3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 if (ckWARN_d(WARN_INTERNAL))
357 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
358 "Attempt to free non-arena SV: 0x%"UVxf
359 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
366 #else /* ! DEBUGGING */
368 #define del_SV(p) plant_SV(p)
370 #endif /* DEBUGGING */
374 =head1 SV Manipulation Functions
376 =for apidoc sv_add_arena
378 Given a chunk of memory, link it to the head of the list of arenas,
379 and split it into a list of free SVs.
385 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
388 SV *const sva = MUTABLE_SV(ptr);
392 PERL_ARGS_ASSERT_SV_ADD_ARENA;
394 /* The first SV in an arena isn't an SV. */
395 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
396 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
397 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
399 PL_sv_arenaroot = sva;
400 PL_sv_root = sva + 1;
402 svend = &sva[SvREFCNT(sva) - 1];
405 SvARENA_CHAIN_SET(sv, (sv + 1));
409 /* Must always set typemask because it's always checked in on cleanup
410 when the arenas are walked looking for objects. */
411 SvFLAGS(sv) = SVTYPEMASK;
414 SvARENA_CHAIN_SET(sv, 0);
418 SvFLAGS(sv) = SVTYPEMASK;
421 /* visit(): call the named function for each non-free SV in the arenas
422 * whose flags field matches the flags/mask args. */
425 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
431 PERL_ARGS_ASSERT_VISIT;
433 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
434 register const SV * const svend = &sva[SvREFCNT(sva)];
436 for (sv = sva + 1; sv < svend; ++sv) {
437 if (SvTYPE(sv) != SVTYPEMASK
438 && (sv->sv_flags & mask) == flags
451 /* called by sv_report_used() for each live SV */
454 do_report_used(pTHX_ SV *const sv)
456 if (SvTYPE(sv) != SVTYPEMASK) {
457 PerlIO_printf(Perl_debug_log, "****\n");
464 =for apidoc sv_report_used
466 Dump the contents of all SVs not yet freed. (Debugging aid).
472 Perl_sv_report_used(pTHX)
475 visit(do_report_used, 0, 0);
481 /* called by sv_clean_objs() for each live SV */
484 do_clean_objs(pTHX_ SV *const ref)
489 SV * const target = SvRV(ref);
490 if (SvOBJECT(target)) {
491 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
492 if (SvWEAKREF(ref)) {
493 sv_del_backref(target, ref);
499 SvREFCNT_dec(target);
504 /* XXX Might want to check arrays, etc. */
507 /* called by sv_clean_objs() for each live SV */
509 #ifndef DISABLE_DESTRUCTOR_KLUDGE
511 do_clean_named_objs(pTHX_ SV *const sv)
514 assert(SvTYPE(sv) == SVt_PVGV);
515 assert(isGV_with_GP(sv));
518 #ifdef PERL_DONT_CREATE_GVSV
521 SvOBJECT(GvSV(sv))) ||
522 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
523 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
524 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
525 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
526 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
528 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
529 SvFLAGS(sv) |= SVf_BREAK;
537 =for apidoc sv_clean_objs
539 Attempt to destroy all objects not yet freed
545 Perl_sv_clean_objs(pTHX)
548 PL_in_clean_objs = TRUE;
549 visit(do_clean_objs, SVf_ROK, SVf_ROK);
550 #ifndef DISABLE_DESTRUCTOR_KLUDGE
551 /* some barnacles may yet remain, clinging to typeglobs */
552 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
554 PL_in_clean_objs = FALSE;
557 /* called by sv_clean_all() for each live SV */
560 do_clean_all(pTHX_ SV *const sv)
563 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
564 /* don't clean pid table and strtab */
567 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
568 SvFLAGS(sv) |= SVf_BREAK;
573 =for apidoc sv_clean_all
575 Decrement the refcnt of each remaining SV, possibly triggering a
576 cleanup. This function may have to be called multiple times to free
577 SVs which are in complex self-referential hierarchies.
583 Perl_sv_clean_all(pTHX)
587 PL_in_clean_all = TRUE;
588 cleaned = visit(do_clean_all, 0,0);
589 PL_in_clean_all = FALSE;
594 ARENASETS: a meta-arena implementation which separates arena-info
595 into struct arena_set, which contains an array of struct
596 arena_descs, each holding info for a single arena. By separating
597 the meta-info from the arena, we recover the 1st slot, formerly
598 borrowed for list management. The arena_set is about the size of an
599 arena, avoiding the needless malloc overhead of a naive linked-list.
601 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
602 memory in the last arena-set (1/2 on average). In trade, we get
603 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
604 smaller types). The recovery of the wasted space allows use of
605 small arenas for large, rare body types, by changing array* fields
606 in body_details_by_type[] below.
609 char *arena; /* the raw storage, allocated aligned */
610 size_t size; /* its size ~4k typ */
611 U32 misc; /* type, and in future other things. */
616 /* Get the maximum number of elements in set[] such that struct arena_set
617 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
618 therefore likely to be 1 aligned memory page. */
620 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
621 - 2 * sizeof(int)) / sizeof (struct arena_desc))
624 struct arena_set* next;
625 unsigned int set_size; /* ie ARENAS_PER_SET */
626 unsigned int curr; /* index of next available arena-desc */
627 struct arena_desc set[ARENAS_PER_SET];
631 =for apidoc sv_free_arenas
633 Deallocate the memory used by all arenas. Note that all the individual SV
634 heads and bodies within the arenas must already have been freed.
639 Perl_sv_free_arenas(pTHX)
646 /* Free arenas here, but be careful about fake ones. (We assume
647 contiguity of the fake ones with the corresponding real ones.) */
649 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
650 svanext = MUTABLE_SV(SvANY(sva));
651 while (svanext && SvFAKE(svanext))
652 svanext = MUTABLE_SV(SvANY(svanext));
659 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
662 struct arena_set *current = aroot;
665 assert(aroot->set[i].arena);
666 Safefree(aroot->set[i].arena);
674 i = PERL_ARENA_ROOTS_SIZE;
676 PL_body_roots[i] = 0;
678 Safefree(PL_nice_chunk);
679 PL_nice_chunk = NULL;
680 PL_nice_chunk_size = 0;
686 Here are mid-level routines that manage the allocation of bodies out
687 of the various arenas. There are 5 kinds of arenas:
689 1. SV-head arenas, which are discussed and handled above
690 2. regular body arenas
691 3. arenas for reduced-size bodies
693 5. pte arenas (thread related)
695 Arena types 2 & 3 are chained by body-type off an array of
696 arena-root pointers, which is indexed by svtype. Some of the
697 larger/less used body types are malloced singly, since a large
698 unused block of them is wasteful. Also, several svtypes dont have
699 bodies; the data fits into the sv-head itself. The arena-root
700 pointer thus has a few unused root-pointers (which may be hijacked
701 later for arena types 4,5)
703 3 differs from 2 as an optimization; some body types have several
704 unused fields in the front of the structure (which are kept in-place
705 for consistency). These bodies can be allocated in smaller chunks,
706 because the leading fields arent accessed. Pointers to such bodies
707 are decremented to point at the unused 'ghost' memory, knowing that
708 the pointers are used with offsets to the real memory.
710 HE, HEK arenas are managed separately, with separate code, but may
711 be merge-able later..
713 PTE arenas are not sv-bodies, but they share these mid-level
714 mechanics, so are considered here. The new mid-level mechanics rely
715 on the sv_type of the body being allocated, so we just reserve one
716 of the unused body-slots for PTEs, then use it in those (2) PTE
717 contexts below (line ~10k)
720 /* get_arena(size): this creates custom-sized arenas
721 TBD: export properly for hv.c: S_more_he().
724 Perl_get_arena(pTHX_ const size_t arena_size, const U32 misc)
727 struct arena_desc* adesc;
728 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
731 /* shouldnt need this
732 if (!arena_size) arena_size = PERL_ARENA_SIZE;
735 /* may need new arena-set to hold new arena */
736 if (!aroot || aroot->curr >= aroot->set_size) {
737 struct arena_set *newroot;
738 Newxz(newroot, 1, struct arena_set);
739 newroot->set_size = ARENAS_PER_SET;
740 newroot->next = aroot;
742 PL_body_arenas = (void *) newroot;
743 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
746 /* ok, now have arena-set with at least 1 empty/available arena-desc */
747 curr = aroot->curr++;
748 adesc = &(aroot->set[curr]);
749 assert(!adesc->arena);
751 Newx(adesc->arena, arena_size, char);
752 adesc->size = arena_size;
754 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
755 curr, (void*)adesc->arena, (UV)arena_size));
761 /* return a thing to the free list */
763 #define del_body(thing, root) \
765 void ** const thing_copy = (void **)thing;\
766 *thing_copy = *root; \
767 *root = (void*)thing_copy; \
772 =head1 SV-Body Allocation
774 Allocation of SV-bodies is similar to SV-heads, differing as follows;
775 the allocation mechanism is used for many body types, so is somewhat
776 more complicated, it uses arena-sets, and has no need for still-live
779 At the outermost level, (new|del)_X*V macros return bodies of the
780 appropriate type. These macros call either (new|del)_body_type or
781 (new|del)_body_allocated macro pairs, depending on specifics of the
782 type. Most body types use the former pair, the latter pair is used to
783 allocate body types with "ghost fields".
785 "ghost fields" are fields that are unused in certain types, and
786 consequently don't need to actually exist. They are declared because
787 they're part of a "base type", which allows use of functions as
788 methods. The simplest examples are AVs and HVs, 2 aggregate types
789 which don't use the fields which support SCALAR semantics.
791 For these types, the arenas are carved up into appropriately sized
792 chunks, we thus avoid wasted memory for those unaccessed members.
793 When bodies are allocated, we adjust the pointer back in memory by the
794 size of the part not allocated, so it's as if we allocated the full
795 structure. (But things will all go boom if you write to the part that
796 is "not there", because you'll be overwriting the last members of the
797 preceding structure in memory.)
799 We calculate the correction using the STRUCT_OFFSET macro on the first
800 member present. If the allocated structure is smaller (no initial NV
801 actually allocated) then the net effect is to subtract the size of the NV
802 from the pointer, to return a new pointer as if an initial NV were actually
803 allocated. (We were using structures named *_allocated for this, but
804 this turned out to be a subtle bug, because a structure without an NV
805 could have a lower alignment constraint, but the compiler is allowed to
806 optimised accesses based on the alignment constraint of the actual pointer
807 to the full structure, for example, using a single 64 bit load instruction
808 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
810 This is the same trick as was used for NV and IV bodies. Ironically it
811 doesn't need to be used for NV bodies any more, because NV is now at
812 the start of the structure. IV bodies don't need it either, because
813 they are no longer allocated.
815 In turn, the new_body_* allocators call S_new_body(), which invokes
816 new_body_inline macro, which takes a lock, and takes a body off the
817 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
818 necessary to refresh an empty list. Then the lock is released, and
819 the body is returned.
821 S_more_bodies calls get_arena(), and carves it up into an array of N
822 bodies, which it strings into a linked list. It looks up arena-size
823 and body-size from the body_details table described below, thus
824 supporting the multiple body-types.
826 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
827 the (new|del)_X*V macros are mapped directly to malloc/free.
833 For each sv-type, struct body_details bodies_by_type[] carries
834 parameters which control these aspects of SV handling:
836 Arena_size determines whether arenas are used for this body type, and if
837 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
838 zero, forcing individual mallocs and frees.
840 Body_size determines how big a body is, and therefore how many fit into
841 each arena. Offset carries the body-pointer adjustment needed for
842 "ghost fields", and is used in *_allocated macros.
844 But its main purpose is to parameterize info needed in
845 Perl_sv_upgrade(). The info here dramatically simplifies the function
846 vs the implementation in 5.8.8, making it table-driven. All fields
847 are used for this, except for arena_size.
849 For the sv-types that have no bodies, arenas are not used, so those
850 PL_body_roots[sv_type] are unused, and can be overloaded. In
851 something of a special case, SVt_NULL is borrowed for HE arenas;
852 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
853 bodies_by_type[SVt_NULL] slot is not used, as the table is not
856 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
857 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
858 just use the same allocation semantics. At first, PTEs were also
859 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
860 bugs, so was simplified by claiming a new slot. This choice has no
861 consequence at this time.
865 struct body_details {
866 U8 body_size; /* Size to allocate */
867 U8 copy; /* Size of structure to copy (may be shorter) */
869 unsigned int type : 4; /* We have space for a sanity check. */
870 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
871 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
872 unsigned int arena : 1; /* Allocated from an arena */
873 size_t arena_size; /* Size of arena to allocate */
881 /* With -DPURFIY we allocate everything directly, and don't use arenas.
882 This seems a rather elegant way to simplify some of the code below. */
883 #define HASARENA FALSE
885 #define HASARENA TRUE
887 #define NOARENA FALSE
889 /* Size the arenas to exactly fit a given number of bodies. A count
890 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
891 simplifying the default. If count > 0, the arena is sized to fit
892 only that many bodies, allowing arenas to be used for large, rare
893 bodies (XPVFM, XPVIO) without undue waste. The arena size is
894 limited by PERL_ARENA_SIZE, so we can safely oversize the
897 #define FIT_ARENA0(body_size) \
898 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
899 #define FIT_ARENAn(count,body_size) \
900 ( count * body_size <= PERL_ARENA_SIZE) \
901 ? count * body_size \
902 : FIT_ARENA0 (body_size)
903 #define FIT_ARENA(count,body_size) \
905 ? FIT_ARENAn (count, body_size) \
906 : FIT_ARENA0 (body_size)
908 /* Calculate the length to copy. Specifically work out the length less any
909 final padding the compiler needed to add. See the comment in sv_upgrade
910 for why copying the padding proved to be a bug. */
912 #define copy_length(type, last_member) \
913 STRUCT_OFFSET(type, last_member) \
914 + sizeof (((type*)SvANY((const SV *)0))->last_member)
916 static const struct body_details bodies_by_type[] = {
917 { sizeof(HE), 0, 0, SVt_NULL,
918 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
920 /* The bind placeholder pretends to be an RV for now.
921 Also it's marked as "can't upgrade" to stop anyone using it before it's
923 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
925 /* IVs are in the head, so the allocation size is 0.
926 However, the slot is overloaded for PTEs. */
927 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
928 sizeof(IV), /* This is used to copy out the IV body. */
929 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
930 NOARENA /* IVS don't need an arena */,
931 /* But PTEs need to know the size of their arena */
932 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
935 /* 8 bytes on most ILP32 with IEEE doubles */
936 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
937 FIT_ARENA(0, sizeof(NV)) },
939 /* 8 bytes on most ILP32 with IEEE doubles */
940 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
941 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
942 + STRUCT_OFFSET(XPV, xpv_cur),
943 SVt_PV, FALSE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
947 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
948 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPVIV, xpv_cur),
950 SVt_PVIV, FALSE, NONV, HASARENA,
951 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
958 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
959 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
962 { sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
963 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
964 + STRUCT_OFFSET(regexp, xpv_cur),
965 SVt_REGEXP, FALSE, NONV, HASARENA,
966 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
970 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
971 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
974 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
975 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
977 { sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill),
978 copy_length(XPVAV, xmg_stash) - STRUCT_OFFSET(XPVAV, xav_fill),
979 + STRUCT_OFFSET(XPVAV, xav_fill),
980 SVt_PVAV, TRUE, NONV, HASARENA,
981 FIT_ARENA(0, sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill)) },
983 { sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill),
984 copy_length(XPVHV, xmg_stash) - STRUCT_OFFSET(XPVHV, xhv_fill),
985 + STRUCT_OFFSET(XPVHV, xhv_fill),
986 SVt_PVHV, TRUE, NONV, HASARENA,
987 FIT_ARENA(0, sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill)) },
990 { sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
991 sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
992 + STRUCT_OFFSET(XPVCV, xpv_cur),
993 SVt_PVCV, TRUE, NONV, HASARENA,
994 FIT_ARENA(0, sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur)) },
996 { sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
997 sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
998 + STRUCT_OFFSET(XPVFM, xpv_cur),
999 SVt_PVFM, TRUE, NONV, NOARENA,
1000 FIT_ARENA(20, sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur)) },
1002 /* XPVIO is 84 bytes, fits 48x */
1003 { sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1004 sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1005 + STRUCT_OFFSET(XPVIO, xpv_cur),
1006 SVt_PVIO, TRUE, NONV, HASARENA,
1007 FIT_ARENA(24, sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur)) },
1010 #define new_body_type(sv_type) \
1011 (void *)((char *)S_new_body(aTHX_ sv_type))
1013 #define del_body_type(p, sv_type) \
1014 del_body(p, &PL_body_roots[sv_type])
1017 #define new_body_allocated(sv_type) \
1018 (void *)((char *)S_new_body(aTHX_ sv_type) \
1019 - bodies_by_type[sv_type].offset)
1021 #define del_body_allocated(p, sv_type) \
1022 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1025 #define my_safemalloc(s) (void*)safemalloc(s)
1026 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1027 #define my_safefree(p) safefree((char*)p)
1031 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1032 #define del_XNV(p) my_safefree(p)
1034 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1035 #define del_XPVNV(p) my_safefree(p)
1037 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1038 #define del_XPVAV(p) my_safefree(p)
1040 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1041 #define del_XPVHV(p) my_safefree(p)
1043 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1044 #define del_XPVMG(p) my_safefree(p)
1046 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1047 #define del_XPVGV(p) my_safefree(p)
1051 #define new_XNV() new_body_type(SVt_NV)
1052 #define del_XNV(p) del_body_type(p, SVt_NV)
1054 #define new_XPVNV() new_body_type(SVt_PVNV)
1055 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1057 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1058 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1060 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1061 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1063 #define new_XPVMG() new_body_type(SVt_PVMG)
1064 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1066 #define new_XPVGV() new_body_type(SVt_PVGV)
1067 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1071 /* no arena for you! */
1073 #define new_NOARENA(details) \
1074 my_safemalloc((details)->body_size + (details)->offset)
1075 #define new_NOARENAZ(details) \
1076 my_safecalloc((details)->body_size + (details)->offset)
1079 S_more_bodies (pTHX_ const svtype sv_type)
1082 void ** const root = &PL_body_roots[sv_type];
1083 const struct body_details * const bdp = &bodies_by_type[sv_type];
1084 const size_t body_size = bdp->body_size;
1087 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1088 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1089 static bool done_sanity_check;
1091 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1092 * variables like done_sanity_check. */
1093 if (!done_sanity_check) {
1094 unsigned int i = SVt_LAST;
1096 done_sanity_check = TRUE;
1099 assert (bodies_by_type[i].type == i);
1103 assert(bdp->arena_size);
1105 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1107 end = start + arena_size - 2 * body_size;
1109 /* computed count doesnt reflect the 1st slot reservation */
1110 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1111 DEBUG_m(PerlIO_printf(Perl_debug_log,
1112 "arena %p end %p arena-size %d (from %d) type %d "
1114 (void*)start, (void*)end, (int)arena_size,
1115 (int)bdp->arena_size, sv_type, (int)body_size,
1116 (int)arena_size / (int)body_size));
1118 DEBUG_m(PerlIO_printf(Perl_debug_log,
1119 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1120 (void*)start, (void*)end,
1121 (int)bdp->arena_size, sv_type, (int)body_size,
1122 (int)bdp->arena_size / (int)body_size));
1124 *root = (void *)start;
1126 while (start <= end) {
1127 char * const next = start + body_size;
1128 *(void**) start = (void *)next;
1131 *(void **)start = 0;
1136 /* grab a new thing from the free list, allocating more if necessary.
1137 The inline version is used for speed in hot routines, and the
1138 function using it serves the rest (unless PURIFY).
1140 #define new_body_inline(xpv, sv_type) \
1142 void ** const r3wt = &PL_body_roots[sv_type]; \
1143 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1144 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1145 *(r3wt) = *(void**)(xpv); \
1151 S_new_body(pTHX_ const svtype sv_type)
1155 new_body_inline(xpv, sv_type);
1161 static const struct body_details fake_rv =
1162 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1165 =for apidoc sv_upgrade
1167 Upgrade an SV to a more complex form. Generally adds a new body type to the
1168 SV, then copies across as much information as possible from the old body.
1169 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1175 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1180 const svtype old_type = SvTYPE(sv);
1181 const struct body_details *new_type_details;
1182 const struct body_details *old_type_details
1183 = bodies_by_type + old_type;
1184 SV *referant = NULL;
1186 PERL_ARGS_ASSERT_SV_UPGRADE;
1188 if (old_type == new_type)
1191 /* This clause was purposefully added ahead of the early return above to
1192 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1193 inference by Nick I-S that it would fix other troublesome cases. See
1194 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1196 Given that shared hash key scalars are no longer PVIV, but PV, there is
1197 no longer need to unshare so as to free up the IVX slot for its proper
1198 purpose. So it's safe to move the early return earlier. */
1200 if (new_type != SVt_PV && SvIsCOW(sv)) {
1201 sv_force_normal_flags(sv, 0);
1204 old_body = SvANY(sv);
1206 /* Copying structures onto other structures that have been neatly zeroed
1207 has a subtle gotcha. Consider XPVMG
1209 +------+------+------+------+------+-------+-------+
1210 | NV | CUR | LEN | IV | MAGIC | STASH |
1211 +------+------+------+------+------+-------+-------+
1212 0 4 8 12 16 20 24 28
1214 where NVs are aligned to 8 bytes, so that sizeof that structure is
1215 actually 32 bytes long, with 4 bytes of padding at the end:
1217 +------+------+------+------+------+-------+-------+------+
1218 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1219 +------+------+------+------+------+-------+-------+------+
1220 0 4 8 12 16 20 24 28 32
1222 so what happens if you allocate memory for this structure:
1224 +------+------+------+------+------+-------+-------+------+------+...
1225 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1226 +------+------+------+------+------+-------+-------+------+------+...
1227 0 4 8 12 16 20 24 28 32 36
1229 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1230 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1231 started out as zero once, but it's quite possible that it isn't. So now,
1232 rather than a nicely zeroed GP, you have it pointing somewhere random.
1235 (In fact, GP ends up pointing at a previous GP structure, because the
1236 principle cause of the padding in XPVMG getting garbage is a copy of
1237 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1238 this happens to be moot because XPVGV has been re-ordered, with GP
1239 no longer after STASH)
1241 So we are careful and work out the size of used parts of all the
1249 referant = SvRV(sv);
1250 old_type_details = &fake_rv;
1251 if (new_type == SVt_NV)
1252 new_type = SVt_PVNV;
1254 if (new_type < SVt_PVIV) {
1255 new_type = (new_type == SVt_NV)
1256 ? SVt_PVNV : SVt_PVIV;
1261 if (new_type < SVt_PVNV) {
1262 new_type = SVt_PVNV;
1266 assert(new_type > SVt_PV);
1267 assert(SVt_IV < SVt_PV);
1268 assert(SVt_NV < SVt_PV);
1275 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1276 there's no way that it can be safely upgraded, because perl.c
1277 expects to Safefree(SvANY(PL_mess_sv)) */
1278 assert(sv != PL_mess_sv);
1279 /* This flag bit is used to mean other things in other scalar types.
1280 Given that it only has meaning inside the pad, it shouldn't be set
1281 on anything that can get upgraded. */
1282 assert(!SvPAD_TYPED(sv));
1285 if (old_type_details->cant_upgrade)
1286 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1287 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1290 if (old_type > new_type)
1291 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1292 (int)old_type, (int)new_type);
1294 new_type_details = bodies_by_type + new_type;
1296 SvFLAGS(sv) &= ~SVTYPEMASK;
1297 SvFLAGS(sv) |= new_type;
1299 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1300 the return statements above will have triggered. */
1301 assert (new_type != SVt_NULL);
1304 assert(old_type == SVt_NULL);
1305 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1309 assert(old_type == SVt_NULL);
1310 SvANY(sv) = new_XNV();
1315 assert(new_type_details->body_size);
1318 assert(new_type_details->arena);
1319 assert(new_type_details->arena_size);
1320 /* This points to the start of the allocated area. */
1321 new_body_inline(new_body, new_type);
1322 Zero(new_body, new_type_details->body_size, char);
1323 new_body = ((char *)new_body) - new_type_details->offset;
1325 /* We always allocated the full length item with PURIFY. To do this
1326 we fake things so that arena is false for all 16 types.. */
1327 new_body = new_NOARENAZ(new_type_details);
1329 SvANY(sv) = new_body;
1330 if (new_type == SVt_PVAV) {
1334 if (old_type_details->body_size) {
1337 /* It will have been zeroed when the new body was allocated.
1338 Lets not write to it, in case it confuses a write-back
1344 #ifndef NODEFAULT_SHAREKEYS
1345 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1347 HvMAX(sv) = 7; /* (start with 8 buckets) */
1348 if (old_type_details->body_size) {
1351 /* It will have been zeroed when the new body was allocated.
1352 Lets not write to it, in case it confuses a write-back
1357 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1358 The target created by newSVrv also is, and it can have magic.
1359 However, it never has SvPVX set.
1361 if (old_type == SVt_IV) {
1363 } else if (old_type >= SVt_PV) {
1364 assert(SvPVX_const(sv) == 0);
1367 if (old_type >= SVt_PVMG) {
1368 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1369 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1371 sv->sv_u.svu_array = NULL; /* or svu_hash */
1377 /* XXX Is this still needed? Was it ever needed? Surely as there is
1378 no route from NV to PVIV, NOK can never be true */
1379 assert(!SvNOKp(sv));
1391 assert(new_type_details->body_size);
1392 /* We always allocated the full length item with PURIFY. To do this
1393 we fake things so that arena is false for all 16 types.. */
1394 if(new_type_details->arena) {
1395 /* This points to the start of the allocated area. */
1396 new_body_inline(new_body, new_type);
1397 Zero(new_body, new_type_details->body_size, char);
1398 new_body = ((char *)new_body) - new_type_details->offset;
1400 new_body = new_NOARENAZ(new_type_details);
1402 SvANY(sv) = new_body;
1404 if (old_type_details->copy) {
1405 /* There is now the potential for an upgrade from something without
1406 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1407 int offset = old_type_details->offset;
1408 int length = old_type_details->copy;
1410 if (new_type_details->offset > old_type_details->offset) {
1411 const int difference
1412 = new_type_details->offset - old_type_details->offset;
1413 offset += difference;
1414 length -= difference;
1416 assert (length >= 0);
1418 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1422 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1423 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1424 * correct 0.0 for us. Otherwise, if the old body didn't have an
1425 * NV slot, but the new one does, then we need to initialise the
1426 * freshly created NV slot with whatever the correct bit pattern is
1428 if (old_type_details->zero_nv && !new_type_details->zero_nv
1429 && !isGV_with_GP(sv))
1433 if (new_type == SVt_PVIO) {
1434 IO * const io = MUTABLE_IO(sv);
1435 GV *iogv = gv_fetchpvs("FileHandle::", 0, SVt_PVHV);
1438 /* Clear the stashcache because a new IO could overrule a package
1440 hv_clear(PL_stashcache);
1442 /* unless exists($main::{FileHandle}) and
1443 defined(%main::FileHandle::) */
1444 if (!(iogv && GvHV(iogv) && HvARRAY(GvHV(iogv))))
1445 iogv = gv_fetchpvs("IO::Handle::", GV_ADD, SVt_PVHV);
1446 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1447 IoPAGE_LEN(sv) = 60;
1449 if (old_type < SVt_PV) {
1450 /* referant will be NULL unless the old type was SVt_IV emulating
1452 sv->sv_u.svu_rv = referant;
1456 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1457 (unsigned long)new_type);
1460 if (old_type_details->arena) {
1461 /* If there was an old body, then we need to free it.
1462 Note that there is an assumption that all bodies of types that
1463 can be upgraded came from arenas. Only the more complex non-
1464 upgradable types are allowed to be directly malloc()ed. */
1466 my_safefree(old_body);
1468 del_body((void*)((char*)old_body + old_type_details->offset),
1469 &PL_body_roots[old_type]);
1475 =for apidoc sv_backoff
1477 Remove any string offset. You should normally use the C<SvOOK_off> macro
1484 Perl_sv_backoff(pTHX_ register SV *const sv)
1487 const char * const s = SvPVX_const(sv);
1489 PERL_ARGS_ASSERT_SV_BACKOFF;
1490 PERL_UNUSED_CONTEXT;
1493 assert(SvTYPE(sv) != SVt_PVHV);
1494 assert(SvTYPE(sv) != SVt_PVAV);
1496 SvOOK_offset(sv, delta);
1498 SvLEN_set(sv, SvLEN(sv) + delta);
1499 SvPV_set(sv, SvPVX(sv) - delta);
1500 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1501 SvFLAGS(sv) &= ~SVf_OOK;
1508 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1509 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1510 Use the C<SvGROW> wrapper instead.
1516 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1520 PERL_ARGS_ASSERT_SV_GROW;
1522 if (PL_madskills && newlen >= 0x100000) {
1523 PerlIO_printf(Perl_debug_log,
1524 "Allocation too large: %"UVxf"\n", (UV)newlen);
1526 #ifdef HAS_64K_LIMIT
1527 if (newlen >= 0x10000) {
1528 PerlIO_printf(Perl_debug_log,
1529 "Allocation too large: %"UVxf"\n", (UV)newlen);
1532 #endif /* HAS_64K_LIMIT */
1535 if (SvTYPE(sv) < SVt_PV) {
1536 sv_upgrade(sv, SVt_PV);
1537 s = SvPVX_mutable(sv);
1539 else if (SvOOK(sv)) { /* pv is offset? */
1541 s = SvPVX_mutable(sv);
1542 if (newlen > SvLEN(sv))
1543 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1544 #ifdef HAS_64K_LIMIT
1545 if (newlen >= 0x10000)
1550 s = SvPVX_mutable(sv);
1552 if (newlen > SvLEN(sv)) { /* need more room? */
1553 #ifndef Perl_safesysmalloc_size
1554 newlen = PERL_STRLEN_ROUNDUP(newlen);
1556 if (SvLEN(sv) && s) {
1557 s = (char*)saferealloc(s, newlen);
1560 s = (char*)safemalloc(newlen);
1561 if (SvPVX_const(sv) && SvCUR(sv)) {
1562 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1566 #ifdef Perl_safesysmalloc_size
1567 /* Do this here, do it once, do it right, and then we will never get
1568 called back into sv_grow() unless there really is some growing
1570 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1572 SvLEN_set(sv, newlen);
1579 =for apidoc sv_setiv
1581 Copies an integer into the given SV, upgrading first if necessary.
1582 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1588 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1592 PERL_ARGS_ASSERT_SV_SETIV;
1594 SV_CHECK_THINKFIRST_COW_DROP(sv);
1595 switch (SvTYPE(sv)) {
1598 sv_upgrade(sv, SVt_IV);
1601 sv_upgrade(sv, SVt_PVIV);
1605 if (!isGV_with_GP(sv))
1612 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1616 (void)SvIOK_only(sv); /* validate number */
1622 =for apidoc sv_setiv_mg
1624 Like C<sv_setiv>, but also handles 'set' magic.
1630 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1632 PERL_ARGS_ASSERT_SV_SETIV_MG;
1639 =for apidoc sv_setuv
1641 Copies an unsigned integer into the given SV, upgrading first if necessary.
1642 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1648 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1650 PERL_ARGS_ASSERT_SV_SETUV;
1652 /* With these two if statements:
1653 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1656 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1658 If you wish to remove them, please benchmark to see what the effect is
1660 if (u <= (UV)IV_MAX) {
1661 sv_setiv(sv, (IV)u);
1670 =for apidoc sv_setuv_mg
1672 Like C<sv_setuv>, but also handles 'set' magic.
1678 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1680 PERL_ARGS_ASSERT_SV_SETUV_MG;
1687 =for apidoc sv_setnv
1689 Copies a double into the given SV, upgrading first if necessary.
1690 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1696 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1700 PERL_ARGS_ASSERT_SV_SETNV;
1702 SV_CHECK_THINKFIRST_COW_DROP(sv);
1703 switch (SvTYPE(sv)) {
1706 sv_upgrade(sv, SVt_NV);
1710 sv_upgrade(sv, SVt_PVNV);
1714 if (!isGV_with_GP(sv))
1721 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1726 (void)SvNOK_only(sv); /* validate number */
1731 =for apidoc sv_setnv_mg
1733 Like C<sv_setnv>, but also handles 'set' magic.
1739 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1741 PERL_ARGS_ASSERT_SV_SETNV_MG;
1747 /* Print an "isn't numeric" warning, using a cleaned-up,
1748 * printable version of the offending string
1752 S_not_a_number(pTHX_ SV *const sv)
1759 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1762 dsv = newSVpvs_flags("", SVs_TEMP);
1763 pv = sv_uni_display(dsv, sv, 10, 0);
1766 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1767 /* each *s can expand to 4 chars + "...\0",
1768 i.e. need room for 8 chars */
1770 const char *s = SvPVX_const(sv);
1771 const char * const end = s + SvCUR(sv);
1772 for ( ; s < end && d < limit; s++ ) {
1774 if (ch & 128 && !isPRINT_LC(ch)) {
1783 else if (ch == '\r') {
1787 else if (ch == '\f') {
1791 else if (ch == '\\') {
1795 else if (ch == '\0') {
1799 else if (isPRINT_LC(ch))
1816 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1817 "Argument \"%s\" isn't numeric in %s", pv,
1820 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1821 "Argument \"%s\" isn't numeric", pv);
1825 =for apidoc looks_like_number
1827 Test if the content of an SV looks like a number (or is a number).
1828 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1829 non-numeric warning), even if your atof() doesn't grok them.
1835 Perl_looks_like_number(pTHX_ SV *const sv)
1837 register const char *sbegin;
1840 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1843 sbegin = SvPVX_const(sv);
1846 else if (SvPOKp(sv))
1847 sbegin = SvPV_const(sv, len);
1849 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1850 return grok_number(sbegin, len, NULL);
1854 S_glob_2number(pTHX_ GV * const gv)
1856 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1857 SV *const buffer = sv_newmortal();
1859 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1861 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1864 gv_efullname3(buffer, gv, "*");
1865 SvFLAGS(gv) |= wasfake;
1867 /* We know that all GVs stringify to something that is not-a-number,
1868 so no need to test that. */
1869 if (ckWARN(WARN_NUMERIC))
1870 not_a_number(buffer);
1871 /* We just want something true to return, so that S_sv_2iuv_common
1872 can tail call us and return true. */
1876 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1877 until proven guilty, assume that things are not that bad... */
1882 As 64 bit platforms often have an NV that doesn't preserve all bits of
1883 an IV (an assumption perl has been based on to date) it becomes necessary
1884 to remove the assumption that the NV always carries enough precision to
1885 recreate the IV whenever needed, and that the NV is the canonical form.
1886 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1887 precision as a side effect of conversion (which would lead to insanity
1888 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1889 1) to distinguish between IV/UV/NV slots that have cached a valid
1890 conversion where precision was lost and IV/UV/NV slots that have a
1891 valid conversion which has lost no precision
1892 2) to ensure that if a numeric conversion to one form is requested that
1893 would lose precision, the precise conversion (or differently
1894 imprecise conversion) is also performed and cached, to prevent
1895 requests for different numeric formats on the same SV causing
1896 lossy conversion chains. (lossless conversion chains are perfectly
1901 SvIOKp is true if the IV slot contains a valid value
1902 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1903 SvNOKp is true if the NV slot contains a valid value
1904 SvNOK is true only if the NV value is accurate
1907 while converting from PV to NV, check to see if converting that NV to an
1908 IV(or UV) would lose accuracy over a direct conversion from PV to
1909 IV(or UV). If it would, cache both conversions, return NV, but mark
1910 SV as IOK NOKp (ie not NOK).
1912 While converting from PV to IV, check to see if converting that IV to an
1913 NV would lose accuracy over a direct conversion from PV to NV. If it
1914 would, cache both conversions, flag similarly.
1916 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1917 correctly because if IV & NV were set NV *always* overruled.
1918 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1919 changes - now IV and NV together means that the two are interchangeable:
1920 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1922 The benefit of this is that operations such as pp_add know that if
1923 SvIOK is true for both left and right operands, then integer addition
1924 can be used instead of floating point (for cases where the result won't
1925 overflow). Before, floating point was always used, which could lead to
1926 loss of precision compared with integer addition.
1928 * making IV and NV equal status should make maths accurate on 64 bit
1930 * may speed up maths somewhat if pp_add and friends start to use
1931 integers when possible instead of fp. (Hopefully the overhead in
1932 looking for SvIOK and checking for overflow will not outweigh the
1933 fp to integer speedup)
1934 * will slow down integer operations (callers of SvIV) on "inaccurate"
1935 values, as the change from SvIOK to SvIOKp will cause a call into
1936 sv_2iv each time rather than a macro access direct to the IV slot
1937 * should speed up number->string conversion on integers as IV is
1938 favoured when IV and NV are equally accurate
1940 ####################################################################
1941 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1942 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1943 On the other hand, SvUOK is true iff UV.
1944 ####################################################################
1946 Your mileage will vary depending your CPU's relative fp to integer
1950 #ifndef NV_PRESERVES_UV
1951 # define IS_NUMBER_UNDERFLOW_IV 1
1952 # define IS_NUMBER_UNDERFLOW_UV 2
1953 # define IS_NUMBER_IV_AND_UV 2
1954 # define IS_NUMBER_OVERFLOW_IV 4
1955 # define IS_NUMBER_OVERFLOW_UV 5
1957 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1959 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1961 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1969 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1971 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1972 if (SvNVX(sv) < (NV)IV_MIN) {
1973 (void)SvIOKp_on(sv);
1975 SvIV_set(sv, IV_MIN);
1976 return IS_NUMBER_UNDERFLOW_IV;
1978 if (SvNVX(sv) > (NV)UV_MAX) {
1979 (void)SvIOKp_on(sv);
1982 SvUV_set(sv, UV_MAX);
1983 return IS_NUMBER_OVERFLOW_UV;
1985 (void)SvIOKp_on(sv);
1987 /* Can't use strtol etc to convert this string. (See truth table in
1989 if (SvNVX(sv) <= (UV)IV_MAX) {
1990 SvIV_set(sv, I_V(SvNVX(sv)));
1991 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1992 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1994 /* Integer is imprecise. NOK, IOKp */
1996 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1999 SvUV_set(sv, U_V(SvNVX(sv)));
2000 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2001 if (SvUVX(sv) == UV_MAX) {
2002 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2003 possibly be preserved by NV. Hence, it must be overflow.
2005 return IS_NUMBER_OVERFLOW_UV;
2007 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2009 /* Integer is imprecise. NOK, IOKp */
2011 return IS_NUMBER_OVERFLOW_IV;
2013 #endif /* !NV_PRESERVES_UV*/
2016 S_sv_2iuv_common(pTHX_ SV *const sv)
2020 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2023 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2024 * without also getting a cached IV/UV from it at the same time
2025 * (ie PV->NV conversion should detect loss of accuracy and cache
2026 * IV or UV at same time to avoid this. */
2027 /* IV-over-UV optimisation - choose to cache IV if possible */
2029 if (SvTYPE(sv) == SVt_NV)
2030 sv_upgrade(sv, SVt_PVNV);
2032 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2033 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2034 certainly cast into the IV range at IV_MAX, whereas the correct
2035 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2037 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2038 if (Perl_isnan(SvNVX(sv))) {
2044 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2045 SvIV_set(sv, I_V(SvNVX(sv)));
2046 if (SvNVX(sv) == (NV) SvIVX(sv)
2047 #ifndef NV_PRESERVES_UV
2048 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2049 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2050 /* Don't flag it as "accurately an integer" if the number
2051 came from a (by definition imprecise) NV operation, and
2052 we're outside the range of NV integer precision */
2056 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2058 /* scalar has trailing garbage, eg "42a" */
2060 DEBUG_c(PerlIO_printf(Perl_debug_log,
2061 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2067 /* IV not precise. No need to convert from PV, as NV
2068 conversion would already have cached IV if it detected
2069 that PV->IV would be better than PV->NV->IV
2070 flags already correct - don't set public IOK. */
2071 DEBUG_c(PerlIO_printf(Perl_debug_log,
2072 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2077 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2078 but the cast (NV)IV_MIN rounds to a the value less (more
2079 negative) than IV_MIN which happens to be equal to SvNVX ??
2080 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2081 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2082 (NV)UVX == NVX are both true, but the values differ. :-(
2083 Hopefully for 2s complement IV_MIN is something like
2084 0x8000000000000000 which will be exact. NWC */
2087 SvUV_set(sv, U_V(SvNVX(sv)));
2089 (SvNVX(sv) == (NV) SvUVX(sv))
2090 #ifndef NV_PRESERVES_UV
2091 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2092 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2093 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2094 /* Don't flag it as "accurately an integer" if the number
2095 came from a (by definition imprecise) NV operation, and
2096 we're outside the range of NV integer precision */
2102 DEBUG_c(PerlIO_printf(Perl_debug_log,
2103 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2109 else if (SvPOKp(sv) && SvLEN(sv)) {
2111 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2112 /* We want to avoid a possible problem when we cache an IV/ a UV which
2113 may be later translated to an NV, and the resulting NV is not
2114 the same as the direct translation of the initial string
2115 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2116 be careful to ensure that the value with the .456 is around if the
2117 NV value is requested in the future).
2119 This means that if we cache such an IV/a UV, we need to cache the
2120 NV as well. Moreover, we trade speed for space, and do not
2121 cache the NV if we are sure it's not needed.
2124 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2125 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2126 == IS_NUMBER_IN_UV) {
2127 /* It's definitely an integer, only upgrade to PVIV */
2128 if (SvTYPE(sv) < SVt_PVIV)
2129 sv_upgrade(sv, SVt_PVIV);
2131 } else if (SvTYPE(sv) < SVt_PVNV)
2132 sv_upgrade(sv, SVt_PVNV);
2134 /* If NVs preserve UVs then we only use the UV value if we know that
2135 we aren't going to call atof() below. If NVs don't preserve UVs
2136 then the value returned may have more precision than atof() will
2137 return, even though value isn't perfectly accurate. */
2138 if ((numtype & (IS_NUMBER_IN_UV
2139 #ifdef NV_PRESERVES_UV
2142 )) == IS_NUMBER_IN_UV) {
2143 /* This won't turn off the public IOK flag if it was set above */
2144 (void)SvIOKp_on(sv);
2146 if (!(numtype & IS_NUMBER_NEG)) {
2148 if (value <= (UV)IV_MAX) {
2149 SvIV_set(sv, (IV)value);
2151 /* it didn't overflow, and it was positive. */
2152 SvUV_set(sv, value);
2156 /* 2s complement assumption */
2157 if (value <= (UV)IV_MIN) {
2158 SvIV_set(sv, -(IV)value);
2160 /* Too negative for an IV. This is a double upgrade, but
2161 I'm assuming it will be rare. */
2162 if (SvTYPE(sv) < SVt_PVNV)
2163 sv_upgrade(sv, SVt_PVNV);
2167 SvNV_set(sv, -(NV)value);
2168 SvIV_set(sv, IV_MIN);
2172 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2173 will be in the previous block to set the IV slot, and the next
2174 block to set the NV slot. So no else here. */
2176 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2177 != IS_NUMBER_IN_UV) {
2178 /* It wasn't an (integer that doesn't overflow the UV). */
2179 SvNV_set(sv, Atof(SvPVX_const(sv)));
2181 if (! numtype && ckWARN(WARN_NUMERIC))
2184 #if defined(USE_LONG_DOUBLE)
2185 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2186 PTR2UV(sv), SvNVX(sv)));
2188 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2189 PTR2UV(sv), SvNVX(sv)));
2192 #ifdef NV_PRESERVES_UV
2193 (void)SvIOKp_on(sv);
2195 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2196 SvIV_set(sv, I_V(SvNVX(sv)));
2197 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2200 NOOP; /* Integer is imprecise. NOK, IOKp */
2202 /* UV will not work better than IV */
2204 if (SvNVX(sv) > (NV)UV_MAX) {
2206 /* Integer is inaccurate. NOK, IOKp, is UV */
2207 SvUV_set(sv, UV_MAX);
2209 SvUV_set(sv, U_V(SvNVX(sv)));
2210 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2211 NV preservse UV so can do correct comparison. */
2212 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2215 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2220 #else /* NV_PRESERVES_UV */
2221 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2222 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2223 /* The IV/UV slot will have been set from value returned by
2224 grok_number above. The NV slot has just been set using
2227 assert (SvIOKp(sv));
2229 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2230 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2231 /* Small enough to preserve all bits. */
2232 (void)SvIOKp_on(sv);
2234 SvIV_set(sv, I_V(SvNVX(sv)));
2235 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2237 /* Assumption: first non-preserved integer is < IV_MAX,
2238 this NV is in the preserved range, therefore: */
2239 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2241 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2245 0 0 already failed to read UV.
2246 0 1 already failed to read UV.
2247 1 0 you won't get here in this case. IV/UV
2248 slot set, public IOK, Atof() unneeded.
2249 1 1 already read UV.
2250 so there's no point in sv_2iuv_non_preserve() attempting
2251 to use atol, strtol, strtoul etc. */
2253 sv_2iuv_non_preserve (sv, numtype);
2255 sv_2iuv_non_preserve (sv);
2259 #endif /* NV_PRESERVES_UV */
2260 /* It might be more code efficient to go through the entire logic above
2261 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2262 gets complex and potentially buggy, so more programmer efficient
2263 to do it this way, by turning off the public flags: */
2265 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2269 if (isGV_with_GP(sv))
2270 return glob_2number(MUTABLE_GV(sv));
2272 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2273 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2276 if (SvTYPE(sv) < SVt_IV)
2277 /* Typically the caller expects that sv_any is not NULL now. */
2278 sv_upgrade(sv, SVt_IV);
2279 /* Return 0 from the caller. */
2286 =for apidoc sv_2iv_flags
2288 Return the integer value of an SV, doing any necessary string
2289 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2290 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2296 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2301 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2302 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2303 cache IVs just in case. In practice it seems that they never
2304 actually anywhere accessible by user Perl code, let alone get used
2305 in anything other than a string context. */
2306 if (flags & SV_GMAGIC)
2311 return I_V(SvNVX(sv));
2313 if (SvPOKp(sv) && SvLEN(sv)) {
2316 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2318 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2319 == IS_NUMBER_IN_UV) {
2320 /* It's definitely an integer */
2321 if (numtype & IS_NUMBER_NEG) {
2322 if (value < (UV)IV_MIN)
2325 if (value < (UV)IV_MAX)
2330 if (ckWARN(WARN_NUMERIC))
2333 return I_V(Atof(SvPVX_const(sv)));
2338 assert(SvTYPE(sv) >= SVt_PVMG);
2339 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2340 } else if (SvTHINKFIRST(sv)) {
2344 SV * const tmpstr=AMG_CALLun(sv,numer);
2345 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2346 return SvIV(tmpstr);
2349 return PTR2IV(SvRV(sv));
2352 sv_force_normal_flags(sv, 0);
2354 if (SvREADONLY(sv) && !SvOK(sv)) {
2355 if (ckWARN(WARN_UNINITIALIZED))
2361 if (S_sv_2iuv_common(aTHX_ sv))
2364 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2365 PTR2UV(sv),SvIVX(sv)));
2366 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2370 =for apidoc sv_2uv_flags
2372 Return the unsigned integer value of an SV, doing any necessary string
2373 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2374 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2380 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2385 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2386 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2387 cache IVs just in case. */
2388 if (flags & SV_GMAGIC)
2393 return U_V(SvNVX(sv));
2394 if (SvPOKp(sv) && SvLEN(sv)) {
2397 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2399 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2400 == IS_NUMBER_IN_UV) {
2401 /* It's definitely an integer */
2402 if (!(numtype & IS_NUMBER_NEG))
2406 if (ckWARN(WARN_NUMERIC))
2409 return U_V(Atof(SvPVX_const(sv)));
2414 assert(SvTYPE(sv) >= SVt_PVMG);
2415 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2416 } else if (SvTHINKFIRST(sv)) {
2420 SV *const tmpstr = AMG_CALLun(sv,numer);
2421 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2422 return SvUV(tmpstr);
2425 return PTR2UV(SvRV(sv));
2428 sv_force_normal_flags(sv, 0);
2430 if (SvREADONLY(sv) && !SvOK(sv)) {
2431 if (ckWARN(WARN_UNINITIALIZED))
2437 if (S_sv_2iuv_common(aTHX_ sv))
2441 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2442 PTR2UV(sv),SvUVX(sv)));
2443 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2449 Return the num value of an SV, doing any necessary string or integer
2450 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2457 Perl_sv_2nv(pTHX_ register SV *const sv)
2462 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2463 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2464 cache IVs just in case. */
2468 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2469 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2470 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2472 return Atof(SvPVX_const(sv));
2476 return (NV)SvUVX(sv);
2478 return (NV)SvIVX(sv);
2483 assert(SvTYPE(sv) >= SVt_PVMG);
2484 /* This falls through to the report_uninit near the end of the
2486 } else if (SvTHINKFIRST(sv)) {
2490 SV *const tmpstr = AMG_CALLun(sv,numer);
2491 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2492 return SvNV(tmpstr);
2495 return PTR2NV(SvRV(sv));
2498 sv_force_normal_flags(sv, 0);
2500 if (SvREADONLY(sv) && !SvOK(sv)) {
2501 if (ckWARN(WARN_UNINITIALIZED))
2506 if (SvTYPE(sv) < SVt_NV) {
2507 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2508 sv_upgrade(sv, SVt_NV);
2509 #ifdef USE_LONG_DOUBLE
2511 STORE_NUMERIC_LOCAL_SET_STANDARD();
2512 PerlIO_printf(Perl_debug_log,
2513 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2514 PTR2UV(sv), SvNVX(sv));
2515 RESTORE_NUMERIC_LOCAL();
2519 STORE_NUMERIC_LOCAL_SET_STANDARD();
2520 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2521 PTR2UV(sv), SvNVX(sv));
2522 RESTORE_NUMERIC_LOCAL();
2526 else if (SvTYPE(sv) < SVt_PVNV)
2527 sv_upgrade(sv, SVt_PVNV);
2532 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2533 #ifdef NV_PRESERVES_UV
2539 /* Only set the public NV OK flag if this NV preserves the IV */
2540 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2542 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2543 : (SvIVX(sv) == I_V(SvNVX(sv))))
2549 else if (SvPOKp(sv) && SvLEN(sv)) {
2551 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2552 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2554 #ifdef NV_PRESERVES_UV
2555 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2556 == IS_NUMBER_IN_UV) {
2557 /* It's definitely an integer */
2558 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2560 SvNV_set(sv, Atof(SvPVX_const(sv)));
2566 SvNV_set(sv, Atof(SvPVX_const(sv)));
2567 /* Only set the public NV OK flag if this NV preserves the value in
2568 the PV at least as well as an IV/UV would.
2569 Not sure how to do this 100% reliably. */
2570 /* if that shift count is out of range then Configure's test is
2571 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2573 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2574 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2575 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2576 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2577 /* Can't use strtol etc to convert this string, so don't try.
2578 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2581 /* value has been set. It may not be precise. */
2582 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2583 /* 2s complement assumption for (UV)IV_MIN */
2584 SvNOK_on(sv); /* Integer is too negative. */
2589 if (numtype & IS_NUMBER_NEG) {
2590 SvIV_set(sv, -(IV)value);
2591 } else if (value <= (UV)IV_MAX) {
2592 SvIV_set(sv, (IV)value);
2594 SvUV_set(sv, value);
2598 if (numtype & IS_NUMBER_NOT_INT) {
2599 /* I believe that even if the original PV had decimals,
2600 they are lost beyond the limit of the FP precision.
2601 However, neither is canonical, so both only get p
2602 flags. NWC, 2000/11/25 */
2603 /* Both already have p flags, so do nothing */
2605 const NV nv = SvNVX(sv);
2606 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2607 if (SvIVX(sv) == I_V(nv)) {
2610 /* It had no "." so it must be integer. */
2614 /* between IV_MAX and NV(UV_MAX).
2615 Could be slightly > UV_MAX */
2617 if (numtype & IS_NUMBER_NOT_INT) {
2618 /* UV and NV both imprecise. */
2620 const UV nv_as_uv = U_V(nv);
2622 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2631 /* It might be more code efficient to go through the entire logic above
2632 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2633 gets complex and potentially buggy, so more programmer efficient
2634 to do it this way, by turning off the public flags: */
2636 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2637 #endif /* NV_PRESERVES_UV */
2640 if (isGV_with_GP(sv)) {
2641 glob_2number(MUTABLE_GV(sv));
2645 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2647 assert (SvTYPE(sv) >= SVt_NV);
2648 /* Typically the caller expects that sv_any is not NULL now. */
2649 /* XXX Ilya implies that this is a bug in callers that assume this
2650 and ideally should be fixed. */
2653 #if defined(USE_LONG_DOUBLE)
2655 STORE_NUMERIC_LOCAL_SET_STANDARD();
2656 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2657 PTR2UV(sv), SvNVX(sv));
2658 RESTORE_NUMERIC_LOCAL();
2662 STORE_NUMERIC_LOCAL_SET_STANDARD();
2663 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2664 PTR2UV(sv), SvNVX(sv));
2665 RESTORE_NUMERIC_LOCAL();
2674 Return an SV with the numeric value of the source SV, doing any necessary
2675 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2676 access this function.
2682 Perl_sv_2num(pTHX_ register SV *const sv)
2684 PERL_ARGS_ASSERT_SV_2NUM;
2689 SV * const tmpsv = AMG_CALLun(sv,numer);
2690 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2691 return sv_2num(tmpsv);
2693 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2696 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2697 * UV as a string towards the end of buf, and return pointers to start and
2700 * We assume that buf is at least TYPE_CHARS(UV) long.
2704 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2706 char *ptr = buf + TYPE_CHARS(UV);
2707 char * const ebuf = ptr;
2710 PERL_ARGS_ASSERT_UIV_2BUF;
2722 *--ptr = '0' + (char)(uv % 10);
2731 =for apidoc sv_2pv_flags
2733 Returns a pointer to the string value of an SV, and sets *lp to its length.
2734 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2736 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2737 usually end up here too.
2743 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2753 if (SvGMAGICAL(sv)) {
2754 if (flags & SV_GMAGIC)
2759 if (flags & SV_MUTABLE_RETURN)
2760 return SvPVX_mutable(sv);
2761 if (flags & SV_CONST_RETURN)
2762 return (char *)SvPVX_const(sv);
2765 if (SvIOKp(sv) || SvNOKp(sv)) {
2766 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2771 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2772 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2774 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2781 #ifdef FIXNEGATIVEZERO
2782 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2788 SvUPGRADE(sv, SVt_PV);
2791 s = SvGROW_mutable(sv, len + 1);
2794 return (char*)memcpy(s, tbuf, len + 1);
2800 assert(SvTYPE(sv) >= SVt_PVMG);
2801 /* This falls through to the report_uninit near the end of the
2803 } else if (SvTHINKFIRST(sv)) {
2807 SV *const tmpstr = AMG_CALLun(sv,string);
2808 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2810 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2814 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2815 if (flags & SV_CONST_RETURN) {
2816 pv = (char *) SvPVX_const(tmpstr);
2818 pv = (flags & SV_MUTABLE_RETURN)
2819 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2822 *lp = SvCUR(tmpstr);
2824 pv = sv_2pv_flags(tmpstr, lp, flags);
2837 SV *const referent = SvRV(sv);
2841 retval = buffer = savepvn("NULLREF", len);
2842 } else if (SvTYPE(referent) == SVt_REGEXP) {
2843 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2848 /* If the regex is UTF-8 we want the containing scalar to
2849 have an UTF-8 flag too */
2855 if ((seen_evals = RX_SEEN_EVALS(re)))
2856 PL_reginterp_cnt += seen_evals;
2859 *lp = RX_WRAPLEN(re);
2861 return RX_WRAPPED(re);
2863 const char *const typestr = sv_reftype(referent, 0);
2864 const STRLEN typelen = strlen(typestr);
2865 UV addr = PTR2UV(referent);
2866 const char *stashname = NULL;
2867 STRLEN stashnamelen = 0; /* hush, gcc */
2868 const char *buffer_end;
2870 if (SvOBJECT(referent)) {
2871 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2874 stashname = HEK_KEY(name);
2875 stashnamelen = HEK_LEN(name);
2877 if (HEK_UTF8(name)) {
2883 stashname = "__ANON__";
2886 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2887 + 2 * sizeof(UV) + 2 /* )\0 */;
2889 len = typelen + 3 /* (0x */
2890 + 2 * sizeof(UV) + 2 /* )\0 */;
2893 Newx(buffer, len, char);
2894 buffer_end = retval = buffer + len;
2896 /* Working backwards */
2900 *--retval = PL_hexdigit[addr & 15];
2901 } while (addr >>= 4);
2907 memcpy(retval, typestr, typelen);
2911 retval -= stashnamelen;
2912 memcpy(retval, stashname, stashnamelen);
2914 /* retval may not neccesarily have reached the start of the
2916 assert (retval >= buffer);
2918 len = buffer_end - retval - 1; /* -1 for that \0 */
2926 if (SvREADONLY(sv) && !SvOK(sv)) {
2929 if (flags & SV_UNDEF_RETURNS_NULL)
2931 if (ckWARN(WARN_UNINITIALIZED))
2936 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2937 /* I'm assuming that if both IV and NV are equally valid then
2938 converting the IV is going to be more efficient */
2939 const U32 isUIOK = SvIsUV(sv);
2940 char buf[TYPE_CHARS(UV)];
2944 if (SvTYPE(sv) < SVt_PVIV)
2945 sv_upgrade(sv, SVt_PVIV);
2946 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2948 /* inlined from sv_setpvn */
2949 s = SvGROW_mutable(sv, len + 1);
2950 Move(ptr, s, len, char);
2954 else if (SvNOKp(sv)) {
2956 if (SvTYPE(sv) < SVt_PVNV)
2957 sv_upgrade(sv, SVt_PVNV);
2958 /* The +20 is pure guesswork. Configure test needed. --jhi */
2959 s = SvGROW_mutable(sv, NV_DIG + 20);
2960 /* some Xenix systems wipe out errno here */
2962 if (SvNVX(sv) == 0.0)
2963 my_strlcpy(s, "0", SvLEN(sv));
2967 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2970 #ifdef FIXNEGATIVEZERO
2971 if (*s == '-' && s[1] == '0' && !s[2]) {
2983 if (isGV_with_GP(sv)) {
2984 GV *const gv = MUTABLE_GV(sv);
2985 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2986 SV *const buffer = sv_newmortal();
2988 /* FAKE globs can get coerced, so need to turn this off temporarily
2991 gv_efullname3(buffer, gv, "*");
2992 SvFLAGS(gv) |= wasfake;
2994 assert(SvPOK(buffer));
2996 *lp = SvCUR(buffer);
2998 return SvPVX(buffer);
3003 if (flags & SV_UNDEF_RETURNS_NULL)
3005 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3007 if (SvTYPE(sv) < SVt_PV)
3008 /* Typically the caller expects that sv_any is not NULL now. */
3009 sv_upgrade(sv, SVt_PV);
3013 const STRLEN len = s - SvPVX_const(sv);
3019 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3020 PTR2UV(sv),SvPVX_const(sv)));
3021 if (flags & SV_CONST_RETURN)
3022 return (char *)SvPVX_const(sv);
3023 if (flags & SV_MUTABLE_RETURN)
3024 return SvPVX_mutable(sv);
3029 =for apidoc sv_copypv
3031 Copies a stringified representation of the source SV into the
3032 destination SV. Automatically performs any necessary mg_get and
3033 coercion of numeric values into strings. Guaranteed to preserve
3034 UTF8 flag even from overloaded objects. Similar in nature to
3035 sv_2pv[_flags] but operates directly on an SV instead of just the
3036 string. Mostly uses sv_2pv_flags to do its work, except when that
3037 would lose the UTF-8'ness of the PV.
3043 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3046 const char * const s = SvPV_const(ssv,len);
3048 PERL_ARGS_ASSERT_SV_COPYPV;
3050 sv_setpvn(dsv,s,len);
3058 =for apidoc sv_2pvbyte
3060 Return a pointer to the byte-encoded representation of the SV, and set *lp
3061 to its length. May cause the SV to be downgraded from UTF-8 as a
3064 Usually accessed via the C<SvPVbyte> macro.
3070 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3072 PERL_ARGS_ASSERT_SV_2PVBYTE;
3074 sv_utf8_downgrade(sv,0);
3075 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3079 =for apidoc sv_2pvutf8
3081 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3082 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3084 Usually accessed via the C<SvPVutf8> macro.
3090 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3092 PERL_ARGS_ASSERT_SV_2PVUTF8;
3094 sv_utf8_upgrade(sv);
3095 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3100 =for apidoc sv_2bool
3102 This function is only called on magical items, and is only used by
3103 sv_true() or its macro equivalent.
3109 Perl_sv_2bool(pTHX_ register SV *const sv)
3113 PERL_ARGS_ASSERT_SV_2BOOL;
3121 SV * const tmpsv = AMG_CALLun(sv,bool_);
3122 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3123 return (bool)SvTRUE(tmpsv);
3125 return SvRV(sv) != 0;
3128 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3130 (*sv->sv_u.svu_pv > '0' ||
3131 Xpvtmp->xpv_cur > 1 ||
3132 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3139 return SvIVX(sv) != 0;
3142 return SvNVX(sv) != 0.0;
3144 if (isGV_with_GP(sv))
3154 =for apidoc sv_utf8_upgrade
3156 Converts the PV of an SV to its UTF-8-encoded form.
3157 Forces the SV to string form if it is not already.
3158 Will C<mg_get> on C<sv> if appropriate.
3159 Always sets the SvUTF8 flag to avoid future validity checks even
3160 if the whole string is the same in UTF-8 as not.
3161 Returns the number of bytes in the converted string
3163 This is not as a general purpose byte encoding to Unicode interface:
3164 use the Encode extension for that.
3166 =for apidoc sv_utf8_upgrade_nomg
3168 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3170 =for apidoc sv_utf8_upgrade_flags
3172 Converts the PV of an SV to its UTF-8-encoded form.
3173 Forces the SV to string form if it is not already.
3174 Always sets the SvUTF8 flag to avoid future validity checks even
3175 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3176 will C<mg_get> on C<sv> if appropriate, else not.
3177 Returns the number of bytes in the converted string
3178 C<sv_utf8_upgrade> and
3179 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3181 This is not as a general purpose byte encoding to Unicode interface:
3182 use the Encode extension for that.
3186 The grow version is currently not externally documented. It adds a parameter,
3187 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3188 have free after it upon return. This allows the caller to reserve extra space
3189 that it intends to fill, to avoid extra grows.
3191 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3192 which can be used to tell this function to not first check to see if there are
3193 any characters that are different in UTF-8 (variant characters) which would
3194 force it to allocate a new string to sv, but to assume there are. Typically
3195 this flag is used by a routine that has already parsed the string to find that
3196 there are such characters, and passes this information on so that the work
3197 doesn't have to be repeated.
3199 (One might think that the calling routine could pass in the position of the
3200 first such variant, so it wouldn't have to be found again. But that is not the
3201 case, because typically when the caller is likely to use this flag, it won't be
3202 calling this routine unless it finds something that won't fit into a byte.
3203 Otherwise it tries to not upgrade and just use bytes. But some things that
3204 do fit into a byte are variants in utf8, and the caller may not have been
3205 keeping track of these.)
3207 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3208 isn't guaranteed due to having other routines do the work in some input cases,
3209 or if the input is already flagged as being in utf8.
3211 The speed of this could perhaps be improved for many cases if someone wanted to
3212 write a fast function that counts the number of variant characters in a string,
3213 especially if it could return the position of the first one.
3218 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3222 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3224 if (sv == &PL_sv_undef)
3228 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3229 (void) sv_2pv_flags(sv,&len, flags);
3231 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3235 (void) SvPV_force(sv,len);
3240 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3245 sv_force_normal_flags(sv, 0);
3248 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3249 sv_recode_to_utf8(sv, PL_encoding);
3250 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3254 if (SvCUR(sv) > 0) { /* Assume Latin-1/EBCDIC */
3255 /* This function could be much more efficient if we
3256 * had a FLAG in SVs to signal if there are any variant
3257 * chars in the PV. Given that there isn't such a flag
3258 * make the loop as fast as possible (although there are certainly ways
3259 * to speed this up, eg. through vectorization) */
3260 U8 * s = (U8 *) SvPVX_const(sv);
3261 U8 * e = (U8 *) SvEND(sv);
3263 STRLEN two_byte_count = 0;
3265 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3267 /* See if really will need to convert to utf8. We mustn't rely on our
3268 * incoming SV being well formed and having a trailing '\0', as certain
3269 * code in pp_formline can send us partially built SVs. */
3273 if (NATIVE_IS_INVARIANT(ch)) continue;
3275 t--; /* t already incremented; re-point to first variant */
3280 /* utf8 conversion not needed because all are invariants. Mark as
3281 * UTF-8 even if no variant - saves scanning loop */
3287 /* Here, the string should be converted to utf8, either because of an
3288 * input flag (two_byte_count = 0), or because a character that
3289 * requires 2 bytes was found (two_byte_count = 1). t points either to
3290 * the beginning of the string (if we didn't examine anything), or to
3291 * the first variant. In either case, everything from s to t - 1 will
3292 * occupy only 1 byte each on output.
3294 * There are two main ways to convert. One is to create a new string
3295 * and go through the input starting from the beginning, appending each
3296 * converted value onto the new string as we go along. It's probably
3297 * best to allocate enough space in the string for the worst possible
3298 * case rather than possibly running out of space and having to
3299 * reallocate and then copy what we've done so far. Since everything
3300 * from s to t - 1 is invariant, the destination can be initialized
3301 * with these using a fast memory copy
3303 * The other way is to figure out exactly how big the string should be
3304 * by parsing the entire input. Then you don't have to make it big
3305 * enough to handle the worst possible case, and more importantly, if
3306 * the string you already have is large enough, you don't have to
3307 * allocate a new string, you can copy the last character in the input
3308 * string to the final position(s) that will be occupied by the
3309 * converted string and go backwards, stopping at t, since everything
3310 * before that is invariant.
3312 * There are advantages and disadvantages to each method.
3314 * In the first method, we can allocate a new string, do the memory
3315 * copy from the s to t - 1, and then proceed through the rest of the
3316 * string byte-by-byte.
3318 * In the second method, we proceed through the rest of the input
3319 * string just calculating how big the converted string will be. Then
3320 * there are two cases:
3321 * 1) if the string has enough extra space to handle the converted
3322 * value. We go backwards through the string, converting until we
3323 * get to the position we are at now, and then stop. If this
3324 * position is far enough along in the string, this method is
3325 * faster than the other method. If the memory copy were the same
3326 * speed as the byte-by-byte loop, that position would be about
3327 * half-way, as at the half-way mark, parsing to the end and back
3328 * is one complete string's parse, the same amount as starting
3329 * over and going all the way through. Actually, it would be
3330 * somewhat less than half-way, as it's faster to just count bytes
3331 * than to also copy, and we don't have the overhead of allocating
3332 * a new string, changing the scalar to use it, and freeing the
3333 * existing one. But if the memory copy is fast, the break-even
3334 * point is somewhere after half way. The counting loop could be
3335 * sped up by vectorization, etc, to move the break-even point
3336 * further towards the beginning.
3337 * 2) if the string doesn't have enough space to handle the converted
3338 * value. A new string will have to be allocated, and one might
3339 * as well, given that, start from the beginning doing the first
3340 * method. We've spent extra time parsing the string and in
3341 * exchange all we've gotten is that we know precisely how big to
3342 * make the new one. Perl is more optimized for time than space,
3343 * so this case is a loser.
3344 * So what I've decided to do is not use the 2nd method unless it is
3345 * guaranteed that a new string won't have to be allocated, assuming
3346 * the worst case. I also decided not to put any more conditions on it
3347 * than this, for now. It seems likely that, since the worst case is
3348 * twice as big as the unknown portion of the string (plus 1), we won't
3349 * be guaranteed enough space, causing us to go to the first method,
3350 * unless the string is short, or the first variant character is near
3351 * the end of it. In either of these cases, it seems best to use the
3352 * 2nd method. The only circumstance I can think of where this would
3353 * be really slower is if the string had once had much more data in it
3354 * than it does now, but there is still a substantial amount in it */
3357 STRLEN invariant_head = t - s;
3358 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3359 if (SvLEN(sv) < size) {
3361 /* Here, have decided to allocate a new string */
3366 Newx(dst, size, U8);
3368 /* If no known invariants at the beginning of the input string,
3369 * set so starts from there. Otherwise, can use memory copy to
3370 * get up to where we are now, and then start from here */
3372 if (invariant_head <= 0) {
3375 Copy(s, dst, invariant_head, char);
3376 d = dst + invariant_head;
3380 const UV uv = NATIVE8_TO_UNI(*t++);
3381 if (UNI_IS_INVARIANT(uv))
3382 *d++ = (U8)UNI_TO_NATIVE(uv);
3384 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3385 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3389 SvPV_free(sv); /* No longer using pre-existing string */
3390 SvPV_set(sv, (char*)dst);
3391 SvCUR_set(sv, d - dst);
3392 SvLEN_set(sv, size);
3395 /* Here, have decided to get the exact size of the string.
3396 * Currently this happens only when we know that there is
3397 * guaranteed enough space to fit the converted string, so
3398 * don't have to worry about growing. If two_byte_count is 0,
3399 * then t points to the first byte of the string which hasn't
3400 * been examined yet. Otherwise two_byte_count is 1, and t
3401 * points to the first byte in the string that will expand to
3402 * two. Depending on this, start examining at t or 1 after t.
3405 U8 *d = t + two_byte_count;
3408 /* Count up the remaining bytes that expand to two */
3411 const U8 chr = *d++;
3412 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3415 /* The string will expand by just the number of bytes that
3416 * occupy two positions. But we are one afterwards because of
3417 * the increment just above. This is the place to put the
3418 * trailing NUL, and to set the length before we decrement */
3420 d += two_byte_count;
3421 SvCUR_set(sv, d - s);
3425 /* Having decremented d, it points to the position to put the
3426 * very last byte of the expanded string. Go backwards through
3427 * the string, copying and expanding as we go, stopping when we
3428 * get to the part that is invariant the rest of the way down */
3432 const U8 ch = NATIVE8_TO_UNI(*e--);
3433 if (UNI_IS_INVARIANT(ch)) {
3434 *d-- = UNI_TO_NATIVE(ch);
3436 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3437 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3444 /* Mark as UTF-8 even if no variant - saves scanning loop */
3450 =for apidoc sv_utf8_downgrade
3452 Attempts to convert the PV of an SV from characters to bytes.
3453 If the PV contains a character that cannot fit
3454 in a byte, this conversion will fail;
3455 in this case, either returns false or, if C<fail_ok> is not
3458 This is not as a general purpose Unicode to byte encoding interface:
3459 use the Encode extension for that.
3465 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3469 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3471 if (SvPOKp(sv) && SvUTF8(sv)) {
3477 sv_force_normal_flags(sv, 0);
3479 s = (U8 *) SvPV(sv, len);
3480 if (!utf8_to_bytes(s, &len)) {
3485 Perl_croak(aTHX_ "Wide character in %s",
3488 Perl_croak(aTHX_ "Wide character");
3499 =for apidoc sv_utf8_encode
3501 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3502 flag off so that it looks like octets again.
3508 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3510 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3513 sv_force_normal_flags(sv, 0);
3515 if (SvREADONLY(sv)) {
3516 Perl_croak(aTHX_ "%s", PL_no_modify);
3518 (void) sv_utf8_upgrade(sv);
3523 =for apidoc sv_utf8_decode
3525 If the PV of the SV is an octet sequence in UTF-8
3526 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3527 so that it looks like a character. If the PV contains only single-byte
3528 characters, the C<SvUTF8> flag stays being off.
3529 Scans PV for validity and returns false if the PV is invalid UTF-8.
3535 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3537 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3543 /* The octets may have got themselves encoded - get them back as
3546 if (!sv_utf8_downgrade(sv, TRUE))
3549 /* it is actually just a matter of turning the utf8 flag on, but
3550 * we want to make sure everything inside is valid utf8 first.
3552 c = (const U8 *) SvPVX_const(sv);
3553 if (!is_utf8_string(c, SvCUR(sv)+1))
3555 e = (const U8 *) SvEND(sv);
3558 if (!UTF8_IS_INVARIANT(ch)) {
3568 =for apidoc sv_setsv
3570 Copies the contents of the source SV C<ssv> into the destination SV
3571 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3572 function if the source SV needs to be reused. Does not handle 'set' magic.
3573 Loosely speaking, it performs a copy-by-value, obliterating any previous
3574 content of the destination.
3576 You probably want to use one of the assortment of wrappers, such as
3577 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3578 C<SvSetMagicSV_nosteal>.
3580 =for apidoc sv_setsv_flags
3582 Copies the contents of the source SV C<ssv> into the destination SV
3583 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3584 function if the source SV needs to be reused. Does not handle 'set' magic.
3585 Loosely speaking, it performs a copy-by-value, obliterating any previous
3586 content of the destination.
3587 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3588 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3589 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3590 and C<sv_setsv_nomg> are implemented in terms of this function.
3592 You probably want to use one of the assortment of wrappers, such as
3593 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3594 C<SvSetMagicSV_nosteal>.
3596 This is the primary function for copying scalars, and most other
3597 copy-ish functions and macros use this underneath.
3603 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3605 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3607 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3609 if (dtype != SVt_PVGV) {
3610 const char * const name = GvNAME(sstr);
3611 const STRLEN len = GvNAMELEN(sstr);
3613 if (dtype >= SVt_PV) {
3619 SvUPGRADE(dstr, SVt_PVGV);
3620 (void)SvOK_off(dstr);
3621 /* FIXME - why are we doing this, then turning it off and on again
3623 isGV_with_GP_on(dstr);
3625 GvSTASH(dstr) = GvSTASH(sstr);
3627 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3628 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3629 SvFAKE_on(dstr); /* can coerce to non-glob */
3632 if(GvGP(MUTABLE_GV(sstr))) {
3633 /* If source has method cache entry, clear it */
3635 SvREFCNT_dec(GvCV(sstr));
3639 /* If source has a real method, then a method is
3641 else if(GvCV((const GV *)sstr)) {
3646 /* If dest already had a real method, that's a change as well */
3647 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3651 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3654 gp_free(MUTABLE_GV(dstr));
3655 isGV_with_GP_off(dstr);
3656 (void)SvOK_off(dstr);
3657 isGV_with_GP_on(dstr);
3658 GvINTRO_off(dstr); /* one-shot flag */
3659 GvGP(dstr) = gp_ref(GvGP(sstr));
3660 if (SvTAINTED(sstr))
3662 if (GvIMPORTED(dstr) != GVf_IMPORTED
3663 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3665 GvIMPORTED_on(dstr);
3668 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3669 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3674 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3676 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3678 const int intro = GvINTRO(dstr);
3681 const U32 stype = SvTYPE(sref);
3682 bool mro_changes = FALSE;
3684 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3687 GvINTRO_off(dstr); /* one-shot flag */
3688 GvLINE(dstr) = CopLINE(PL_curcop);
3689 GvEGV(dstr) = MUTABLE_GV(dstr);
3694 location = (SV **) &GvCV(dstr);
3695 import_flag = GVf_IMPORTED_CV;
3698 location = (SV **) &GvHV(dstr);
3699 import_flag = GVf_IMPORTED_HV;
3702 location = (SV **) &GvAV(dstr);
3703 if (strEQ(GvNAME((GV*)dstr), "ISA"))
3705 import_flag = GVf_IMPORTED_AV;
3708 location = (SV **) &GvIOp(dstr);
3711 location = (SV **) &GvFORM(dstr);
3714 location = &GvSV(dstr);
3715 import_flag = GVf_IMPORTED_SV;
3718 if (stype == SVt_PVCV) {
3719 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3720 if (GvCVGEN(dstr)) {
3721 SvREFCNT_dec(GvCV(dstr));
3723 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3726 SAVEGENERICSV(*location);
3730 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3731 CV* const cv = MUTABLE_CV(*location);
3733 if (!GvCVGEN((const GV *)dstr) &&
3734 (CvROOT(cv) || CvXSUB(cv)))
3736 /* Redefining a sub - warning is mandatory if
3737 it was a const and its value changed. */
3738 if (CvCONST(cv) && CvCONST((const CV *)sref)
3740 == cv_const_sv((const CV *)sref)) {
3742 /* They are 2 constant subroutines generated from
3743 the same constant. This probably means that
3744 they are really the "same" proxy subroutine
3745 instantiated in 2 places. Most likely this is
3746 when a constant is exported twice. Don't warn.
3749 else if (ckWARN(WARN_REDEFINE)
3751 && (!CvCONST((const CV *)sref)
3752 || sv_cmp(cv_const_sv(cv),
3753 cv_const_sv((const CV *)
3755 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3758 ? "Constant subroutine %s::%s redefined"
3759 : "Subroutine %s::%s redefined"),
3760 HvNAME_get(GvSTASH((const GV *)dstr)),
3761 GvENAME(MUTABLE_GV(dstr)));
3765 cv_ckproto_len(cv, (const GV *)dstr,
3766 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3767 SvPOK(sref) ? SvCUR(sref) : 0);
3769 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3770 GvASSUMECV_on(dstr);
3771 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3774 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3775 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3776 GvFLAGS(dstr) |= import_flag;
3781 if (SvTAINTED(sstr))
3783 if (mro_changes) mro_isa_changed_in(GvSTASH(dstr));
3788 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3791 register U32 sflags;
3793 register svtype stype;
3795 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3800 if (SvIS_FREED(dstr)) {
3801 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3802 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3804 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3806 sstr = &PL_sv_undef;
3807 if (SvIS_FREED(sstr)) {
3808 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3809 (void*)sstr, (void*)dstr);
3811 stype = SvTYPE(sstr);
3812 dtype = SvTYPE(dstr);
3814 (void)SvAMAGIC_off(dstr);
3817 /* need to nuke the magic */
3821 /* There's a lot of redundancy below but we're going for speed here */
3826 if (dtype != SVt_PVGV) {
3827 (void)SvOK_off(dstr);
3835 sv_upgrade(dstr, SVt_IV);
3839 sv_upgrade(dstr, SVt_PVIV);
3842 goto end_of_first_switch;
3844 (void)SvIOK_only(dstr);
3845 SvIV_set(dstr, SvIVX(sstr));
3848 /* SvTAINTED can only be true if the SV has taint magic, which in
3849 turn means that the SV type is PVMG (or greater). This is the
3850 case statement for SVt_IV, so this cannot be true (whatever gcov
3852 assert(!SvTAINTED(sstr));
3857 if (dtype < SVt_PV && dtype != SVt_IV)
3858 sv_upgrade(dstr, SVt_IV);
3866 sv_upgrade(dstr, SVt_NV);
3870 sv_upgrade(dstr, SVt_PVNV);
3873 goto end_of_first_switch;
3875 SvNV_set(dstr, SvNVX(sstr));
3876 (void)SvNOK_only(dstr);
3877 /* SvTAINTED can only be true if the SV has taint magic, which in
3878 turn means that the SV type is PVMG (or greater). This is the
3879 case statement for SVt_NV, so this cannot be true (whatever gcov
3881 assert(!SvTAINTED(sstr));
3887 #ifdef PERL_OLD_COPY_ON_WRITE
3888 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3889 if (dtype < SVt_PVIV)
3890 sv_upgrade(dstr, SVt_PVIV);
3898 sv_upgrade(dstr, SVt_PV);
3901 if (dtype < SVt_PVIV)
3902 sv_upgrade(dstr, SVt_PVIV);
3905 if (dtype < SVt_PVNV)
3906 sv_upgrade(dstr, SVt_PVNV);
3910 const char * const type = sv_reftype(sstr,0);
3912 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3914 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3918 /* case SVt_BIND: */
3921 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3922 glob_assign_glob(dstr, sstr, dtype);
3925 /* SvVALID means that this PVGV is playing at being an FBM. */
3929 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3931 if (SvTYPE(sstr) != stype) {
3932 stype = SvTYPE(sstr);
3933 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3934 glob_assign_glob(dstr, sstr, dtype);
3939 if (stype == SVt_PVLV)
3940 SvUPGRADE(dstr, SVt_PVNV);
3942 SvUPGRADE(dstr, (svtype)stype);
3944 end_of_first_switch:
3946 /* dstr may have been upgraded. */
3947 dtype = SvTYPE(dstr);
3948 sflags = SvFLAGS(sstr);
3950 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3951 /* Assigning to a subroutine sets the prototype. */
3954 const char *const ptr = SvPV_const(sstr, len);
3956 SvGROW(dstr, len + 1);
3957 Copy(ptr, SvPVX(dstr), len + 1, char);
3958 SvCUR_set(dstr, len);
3960 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3964 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3965 const char * const type = sv_reftype(dstr,0);
3967 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3969 Perl_croak(aTHX_ "Cannot copy to %s", type);
3970 } else if (sflags & SVf_ROK) {
3971 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3972 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3975 if (GvIMPORTED(dstr) != GVf_IMPORTED
3976 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3978 GvIMPORTED_on(dstr);
3983 glob_assign_glob(dstr, sstr, dtype);
3987 if (dtype >= SVt_PV) {
3988 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3989 glob_assign_ref(dstr, sstr);
3992 if (SvPVX_const(dstr)) {
3998 (void)SvOK_off(dstr);
3999 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4000 SvFLAGS(dstr) |= sflags & SVf_ROK;
4001 assert(!(sflags & SVp_NOK));
4002 assert(!(sflags & SVp_IOK));
4003 assert(!(sflags & SVf_NOK));
4004 assert(!(sflags & SVf_IOK));
4006 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4007 if (!(sflags & SVf_OK)) {
4008 if (ckWARN(WARN_MISC))
4009 Perl_warner(aTHX_ packWARN(WARN_MISC),
4010 "Undefined value assigned to typeglob");
4013 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4014 if (dstr != (const SV *)gv) {
4016 gp_free(MUTABLE_GV(dstr));
4017 GvGP(dstr) = gp_ref(GvGP(gv));
4021 else if (sflags & SVp_POK) {
4025 * Check to see if we can just swipe the string. If so, it's a
4026 * possible small lose on short strings, but a big win on long ones.
4027 * It might even be a win on short strings if SvPVX_const(dstr)
4028 * has to be allocated and SvPVX_const(sstr) has to be freed.
4029 * Likewise if we can set up COW rather than doing an actual copy, we
4030 * drop to the else clause, as the swipe code and the COW setup code
4031 * have much in common.
4034 /* Whichever path we take through the next code, we want this true,
4035 and doing it now facilitates the COW check. */
4036 (void)SvPOK_only(dstr);
4039 /* If we're already COW then this clause is not true, and if COW
4040 is allowed then we drop down to the else and make dest COW
4041 with us. If caller hasn't said that we're allowed to COW
4042 shared hash keys then we don't do the COW setup, even if the
4043 source scalar is a shared hash key scalar. */
4044 (((flags & SV_COW_SHARED_HASH_KEYS)
4045 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4046 : 1 /* If making a COW copy is forbidden then the behaviour we
4047 desire is as if the source SV isn't actually already
4048 COW, even if it is. So we act as if the source flags
4049 are not COW, rather than actually testing them. */
4051 #ifndef PERL_OLD_COPY_ON_WRITE
4052 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4053 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4054 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4055 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4056 but in turn, it's somewhat dead code, never expected to go
4057 live, but more kept as a placeholder on how to do it better
4058 in a newer implementation. */
4059 /* If we are COW and dstr is a suitable target then we drop down
4060 into the else and make dest a COW of us. */
4061 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4066 (sflags & SVs_TEMP) && /* slated for free anyway? */
4067 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4068 (!(flags & SV_NOSTEAL)) &&
4069 /* and we're allowed to steal temps */
4070 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4071 SvLEN(sstr) && /* and really is a string */
4072 /* and won't be needed again, potentially */
4073 !(PL_op && PL_op->op_type == OP_AASSIGN))
4074 #ifdef PERL_OLD_COPY_ON_WRITE
4075 && ((flags & SV_COW_SHARED_HASH_KEYS)
4076 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4077 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4078 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4082 /* Failed the swipe test, and it's not a shared hash key either.
4083 Have to copy the string. */
4084 STRLEN len = SvCUR(sstr);
4085 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4086 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4087 SvCUR_set(dstr, len);
4088 *SvEND(dstr) = '\0';
4090 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4092 /* Either it's a shared hash key, or it's suitable for
4093 copy-on-write or we can swipe the string. */
4095 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4099 #ifdef PERL_OLD_COPY_ON_WRITE
4101 if ((sflags & (SVf_FAKE | SVf_READONLY))
4102 != (SVf_FAKE | SVf_READONLY)) {
4103 SvREADONLY_on(sstr);
4105 /* Make the source SV into a loop of 1.
4106 (about to become 2) */
4107 SV_COW_NEXT_SV_SET(sstr, sstr);
4111 /* Initial code is common. */
4112 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4117 /* making another shared SV. */
4118 STRLEN cur = SvCUR(sstr);
4119 STRLEN len = SvLEN(sstr);
4120 #ifdef PERL_OLD_COPY_ON_WRITE
4122 assert (SvTYPE(dstr) >= SVt_PVIV);
4123 /* SvIsCOW_normal */
4124 /* splice us in between source and next-after-source. */
4125 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4126 SV_COW_NEXT_SV_SET(sstr, dstr);
4127 SvPV_set(dstr, SvPVX_mutable(sstr));
4131 /* SvIsCOW_shared_hash */
4132 DEBUG_C(PerlIO_printf(Perl_debug_log,
4133 "Copy on write: Sharing hash\n"));
4135 assert (SvTYPE(dstr) >= SVt_PV);
4137 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4139 SvLEN_set(dstr, len);
4140 SvCUR_set(dstr, cur);
4141 SvREADONLY_on(dstr);
4145 { /* Passes the swipe test. */
4146 SvPV_set(dstr, SvPVX_mutable(sstr));
4147 SvLEN_set(dstr, SvLEN(sstr));
4148 SvCUR_set(dstr, SvCUR(sstr));
4151 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4152 SvPV_set(sstr, NULL);
4158 if (sflags & SVp_NOK) {
4159 SvNV_set(dstr, SvNVX(sstr));
4161 if (sflags & SVp_IOK) {
4162 SvIV_set(dstr, SvIVX(sstr));
4163 /* Must do this otherwise some other overloaded use of 0x80000000
4164 gets confused. I guess SVpbm_VALID */
4165 if (sflags & SVf_IVisUV)
4168 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4170 const MAGIC * const smg = SvVSTRING_mg(sstr);
4172 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4173 smg->mg_ptr, smg->mg_len);
4174 SvRMAGICAL_on(dstr);
4178 else if (sflags & (SVp_IOK|SVp_NOK)) {
4179 (void)SvOK_off(dstr);
4180 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4181 if (sflags & SVp_IOK) {
4182 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4183 SvIV_set(dstr, SvIVX(sstr));
4185 if (sflags & SVp_NOK) {
4186 SvNV_set(dstr, SvNVX(sstr));
4190 if (isGV_with_GP(sstr)) {
4191 /* This stringification rule for globs is spread in 3 places.
4192 This feels bad. FIXME. */
4193 const U32 wasfake = sflags & SVf_FAKE;
4195 /* FAKE globs can get coerced, so need to turn this off
4196 temporarily if it is on. */
4198 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4199 SvFLAGS(sstr) |= wasfake;
4202 (void)SvOK_off(dstr);
4204 if (SvTAINTED(sstr))
4209 =for apidoc sv_setsv_mg
4211 Like C<sv_setsv>, but also handles 'set' magic.
4217 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4219 PERL_ARGS_ASSERT_SV_SETSV_MG;
4221 sv_setsv(dstr,sstr);
4225 #ifdef PERL_OLD_COPY_ON_WRITE
4227 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4229 STRLEN cur = SvCUR(sstr);
4230 STRLEN len = SvLEN(sstr);
4231 register char *new_pv;
4233 PERL_ARGS_ASSERT_SV_SETSV_COW;
4236 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4237 (void*)sstr, (void*)dstr);
4244 if (SvTHINKFIRST(dstr))
4245 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4246 else if (SvPVX_const(dstr))
4247 Safefree(SvPVX_const(dstr));
4251 SvUPGRADE(dstr, SVt_PVIV);
4253 assert (SvPOK(sstr));
4254 assert (SvPOKp(sstr));
4255 assert (!SvIOK(sstr));
4256 assert (!SvIOKp(sstr));
4257 assert (!SvNOK(sstr));
4258 assert (!SvNOKp(sstr));
4260 if (SvIsCOW(sstr)) {
4262 if (SvLEN(sstr) == 0) {
4263 /* source is a COW shared hash key. */
4264 DEBUG_C(PerlIO_printf(Perl_debug_log,
4265 "Fast copy on write: Sharing hash\n"));
4266 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4269 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4271 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4272 SvUPGRADE(sstr, SVt_PVIV);
4273 SvREADONLY_on(sstr);
4275 DEBUG_C(PerlIO_printf(Perl_debug_log,
4276 "Fast copy on write: Converting sstr to COW\n"));
4277 SV_COW_NEXT_SV_SET(dstr, sstr);
4279 SV_COW_NEXT_SV_SET(sstr, dstr);
4280 new_pv = SvPVX_mutable(sstr);
4283 SvPV_set(dstr, new_pv);
4284 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4287 SvLEN_set(dstr, len);
4288 SvCUR_set(dstr, cur);
4297 =for apidoc sv_setpvn
4299 Copies a string into an SV. The C<len> parameter indicates the number of
4300 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4301 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4307 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4310 register char *dptr;
4312 PERL_ARGS_ASSERT_SV_SETPVN;
4314 SV_CHECK_THINKFIRST_COW_DROP(sv);
4320 /* len is STRLEN which is unsigned, need to copy to signed */
4323 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4325 SvUPGRADE(sv, SVt_PV);
4327 dptr = SvGROW(sv, len + 1);
4328 Move(ptr,dptr,len,char);
4331 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4336 =for apidoc sv_setpvn_mg
4338 Like C<sv_setpvn>, but also handles 'set' magic.
4344 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4346 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4348 sv_setpvn(sv,ptr,len);
4353 =for apidoc sv_setpv
4355 Copies a string into an SV. The string must be null-terminated. Does not
4356 handle 'set' magic. See C<sv_setpv_mg>.
4362 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4365 register STRLEN len;
4367 PERL_ARGS_ASSERT_SV_SETPV;
4369 SV_CHECK_THINKFIRST_COW_DROP(sv);
4375 SvUPGRADE(sv, SVt_PV);
4377 SvGROW(sv, len + 1);
4378 Move(ptr,SvPVX(sv),len+1,char);
4380 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4385 =for apidoc sv_setpv_mg
4387 Like C<sv_setpv>, but also handles 'set' magic.
4393 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4395 PERL_ARGS_ASSERT_SV_SETPV_MG;
4402 =for apidoc sv_usepvn_flags
4404 Tells an SV to use C<ptr> to find its string value. Normally the
4405 string is stored inside the SV but sv_usepvn allows the SV to use an
4406 outside string. The C<ptr> should point to memory that was allocated
4407 by C<malloc>. The string length, C<len>, must be supplied. By default
4408 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4409 so that pointer should not be freed or used by the programmer after
4410 giving it to sv_usepvn, and neither should any pointers from "behind"
4411 that pointer (e.g. ptr + 1) be used.
4413 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4414 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4415 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4416 C<len>, and already meets the requirements for storing in C<SvPVX>)
4422 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4427 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4429 SV_CHECK_THINKFIRST_COW_DROP(sv);
4430 SvUPGRADE(sv, SVt_PV);
4433 if (flags & SV_SMAGIC)
4437 if (SvPVX_const(sv))
4441 if (flags & SV_HAS_TRAILING_NUL)
4442 assert(ptr[len] == '\0');
4445 allocate = (flags & SV_HAS_TRAILING_NUL)
4447 #ifdef Perl_safesysmalloc_size
4450 PERL_STRLEN_ROUNDUP(len + 1);
4452 if (flags & SV_HAS_TRAILING_NUL) {
4453 /* It's long enough - do nothing.
4454 Specfically Perl_newCONSTSUB is relying on this. */
4457 /* Force a move to shake out bugs in callers. */
4458 char *new_ptr = (char*)safemalloc(allocate);
4459 Copy(ptr, new_ptr, len, char);
4460 PoisonFree(ptr,len,char);
4464 ptr = (char*) saferealloc (ptr, allocate);
4467 #ifdef Perl_safesysmalloc_size
4468 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4470 SvLEN_set(sv, allocate);
4474 if (!(flags & SV_HAS_TRAILING_NUL)) {
4477 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4479 if (flags & SV_SMAGIC)
4483 #ifdef PERL_OLD_COPY_ON_WRITE
4484 /* Need to do this *after* making the SV normal, as we need the buffer
4485 pointer to remain valid until after we've copied it. If we let go too early,
4486 another thread could invalidate it by unsharing last of the same hash key
4487 (which it can do by means other than releasing copy-on-write Svs)
4488 or by changing the other copy-on-write SVs in the loop. */
4490 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4492 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4494 { /* this SV was SvIsCOW_normal(sv) */
4495 /* we need to find the SV pointing to us. */
4496 SV *current = SV_COW_NEXT_SV(after);
4498 if (current == sv) {
4499 /* The SV we point to points back to us (there were only two of us
4501 Hence other SV is no longer copy on write either. */
4503 SvREADONLY_off(after);
4505 /* We need to follow the pointers around the loop. */
4507 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4510 /* don't loop forever if the structure is bust, and we have
4511 a pointer into a closed loop. */
4512 assert (current != after);
4513 assert (SvPVX_const(current) == pvx);
4515 /* Make the SV before us point to the SV after us. */
4516 SV_COW_NEXT_SV_SET(current, after);
4522 =for apidoc sv_force_normal_flags
4524 Undo various types of fakery on an SV: if the PV is a shared string, make
4525 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4526 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4527 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4528 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4529 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4530 set to some other value.) In addition, the C<flags> parameter gets passed to
4531 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4532 with flags set to 0.
4538 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4542 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4544 #ifdef PERL_OLD_COPY_ON_WRITE
4545 if (SvREADONLY(sv)) {
4547 const char * const pvx = SvPVX_const(sv);
4548 const STRLEN len = SvLEN(sv);
4549 const STRLEN cur = SvCUR(sv);
4550 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4551 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4552 we'll fail an assertion. */
4553 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4556 PerlIO_printf(Perl_debug_log,
4557 "Copy on write: Force normal %ld\n",
4563 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4566 if (flags & SV_COW_DROP_PV) {
4567 /* OK, so we don't need to copy our buffer. */
4570 SvGROW(sv, cur + 1);
4571 Move(pvx,SvPVX(sv),cur,char);
4576 sv_release_COW(sv, pvx, next);
4578 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4584 else if (IN_PERL_RUNTIME)
4585 Perl_croak(aTHX_ "%s", PL_no_modify);
4588 if (SvREADONLY(sv)) {
4590 const char * const pvx = SvPVX_const(sv);
4591 const STRLEN len = SvCUR(sv);
4596 SvGROW(sv, len + 1);
4597 Move(pvx,SvPVX(sv),len,char);
4599 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4601 else if (IN_PERL_RUNTIME)
4602 Perl_croak(aTHX_ "%s", PL_no_modify);
4606 sv_unref_flags(sv, flags);
4607 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4614 Efficient removal of characters from the beginning of the string buffer.
4615 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4616 the string buffer. The C<ptr> becomes the first character of the adjusted
4617 string. Uses the "OOK hack".
4618 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4619 refer to the same chunk of data.
4625 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4631 const U8 *real_start;
4635 PERL_ARGS_ASSERT_SV_CHOP;
4637 if (!ptr || !SvPOKp(sv))
4639 delta = ptr - SvPVX_const(sv);
4641 /* Nothing to do. */
4644 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4645 nothing uses the value of ptr any more. */
4646 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4647 if (ptr <= SvPVX_const(sv))
4648 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4649 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4650 SV_CHECK_THINKFIRST(sv);
4651 if (delta > max_delta)
4652 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4653 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4654 SvPVX_const(sv) + max_delta);
4657 if (!SvLEN(sv)) { /* make copy of shared string */
4658 const char *pvx = SvPVX_const(sv);
4659 const STRLEN len = SvCUR(sv);
4660 SvGROW(sv, len + 1);
4661 Move(pvx,SvPVX(sv),len,char);
4664 SvFLAGS(sv) |= SVf_OOK;
4667 SvOOK_offset(sv, old_delta);
4669 SvLEN_set(sv, SvLEN(sv) - delta);
4670 SvCUR_set(sv, SvCUR(sv) - delta);
4671 SvPV_set(sv, SvPVX(sv) + delta);
4673 p = (U8 *)SvPVX_const(sv);
4678 real_start = p - delta;
4682 if (delta < 0x100) {
4686 p -= sizeof(STRLEN);
4687 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4691 /* Fill the preceding buffer with sentinals to verify that no-one is
4693 while (p > real_start) {
4701 =for apidoc sv_catpvn
4703 Concatenates the string onto the end of the string which is in the SV. The
4704 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4705 status set, then the bytes appended should be valid UTF-8.
4706 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4708 =for apidoc sv_catpvn_flags
4710 Concatenates the string onto the end of the string which is in the SV. The