1; /* -1: excluding the zero byte */ | |
bfaa02d5 JH |
2907 | } |
2908 | ||
2909 | /* | |
2910 | =for apidoc sv_2pv_flags | |
2911 | ||
796b6530 | 2912 | Returns a pointer to the string value of an SV, and sets C<*lp> to its length. |
c5608a1f | 2913 | If flags has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. Coerces C<sv> to a |
bfaa02d5 JH |
2914 | string if necessary. Normally invoked via the C<SvPV_flags> macro. |
2915 | C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too. | |
2916 | ||
2917 | =cut | |
2918 | */ | |
2919 | ||
2920 | char * | |
2921 | Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags) | |
2922 | { | |
2923 | char *s; | |
2924 | ||
2925 | PERL_ARGS_ASSERT_SV_2PV_FLAGS; | |
2926 | ||
2927 | assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV | |
2928 | && SvTYPE(sv) != SVt_PVFM); | |
2929 | if (SvGMAGICAL(sv) && (flags & SV_GMAGIC)) | |
2930 | mg_get(sv); | |
2931 | if (SvROK(sv)) { | |
2932 | if (SvAMAGIC(sv)) { | |
2933 | SV *tmpstr; | |
2934 | if (flags & SV_SKIP_OVERLOAD) | |
2935 | return NULL; | |
2936 | tmpstr = AMG_CALLunary(sv, string_amg); | |
2937 | TAINT_IF(tmpstr && SvTAINTED(tmpstr)); | |
2938 | if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) { | |
2939 | /* Unwrap this: */ | |
2940 | /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr); | |
2941 | */ | |
2942 | ||
2943 | char *pv; | |
2944 | if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) { | |
2945 | if (flags & SV_CONST_RETURN) { | |
2946 | pv = (char *) SvPVX_const(tmpstr); | |
2947 | } else { | |
2948 | pv = (flags & SV_MUTABLE_RETURN) | |
2949 | ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr); | |
2950 | } | |
2951 | if (lp) | |
2952 | *lp = SvCUR(tmpstr); | |
2953 | } else { | |
2954 | pv = sv_2pv_flags(tmpstr, lp, flags); | |
2955 | } | |
2956 | if (SvUTF8(tmpstr)) | |
2957 | SvUTF8_on(sv); | |
2958 | else | |
2959 | SvUTF8_off(sv); | |
2960 | return pv; | |
2961 | } | |
2962 | } | |
2963 | { | |
2964 | STRLEN len; | |
2965 | char *retval; | |
2966 | char *buffer; | |
2967 | SV *const referent = SvRV(sv); | |
2968 | ||
2969 | if (!referent) { | |
2970 | len = 7; | |
2971 | retval = buffer = savepvn("NULLREF", len); | |
2972 | } else if (SvTYPE(referent) == SVt_REGEXP && | |
2973 | (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) || | |
2974 | amagic_is_enabled(string_amg))) { | |
2975 | REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent); | |
2976 | ||
2977 | assert(re); | |
2978 | ||
2979 | /* If the regex is UTF-8 we want the containing scalar to | |
2980 | have an UTF-8 flag too */ | |
2981 | if (RX_UTF8(re)) | |
2982 | SvUTF8_on(sv); | |
2983 | else | |
2984 | SvUTF8_off(sv); | |
2985 | ||
2986 | if (lp) | |
2987 | *lp = RX_WRAPLEN(re); | |
2988 | ||
2989 | return RX_WRAPPED(re); | |
2990 | } else { | |
2991 | const char *const typestr = sv_reftype(referent, 0); | |
2992 | const STRLEN typelen = strlen(typestr); | |
2993 | UV addr = PTR2UV(referent); | |
2994 | const char *stashname = NULL; | |
2995 | STRLEN stashnamelen = 0; /* hush, gcc */ | |
2996 | const char *buffer_end; | |
2997 | ||
2998 | if (SvOBJECT(referent)) { | |
2999 | const HEK *const name = HvNAME_HEK(SvSTASH(referent)); | |
3000 | ||
3001 | if (name) { | |
3002 | stashname = HEK_KEY(name); | |
3003 | stashnamelen = HEK_LEN(name); | |
3004 | ||
3005 | if (HEK_UTF8(name)) { | |
3006 | SvUTF8_on(sv); | |
3007 | } else { | |
3008 | SvUTF8_off(sv); | |
3009 | } | |
3010 | } else { | |
3011 | stashname = "__ANON__"; | |
3012 | stashnamelen = 8; | |
3013 | } | |
3014 | len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */ | |
3015 | + 2 * sizeof(UV) + 2 /* )\0 */; | |
3016 | } else { | |
3017 | len = typelen + 3 /* (0x */ | |
3018 | + 2 * sizeof(UV) + 2 /* )\0 */; | |
3019 | } | |
fafee734 | 3020 | |
4bac9ae4 CS |
3021 | Newx(buffer, len, char); |
3022 | buffer_end = retval = buffer + len; | |
3023 | ||
3024 | /* Working backwards */ | |
3025 | *--retval = '\0'; | |
3026 | *--retval = ')'; | |
3027 | do { | |
3028 | *--retval = PL_hexdigit[addr & 15]; | |
3029 | } while (addr >>= 4); | |
3030 | *--retval = 'x'; | |
3031 | *--retval = '0'; | |
3032 | *--retval = '('; | |
3033 | ||
3034 | retval -= typelen; | |
3035 | memcpy(retval, typestr, typelen); | |
3036 | ||
3037 | if (stashname) { | |
3038 | *--retval = '='; | |
3039 | retval -= stashnamelen; | |
3040 | memcpy(retval, stashname, stashnamelen); | |
c080367d | 3041 | } |
4bac9ae4 CS |
3042 | /* retval may not necessarily have reached the start of the |
3043 | buffer here. */ | |
3044 | assert (retval >= buffer); | |
3045 | ||
3046 | len = buffer_end - retval - 1; /* -1 for that \0 */ | |
463ee0b2 | 3047 | } |
cdb061a3 | 3048 | if (lp) |
4bac9ae4 CS |
3049 | *lp = len; |
3050 | SAVEFREEPV(buffer); | |
3051 | return retval; | |
79072805 | 3052 | } |
79072805 | 3053 | } |
4bac9ae4 CS |
3054 | |
3055 | if (SvPOKp(sv)) { | |
3056 | if (lp) | |
3057 | *lp = SvCUR(sv); | |
3058 | if (flags & SV_MUTABLE_RETURN) | |
3059 | return SvPVX_mutable(sv); | |
3060 | if (flags & SV_CONST_RETURN) | |
3061 | return (char *)SvPVX_const(sv); | |
3062 | return SvPVX(sv); | |
3063 | } | |
3064 | ||
3065 | if (SvIOK(sv)) { | |
28e5dec8 JH |
3066 | /* I'm assuming that if both IV and NV are equally valid then |
3067 | converting the IV is going to be more efficient */ | |
e1ec3a88 | 3068 | const U32 isUIOK = SvIsUV(sv); |
28e5dec8 JH |
3069 | char buf[TYPE_CHARS(UV)]; |
3070 | char *ebuf, *ptr; | |
97a130b8 | 3071 | STRLEN len; |
28e5dec8 JH |
3072 | |
3073 | if (SvTYPE(sv) < SVt_PVIV) | |
3074 | sv_upgrade(sv, SVt_PVIV); | |
4ea1d550 | 3075 | ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf); |
97a130b8 | 3076 | len = ebuf - ptr; |
5902b6a9 | 3077 | /* inlined from sv_setpvn */ |
97a130b8 NC |
3078 | s = SvGROW_mutable(sv, len + 1); |
3079 | Move(ptr, s, len, char); | |
3080 | s += len; | |
28e5dec8 | 3081 | *s = '\0'; |
b127e37e | 3082 | SvPOK_on(sv); |
28e5dec8 | 3083 | } |
4bac9ae4 | 3084 | else if (SvNOK(sv)) { |
79072805 LW |
3085 | if (SvTYPE(sv) < SVt_PVNV) |
3086 | sv_upgrade(sv, SVt_PVNV); | |
128eeacb DD |
3087 | if (SvNVX(sv) == 0.0 |
3088 | #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan) | |
3089 | && !Perl_isnan(SvNVX(sv)) | |
3090 | #endif | |
3091 | ) { | |
29912d93 NC |
3092 | s = SvGROW_mutable(sv, 2); |
3093 | *s++ = '0'; | |
3094 | *s = '\0'; | |
3095 | } else { | |
5e85836e | 3096 | STRLEN len; |
fb8cdbc5 | 3097 | STRLEN size = 5; /* "-Inf\0" */ |
0c7e610f | 3098 | |
fb8cdbc5 | 3099 | s = SvGROW_mutable(sv, size); |
3823048b | 3100 | len = S_infnan_2pv(SvNVX(sv), s, size, 0); |
fb8cdbc5 | 3101 | if (len > 0) { |
0c7e610f | 3102 | s += len; |
fb8cdbc5 JH |
3103 | SvPOK_on(sv); |
3104 | } | |
0c7e610f | 3105 | else { |
0c7e610f | 3106 | /* some Xenix systems wipe out errno here */ |
fb8cdbc5 JH |
3107 | dSAVE_ERRNO; |
3108 | ||
3840bff0 JH |
3109 | size = |
3110 | 1 + /* sign */ | |
3111 | 1 + /* "." */ | |
3112 | NV_DIG + | |
3113 | 1 + /* "e" */ | |
3114 | 1 + /* sign */ | |
3115 | 5 + /* exponent digits */ | |
3116 | 1 + /* \0 */ | |
3117 | 2; /* paranoia */ | |
b127e37e | 3118 | |
fb8cdbc5 | 3119 | s = SvGROW_mutable(sv, size); |
b127e37e | 3120 | #ifndef USE_LOCALE_NUMERIC |
a4eca1d4 JH |
3121 | SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG); |
3122 | ||
0c7e610f JH |
3123 | SvPOK_on(sv); |
3124 | #else | |
28acfe03 | 3125 | { |
3840bff0 | 3126 | bool local_radix; |
67d796ae KW |
3127 | DECLARATION_FOR_LC_NUMERIC_MANIPULATION; |
3128 | STORE_LC_NUMERIC_SET_TO_NEEDED(); | |
3840bff0 | 3129 | |
3dbc6af5 | 3130 | local_radix = PL_numeric_local && PL_numeric_radix_sv; |
3840bff0 JH |
3131 | if (local_radix && SvLEN(PL_numeric_radix_sv) > 1) { |
3132 | size += SvLEN(PL_numeric_radix_sv) - 1; | |
3133 | s = SvGROW_mutable(sv, size); | |
3134 | } | |
3135 | ||
a4eca1d4 | 3136 | SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG); |
0c7e610f JH |
3137 | |
3138 | /* If the radix character is UTF-8, and actually is in the | |
3139 | * output, turn on the UTF-8 flag for the scalar */ | |
3dbc6af5 KW |
3140 | if ( local_radix |
3141 | && SvUTF8(PL_numeric_radix_sv) | |
3142 | && instr(s, SvPVX_const(PL_numeric_radix_sv))) | |
3143 | { | |
3840bff0 JH |
3144 | SvUTF8_on(sv); |
3145 | } | |
3146 | ||
0c7e610f | 3147 | RESTORE_LC_NUMERIC(); |
28acfe03 | 3148 | } |
68e8f474 | 3149 | |
0c7e610f JH |
3150 | /* We don't call SvPOK_on(), because it may come to |
3151 | * pass that the locale changes so that the | |
3152 | * stringification we just did is no longer correct. We | |
3153 | * will have to re-stringify every time it is needed */ | |
b127e37e | 3154 | #endif |
0c7e610f JH |
3155 | RESTORE_ERRNO; |
3156 | } | |
3157 | while (*s) s++; | |
bbce6d69 | 3158 | } |
79072805 | 3159 | } |
4bac9ae4 CS |
3160 | else if (isGV_with_GP(sv)) { |
3161 | GV *const gv = MUTABLE_GV(sv); | |
3162 | SV *const buffer = sv_newmortal(); | |
8d1c3e26 | 3163 | |
4bac9ae4 | 3164 | gv_efullname3(buffer, gv, "*"); |
180488f8 | 3165 | |
4bac9ae4 CS |
3166 | assert(SvPOK(buffer)); |
3167 | if (SvUTF8(buffer)) | |
3168 | SvUTF8_on(sv); | |
3169 | if (lp) | |
3170 | *lp = SvCUR(buffer); | |
3171 | return SvPVX(buffer); | |
3172 | } | |
8d919b0a FC |
3173 | else if (isREGEXP(sv)) { |
3174 | if (lp) *lp = RX_WRAPLEN((REGEXP *)sv); | |
3175 | return RX_WRAPPED((REGEXP *)sv); | |
3176 | } | |
4bac9ae4 | 3177 | else { |
cdb061a3 | 3178 | if (lp) |
00b6aa41 | 3179 | *lp = 0; |
9f621bb0 NC |
3180 | if (flags & SV_UNDEF_RETURNS_NULL) |
3181 | return NULL; | |
4f62cd62 | 3182 | if (!PL_localizing && ckWARN(WARN_UNINITIALIZED)) |
9f621bb0 | 3183 | report_uninit(sv); |
4bac9ae4 CS |
3184 | /* Typically the caller expects that sv_any is not NULL now. */ |
3185 | if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV) | |
25da4f38 | 3186 | sv_upgrade(sv, SVt_PV); |
73d840c0 | 3187 | return (char *)""; |
79072805 | 3188 | } |
4bac9ae4 | 3189 | |
cdb061a3 | 3190 | { |
823a54a3 | 3191 | const STRLEN len = s - SvPVX_const(sv); |
cdb061a3 NC |
3192 | if (lp) |
3193 | *lp = len; | |
3194 | SvCUR_set(sv, len); | |
3195 | } | |
1d7c1841 | 3196 | DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n", |
3f7c398e | 3197 | PTR2UV(sv),SvPVX_const(sv))); |
4d84ee25 NC |
3198 | if (flags & SV_CONST_RETURN) |
3199 | return (char *)SvPVX_const(sv); | |
10516c54 NC |
3200 | if (flags & SV_MUTABLE_RETURN) |
3201 | return SvPVX_mutable(sv); | |
463ee0b2 LW |
3202 | return SvPVX(sv); |
3203 | } | |
3204 | ||
645c22ef | 3205 | /* |
6050d10e JP |
3206 | =for apidoc sv_copypv |
3207 | ||
3208 | Copies a stringified representation of the source SV into the | |
796b6530 | 3209 | destination SV. Automatically performs any necessary C<mg_get> and |
54f0641b | 3210 | coercion of numeric values into strings. Guaranteed to preserve |
796b6530 KW |
3211 | C<UTF8> flag even from overloaded objects. Similar in nature to |
3212 | C<sv_2pv[_flags]> but operates directly on an SV instead of just the | |
3213 | string. Mostly uses C<sv_2pv_flags> to do its work, except when that | |
6050d10e JP |
3214 | would lose the UTF-8'ness of the PV. |
3215 | ||
4bac9ae4 CS |
3216 | =for apidoc sv_copypv_nomg |
3217 | ||
796b6530 | 3218 | Like C<sv_copypv>, but doesn't invoke get magic first. |
4bac9ae4 CS |
3219 | |
3220 | =for apidoc sv_copypv_flags | |
3221 | ||
796b6530 | 3222 | Implementation of C<sv_copypv> and C<sv_copypv_nomg>. Calls get magic iff flags |
c5608a1f | 3223 | has the C<SV_GMAGIC> bit set. |
4bac9ae4 | 3224 | |
6050d10e JP |
3225 | =cut |
3226 | */ | |
3227 | ||
3228 | void | |
5aaab254 | 3229 | Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags) |
4bac9ae4 | 3230 | { |
446eaa42 | 3231 | STRLEN len; |
4bac9ae4 | 3232 | const char *s; |
7918f24d | 3233 | |
4bac9ae4 | 3234 | PERL_ARGS_ASSERT_SV_COPYPV_FLAGS; |
7918f24d | 3235 | |
c77ed9ca | 3236 | s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC)); |
cb50f42d | 3237 | sv_setpvn(dsv,s,len); |
446eaa42 | 3238 | if (SvUTF8(ssv)) |
cb50f42d | 3239 | SvUTF8_on(dsv); |
446eaa42 | 3240 | else |
cb50f42d | 3241 | SvUTF8_off(dsv); |
6050d10e JP |
3242 | } |
3243 | ||
3244 | /* | |
645c22ef DM |
3245 | =for apidoc sv_2pvbyte |
3246 | ||
796b6530 | 3247 | Return a pointer to the byte-encoded representation of the SV, and set C<*lp> |
1e54db1a | 3248 | to its length. May cause the SV to be downgraded from UTF-8 as a |
645c22ef DM |
3249 | side-effect. |
3250 | ||
3251 | Usually accessed via the C<SvPVbyte> macro. | |
3252 | ||
3253 | =cut | |
3254 | */ | |
3255 | ||
7340a771 | 3256 | char * |
5aaab254 | 3257 | Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp) |
7340a771 | 3258 | { |
7918f24d NC |
3259 | PERL_ARGS_ASSERT_SV_2PVBYTE; |
3260 | ||
48120f8f | 3261 | SvGETMAGIC(sv); |
4499db73 FC |
3262 | if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv)) |
3263 | || isGV_with_GP(sv) || SvROK(sv)) { | |
a901b181 | 3264 | SV *sv2 = sv_newmortal(); |
48120f8f | 3265 | sv_copypv_nomg(sv2,sv); |
a901b181 FC |
3266 | sv = sv2; |
3267 | } | |
0875d2fe | 3268 | sv_utf8_downgrade(sv,0); |
71eb6d8c | 3269 | return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv); |
7340a771 GS |
3270 | } |
3271 | ||
645c22ef | 3272 | /* |
035cbb0e RGS |
3273 | =for apidoc sv_2pvutf8 |
3274 | ||
796b6530 | 3275 | Return a pointer to the UTF-8-encoded representation of the SV, and set C<*lp> |
035cbb0e RGS |
3276 | to its length. May cause the SV to be upgraded to UTF-8 as a side-effect. |
3277 | ||
3278 | Usually accessed via the C<SvPVutf8> macro. | |
3279 | ||
3280 | =cut | |
3281 | */ | |
645c22ef | 3282 | |
7340a771 | 3283 | char * |
5aaab254 | 3284 | Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp) |
7340a771 | 3285 | { |
7918f24d NC |
3286 | PERL_ARGS_ASSERT_SV_2PVUTF8; |
3287 | ||
4499db73 FC |
3288 | if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv)) |
3289 | || isGV_with_GP(sv) || SvROK(sv)) | |
fe46cbda | 3290 | sv = sv_mortalcopy(sv); |
4bac9ae4 CS |
3291 | else |
3292 | SvGETMAGIC(sv); | |
3293 | sv_utf8_upgrade_nomg(sv); | |
c3ec315f | 3294 | return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv); |
7340a771 | 3295 | } |
1c846c1f | 3296 | |
7ee2227d | 3297 | |
645c22ef DM |
3298 | /* |
3299 | =for apidoc sv_2bool | |
3300 | ||
796b6530 KW |
3301 | This macro is only used by C<sv_true()> or its macro equivalent, and only if |
3302 | the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>. | |
3303 | It calls C<sv_2bool_flags> with the C<SV_GMAGIC> flag. | |
06c841cf FC |
3304 | |
3305 | =for apidoc sv_2bool_flags | |
3306 | ||
796b6530 KW |
3307 | This function is only used by C<sv_true()> and friends, and only if |
3308 | the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>. If the flags | |
3309 | contain C<SV_GMAGIC>, then it does an C<mg_get()> first. | |
06c841cf | 3310 | |
645c22ef DM |
3311 | |
3312 | =cut | |
3313 | */ | |
3314 | ||
463ee0b2 | 3315 | bool |
9d176cd8 | 3316 | Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags) |
463ee0b2 | 3317 | { |
06c841cf | 3318 | PERL_ARGS_ASSERT_SV_2BOOL_FLAGS; |
7918f24d | 3319 | |
9d176cd8 | 3320 | restart: |
06c841cf | 3321 | if(flags & SV_GMAGIC) SvGETMAGIC(sv); |
463ee0b2 | 3322 | |
a0d0e21e LW |
3323 | if (!SvOK(sv)) |
3324 | return 0; | |
3325 | if (SvROK(sv)) { | |
fabdb6c0 | 3326 | if (SvAMAGIC(sv)) { |
31d632c3 | 3327 | SV * const tmpsv = AMG_CALLunary(sv, bool__amg); |
9d176cd8 DD |
3328 | if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) { |
3329 | bool svb; | |
3330 | sv = tmpsv; | |
3331 | if(SvGMAGICAL(sv)) { | |
3332 | flags = SV_GMAGIC; | |
3333 | goto restart; /* call sv_2bool */ | |
3334 | } | |
3335 | /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */ | |
3336 | else if(!SvOK(sv)) { | |
3337 | svb = 0; | |
3338 | } | |
3339 | else if(SvPOK(sv)) { | |
3340 | svb = SvPVXtrue(sv); | |
3341 | } | |
3342 | else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) { | |
3343 | svb = (SvIOK(sv) && SvIVX(sv) != 0) | |
659c4b96 | 3344 | || (SvNOK(sv) && SvNVX(sv) != 0.0); |
9d176cd8 DD |
3345 | } |
3346 | else { | |
3347 | flags = 0; | |
3348 | goto restart; /* call sv_2bool_nomg */ | |
3349 | } | |
3350 | return cBOOL(svb); | |
3351 | } | |
fabdb6c0 AL |
3352 | } |
3353 | return SvRV(sv) != 0; | |
a0d0e21e | 3354 | } |
85b7d9b3 FC |
3355 | if (isREGEXP(sv)) |
3356 | return | |
3357 | RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0'); | |
4bac9ae4 | 3358 | return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0); |
79072805 LW |
3359 | } |
3360 | ||
c461cf8f JH |
3361 | /* |
3362 | =for apidoc sv_utf8_upgrade | |
3363 | ||
78ea37eb | 3364 | Converts the PV of an SV to its UTF-8-encoded form. |
645c22ef | 3365 | Forces the SV to string form if it is not already. |
2bbc8d55 | 3366 | Will C<mg_get> on C<sv> if appropriate. |
796b6530 | 3367 | Always sets the C<SvUTF8> flag to avoid future validity checks even |
2bbc8d55 SP |
3368 | if the whole string is the same in UTF-8 as not. |
3369 | Returns the number of bytes in the converted string | |
c461cf8f | 3370 | |
0efd0472 | 3371 | This is not a general purpose byte encoding to Unicode interface: |
13a6c0e0 JH |
3372 | use the Encode extension for that. |
3373 | ||
fe749c9a KW |
3374 | =for apidoc sv_utf8_upgrade_nomg |
3375 | ||
796b6530 | 3376 | Like C<sv_utf8_upgrade>, but doesn't do magic on C<sv>. |
fe749c9a | 3377 | |
8d6d96c1 HS |
3378 | =for apidoc sv_utf8_upgrade_flags |
3379 | ||
78ea37eb | 3380 | Converts the PV of an SV to its UTF-8-encoded form. |
645c22ef | 3381 | Forces the SV to string form if it is not already. |
8d6d96c1 | 3382 | Always sets the SvUTF8 flag to avoid future validity checks even |
960b0271 FC |
3383 | if all the bytes are invariant in UTF-8. |
3384 | If C<flags> has C<SV_GMAGIC> bit set, | |
2bbc8d55 | 3385 | will C<mg_get> on C<sv> if appropriate, else not. |
2a590426 | 3386 | |
796b6530 | 3387 | If C<flags> has C<SV_FORCE_UTF8_UPGRADE> set, this function assumes that the PV |
2a590426 KW |
3388 | will expand when converted to UTF-8, and skips the extra work of checking for |
3389 | that. Typically this flag is used by a routine that has already parsed the | |
3390 | string and found such characters, and passes this information on so that the | |
3391 | work doesn't have to be repeated. | |
3392 | ||
3393 | Returns the number of bytes in the converted string. | |
8d6d96c1 | 3394 | |
0efd0472 | 3395 | This is not a general purpose byte encoding to Unicode interface: |
13a6c0e0 JH |
3396 | use the Encode extension for that. |
3397 | ||
2a590426 | 3398 | =for apidoc sv_utf8_upgrade_flags_grow |
b3ab6785 | 3399 | |
796b6530 KW |
3400 | Like C<sv_utf8_upgrade_flags>, but has an additional parameter C<extra>, which is |
3401 | the number of unused bytes the string of C<sv> is guaranteed to have free after | |
2a590426 KW |
3402 | it upon return. This allows the caller to reserve extra space that it intends |
3403 | to fill, to avoid extra grows. | |
b3ab6785 | 3404 | |
2a590426 KW |
3405 | C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags> |
3406 | are implemented in terms of this function. | |
3407 | ||
3408 | Returns the number of bytes in the converted string (not including the spares). | |
3409 | ||
3410 | =cut | |
b3ab6785 KW |
3411 | |
3412 | (One might think that the calling routine could pass in the position of the | |
2a590426 KW |
3413 | first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't |
3414 | have to be found again. But that is not the case, because typically when the | |
3415 | caller is likely to use this flag, it won't be calling this routine unless it | |
3416 | finds something that won't fit into a byte. Otherwise it tries to not upgrade | |
3417 | and just use bytes. But some things that do fit into a byte are variants in | |
3418 | utf8, and the caller may not have been keeping track of these.) | |
b3ab6785 | 3419 | |
6602b933 KW |
3420 | If the routine itself changes the string, it adds a trailing C<NUL>. Such a |
3421 | C<NUL> isn't guaranteed due to having other routines do the work in some input | |
3422 | cases, or if the input is already flagged as being in utf8. | |
b3ab6785 KW |
3423 | |
3424 | The speed of this could perhaps be improved for many cases if someone wanted to | |
3425 | write a fast function that counts the number of variant characters in a string, | |
3426 | especially if it could return the position of the first one. | |
3427 | ||
8d6d96c1 HS |
3428 | */ |
3429 | ||
3430 | STRLEN | |
5aaab254 | 3431 | Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra) |
8d6d96c1 | 3432 | { |
b3ab6785 | 3433 | PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW; |
7918f24d | 3434 | |
808c356f RGS |
3435 | if (sv == &PL_sv_undef) |
3436 | return 0; | |
892f9127 | 3437 | if (!SvPOK_nog(sv)) { |
e0e62c2a | 3438 | STRLEN len = 0; |
d52b7888 NC |
3439 | if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) { |
3440 | (void) sv_2pv_flags(sv,&len, flags); | |
b3ab6785 KW |
3441 | if (SvUTF8(sv)) { |
3442 | if (extra) SvGROW(sv, SvCUR(sv) + extra); | |
d52b7888 | 3443 | return len; |
b3ab6785 | 3444 | } |
d52b7888 | 3445 | } else { |
33fb6f35 | 3446 | (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC); |
d52b7888 | 3447 | } |
e0e62c2a | 3448 | } |
4411f3b6 | 3449 | |
f5cee72b | 3450 | if (SvUTF8(sv)) { |
b3ab6785 | 3451 | if (extra) SvGROW(sv, SvCUR(sv) + extra); |
5fec3b1d | 3452 | return SvCUR(sv); |
f5cee72b | 3453 | } |
5fec3b1d | 3454 | |
765f542d | 3455 | if (SvIsCOW(sv)) { |
c56ed9f6 | 3456 | S_sv_uncow(aTHX_ sv, 0); |
db42d148 NIS |
3457 | } |
3458 | ||
4e93345f KW |
3459 | if (SvCUR(sv) == 0) { |
3460 | if (extra) SvGROW(sv, extra); | |
3461 | } else { /* Assume Latin-1/EBCDIC */ | |
c4e7c712 | 3462 | /* This function could be much more efficient if we |
2bbc8d55 | 3463 | * had a FLAG in SVs to signal if there are any variant |
c4e7c712 | 3464 | * chars in the PV. Given that there isn't such a flag |
b3ab6785 KW |
3465 | * make the loop as fast as possible (although there are certainly ways |
3466 | * to speed this up, eg. through vectorization) */ | |
3467 | U8 * s = (U8 *) SvPVX_const(sv); | |
3468 | U8 * e = (U8 *) SvEND(sv); | |
3469 | U8 *t = s; | |
3470 | STRLEN two_byte_count = 0; | |
c4e7c712 | 3471 | |
b3ab6785 KW |
3472 | if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8; |
3473 | ||
3474 | /* See if really will need to convert to utf8. We mustn't rely on our | |
3475 | * incoming SV being well formed and having a trailing '\0', as certain | |
3476 | * code in pp_formline can send us partially built SVs. */ | |
3477 | ||
c4e7c712 | 3478 | while (t < e) { |
53c1dcc0 | 3479 | const U8 ch = *t++; |
6f2d5cbc | 3480 | if (NATIVE_BYTE_IS_INVARIANT(ch)) continue; |
b3ab6785 KW |
3481 | |
3482 | t--; /* t already incremented; re-point to first variant */ | |
3483 | two_byte_count = 1; | |
3484 | goto must_be_utf8; | |
c4e7c712 | 3485 | } |
b3ab6785 KW |
3486 | |
3487 | /* utf8 conversion not needed because all are invariants. Mark as | |
3488 | * UTF-8 even if no variant - saves scanning loop */ | |
c4e7c712 | 3489 | SvUTF8_on(sv); |
7f0bfbea | 3490 | if (extra) SvGROW(sv, SvCUR(sv) + extra); |
b3ab6785 KW |
3491 | return SvCUR(sv); |
3492 | ||
7b52d656 | 3493 | must_be_utf8: |
b3ab6785 KW |
3494 | |
3495 | /* Here, the string should be converted to utf8, either because of an | |
3496 | * input flag (two_byte_count = 0), or because a character that | |
3497 | * requires 2 bytes was found (two_byte_count = 1). t points either to | |
3498 | * the beginning of the string (if we didn't examine anything), or to | |
3499 | * the first variant. In either case, everything from s to t - 1 will | |
3500 | * occupy only 1 byte each on output. | |
3501 | * | |
3502 | * There are two main ways to convert. One is to create a new string | |
3503 | * and go through the input starting from the beginning, appending each | |
3504 | * converted value onto the new string as we go along. It's probably | |
3505 | * best to allocate enough space in the string for the worst possible | |
3506 | * case rather than possibly running out of space and having to | |
3507 | * reallocate and then copy what we've done so far. Since everything | |
3508 | * from s to t - 1 is invariant, the destination can be initialized | |
3509 | * with these using a fast memory copy | |
3510 | * | |
3511 | * The other way is to figure out exactly how big the string should be | |
3512 | * by parsing the entire input. Then you don't have to make it big | |
3513 | * enough to handle the worst possible case, and more importantly, if | |
3514 | * the string you already have is large enough, you don't have to | |
3515 | * allocate a new string, you can copy the last character in the input | |
3516 | * string to the final position(s) that will be occupied by the | |
3517 | * converted string and go backwards, stopping at t, since everything | |
3518 | * before that is invariant. | |
3519 | * | |
3520 | * There are advantages and disadvantages to each method. | |
3521 | * | |
3522 | * In the first method, we can allocate a new string, do the memory | |
3523 | * copy from the s to t - 1, and then proceed through the rest of the | |
3524 | * string byte-by-byte. | |
3525 | * | |
3526 | * In the second method, we proceed through the rest of the input | |
3527 | * string just calculating how big the converted string will be. Then | |
3528 | * there are two cases: | |
3529 | * 1) if the string has enough extra space to handle the converted | |
3530 | * value. We go backwards through the string, converting until we | |
3531 | * get to the position we are at now, and then stop. If this | |
3532 | * position is far enough along in the string, this method is | |
3533 | * faster than the other method. If the memory copy were the same | |
3534 | * speed as the byte-by-byte loop, that position would be about | |
3535 | * half-way, as at the half-way mark, parsing to the end and back | |
3536 | * is one complete string's parse, the same amount as starting | |
3537 | * over and going all the way through. Actually, it would be | |
3538 | * somewhat less than half-way, as it's faster to just count bytes | |
3539 | * than to also copy, and we don't have the overhead of allocating | |
3540 | * a new string, changing the scalar to use it, and freeing the | |
3541 | * existing one. But if the memory copy is fast, the break-even | |
3542 | * point is somewhere after half way. The counting loop could be | |
3543 | * sped up by vectorization, etc, to move the break-even point | |
3544 | * further towards the beginning. | |
3545 | * 2) if the string doesn't have enough space to handle the converted | |
3546 | * value. A new string will have to be allocated, and one might | |
3547 | * as well, given that, start from the beginning doing the first | |
3548 | * method. We've spent extra time parsing the string and in | |
3549 | * exchange all we've gotten is that we know precisely how big to | |
3550 | * make the new one. Perl is more optimized for time than space, | |
3551 | * so this case is a loser. | |
3552 | * So what I've decided to do is not use the 2nd method unless it is | |
3553 | * guaranteed that a new string won't have to be allocated, assuming | |
3554 | * the worst case. I also decided not to put any more conditions on it | |
3555 | * than this, for now. It seems likely that, since the worst case is | |
3556 | * twice as big as the unknown portion of the string (plus 1), we won't | |
3557 | * be guaranteed enough space, causing us to go to the first method, | |
3558 | * unless the string is short, or the first variant character is near | |
3559 | * the end of it. In either of these cases, it seems best to use the | |
3560 | * 2nd method. The only circumstance I can think of where this would | |
3561 | * be really slower is if the string had once had much more data in it | |
3562 | * than it does now, but there is still a substantial amount in it */ | |
3563 | ||
3564 | { | |
3565 | STRLEN invariant_head = t - s; | |
3566 | STRLEN size = invariant_head + (e - t) * 2 + 1 + extra; | |
3567 | if (SvLEN(sv) < size) { | |
3568 | ||
3569 | /* Here, have decided to allocate a new string */ | |
3570 | ||
3571 | U8 *dst; | |
3572 | U8 *d; | |
3573 | ||
3574 | Newx(dst, size, U8); | |
3575 | ||
3576 | /* If no known invariants at the beginning of the input string, | |
3577 | * set so starts from there. Otherwise, can use memory copy to | |
3578 | * get up to where we are now, and then start from here */ | |
3579 | ||
5b26a7b3 | 3580 | if (invariant_head == 0) { |
b3ab6785 KW |
3581 | d = dst; |
3582 | } else { | |
3583 | Copy(s, dst, invariant_head, char); | |
3584 | d = dst + invariant_head; | |
3585 | } | |
3586 | ||
3587 | while (t < e) { | |
55d09dc8 KW |
3588 | append_utf8_from_native_byte(*t, &d); |
3589 | t++; | |
b3ab6785 KW |
3590 | } |
3591 | *d = '\0'; | |
3592 | SvPV_free(sv); /* No longer using pre-existing string */ | |
3593 | SvPV_set(sv, (char*)dst); | |
3594 | SvCUR_set(sv, d - dst); | |
3595 | SvLEN_set(sv, size); | |
3596 | } else { | |
3597 | ||
3598 | /* Here, have decided to get the exact size of the string. | |
3599 | * Currently this happens only when we know that there is | |
3600 | * guaranteed enough space to fit the converted string, so | |
3601 | * don't have to worry about growing. If two_byte_count is 0, | |
3602 | * then t points to the first byte of the string which hasn't | |